Properties

Label 2-250-25.9-c1-0-0
Degree $2$
Conductor $250$
Sign $-0.763 + 0.646i$
Analytic cond. $1.99626$
Root an. cond. $1.41289$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.587 + 0.809i)2-s + (−1.63 + 0.529i)3-s + (−0.309 − 0.951i)4-s + (0.529 − 1.63i)6-s + 2.77i·7-s + (0.951 + 0.309i)8-s + (−0.0483 + 0.0351i)9-s + (−2.24 − 1.63i)11-s + (1.00 + 1.38i)12-s + (−3.33 − 4.59i)13-s + (−2.24 − 1.63i)14-s + (−0.809 + 0.587i)16-s + (−4.90 − 1.59i)17-s − 0.0597i·18-s + (−0.436 + 1.34i)19-s + ⋯
L(s)  = 1  + (−0.415 + 0.572i)2-s + (−0.941 + 0.305i)3-s + (−0.154 − 0.475i)4-s + (0.216 − 0.665i)6-s + 1.04i·7-s + (0.336 + 0.109i)8-s + (−0.0161 + 0.0117i)9-s + (−0.676 − 0.491i)11-s + (0.290 + 0.400i)12-s + (−0.925 − 1.27i)13-s + (−0.599 − 0.435i)14-s + (−0.202 + 0.146i)16-s + (−1.18 − 0.386i)17-s − 0.0140i·18-s + (−0.100 + 0.308i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 250 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.763 + 0.646i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 250 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.763 + 0.646i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(250\)    =    \(2 \cdot 5^{3}\)
Sign: $-0.763 + 0.646i$
Analytic conductor: \(1.99626\)
Root analytic conductor: \(1.41289\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{250} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 250,\ (\ :1/2),\ -0.763 + 0.646i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0330023 - 0.0900521i\)
\(L(\frac12)\) \(\approx\) \(0.0330023 - 0.0900521i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.587 - 0.809i)T \)
5 \( 1 \)
good3 \( 1 + (1.63 - 0.529i)T + (2.42 - 1.76i)T^{2} \)
7 \( 1 - 2.77iT - 7T^{2} \)
11 \( 1 + (2.24 + 1.63i)T + (3.39 + 10.4i)T^{2} \)
13 \( 1 + (3.33 + 4.59i)T + (-4.01 + 12.3i)T^{2} \)
17 \( 1 + (4.90 + 1.59i)T + (13.7 + 9.99i)T^{2} \)
19 \( 1 + (0.436 - 1.34i)T + (-15.3 - 11.1i)T^{2} \)
23 \( 1 + (0.384 - 0.529i)T + (-7.10 - 21.8i)T^{2} \)
29 \( 1 + (1.26 + 3.89i)T + (-23.4 + 17.0i)T^{2} \)
31 \( 1 + (2.20 - 6.77i)T + (-25.0 - 18.2i)T^{2} \)
37 \( 1 + (0.615 + 0.847i)T + (-11.4 + 35.1i)T^{2} \)
41 \( 1 + (7.36 - 5.35i)T + (12.6 - 38.9i)T^{2} \)
43 \( 1 - 9.24iT - 43T^{2} \)
47 \( 1 + (2.63 - 0.857i)T + (38.0 - 27.6i)T^{2} \)
53 \( 1 + (-0.500 + 0.162i)T + (42.8 - 31.1i)T^{2} \)
59 \( 1 + (3.05 - 2.22i)T + (18.2 - 56.1i)T^{2} \)
61 \( 1 + (-8.76 - 6.36i)T + (18.8 + 58.0i)T^{2} \)
67 \( 1 + (-4.11 - 1.33i)T + (54.2 + 39.3i)T^{2} \)
71 \( 1 + (4.09 + 12.5i)T + (-57.4 + 41.7i)T^{2} \)
73 \( 1 + (-2.47 + 3.40i)T + (-22.5 - 69.4i)T^{2} \)
79 \( 1 + (-3.05 - 9.41i)T + (-63.9 + 46.4i)T^{2} \)
83 \( 1 + (-4.44 - 1.44i)T + (67.1 + 48.7i)T^{2} \)
89 \( 1 + (7.43 + 5.39i)T + (27.5 + 84.6i)T^{2} \)
97 \( 1 + (0.0857 - 0.0278i)T + (78.4 - 57.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.50168061351087280279261389955, −11.52956187730900840152142668728, −10.69200574474216613745939999307, −9.837985335754167780056587334074, −8.670061287413652810654708878076, −7.83843511878621412530985430844, −6.44677915188911902472949247519, −5.50464523437364720374964653074, −4.92447219441194796258033307435, −2.67508809002860642110573996822, 0.090786021502937786033247959411, 2.07849459477000536661877081971, 4.02066871281858087168298368024, 5.10208969819098859262298256957, 6.72563604207811579598811714659, 7.26294156865133128446426165200, 8.694516595755901209366606227791, 9.783024369479531557725275643299, 10.71183983302168311182645997768, 11.36226191449777862988872221517

Graph of the $Z$-function along the critical line