Properties

Label 10000.2.a.x
Level $10000$
Weight $2$
Character orbit 10000.a
Self dual yes
Analytic conductor $79.850$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10000,2,Mod(1,10000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10000.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10000 = 2^{4} \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 10000.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(79.8504020213\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.7625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 9x^{2} + 4x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 50)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + (\beta_{3} + 1) q^{7} + (\beta_{3} + \beta_1 + 2) q^{9} + (\beta_{3} + 1) q^{11} + (\beta_{3} + \beta_{2} + \beta_1 - 2) q^{13} + (\beta_{3} - \beta_{2} - 3) q^{17} + ( - \beta_{3} + 4 \beta_{2} - \beta_1 + 3) q^{19}+ \cdots + (2 \beta_{3} + \beta_1 + 6) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} + 2 q^{7} + 7 q^{9} + 2 q^{11} - 11 q^{13} - 12 q^{17} + 5 q^{19} - 7 q^{21} - 4 q^{23} + 10 q^{27} + 15 q^{29} + 12 q^{31} - 7 q^{33} - 12 q^{37} + 11 q^{39} + 13 q^{41} + 6 q^{43} + 2 q^{47}+ \cdots + 21 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 9x^{2} + 4x + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - \nu^{2} - 5\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - \nu - 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta _1 + 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 4\beta_{2} + 6\beta _1 + 5 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.33275
−1.34841
1.71472
2.96645
0 −2.33275 0 0 0 3.77447 0 2.44172 0
1.2 0 −1.34841 0 0 0 −0.833366 0 −1.18178 0
1.3 0 1.71472 0 0 0 −2.77447 0 −0.0597522 0
1.4 0 2.96645 0 0 0 1.83337 0 5.79981 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 10000.2.a.x 4
4.b odd 2 1 1250.2.a.f 4
5.b even 2 1 10000.2.a.t 4
20.d odd 2 1 1250.2.a.l 4
20.e even 4 2 1250.2.b.e 8
25.e even 10 2 400.2.u.d 8
100.h odd 10 2 50.2.d.b 8
100.j odd 10 2 250.2.d.d 8
100.l even 20 4 250.2.e.c 16
300.r even 10 2 450.2.h.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
50.2.d.b 8 100.h odd 10 2
250.2.d.d 8 100.j odd 10 2
250.2.e.c 16 100.l even 20 4
400.2.u.d 8 25.e even 10 2
450.2.h.e 8 300.r even 10 2
1250.2.a.f 4 4.b odd 2 1
1250.2.a.l 4 20.d odd 2 1
1250.2.b.e 8 20.e even 4 2
10000.2.a.t 4 5.b even 2 1
10000.2.a.x 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(10000))\):

\( T_{3}^{4} - T_{3}^{3} - 9T_{3}^{2} + 4T_{3} + 16 \) Copy content Toggle raw display
\( T_{7}^{4} - 2T_{7}^{3} - 11T_{7}^{2} + 12T_{7} + 16 \) Copy content Toggle raw display
\( T_{11}^{4} - 2T_{11}^{3} - 11T_{11}^{2} + 12T_{11} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - T^{3} + \cdots + 16 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 2 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$11$ \( T^{4} - 2 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$13$ \( T^{4} + 11 T^{3} + \cdots - 199 \) Copy content Toggle raw display
$17$ \( T^{4} + 12 T^{3} + \cdots - 109 \) Copy content Toggle raw display
$19$ \( T^{4} - 5 T^{3} + \cdots + 80 \) Copy content Toggle raw display
$23$ \( T^{4} + 4 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$29$ \( T^{4} - 15 T^{3} + \cdots + 5 \) Copy content Toggle raw display
$31$ \( T^{4} - 12 T^{3} + \cdots - 1264 \) Copy content Toggle raw display
$37$ \( T^{4} + 12 T^{3} + \cdots + 71 \) Copy content Toggle raw display
$41$ \( T^{4} - 13 T^{3} + \cdots - 89 \) Copy content Toggle raw display
$43$ \( T^{4} - 6 T^{3} + \cdots + 176 \) Copy content Toggle raw display
$47$ \( T^{4} - 2 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$53$ \( T^{4} + 11 T^{3} + \cdots + 256 \) Copy content Toggle raw display
$59$ \( T^{4} - 140 T^{2} + \cdots - 320 \) Copy content Toggle raw display
$61$ \( T^{4} - 8 T^{3} + \cdots - 1709 \) Copy content Toggle raw display
$67$ \( T^{4} - 22 T^{3} + \cdots - 944 \) Copy content Toggle raw display
$71$ \( T^{4} - 22 T^{3} + \cdots - 64 \) Copy content Toggle raw display
$73$ \( T^{4} + 21 T^{3} + \cdots - 1084 \) Copy content Toggle raw display
$79$ \( T^{4} - 10 T^{3} + \cdots - 320 \) Copy content Toggle raw display
$83$ \( T^{4} + 24 T^{3} + \cdots - 3664 \) Copy content Toggle raw display
$89$ \( T^{4} + 5 T^{3} + \cdots - 3100 \) Copy content Toggle raw display
$97$ \( (T^{2} + 11 T - 1)^{2} \) Copy content Toggle raw display
show more
show less