L(s) = 1 | + (−0.587 + 0.809i)2-s + (−1.63 + 0.529i)3-s + (−0.309 − 0.951i)4-s + (0.529 − 1.63i)6-s + 2.77i·7-s + (0.951 + 0.309i)8-s + (−0.0483 + 0.0351i)9-s + (−2.24 − 1.63i)11-s + (1.00 + 1.38i)12-s + (−3.33 − 4.59i)13-s + (−2.24 − 1.63i)14-s + (−0.809 + 0.587i)16-s + (−4.90 − 1.59i)17-s − 0.0597i·18-s + (−0.436 + 1.34i)19-s + ⋯ |
L(s) = 1 | + (−0.415 + 0.572i)2-s + (−0.941 + 0.305i)3-s + (−0.154 − 0.475i)4-s + (0.216 − 0.665i)6-s + 1.04i·7-s + (0.336 + 0.109i)8-s + (−0.0161 + 0.0117i)9-s + (−0.676 − 0.491i)11-s + (0.290 + 0.400i)12-s + (−0.925 − 1.27i)13-s + (−0.599 − 0.435i)14-s + (−0.202 + 0.146i)16-s + (−1.18 − 0.386i)17-s − 0.0140i·18-s + (−0.100 + 0.308i)19-s + ⋯ |
Λ(s)=(=(250s/2ΓC(s)L(s)(−0.763+0.646i)Λ(2−s)
Λ(s)=(=(250s/2ΓC(s+1/2)L(s)(−0.763+0.646i)Λ(1−s)
Degree: |
2 |
Conductor: |
250
= 2⋅53
|
Sign: |
−0.763+0.646i
|
Analytic conductor: |
1.99626 |
Root analytic conductor: |
1.41289 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ250(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 250, ( :1/2), −0.763+0.646i)
|
Particular Values
L(1) |
≈ |
0.0330023−0.0900521i |
L(21) |
≈ |
0.0330023−0.0900521i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.587−0.809i)T |
| 5 | 1 |
good | 3 | 1+(1.63−0.529i)T+(2.42−1.76i)T2 |
| 7 | 1−2.77iT−7T2 |
| 11 | 1+(2.24+1.63i)T+(3.39+10.4i)T2 |
| 13 | 1+(3.33+4.59i)T+(−4.01+12.3i)T2 |
| 17 | 1+(4.90+1.59i)T+(13.7+9.99i)T2 |
| 19 | 1+(0.436−1.34i)T+(−15.3−11.1i)T2 |
| 23 | 1+(0.384−0.529i)T+(−7.10−21.8i)T2 |
| 29 | 1+(1.26+3.89i)T+(−23.4+17.0i)T2 |
| 31 | 1+(2.20−6.77i)T+(−25.0−18.2i)T2 |
| 37 | 1+(0.615+0.847i)T+(−11.4+35.1i)T2 |
| 41 | 1+(7.36−5.35i)T+(12.6−38.9i)T2 |
| 43 | 1−9.24iT−43T2 |
| 47 | 1+(2.63−0.857i)T+(38.0−27.6i)T2 |
| 53 | 1+(−0.500+0.162i)T+(42.8−31.1i)T2 |
| 59 | 1+(3.05−2.22i)T+(18.2−56.1i)T2 |
| 61 | 1+(−8.76−6.36i)T+(18.8+58.0i)T2 |
| 67 | 1+(−4.11−1.33i)T+(54.2+39.3i)T2 |
| 71 | 1+(4.09+12.5i)T+(−57.4+41.7i)T2 |
| 73 | 1+(−2.47+3.40i)T+(−22.5−69.4i)T2 |
| 79 | 1+(−3.05−9.41i)T+(−63.9+46.4i)T2 |
| 83 | 1+(−4.44−1.44i)T+(67.1+48.7i)T2 |
| 89 | 1+(7.43+5.39i)T+(27.5+84.6i)T2 |
| 97 | 1+(0.0857−0.0278i)T+(78.4−57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.50168061351087280279261389955, −11.52956187730900840152142668728, −10.69200574474216613745939999307, −9.837985335754167780056587334074, −8.670061287413652810654708878076, −7.83843511878621412530985430844, −6.44677915188911902472949247519, −5.50464523437364720374964653074, −4.92447219441194796258033307435, −2.67508809002860642110573996822,
0.090786021502937786033247959411, 2.07849459477000536661877081971, 4.02066871281858087168298368024, 5.10208969819098859262298256957, 6.72563604207811579598811714659, 7.26294156865133128446426165200, 8.694516595755901209366606227791, 9.783024369479531557725275643299, 10.71183983302168311182645997768, 11.36226191449777862988872221517