Properties

Label 10000.2.a.bq.1.4
Level $10000$
Weight $2$
Character 10000.1
Self dual yes
Analytic conductor $79.850$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10000,2,Mod(1,10000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10000.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10000 = 2^{4} \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 10000.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(79.8504020213\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} - 26 x^{14} + 110 x^{13} + 250 x^{12} - 1154 x^{11} - 1074 x^{10} + 5784 x^{9} + \cdots + 80 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 5^{3} \)
Twist minimal: no (minimal twist has level 200)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.30769\) of defining polynomial
Character \(\chi\) \(=\) 10000.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.30769 q^{3} -4.74404 q^{7} +2.32542 q^{9} +5.47714 q^{11} +0.899642 q^{13} -0.714260 q^{17} -5.35412 q^{19} +10.9478 q^{21} +3.04153 q^{23} +1.55671 q^{27} -0.636866 q^{29} -6.03862 q^{31} -12.6395 q^{33} -1.69746 q^{37} -2.07609 q^{39} +10.3516 q^{41} -8.11200 q^{43} -0.909166 q^{47} +15.5059 q^{49} +1.64829 q^{51} -1.02940 q^{53} +12.3556 q^{57} -5.59978 q^{59} +8.18481 q^{61} -11.0319 q^{63} -1.36315 q^{67} -7.01890 q^{69} -1.56534 q^{71} +8.11080 q^{73} -25.9837 q^{77} +12.1629 q^{79} -10.5687 q^{81} -12.8315 q^{83} +1.46969 q^{87} -3.98523 q^{89} -4.26793 q^{91} +13.9353 q^{93} -8.95131 q^{97} +12.7367 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{3} - 8 q^{7} + 20 q^{9} + 12 q^{11} + 10 q^{13} + 8 q^{17} + 12 q^{19} + 8 q^{21} - 12 q^{23} - 22 q^{27} + 16 q^{29} + 2 q^{31} + 24 q^{33} + 22 q^{37} + 4 q^{39} + 20 q^{41} - 26 q^{43} - 24 q^{47}+ \cdots + 46 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.30769 −1.33234 −0.666172 0.745798i \(-0.732068\pi\)
−0.666172 + 0.745798i \(0.732068\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −4.74404 −1.79308 −0.896538 0.442966i \(-0.853926\pi\)
−0.896538 + 0.442966i \(0.853926\pi\)
\(8\) 0 0
\(9\) 2.32542 0.775141
\(10\) 0 0
\(11\) 5.47714 1.65142 0.825710 0.564095i \(-0.190775\pi\)
0.825710 + 0.564095i \(0.190775\pi\)
\(12\) 0 0
\(13\) 0.899642 0.249516 0.124758 0.992187i \(-0.460185\pi\)
0.124758 + 0.992187i \(0.460185\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.714260 −0.173234 −0.0866168 0.996242i \(-0.527606\pi\)
−0.0866168 + 0.996242i \(0.527606\pi\)
\(18\) 0 0
\(19\) −5.35412 −1.22832 −0.614160 0.789182i \(-0.710505\pi\)
−0.614160 + 0.789182i \(0.710505\pi\)
\(20\) 0 0
\(21\) 10.9478 2.38900
\(22\) 0 0
\(23\) 3.04153 0.634203 0.317101 0.948392i \(-0.397290\pi\)
0.317101 + 0.948392i \(0.397290\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.55671 0.299589
\(28\) 0 0
\(29\) −0.636866 −0.118263 −0.0591315 0.998250i \(-0.518833\pi\)
−0.0591315 + 0.998250i \(0.518833\pi\)
\(30\) 0 0
\(31\) −6.03862 −1.08457 −0.542284 0.840195i \(-0.682440\pi\)
−0.542284 + 0.840195i \(0.682440\pi\)
\(32\) 0 0
\(33\) −12.6395 −2.20026
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.69746 −0.279060 −0.139530 0.990218i \(-0.544559\pi\)
−0.139530 + 0.990218i \(0.544559\pi\)
\(38\) 0 0
\(39\) −2.07609 −0.332441
\(40\) 0 0
\(41\) 10.3516 1.61665 0.808324 0.588738i \(-0.200375\pi\)
0.808324 + 0.588738i \(0.200375\pi\)
\(42\) 0 0
\(43\) −8.11200 −1.23707 −0.618534 0.785758i \(-0.712273\pi\)
−0.618534 + 0.785758i \(0.712273\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.909166 −0.132616 −0.0663078 0.997799i \(-0.521122\pi\)
−0.0663078 + 0.997799i \(0.521122\pi\)
\(48\) 0 0
\(49\) 15.5059 2.21512
\(50\) 0 0
\(51\) 1.64829 0.230807
\(52\) 0 0
\(53\) −1.02940 −0.141399 −0.0706993 0.997498i \(-0.522523\pi\)
−0.0706993 + 0.997498i \(0.522523\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 12.3556 1.63654
\(58\) 0 0
\(59\) −5.59978 −0.729029 −0.364514 0.931198i \(-0.618765\pi\)
−0.364514 + 0.931198i \(0.618765\pi\)
\(60\) 0 0
\(61\) 8.18481 1.04796 0.523979 0.851731i \(-0.324447\pi\)
0.523979 + 0.851731i \(0.324447\pi\)
\(62\) 0 0
\(63\) −11.0319 −1.38989
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −1.36315 −0.166535 −0.0832674 0.996527i \(-0.526536\pi\)
−0.0832674 + 0.996527i \(0.526536\pi\)
\(68\) 0 0
\(69\) −7.01890 −0.844976
\(70\) 0 0
\(71\) −1.56534 −0.185772 −0.0928860 0.995677i \(-0.529609\pi\)
−0.0928860 + 0.995677i \(0.529609\pi\)
\(72\) 0 0
\(73\) 8.11080 0.949297 0.474649 0.880175i \(-0.342575\pi\)
0.474649 + 0.880175i \(0.342575\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −25.9837 −2.96112
\(78\) 0 0
\(79\) 12.1629 1.36843 0.684215 0.729280i \(-0.260145\pi\)
0.684215 + 0.729280i \(0.260145\pi\)
\(80\) 0 0
\(81\) −10.5687 −1.17430
\(82\) 0 0
\(83\) −12.8315 −1.40844 −0.704218 0.709983i \(-0.748702\pi\)
−0.704218 + 0.709983i \(0.748702\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1.46969 0.157567
\(88\) 0 0
\(89\) −3.98523 −0.422434 −0.211217 0.977439i \(-0.567743\pi\)
−0.211217 + 0.977439i \(0.567743\pi\)
\(90\) 0 0
\(91\) −4.26793 −0.447401
\(92\) 0 0
\(93\) 13.9353 1.44502
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −8.95131 −0.908868 −0.454434 0.890780i \(-0.650158\pi\)
−0.454434 + 0.890780i \(0.650158\pi\)
\(98\) 0 0
\(99\) 12.7367 1.28008
\(100\) 0 0
\(101\) 4.17849 0.415775 0.207888 0.978153i \(-0.433341\pi\)
0.207888 + 0.978153i \(0.433341\pi\)
\(102\) 0 0
\(103\) −9.49112 −0.935187 −0.467594 0.883943i \(-0.654879\pi\)
−0.467594 + 0.883943i \(0.654879\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.22384 −0.505008 −0.252504 0.967596i \(-0.581254\pi\)
−0.252504 + 0.967596i \(0.581254\pi\)
\(108\) 0 0
\(109\) −1.92200 −0.184094 −0.0920469 0.995755i \(-0.529341\pi\)
−0.0920469 + 0.995755i \(0.529341\pi\)
\(110\) 0 0
\(111\) 3.91720 0.371805
\(112\) 0 0
\(113\) 2.96549 0.278970 0.139485 0.990224i \(-0.455455\pi\)
0.139485 + 0.990224i \(0.455455\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.09205 0.193410
\(118\) 0 0
\(119\) 3.38848 0.310621
\(120\) 0 0
\(121\) 18.9991 1.72719
\(122\) 0 0
\(123\) −23.8883 −2.15393
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −12.9782 −1.15162 −0.575812 0.817582i \(-0.695314\pi\)
−0.575812 + 0.817582i \(0.695314\pi\)
\(128\) 0 0
\(129\) 18.7200 1.64820
\(130\) 0 0
\(131\) 2.32841 0.203434 0.101717 0.994813i \(-0.467566\pi\)
0.101717 + 0.994813i \(0.467566\pi\)
\(132\) 0 0
\(133\) 25.4001 2.20247
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −13.2552 −1.13246 −0.566232 0.824246i \(-0.691600\pi\)
−0.566232 + 0.824246i \(0.691600\pi\)
\(138\) 0 0
\(139\) 3.85842 0.327267 0.163633 0.986521i \(-0.447679\pi\)
0.163633 + 0.986521i \(0.447679\pi\)
\(140\) 0 0
\(141\) 2.09807 0.176690
\(142\) 0 0
\(143\) 4.92746 0.412055
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −35.7827 −2.95131
\(148\) 0 0
\(149\) −21.2606 −1.74173 −0.870866 0.491520i \(-0.836442\pi\)
−0.870866 + 0.491520i \(0.836442\pi\)
\(150\) 0 0
\(151\) −13.6617 −1.11177 −0.555886 0.831258i \(-0.687621\pi\)
−0.555886 + 0.831258i \(0.687621\pi\)
\(152\) 0 0
\(153\) −1.66096 −0.134280
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −10.4154 −0.831241 −0.415621 0.909538i \(-0.636436\pi\)
−0.415621 + 0.909538i \(0.636436\pi\)
\(158\) 0 0
\(159\) 2.37553 0.188392
\(160\) 0 0
\(161\) −14.4291 −1.13717
\(162\) 0 0
\(163\) 8.80154 0.689390 0.344695 0.938715i \(-0.387982\pi\)
0.344695 + 0.938715i \(0.387982\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 15.3342 1.18659 0.593296 0.804984i \(-0.297826\pi\)
0.593296 + 0.804984i \(0.297826\pi\)
\(168\) 0 0
\(169\) −12.1906 −0.937742
\(170\) 0 0
\(171\) −12.4506 −0.952121
\(172\) 0 0
\(173\) −0.436415 −0.0331800 −0.0165900 0.999862i \(-0.505281\pi\)
−0.0165900 + 0.999862i \(0.505281\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 12.9225 0.971318
\(178\) 0 0
\(179\) 3.15305 0.235670 0.117835 0.993033i \(-0.462405\pi\)
0.117835 + 0.993033i \(0.462405\pi\)
\(180\) 0 0
\(181\) −2.83593 −0.210793 −0.105397 0.994430i \(-0.533611\pi\)
−0.105397 + 0.994430i \(0.533611\pi\)
\(182\) 0 0
\(183\) −18.8880 −1.39624
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −3.91210 −0.286081
\(188\) 0 0
\(189\) −7.38509 −0.537186
\(190\) 0 0
\(191\) −12.8358 −0.928765 −0.464382 0.885635i \(-0.653724\pi\)
−0.464382 + 0.885635i \(0.653724\pi\)
\(192\) 0 0
\(193\) −12.6967 −0.913931 −0.456965 0.889484i \(-0.651064\pi\)
−0.456965 + 0.889484i \(0.651064\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −24.8846 −1.77296 −0.886479 0.462770i \(-0.846856\pi\)
−0.886479 + 0.462770i \(0.846856\pi\)
\(198\) 0 0
\(199\) 9.23973 0.654987 0.327493 0.944853i \(-0.393796\pi\)
0.327493 + 0.944853i \(0.393796\pi\)
\(200\) 0 0
\(201\) 3.14572 0.221882
\(202\) 0 0
\(203\) 3.02131 0.212055
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 7.07285 0.491597
\(208\) 0 0
\(209\) −29.3253 −2.02847
\(210\) 0 0
\(211\) 11.8417 0.815214 0.407607 0.913158i \(-0.366363\pi\)
0.407607 + 0.913158i \(0.366363\pi\)
\(212\) 0 0
\(213\) 3.61232 0.247512
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 28.6474 1.94471
\(218\) 0 0
\(219\) −18.7172 −1.26479
\(220\) 0 0
\(221\) −0.642578 −0.0432245
\(222\) 0 0
\(223\) 17.4171 1.16634 0.583168 0.812352i \(-0.301813\pi\)
0.583168 + 0.812352i \(0.301813\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 12.2768 0.814838 0.407419 0.913241i \(-0.366429\pi\)
0.407419 + 0.913241i \(0.366429\pi\)
\(228\) 0 0
\(229\) −3.59181 −0.237354 −0.118677 0.992933i \(-0.537865\pi\)
−0.118677 + 0.992933i \(0.537865\pi\)
\(230\) 0 0
\(231\) 59.9624 3.94523
\(232\) 0 0
\(233\) 11.5258 0.755078 0.377539 0.925994i \(-0.376770\pi\)
0.377539 + 0.925994i \(0.376770\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −28.0681 −1.82322
\(238\) 0 0
\(239\) −26.1479 −1.69137 −0.845684 0.533684i \(-0.820807\pi\)
−0.845684 + 0.533684i \(0.820807\pi\)
\(240\) 0 0
\(241\) 13.8359 0.891248 0.445624 0.895220i \(-0.352982\pi\)
0.445624 + 0.895220i \(0.352982\pi\)
\(242\) 0 0
\(243\) 19.7191 1.26498
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −4.81679 −0.306485
\(248\) 0 0
\(249\) 29.6110 1.87652
\(250\) 0 0
\(251\) 21.1529 1.33516 0.667581 0.744537i \(-0.267330\pi\)
0.667581 + 0.744537i \(0.267330\pi\)
\(252\) 0 0
\(253\) 16.6589 1.04733
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −10.6839 −0.666442 −0.333221 0.942849i \(-0.608135\pi\)
−0.333221 + 0.942849i \(0.608135\pi\)
\(258\) 0 0
\(259\) 8.05280 0.500377
\(260\) 0 0
\(261\) −1.48098 −0.0916706
\(262\) 0 0
\(263\) 0.0797689 0.00491876 0.00245938 0.999997i \(-0.499217\pi\)
0.00245938 + 0.999997i \(0.499217\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 9.19667 0.562827
\(268\) 0 0
\(269\) 3.61927 0.220670 0.110335 0.993894i \(-0.464808\pi\)
0.110335 + 0.993894i \(0.464808\pi\)
\(270\) 0 0
\(271\) −10.6923 −0.649514 −0.324757 0.945798i \(-0.605282\pi\)
−0.324757 + 0.945798i \(0.605282\pi\)
\(272\) 0 0
\(273\) 9.84905 0.596092
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 32.6994 1.96472 0.982360 0.187001i \(-0.0598768\pi\)
0.982360 + 0.187001i \(0.0598768\pi\)
\(278\) 0 0
\(279\) −14.0424 −0.840694
\(280\) 0 0
\(281\) −16.2181 −0.967489 −0.483745 0.875209i \(-0.660724\pi\)
−0.483745 + 0.875209i \(0.660724\pi\)
\(282\) 0 0
\(283\) 32.1766 1.91270 0.956352 0.292218i \(-0.0943934\pi\)
0.956352 + 0.292218i \(0.0943934\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −49.1083 −2.89877
\(288\) 0 0
\(289\) −16.4898 −0.969990
\(290\) 0 0
\(291\) 20.6568 1.21093
\(292\) 0 0
\(293\) 24.6970 1.44281 0.721406 0.692513i \(-0.243496\pi\)
0.721406 + 0.692513i \(0.243496\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 8.52632 0.494747
\(298\) 0 0
\(299\) 2.73629 0.158244
\(300\) 0 0
\(301\) 38.4836 2.21816
\(302\) 0 0
\(303\) −9.64265 −0.553956
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 32.1625 1.83561 0.917806 0.397029i \(-0.129959\pi\)
0.917806 + 0.397029i \(0.129959\pi\)
\(308\) 0 0
\(309\) 21.9025 1.24599
\(310\) 0 0
\(311\) 21.9578 1.24511 0.622556 0.782575i \(-0.286094\pi\)
0.622556 + 0.782575i \(0.286094\pi\)
\(312\) 0 0
\(313\) 5.45024 0.308066 0.154033 0.988066i \(-0.450774\pi\)
0.154033 + 0.988066i \(0.450774\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −0.142772 −0.00801889 −0.00400944 0.999992i \(-0.501276\pi\)
−0.00400944 + 0.999992i \(0.501276\pi\)
\(318\) 0 0
\(319\) −3.48820 −0.195302
\(320\) 0 0
\(321\) 12.0550 0.672844
\(322\) 0 0
\(323\) 3.82423 0.212786
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 4.43537 0.245276
\(328\) 0 0
\(329\) 4.31312 0.237790
\(330\) 0 0
\(331\) 23.3536 1.28363 0.641815 0.766859i \(-0.278182\pi\)
0.641815 + 0.766859i \(0.278182\pi\)
\(332\) 0 0
\(333\) −3.94731 −0.216311
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 16.2545 0.885438 0.442719 0.896660i \(-0.354014\pi\)
0.442719 + 0.896660i \(0.354014\pi\)
\(338\) 0 0
\(339\) −6.84344 −0.371684
\(340\) 0 0
\(341\) −33.0744 −1.79108
\(342\) 0 0
\(343\) −40.3522 −2.17881
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.87801 0.369231 0.184616 0.982811i \(-0.440896\pi\)
0.184616 + 0.982811i \(0.440896\pi\)
\(348\) 0 0
\(349\) −14.7392 −0.788970 −0.394485 0.918902i \(-0.629077\pi\)
−0.394485 + 0.918902i \(0.629077\pi\)
\(350\) 0 0
\(351\) 1.40048 0.0747522
\(352\) 0 0
\(353\) 25.0772 1.33473 0.667363 0.744733i \(-0.267423\pi\)
0.667363 + 0.744733i \(0.267423\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −7.81954 −0.413854
\(358\) 0 0
\(359\) −3.04345 −0.160627 −0.0803135 0.996770i \(-0.525592\pi\)
−0.0803135 + 0.996770i \(0.525592\pi\)
\(360\) 0 0
\(361\) 9.66660 0.508769
\(362\) 0 0
\(363\) −43.8439 −2.30121
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −4.20929 −0.219723 −0.109862 0.993947i \(-0.535041\pi\)
−0.109862 + 0.993947i \(0.535041\pi\)
\(368\) 0 0
\(369\) 24.0719 1.25313
\(370\) 0 0
\(371\) 4.88350 0.253538
\(372\) 0 0
\(373\) 17.9138 0.927540 0.463770 0.885956i \(-0.346496\pi\)
0.463770 + 0.885956i \(0.346496\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.572951 −0.0295085
\(378\) 0 0
\(379\) 14.8367 0.762110 0.381055 0.924552i \(-0.375561\pi\)
0.381055 + 0.924552i \(0.375561\pi\)
\(380\) 0 0
\(381\) 29.9495 1.53436
\(382\) 0 0
\(383\) −10.8176 −0.552754 −0.276377 0.961049i \(-0.589134\pi\)
−0.276377 + 0.961049i \(0.589134\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −18.8639 −0.958903
\(388\) 0 0
\(389\) 23.0350 1.16792 0.583961 0.811782i \(-0.301502\pi\)
0.583961 + 0.811782i \(0.301502\pi\)
\(390\) 0 0
\(391\) −2.17244 −0.109865
\(392\) 0 0
\(393\) −5.37323 −0.271044
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −3.73700 −0.187555 −0.0937774 0.995593i \(-0.529894\pi\)
−0.0937774 + 0.995593i \(0.529894\pi\)
\(398\) 0 0
\(399\) −58.6156 −2.93445
\(400\) 0 0
\(401\) −21.9778 −1.09752 −0.548760 0.835980i \(-0.684900\pi\)
−0.548760 + 0.835980i \(0.684900\pi\)
\(402\) 0 0
\(403\) −5.43260 −0.270617
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −9.29722 −0.460846
\(408\) 0 0
\(409\) 29.2810 1.44785 0.723925 0.689878i \(-0.242336\pi\)
0.723925 + 0.689878i \(0.242336\pi\)
\(410\) 0 0
\(411\) 30.5888 1.50883
\(412\) 0 0
\(413\) 26.5655 1.30721
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −8.90403 −0.436032
\(418\) 0 0
\(419\) 40.6695 1.98684 0.993418 0.114546i \(-0.0365414\pi\)
0.993418 + 0.114546i \(0.0365414\pi\)
\(420\) 0 0
\(421\) −28.2203 −1.37538 −0.687688 0.726007i \(-0.741374\pi\)
−0.687688 + 0.726007i \(0.741374\pi\)
\(422\) 0 0
\(423\) −2.11420 −0.102796
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −38.8290 −1.87907
\(428\) 0 0
\(429\) −11.3710 −0.548999
\(430\) 0 0
\(431\) −3.00603 −0.144795 −0.0723977 0.997376i \(-0.523065\pi\)
−0.0723977 + 0.997376i \(0.523065\pi\)
\(432\) 0 0
\(433\) 4.43785 0.213269 0.106635 0.994298i \(-0.465992\pi\)
0.106635 + 0.994298i \(0.465992\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −16.2847 −0.779003
\(438\) 0 0
\(439\) −18.3759 −0.877033 −0.438517 0.898723i \(-0.644496\pi\)
−0.438517 + 0.898723i \(0.644496\pi\)
\(440\) 0 0
\(441\) 36.0577 1.71703
\(442\) 0 0
\(443\) −8.18925 −0.389083 −0.194541 0.980894i \(-0.562322\pi\)
−0.194541 + 0.980894i \(0.562322\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 49.0627 2.32059
\(448\) 0 0
\(449\) −21.4953 −1.01442 −0.507212 0.861821i \(-0.669324\pi\)
−0.507212 + 0.861821i \(0.669324\pi\)
\(450\) 0 0
\(451\) 56.6971 2.66976
\(452\) 0 0
\(453\) 31.5269 1.48126
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 19.9426 0.932875 0.466438 0.884554i \(-0.345537\pi\)
0.466438 + 0.884554i \(0.345537\pi\)
\(458\) 0 0
\(459\) −1.11190 −0.0518989
\(460\) 0 0
\(461\) −24.6510 −1.14811 −0.574056 0.818816i \(-0.694631\pi\)
−0.574056 + 0.818816i \(0.694631\pi\)
\(462\) 0 0
\(463\) 31.9135 1.48314 0.741572 0.670873i \(-0.234080\pi\)
0.741572 + 0.670873i \(0.234080\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5.77071 0.267037 0.133518 0.991046i \(-0.457373\pi\)
0.133518 + 0.991046i \(0.457373\pi\)
\(468\) 0 0
\(469\) 6.46682 0.298610
\(470\) 0 0
\(471\) 24.0355 1.10750
\(472\) 0 0
\(473\) −44.4306 −2.04292
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −2.39378 −0.109604
\(478\) 0 0
\(479\) −37.0122 −1.69113 −0.845564 0.533873i \(-0.820736\pi\)
−0.845564 + 0.533873i \(0.820736\pi\)
\(480\) 0 0
\(481\) −1.52710 −0.0696299
\(482\) 0 0
\(483\) 33.2979 1.51511
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −1.77445 −0.0804079 −0.0402039 0.999191i \(-0.512801\pi\)
−0.0402039 + 0.999191i \(0.512801\pi\)
\(488\) 0 0
\(489\) −20.3112 −0.918505
\(490\) 0 0
\(491\) −6.78582 −0.306240 −0.153120 0.988208i \(-0.548932\pi\)
−0.153120 + 0.988208i \(0.548932\pi\)
\(492\) 0 0
\(493\) 0.454888 0.0204871
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 7.42604 0.333104
\(498\) 0 0
\(499\) 31.3417 1.40305 0.701524 0.712645i \(-0.252503\pi\)
0.701524 + 0.712645i \(0.252503\pi\)
\(500\) 0 0
\(501\) −35.3864 −1.58095
\(502\) 0 0
\(503\) 27.0025 1.20398 0.601991 0.798503i \(-0.294374\pi\)
0.601991 + 0.798503i \(0.294374\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 28.1322 1.24940
\(508\) 0 0
\(509\) 8.28043 0.367024 0.183512 0.983018i \(-0.441253\pi\)
0.183512 + 0.983018i \(0.441253\pi\)
\(510\) 0 0
\(511\) −38.4779 −1.70216
\(512\) 0 0
\(513\) −8.33481 −0.367991
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −4.97963 −0.219004
\(518\) 0 0
\(519\) 1.00711 0.0442072
\(520\) 0 0
\(521\) 31.9242 1.39863 0.699313 0.714815i \(-0.253489\pi\)
0.699313 + 0.714815i \(0.253489\pi\)
\(522\) 0 0
\(523\) −42.5125 −1.85894 −0.929471 0.368895i \(-0.879736\pi\)
−0.929471 + 0.368895i \(0.879736\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.31315 0.187884
\(528\) 0 0
\(529\) −13.7491 −0.597787
\(530\) 0 0
\(531\) −13.0219 −0.565101
\(532\) 0 0
\(533\) 9.31273 0.403379
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −7.27625 −0.313993
\(538\) 0 0
\(539\) 84.9278 3.65810
\(540\) 0 0
\(541\) 20.1263 0.865295 0.432648 0.901563i \(-0.357579\pi\)
0.432648 + 0.901563i \(0.357579\pi\)
\(542\) 0 0
\(543\) 6.54444 0.280849
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 4.86581 0.208047 0.104023 0.994575i \(-0.466828\pi\)
0.104023 + 0.994575i \(0.466828\pi\)
\(548\) 0 0
\(549\) 19.0332 0.812316
\(550\) 0 0
\(551\) 3.40986 0.145265
\(552\) 0 0
\(553\) −57.7011 −2.45370
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 22.9342 0.971754 0.485877 0.874027i \(-0.338500\pi\)
0.485877 + 0.874027i \(0.338500\pi\)
\(558\) 0 0
\(559\) −7.29790 −0.308668
\(560\) 0 0
\(561\) 9.02791 0.381159
\(562\) 0 0
\(563\) 16.8445 0.709913 0.354956 0.934883i \(-0.384496\pi\)
0.354956 + 0.934883i \(0.384496\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 50.1382 2.10561
\(568\) 0 0
\(569\) 24.8021 1.03976 0.519878 0.854240i \(-0.325977\pi\)
0.519878 + 0.854240i \(0.325977\pi\)
\(570\) 0 0
\(571\) −26.9990 −1.12987 −0.564936 0.825135i \(-0.691099\pi\)
−0.564936 + 0.825135i \(0.691099\pi\)
\(572\) 0 0
\(573\) 29.6210 1.23743
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 12.3393 0.513690 0.256845 0.966453i \(-0.417317\pi\)
0.256845 + 0.966453i \(0.417317\pi\)
\(578\) 0 0
\(579\) 29.3001 1.21767
\(580\) 0 0
\(581\) 60.8730 2.52544
\(582\) 0 0
\(583\) −5.63815 −0.233508
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −4.24878 −0.175366 −0.0876830 0.996148i \(-0.527946\pi\)
−0.0876830 + 0.996148i \(0.527946\pi\)
\(588\) 0 0
\(589\) 32.3315 1.33220
\(590\) 0 0
\(591\) 57.4260 2.36219
\(592\) 0 0
\(593\) 4.87578 0.200224 0.100112 0.994976i \(-0.468080\pi\)
0.100112 + 0.994976i \(0.468080\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −21.3224 −0.872668
\(598\) 0 0
\(599\) −3.33018 −0.136068 −0.0680338 0.997683i \(-0.521673\pi\)
−0.0680338 + 0.997683i \(0.521673\pi\)
\(600\) 0 0
\(601\) 21.2834 0.868169 0.434084 0.900872i \(-0.357072\pi\)
0.434084 + 0.900872i \(0.357072\pi\)
\(602\) 0 0
\(603\) −3.16989 −0.129088
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 5.70241 0.231454 0.115727 0.993281i \(-0.463080\pi\)
0.115727 + 0.993281i \(0.463080\pi\)
\(608\) 0 0
\(609\) −6.97225 −0.282530
\(610\) 0 0
\(611\) −0.817924 −0.0330896
\(612\) 0 0
\(613\) −14.9643 −0.604402 −0.302201 0.953244i \(-0.597721\pi\)
−0.302201 + 0.953244i \(0.597721\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 14.6535 0.589929 0.294965 0.955508i \(-0.404692\pi\)
0.294965 + 0.955508i \(0.404692\pi\)
\(618\) 0 0
\(619\) −1.22892 −0.0493946 −0.0246973 0.999695i \(-0.507862\pi\)
−0.0246973 + 0.999695i \(0.507862\pi\)
\(620\) 0 0
\(621\) 4.73478 0.190000
\(622\) 0 0
\(623\) 18.9061 0.757456
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 67.6736 2.70262
\(628\) 0 0
\(629\) 1.21243 0.0483426
\(630\) 0 0
\(631\) 7.36383 0.293149 0.146575 0.989200i \(-0.453175\pi\)
0.146575 + 0.989200i \(0.453175\pi\)
\(632\) 0 0
\(633\) −27.3269 −1.08615
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 13.9497 0.552708
\(638\) 0 0
\(639\) −3.64009 −0.144000
\(640\) 0 0
\(641\) 29.2520 1.15538 0.577692 0.816255i \(-0.303953\pi\)
0.577692 + 0.816255i \(0.303953\pi\)
\(642\) 0 0
\(643\) −4.03921 −0.159291 −0.0796454 0.996823i \(-0.525379\pi\)
−0.0796454 + 0.996823i \(0.525379\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −17.3993 −0.684036 −0.342018 0.939693i \(-0.611110\pi\)
−0.342018 + 0.939693i \(0.611110\pi\)
\(648\) 0 0
\(649\) −30.6708 −1.20393
\(650\) 0 0
\(651\) −66.1094 −2.59103
\(652\) 0 0
\(653\) −25.1853 −0.985575 −0.492788 0.870150i \(-0.664022\pi\)
−0.492788 + 0.870150i \(0.664022\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 18.8611 0.735840
\(658\) 0 0
\(659\) 20.7512 0.808354 0.404177 0.914681i \(-0.367558\pi\)
0.404177 + 0.914681i \(0.367558\pi\)
\(660\) 0 0
\(661\) −25.6646 −0.998235 −0.499118 0.866534i \(-0.666342\pi\)
−0.499118 + 0.866534i \(0.666342\pi\)
\(662\) 0 0
\(663\) 1.48287 0.0575899
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.93705 −0.0750027
\(668\) 0 0
\(669\) −40.1932 −1.55396
\(670\) 0 0
\(671\) 44.8294 1.73062
\(672\) 0 0
\(673\) −26.0157 −1.00283 −0.501415 0.865207i \(-0.667187\pi\)
−0.501415 + 0.865207i \(0.667187\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 12.2500 0.470805 0.235403 0.971898i \(-0.424359\pi\)
0.235403 + 0.971898i \(0.424359\pi\)
\(678\) 0 0
\(679\) 42.4653 1.62967
\(680\) 0 0
\(681\) −28.3309 −1.08564
\(682\) 0 0
\(683\) −32.8161 −1.25567 −0.627837 0.778345i \(-0.716060\pi\)
−0.627837 + 0.778345i \(0.716060\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 8.28878 0.316237
\(688\) 0 0
\(689\) −0.926088 −0.0352812
\(690\) 0 0
\(691\) 41.5653 1.58122 0.790609 0.612321i \(-0.209764\pi\)
0.790609 + 0.612321i \(0.209764\pi\)
\(692\) 0 0
\(693\) −60.4232 −2.29529
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −7.39373 −0.280058
\(698\) 0 0
\(699\) −26.5979 −1.00602
\(700\) 0 0
\(701\) 39.2783 1.48352 0.741760 0.670666i \(-0.233991\pi\)
0.741760 + 0.670666i \(0.233991\pi\)
\(702\) 0 0
\(703\) 9.08840 0.342775
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −19.8229 −0.745517
\(708\) 0 0
\(709\) −27.7025 −1.04039 −0.520195 0.854047i \(-0.674141\pi\)
−0.520195 + 0.854047i \(0.674141\pi\)
\(710\) 0 0
\(711\) 28.2838 1.06073
\(712\) 0 0
\(713\) −18.3666 −0.687836
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 60.3412 2.25348
\(718\) 0 0
\(719\) 40.4954 1.51022 0.755112 0.655596i \(-0.227583\pi\)
0.755112 + 0.655596i \(0.227583\pi\)
\(720\) 0 0
\(721\) 45.0262 1.67686
\(722\) 0 0
\(723\) −31.9289 −1.18745
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 29.8512 1.10712 0.553559 0.832810i \(-0.313269\pi\)
0.553559 + 0.832810i \(0.313269\pi\)
\(728\) 0 0
\(729\) −13.7994 −0.511091
\(730\) 0 0
\(731\) 5.79408 0.214302
\(732\) 0 0
\(733\) 8.18980 0.302497 0.151249 0.988496i \(-0.451671\pi\)
0.151249 + 0.988496i \(0.451671\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −7.46615 −0.275019
\(738\) 0 0
\(739\) −17.2341 −0.633968 −0.316984 0.948431i \(-0.602670\pi\)
−0.316984 + 0.948431i \(0.602670\pi\)
\(740\) 0 0
\(741\) 11.1156 0.408343
\(742\) 0 0
\(743\) −33.0772 −1.21348 −0.606742 0.794899i \(-0.707524\pi\)
−0.606742 + 0.794899i \(0.707524\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −29.8386 −1.09174
\(748\) 0 0
\(749\) 24.7821 0.905517
\(750\) 0 0
\(751\) 8.95863 0.326905 0.163453 0.986551i \(-0.447737\pi\)
0.163453 + 0.986551i \(0.447737\pi\)
\(752\) 0 0
\(753\) −48.8144 −1.77890
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 41.5769 1.51114 0.755569 0.655069i \(-0.227360\pi\)
0.755569 + 0.655069i \(0.227360\pi\)
\(758\) 0 0
\(759\) −38.4435 −1.39541
\(760\) 0 0
\(761\) 28.8406 1.04547 0.522735 0.852495i \(-0.324912\pi\)
0.522735 + 0.852495i \(0.324912\pi\)
\(762\) 0 0
\(763\) 9.11802 0.330094
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −5.03779 −0.181904
\(768\) 0 0
\(769\) −17.9616 −0.647711 −0.323855 0.946107i \(-0.604979\pi\)
−0.323855 + 0.946107i \(0.604979\pi\)
\(770\) 0 0
\(771\) 24.6550 0.887930
\(772\) 0 0
\(773\) 11.8447 0.426025 0.213013 0.977049i \(-0.431672\pi\)
0.213013 + 0.977049i \(0.431672\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −18.5834 −0.666674
\(778\) 0 0
\(779\) −55.4237 −1.98576
\(780\) 0 0
\(781\) −8.57360 −0.306788
\(782\) 0 0
\(783\) −0.991415 −0.0354303
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 27.9502 0.996317 0.498158 0.867086i \(-0.334010\pi\)
0.498158 + 0.867086i \(0.334010\pi\)
\(788\) 0 0
\(789\) −0.184082 −0.00655349
\(790\) 0 0
\(791\) −14.0684 −0.500215
\(792\) 0 0
\(793\) 7.36340 0.261482
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 16.6096 0.588344 0.294172 0.955753i \(-0.404956\pi\)
0.294172 + 0.955753i \(0.404956\pi\)
\(798\) 0 0
\(799\) 0.649381 0.0229735
\(800\) 0 0
\(801\) −9.26735 −0.327446
\(802\) 0 0
\(803\) 44.4240 1.56769
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −8.35214 −0.294009
\(808\) 0 0
\(809\) −18.0186 −0.633502 −0.316751 0.948509i \(-0.602592\pi\)
−0.316751 + 0.948509i \(0.602592\pi\)
\(810\) 0 0
\(811\) −34.6100 −1.21532 −0.607661 0.794197i \(-0.707892\pi\)
−0.607661 + 0.794197i \(0.707892\pi\)
\(812\) 0 0
\(813\) 24.6746 0.865376
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 43.4326 1.51952
\(818\) 0 0
\(819\) −9.92475 −0.346799
\(820\) 0 0
\(821\) −7.09977 −0.247784 −0.123892 0.992296i \(-0.539538\pi\)
−0.123892 + 0.992296i \(0.539538\pi\)
\(822\) 0 0
\(823\) 50.3585 1.75539 0.877694 0.479222i \(-0.159081\pi\)
0.877694 + 0.479222i \(0.159081\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −14.4871 −0.503764 −0.251882 0.967758i \(-0.581050\pi\)
−0.251882 + 0.967758i \(0.581050\pi\)
\(828\) 0 0
\(829\) −44.5915 −1.54873 −0.774364 0.632741i \(-0.781930\pi\)
−0.774364 + 0.632741i \(0.781930\pi\)
\(830\) 0 0
\(831\) −75.4601 −2.61768
\(832\) 0 0
\(833\) −11.0752 −0.383734
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −9.40039 −0.324925
\(838\) 0 0
\(839\) 30.7138 1.06036 0.530179 0.847886i \(-0.322125\pi\)
0.530179 + 0.847886i \(0.322125\pi\)
\(840\) 0 0
\(841\) −28.5944 −0.986014
\(842\) 0 0
\(843\) 37.4263 1.28903
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −90.1322 −3.09698
\(848\) 0 0
\(849\) −74.2537 −2.54838
\(850\) 0 0
\(851\) −5.16287 −0.176981
\(852\) 0 0
\(853\) 15.4440 0.528794 0.264397 0.964414i \(-0.414827\pi\)
0.264397 + 0.964414i \(0.414827\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −39.7161 −1.35668 −0.678338 0.734750i \(-0.737299\pi\)
−0.678338 + 0.734750i \(0.737299\pi\)
\(858\) 0 0
\(859\) 34.2532 1.16870 0.584351 0.811501i \(-0.301349\pi\)
0.584351 + 0.811501i \(0.301349\pi\)
\(860\) 0 0
\(861\) 113.327 3.86216
\(862\) 0 0
\(863\) 4.17351 0.142068 0.0710339 0.997474i \(-0.477370\pi\)
0.0710339 + 0.997474i \(0.477370\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 38.0534 1.29236
\(868\) 0 0
\(869\) 66.6178 2.25985
\(870\) 0 0
\(871\) −1.22634 −0.0415531
\(872\) 0 0
\(873\) −20.8156 −0.704501
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −6.37736 −0.215348 −0.107674 0.994186i \(-0.534340\pi\)
−0.107674 + 0.994186i \(0.534340\pi\)
\(878\) 0 0
\(879\) −56.9929 −1.92232
\(880\) 0 0
\(881\) −2.59628 −0.0874710 −0.0437355 0.999043i \(-0.513926\pi\)
−0.0437355 + 0.999043i \(0.513926\pi\)
\(882\) 0 0
\(883\) −2.71824 −0.0914761 −0.0457380 0.998953i \(-0.514564\pi\)
−0.0457380 + 0.998953i \(0.514564\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 25.6508 0.861271 0.430635 0.902526i \(-0.358290\pi\)
0.430635 + 0.902526i \(0.358290\pi\)
\(888\) 0 0
\(889\) 61.5688 2.06495
\(890\) 0 0
\(891\) −57.8861 −1.93926
\(892\) 0 0
\(893\) 4.86778 0.162894
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −6.31449 −0.210835
\(898\) 0 0
\(899\) 3.84579 0.128264
\(900\) 0 0
\(901\) 0.735257 0.0244950
\(902\) 0 0
\(903\) −88.8082 −2.95535
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −4.64330 −0.154178 −0.0770892 0.997024i \(-0.524563\pi\)
−0.0770892 + 0.997024i \(0.524563\pi\)
\(908\) 0 0
\(909\) 9.71676 0.322285
\(910\) 0 0
\(911\) −39.4037 −1.30550 −0.652752 0.757572i \(-0.726386\pi\)
−0.652752 + 0.757572i \(0.726386\pi\)
\(912\) 0 0
\(913\) −70.2798 −2.32592
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −11.0460 −0.364772
\(918\) 0 0
\(919\) −47.1752 −1.55617 −0.778083 0.628162i \(-0.783808\pi\)
−0.778083 + 0.628162i \(0.783808\pi\)
\(920\) 0 0
\(921\) −74.2211 −2.44567
\(922\) 0 0
\(923\) −1.40825 −0.0463530
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −22.0709 −0.724903
\(928\) 0 0
\(929\) −15.2497 −0.500328 −0.250164 0.968204i \(-0.580484\pi\)
−0.250164 + 0.968204i \(0.580484\pi\)
\(930\) 0 0
\(931\) −83.0203 −2.72088
\(932\) 0 0
\(933\) −50.6717 −1.65892
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −25.8071 −0.843080 −0.421540 0.906810i \(-0.638510\pi\)
−0.421540 + 0.906810i \(0.638510\pi\)
\(938\) 0 0
\(939\) −12.5774 −0.410449
\(940\) 0 0
\(941\) −25.2451 −0.822965 −0.411483 0.911418i \(-0.634989\pi\)
−0.411483 + 0.911418i \(0.634989\pi\)
\(942\) 0 0
\(943\) 31.4847 1.02528
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 23.7251 0.770963 0.385482 0.922716i \(-0.374035\pi\)
0.385482 + 0.922716i \(0.374035\pi\)
\(948\) 0 0
\(949\) 7.29681 0.236865
\(950\) 0 0
\(951\) 0.329474 0.0106839
\(952\) 0 0
\(953\) 47.7232 1.54591 0.772953 0.634463i \(-0.218779\pi\)
0.772953 + 0.634463i \(0.218779\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 8.04968 0.260209
\(958\) 0 0
\(959\) 62.8830 2.03060
\(960\) 0 0
\(961\) 5.46496 0.176289
\(962\) 0 0
\(963\) −12.1476 −0.391452
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 37.8705 1.21783 0.608917 0.793234i \(-0.291604\pi\)
0.608917 + 0.793234i \(0.291604\pi\)
\(968\) 0 0
\(969\) −8.82514 −0.283504
\(970\) 0 0
\(971\) 28.5614 0.916579 0.458290 0.888803i \(-0.348462\pi\)
0.458290 + 0.888803i \(0.348462\pi\)
\(972\) 0 0
\(973\) −18.3045 −0.586814
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −21.5094 −0.688147 −0.344074 0.938943i \(-0.611807\pi\)
−0.344074 + 0.938943i \(0.611807\pi\)
\(978\) 0 0
\(979\) −21.8277 −0.697615
\(980\) 0 0
\(981\) −4.46946 −0.142699
\(982\) 0 0
\(983\) −0.223199 −0.00711894 −0.00355947 0.999994i \(-0.501133\pi\)
−0.00355947 + 0.999994i \(0.501133\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −9.95333 −0.316818
\(988\) 0 0
\(989\) −24.6729 −0.784552
\(990\) 0 0
\(991\) −19.2605 −0.611831 −0.305915 0.952059i \(-0.598962\pi\)
−0.305915 + 0.952059i \(0.598962\pi\)
\(992\) 0 0
\(993\) −53.8928 −1.71024
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 46.1455 1.46144 0.730722 0.682675i \(-0.239184\pi\)
0.730722 + 0.682675i \(0.239184\pi\)
\(998\) 0 0
\(999\) −2.64245 −0.0836034
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 10000.2.a.bq.1.4 16
4.3 odd 2 5000.2.a.r.1.13 16
5.4 even 2 10000.2.a.br.1.13 16
20.19 odd 2 5000.2.a.q.1.4 16
25.12 odd 20 400.2.y.d.369.2 32
25.23 odd 20 400.2.y.d.129.2 32
100.11 odd 10 1000.2.m.d.601.2 32
100.23 even 20 200.2.q.a.129.7 32
100.27 even 20 1000.2.q.c.649.2 32
100.39 odd 10 1000.2.m.e.601.7 32
100.59 odd 10 1000.2.m.e.401.7 32
100.63 even 20 1000.2.q.c.849.2 32
100.87 even 20 200.2.q.a.169.7 yes 32
100.91 odd 10 1000.2.m.d.401.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.2.q.a.129.7 32 100.23 even 20
200.2.q.a.169.7 yes 32 100.87 even 20
400.2.y.d.129.2 32 25.23 odd 20
400.2.y.d.369.2 32 25.12 odd 20
1000.2.m.d.401.2 32 100.91 odd 10
1000.2.m.d.601.2 32 100.11 odd 10
1000.2.m.e.401.7 32 100.59 odd 10
1000.2.m.e.601.7 32 100.39 odd 10
1000.2.q.c.649.2 32 100.27 even 20
1000.2.q.c.849.2 32 100.63 even 20
5000.2.a.q.1.4 16 20.19 odd 2
5000.2.a.r.1.13 16 4.3 odd 2
10000.2.a.bq.1.4 16 1.1 even 1 trivial
10000.2.a.br.1.13 16 5.4 even 2