Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [250,2,Mod(49,250)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(250, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([7]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("250.49");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 250.e (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 50) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.1 |
|
−0.587785 | + | 0.809017i | −1.63079 | + | 0.529876i | −0.309017 | − | 0.951057i | 0 | 0.529876 | − | 1.63079i | 2.77447i | 0.951057 | + | 0.309017i | −0.0483405 | + | 0.0351215i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
49.2 | −0.587785 | + | 0.809017i | 2.21858 | − | 0.720859i | −0.309017 | − | 0.951057i | 0 | −0.720859 | + | 2.21858i | − | 3.77447i | 0.951057 | + | 0.309017i | 1.97539 | − | 1.43521i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
49.3 | 0.587785 | − | 0.809017i | −2.21858 | + | 0.720859i | −0.309017 | − | 0.951057i | 0 | −0.720859 | + | 2.21858i | 3.77447i | −0.951057 | − | 0.309017i | 1.97539 | − | 1.43521i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
49.4 | 0.587785 | − | 0.809017i | 1.63079 | − | 0.529876i | −0.309017 | − | 0.951057i | 0 | 0.529876 | − | 1.63079i | − | 2.77447i | −0.951057 | − | 0.309017i | −0.0483405 | + | 0.0351215i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
99.1 | −0.951057 | + | 0.309017i | −0.792578 | − | 1.09089i | 0.809017 | − | 0.587785i | 0 | 1.09089 | + | 0.792578i | − | 0.833366i | −0.587785 | + | 0.809017i | 0.365190 | − | 1.12394i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
99.2 | −0.951057 | + | 0.309017i | 1.74363 | + | 2.39991i | 0.809017 | − | 0.587785i | 0 | −2.39991 | − | 1.74363i | 1.83337i | −0.587785 | + | 0.809017i | −1.79224 | + | 5.51595i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
99.3 | 0.951057 | − | 0.309017i | −1.74363 | − | 2.39991i | 0.809017 | − | 0.587785i | 0 | −2.39991 | − | 1.74363i | − | 1.83337i | 0.587785 | − | 0.809017i | −1.79224 | + | 5.51595i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
99.4 | 0.951057 | − | 0.309017i | 0.792578 | + | 1.09089i | 0.809017 | − | 0.587785i | 0 | 1.09089 | + | 0.792578i | 0.833366i | 0.587785 | − | 0.809017i | 0.365190 | − | 1.12394i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
149.1 | −0.951057 | − | 0.309017i | −0.792578 | + | 1.09089i | 0.809017 | + | 0.587785i | 0 | 1.09089 | − | 0.792578i | 0.833366i | −0.587785 | − | 0.809017i | 0.365190 | + | 1.12394i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
149.2 | −0.951057 | − | 0.309017i | 1.74363 | − | 2.39991i | 0.809017 | + | 0.587785i | 0 | −2.39991 | + | 1.74363i | − | 1.83337i | −0.587785 | − | 0.809017i | −1.79224 | − | 5.51595i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
149.3 | 0.951057 | + | 0.309017i | −1.74363 | + | 2.39991i | 0.809017 | + | 0.587785i | 0 | −2.39991 | + | 1.74363i | 1.83337i | 0.587785 | + | 0.809017i | −1.79224 | − | 5.51595i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
149.4 | 0.951057 | + | 0.309017i | 0.792578 | − | 1.09089i | 0.809017 | + | 0.587785i | 0 | 1.09089 | − | 0.792578i | − | 0.833366i | 0.587785 | + | 0.809017i | 0.365190 | + | 1.12394i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
199.1 | −0.587785 | − | 0.809017i | −1.63079 | − | 0.529876i | −0.309017 | + | 0.951057i | 0 | 0.529876 | + | 1.63079i | − | 2.77447i | 0.951057 | − | 0.309017i | −0.0483405 | − | 0.0351215i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
199.2 | −0.587785 | − | 0.809017i | 2.21858 | + | 0.720859i | −0.309017 | + | 0.951057i | 0 | −0.720859 | − | 2.21858i | 3.77447i | 0.951057 | − | 0.309017i | 1.97539 | + | 1.43521i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
199.3 | 0.587785 | + | 0.809017i | −2.21858 | − | 0.720859i | −0.309017 | + | 0.951057i | 0 | −0.720859 | − | 2.21858i | − | 3.77447i | −0.951057 | + | 0.309017i | 1.97539 | + | 1.43521i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
199.4 | 0.587785 | + | 0.809017i | 1.63079 | + | 0.529876i | −0.309017 | + | 0.951057i | 0 | 0.529876 | + | 1.63079i | 2.77447i | −0.951057 | + | 0.309017i | −0.0483405 | − | 0.0351215i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
25.d | even | 5 | 1 | inner |
25.e | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 250.2.e.c | 16 | |
5.b | even | 2 | 1 | inner | 250.2.e.c | 16 | |
5.c | odd | 4 | 1 | 50.2.d.b | ✓ | 8 | |
5.c | odd | 4 | 1 | 250.2.d.d | 8 | ||
15.e | even | 4 | 1 | 450.2.h.e | 8 | ||
20.e | even | 4 | 1 | 400.2.u.d | 8 | ||
25.d | even | 5 | 1 | inner | 250.2.e.c | 16 | |
25.d | even | 5 | 1 | 1250.2.b.e | 8 | ||
25.e | even | 10 | 1 | inner | 250.2.e.c | 16 | |
25.e | even | 10 | 1 | 1250.2.b.e | 8 | ||
25.f | odd | 20 | 1 | 50.2.d.b | ✓ | 8 | |
25.f | odd | 20 | 1 | 250.2.d.d | 8 | ||
25.f | odd | 20 | 1 | 1250.2.a.f | 4 | ||
25.f | odd | 20 | 1 | 1250.2.a.l | 4 | ||
75.l | even | 20 | 1 | 450.2.h.e | 8 | ||
100.l | even | 20 | 1 | 400.2.u.d | 8 | ||
100.l | even | 20 | 1 | 10000.2.a.t | 4 | ||
100.l | even | 20 | 1 | 10000.2.a.x | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
50.2.d.b | ✓ | 8 | 5.c | odd | 4 | 1 | |
50.2.d.b | ✓ | 8 | 25.f | odd | 20 | 1 | |
250.2.d.d | 8 | 5.c | odd | 4 | 1 | ||
250.2.d.d | 8 | 25.f | odd | 20 | 1 | ||
250.2.e.c | 16 | 1.a | even | 1 | 1 | trivial | |
250.2.e.c | 16 | 5.b | even | 2 | 1 | inner | |
250.2.e.c | 16 | 25.d | even | 5 | 1 | inner | |
250.2.e.c | 16 | 25.e | even | 10 | 1 | inner | |
400.2.u.d | 8 | 20.e | even | 4 | 1 | ||
400.2.u.d | 8 | 100.l | even | 20 | 1 | ||
450.2.h.e | 8 | 15.e | even | 4 | 1 | ||
450.2.h.e | 8 | 75.l | even | 20 | 1 | ||
1250.2.a.f | 4 | 25.f | odd | 20 | 1 | ||
1250.2.a.l | 4 | 25.f | odd | 20 | 1 | ||
1250.2.b.e | 8 | 25.d | even | 5 | 1 | ||
1250.2.b.e | 8 | 25.e | even | 10 | 1 | ||
10000.2.a.t | 4 | 100.l | even | 20 | 1 | ||
10000.2.a.x | 4 | 100.l | even | 20 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .