Properties

Label 250.2.e.c
Level 250250
Weight 22
Character orbit 250.e
Analytic conductor 1.9961.996
Analytic rank 00
Dimension 1616
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [250,2,Mod(49,250)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(250, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("250.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 250=253 250 = 2 \cdot 5^{3}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 250.e (of order 1010, degree 44, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.996260050531.99626005053
Analytic rank: 00
Dimension: 1616
Relative dimension: 44 over Q(ζ10)\Q(\zeta_{10})
Coefficient field: Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16+x144x1249x10+11x8+395x6+900x4+1125x2+625 x^{16} + x^{14} - 4x^{12} - 49x^{10} + 11x^{8} + 395x^{6} + 900x^{4} + 1125x^{2} + 625 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 52 5^{2}
Twist minimal: no (minimal twist has level 50)
Sato-Tate group: SU(2)[C10]\mathrm{SU}(2)[C_{10}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β13+β12++β9)q2+(β14+β13β9)q3β3q4+(β8+β6++β3)q6+(β14β11++β5)q7++(2β8β4β3++6)q99+O(q100) q + ( - \beta_{13} + \beta_{12} + \cdots + \beta_{9}) q^{2} + ( - \beta_{14} + \beta_{13} - \beta_{9}) q^{3} - \beta_{3} q^{4} + (\beta_{8} + \beta_{6} + \cdots + \beta_{3}) q^{6} + ( - \beta_{14} - \beta_{11} + \cdots + \beta_{5}) q^{7}+ \cdots + ( - 2 \beta_{8} - \beta_{4} - \beta_{3} + \cdots + 6) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q+4q46q6+2q9+2q11+2q144q1640q1938q214q24+44q26+30q2918q31+2q342q36+24q3918q412q44+14q46++84q99+O(q100) 16 q + 4 q^{4} - 6 q^{6} + 2 q^{9} + 2 q^{11} + 2 q^{14} - 4 q^{16} - 40 q^{19} - 38 q^{21} - 4 q^{24} + 44 q^{26} + 30 q^{29} - 18 q^{31} + 2 q^{34} - 2 q^{36} + 24 q^{39} - 18 q^{41} - 2 q^{44} + 14 q^{46}+ \cdots + 84 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x16+x144x1249x10+11x8+395x6+900x4+1125x2+625 x^{16} + x^{14} - 4x^{12} - 49x^{10} + 11x^{8} + 395x^{6} + 900x^{4} + 1125x^{2} + 625 : Copy content Toggle raw display

β1\beta_{1}== (948392ν142081693ν121547103ν1035207443ν8+136185777ν6++181387875)/171780125 ( 948392 \nu^{14} - 2081693 \nu^{12} - 1547103 \nu^{10} - 35207443 \nu^{8} + 136185777 \nu^{6} + \cdots + 181387875 ) / 171780125 Copy content Toggle raw display
β2\beta_{2}== (122987ν14+97172ν12701513ν105799603ν8+3932417ν6++52412250)/15616375 ( 122987 \nu^{14} + 97172 \nu^{12} - 701513 \nu^{10} - 5799603 \nu^{8} + 3932417 \nu^{6} + \cdots + 52412250 ) / 15616375 Copy content Toggle raw display
β3\beta_{3}== (1379032ν14312743ν124990978ν1061900293ν8+94590252ν6++563878625)/171780125 ( 1379032 \nu^{14} - 312743 \nu^{12} - 4990978 \nu^{10} - 61900293 \nu^{8} + 94590252 \nu^{6} + \cdots + 563878625 ) / 171780125 Copy content Toggle raw display
β4\beta_{4}== (281280ν14+69219ν12+939009ν10+12381889ν818275316ν6+167096475)/34356025 ( - 281280 \nu^{14} + 69219 \nu^{12} + 939009 \nu^{10} + 12381889 \nu^{8} - 18275316 \nu^{6} + \cdots - 167096475 ) / 34356025 Copy content Toggle raw display
β5\beta_{5}== (1157122ν15+1428203ν13+8678488ν11+43919978ν9++1705295750ν)/858900625 ( - 1157122 \nu^{15} + 1428203 \nu^{13} + 8678488 \nu^{11} + 43919978 \nu^{9} + \cdots + 1705295750 \nu ) / 858900625 Copy content Toggle raw display
β6\beta_{6}== (441862ν14+108648ν12+1544473ν10+20140738ν829602957ν6+215410900)/34356025 ( - 441862 \nu^{14} + 108648 \nu^{12} + 1544473 \nu^{10} + 20140738 \nu^{8} - 29602957 \nu^{6} + \cdots - 215410900 ) / 34356025 Copy content Toggle raw display
β7\beta_{7}== (2817591ν14+2379174ν12+8884104ν10+118381374ν8262226761ν6+860602375)/171780125 ( - 2817591 \nu^{14} + 2379174 \nu^{12} + 8884104 \nu^{10} + 118381374 \nu^{8} - 262226761 \nu^{6} + \cdots - 860602375 ) / 171780125 Copy content Toggle raw display
β8\beta_{8}== (626638ν14+144621ν12+2783831ν10+27217946ν841997039ν6+222107450)/34356025 ( - 626638 \nu^{14} + 144621 \nu^{12} + 2783831 \nu^{10} + 27217946 \nu^{8} - 41997039 \nu^{6} + \cdots - 222107450 ) / 34356025 Copy content Toggle raw display
β9\beta_{9}== (2293ν15+486ν1312284ν11101834ν9+117086ν7+906528ν5++955700ν)/633875 ( 2293 \nu^{15} + 486 \nu^{13} - 12284 \nu^{11} - 101834 \nu^{9} + 117086 \nu^{7} + 906528 \nu^{5} + \cdots + 955700 \nu ) / 633875 Copy content Toggle raw display
β10\beta_{10}== (3183877ν154006568ν136543803ν11134015793ν9++1245786250ν)/858900625 ( 3183877 \nu^{15} - 4006568 \nu^{13} - 6543803 \nu^{11} - 134015793 \nu^{9} + \cdots + 1245786250 \nu ) / 858900625 Copy content Toggle raw display
β11\beta_{11}== (8105189ν15+777904ν1326062291ν11376639746ν9++5975622625ν)/858900625 ( 8105189 \nu^{15} + 777904 \nu^{13} - 26062291 \nu^{11} - 376639746 \nu^{9} + \cdots + 5975622625 \nu ) / 858900625 Copy content Toggle raw display
β12\beta_{12}== (8189122ν15+3158678ν13+32153713ν11+353467203ν9+3331016750ν)/858900625 ( - 8189122 \nu^{15} + 3158678 \nu^{13} + 32153713 \nu^{11} + 353467203 \nu^{9} + \cdots - 3331016750 \nu ) / 858900625 Copy content Toggle raw display
β13\beta_{13}== (8211971ν155580699ν1325580004ν11355005349ν9++3295922875ν)/858900625 ( 8211971 \nu^{15} - 5580699 \nu^{13} - 25580004 \nu^{11} - 355005349 \nu^{9} + \cdots + 3295922875 \nu ) / 858900625 Copy content Toggle raw display
β14\beta_{14}== (2000435ν15+181037ν13+8319942ν11+89497307ν9+651093200ν)/171780125 ( - 2000435 \nu^{15} + 181037 \nu^{13} + 8319942 \nu^{11} + 89497307 \nu^{9} + \cdots - 651093200 \nu ) / 171780125 Copy content Toggle raw display
β15\beta_{15}== (14757833ν15+273347ν13+57022912ν11+679004122ν9+6958879375ν)/858900625 ( - 14757833 \nu^{15} + 273347 \nu^{13} + 57022912 \nu^{11} + 679004122 \nu^{9} + \cdots - 6958879375 \nu ) / 858900625 Copy content Toggle raw display
ν\nu== (β15+2β14β13β12β11+2β10+3β9+2β5)/5 ( -\beta_{15} + 2\beta_{14} - \beta_{13} - \beta_{12} - \beta_{11} + 2\beta_{10} + 3\beta_{9} + 2\beta_{5} ) / 5 Copy content Toggle raw display
ν2\nu^{2}== (2β8+2β7+3β6+2β4+11β34β2β1+4)/5 ( -2\beta_{8} + 2\beta_{7} + 3\beta_{6} + 2\beta_{4} + 11\beta_{3} - 4\beta_{2} - \beta _1 + 4 ) / 5 Copy content Toggle raw display
ν3\nu^{3}== (β153β1416β136β12β11+17β102β9+2β5)/5 ( -\beta_{15} - 3\beta_{14} - 16\beta_{13} - 6\beta_{12} - \beta_{11} + 17\beta_{10} - 2\beta_{9} + 2\beta_{5} ) / 5 Copy content Toggle raw display
ν4\nu^{4}== (7β813β7+3β6+7β4+6β319β226β1+14)/5 ( -7\beta_{8} - 13\beta_{7} + 3\beta_{6} + 7\beta_{4} + 6\beta_{3} - 19\beta_{2} - 26\beta _1 + 14 ) / 5 Copy content Toggle raw display
ν5\nu^{5}== (16β15+22β146β1351β126β1143β1067β98β5)/5 ( -16\beta_{15} + 22\beta_{14} - 6\beta_{13} - 51\beta_{12} - 6\beta_{11} - 43\beta_{10} - 67\beta_{9} - 8\beta_{5} ) / 5 Copy content Toggle raw display
ν6\nu^{6}== (23β823β7+63β6+52β4+156β3+11β211β1+144)/5 ( 23\beta_{8} - 23\beta_{7} + 63\beta_{6} + 52\beta_{4} + 156\beta_{3} + 11\beta_{2} - 11\beta _1 + 144 ) / 5 Copy content Toggle raw display
ν7\nu^{7}== (31β1553β14+9β1331β12106β1133β10++137β5)/5 ( - 31 \beta_{15} - 53 \beta_{14} + 9 \beta_{13} - 31 \beta_{12} - 106 \beta_{11} - 33 \beta_{10} + \cdots + 137 \beta_{5} ) / 5 Copy content Toggle raw display
ν8\nu^{8}== (57β818β7+363β6208β4+381β3114β296β1+39)/5 ( -57\beta_{8} - 18\beta_{7} + 363\beta_{6} - 208\beta_{4} + 381\beta_{3} - 114\beta_{2} - 96\beta _1 + 39 ) / 5 Copy content Toggle raw display
ν9\nu^{9}== (209β15418β14271β13551β1276β11133β10++342β5)/5 ( 209 \beta_{15} - 418 \beta_{14} - 271 \beta_{13} - 551 \beta_{12} - 76 \beta_{11} - 133 \beta_{10} + \cdots + 342 \beta_{5} ) / 5 Copy content Toggle raw display
ν10\nu^{10}== (208β8688β7+208β6493β4149β3344β2896β1606)/5 ( 208\beta_{8} - 688\beta_{7} + 208\beta_{6} - 493\beta_{4} - 149\beta_{3} - 344\beta_{2} - 896\beta _1 - 606 ) / 5 Copy content Toggle raw display
ν11\nu^{11}== (136β15+77β14+1584β131661β12136β11++77β5)/5 ( - 136 \beta_{15} + 77 \beta_{14} + 1584 \beta_{13} - 1661 \beta_{12} - 136 \beta_{11} + \cdots + 77 \beta_{5} ) / 5 Copy content Toggle raw display
ν12\nu^{12}== (2208β8683β7+2888β6683β4+3956β3+2891β2++1784)/5 ( 2208 \beta_{8} - 683 \beta_{7} + 2888 \beta_{6} - 683 \beta_{4} + 3956 \beta_{3} + 2891 \beta_{2} + \cdots + 1784 ) / 5 Copy content Toggle raw display
ν13\nu^{13}== (1299β155453β14+5559β13+2144β123376β11++6752β5)/5 ( 1299 \beta_{15} - 5453 \beta_{14} + 5559 \beta_{13} + 2144 \beta_{12} - 3376 \beta_{11} + \cdots + 6752 \beta_{5} ) / 5 Copy content Toggle raw display
ν14\nu^{14}== (393β8+1012β7+10778β618118β4619β3+1631β2+18511)/5 ( 393 \beta_{8} + 1012 \beta_{7} + 10778 \beta_{6} - 18118 \beta_{4} - 619 \beta_{3} + 1631 \beta_{2} + \cdots - 18511 ) / 5 Copy content Toggle raw display
ν15\nu^{15}== (17084β1522378β14+5294β138776β12+5294β11++8542β5)/5 ( 17084 \beta_{15} - 22378 \beta_{14} + 5294 \beta_{13} - 8776 \beta_{12} + 5294 \beta_{11} + \cdots + 8542 \beta_{5} ) / 5 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/250Z)×\left(\mathbb{Z}/250\mathbb{Z}\right)^\times.

nn 127127
χ(n)\chi(n) β3-\beta_{3}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
0.917186 + 1.66637i
−1.86824 0.357358i
1.86824 + 0.357358i
−0.917186 1.66637i
0.644389 + 0.983224i
−0.0566033 1.17421i
0.0566033 + 1.17421i
−0.644389 0.983224i
0.644389 0.983224i
−0.0566033 + 1.17421i
0.0566033 1.17421i
−0.644389 + 0.983224i
0.917186 1.66637i
−1.86824 + 0.357358i
1.86824 0.357358i
−0.917186 + 1.66637i
−0.587785 + 0.809017i −1.63079 + 0.529876i −0.309017 0.951057i 0 0.529876 1.63079i 2.77447i 0.951057 + 0.309017i −0.0483405 + 0.0351215i 0
49.2 −0.587785 + 0.809017i 2.21858 0.720859i −0.309017 0.951057i 0 −0.720859 + 2.21858i 3.77447i 0.951057 + 0.309017i 1.97539 1.43521i 0
49.3 0.587785 0.809017i −2.21858 + 0.720859i −0.309017 0.951057i 0 −0.720859 + 2.21858i 3.77447i −0.951057 0.309017i 1.97539 1.43521i 0
49.4 0.587785 0.809017i 1.63079 0.529876i −0.309017 0.951057i 0 0.529876 1.63079i 2.77447i −0.951057 0.309017i −0.0483405 + 0.0351215i 0
99.1 −0.951057 + 0.309017i −0.792578 1.09089i 0.809017 0.587785i 0 1.09089 + 0.792578i 0.833366i −0.587785 + 0.809017i 0.365190 1.12394i 0
99.2 −0.951057 + 0.309017i 1.74363 + 2.39991i 0.809017 0.587785i 0 −2.39991 1.74363i 1.83337i −0.587785 + 0.809017i −1.79224 + 5.51595i 0
99.3 0.951057 0.309017i −1.74363 2.39991i 0.809017 0.587785i 0 −2.39991 1.74363i 1.83337i 0.587785 0.809017i −1.79224 + 5.51595i 0
99.4 0.951057 0.309017i 0.792578 + 1.09089i 0.809017 0.587785i 0 1.09089 + 0.792578i 0.833366i 0.587785 0.809017i 0.365190 1.12394i 0
149.1 −0.951057 0.309017i −0.792578 + 1.09089i 0.809017 + 0.587785i 0 1.09089 0.792578i 0.833366i −0.587785 0.809017i 0.365190 + 1.12394i 0
149.2 −0.951057 0.309017i 1.74363 2.39991i 0.809017 + 0.587785i 0 −2.39991 + 1.74363i 1.83337i −0.587785 0.809017i −1.79224 5.51595i 0
149.3 0.951057 + 0.309017i −1.74363 + 2.39991i 0.809017 + 0.587785i 0 −2.39991 + 1.74363i 1.83337i 0.587785 + 0.809017i −1.79224 5.51595i 0
149.4 0.951057 + 0.309017i 0.792578 1.09089i 0.809017 + 0.587785i 0 1.09089 0.792578i 0.833366i 0.587785 + 0.809017i 0.365190 + 1.12394i 0
199.1 −0.587785 0.809017i −1.63079 0.529876i −0.309017 + 0.951057i 0 0.529876 + 1.63079i 2.77447i 0.951057 0.309017i −0.0483405 0.0351215i 0
199.2 −0.587785 0.809017i 2.21858 + 0.720859i −0.309017 + 0.951057i 0 −0.720859 2.21858i 3.77447i 0.951057 0.309017i 1.97539 + 1.43521i 0
199.3 0.587785 + 0.809017i −2.21858 0.720859i −0.309017 + 0.951057i 0 −0.720859 2.21858i 3.77447i −0.951057 + 0.309017i 1.97539 + 1.43521i 0
199.4 0.587785 + 0.809017i 1.63079 + 0.529876i −0.309017 + 0.951057i 0 0.529876 + 1.63079i 2.77447i −0.951057 + 0.309017i −0.0483405 0.0351215i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 49.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
25.d even 5 1 inner
25.e even 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 250.2.e.c 16
5.b even 2 1 inner 250.2.e.c 16
5.c odd 4 1 50.2.d.b 8
5.c odd 4 1 250.2.d.d 8
15.e even 4 1 450.2.h.e 8
20.e even 4 1 400.2.u.d 8
25.d even 5 1 inner 250.2.e.c 16
25.d even 5 1 1250.2.b.e 8
25.e even 10 1 inner 250.2.e.c 16
25.e even 10 1 1250.2.b.e 8
25.f odd 20 1 50.2.d.b 8
25.f odd 20 1 250.2.d.d 8
25.f odd 20 1 1250.2.a.f 4
25.f odd 20 1 1250.2.a.l 4
75.l even 20 1 450.2.h.e 8
100.l even 20 1 400.2.u.d 8
100.l even 20 1 10000.2.a.t 4
100.l even 20 1 10000.2.a.x 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
50.2.d.b 8 5.c odd 4 1
50.2.d.b 8 25.f odd 20 1
250.2.d.d 8 5.c odd 4 1
250.2.d.d 8 25.f odd 20 1
250.2.e.c 16 1.a even 1 1 trivial
250.2.e.c 16 5.b even 2 1 inner
250.2.e.c 16 25.d even 5 1 inner
250.2.e.c 16 25.e even 10 1 inner
400.2.u.d 8 20.e even 4 1
400.2.u.d 8 100.l even 20 1
450.2.h.e 8 15.e even 4 1
450.2.h.e 8 75.l even 20 1
1250.2.a.f 4 25.f odd 20 1
1250.2.a.l 4 25.f odd 20 1
1250.2.b.e 8 25.d even 5 1
1250.2.b.e 8 25.e even 10 1
10000.2.a.t 4 100.l even 20 1
10000.2.a.x 4 100.l even 20 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T3167T314+78T312764T310+4625T3812224T36+19968T3428672T32+65536 T_{3}^{16} - 7T_{3}^{14} + 78T_{3}^{12} - 764T_{3}^{10} + 4625T_{3}^{8} - 12224T_{3}^{6} + 19968T_{3}^{4} - 28672T_{3}^{2} + 65536 acting on S2new(250,[χ])S_{2}^{\mathrm{new}}(250, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T8T6+T4++1)2 (T^{8} - T^{6} + T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
33 T167T14++65536 T^{16} - 7 T^{14} + \cdots + 65536 Copy content Toggle raw display
55 T16 T^{16} Copy content Toggle raw display
77 (T8+26T6++256)2 (T^{8} + 26 T^{6} + \cdots + 256)^{2} Copy content Toggle raw display
1111 (T8T73T6++256)2 (T^{8} - T^{7} - 3 T^{6} + \cdots + 256)^{2} Copy content Toggle raw display
1313 T16++1568239201 T^{16} + \cdots + 1568239201 Copy content Toggle raw display
1717 T16++141158161 T^{16} + \cdots + 141158161 Copy content Toggle raw display
1919 (T8+20T7++6400)2 (T^{8} + 20 T^{7} + \cdots + 6400)^{2} Copy content Toggle raw display
2323 T16117T14++65536 T^{16} - 117 T^{14} + \cdots + 65536 Copy content Toggle raw display
2929 (T815T7++25)2 (T^{8} - 15 T^{7} + \cdots + 25)^{2} Copy content Toggle raw display
3131 (T8+9T7++1597696)2 (T^{8} + 9 T^{7} + \cdots + 1597696)^{2} Copy content Toggle raw display
3737 T1658T14++25411681 T^{16} - 58 T^{14} + \cdots + 25411681 Copy content Toggle raw display
4141 (T8+9T7++7921)2 (T^{8} + 9 T^{7} + \cdots + 7921)^{2} Copy content Toggle raw display
4343 (T8+114T6++30976)2 (T^{8} + 114 T^{6} + \cdots + 30976)^{2} Copy content Toggle raw display
4747 T1633T14++65536 T^{16} - 33 T^{14} + \cdots + 65536 Copy content Toggle raw display
5353 T16++4294967296 T^{16} + \cdots + 4294967296 Copy content Toggle raw display
5959 (T8+10T7++102400)2 (T^{8} + 10 T^{7} + \cdots + 102400)^{2} Copy content Toggle raw display
6161 (T86T7++2920681)2 (T^{8} - 6 T^{7} + \cdots + 2920681)^{2} Copy content Toggle raw display
6767 T16++794123370496 T^{16} + \cdots + 794123370496 Copy content Toggle raw display
7171 (T8+9T7++4096)2 (T^{8} + 9 T^{7} + \cdots + 4096)^{2} Copy content Toggle raw display
7373 T16++1380756603136 T^{16} + \cdots + 1380756603136 Copy content Toggle raw display
7979 (T810T7++102400)2 (T^{8} - 10 T^{7} + \cdots + 102400)^{2} Copy content Toggle raw display
8383 T16++180227832610816 T^{16} + \cdots + 180227832610816 Copy content Toggle raw display
8989 (T815T7++9610000)2 (T^{8} - 15 T^{7} + \cdots + 9610000)^{2} Copy content Toggle raw display
9797 (T8+76T6+15126T4++1)2 (T^{8} + 76 T^{6} + 15126 T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
show more
show less