L(s) = 1 | + (−0.587 + 0.809i)2-s + (−1.63 + 0.529i)3-s + (−0.309 − 0.951i)4-s + (0.529 − 1.63i)6-s + 2.77i·7-s + (0.951 + 0.309i)8-s + (−0.0483 + 0.0351i)9-s + (−2.24 − 1.63i)11-s + (1.00 + 1.38i)12-s + (−3.33 − 4.59i)13-s + (−2.24 − 1.63i)14-s + (−0.809 + 0.587i)16-s + (−4.90 − 1.59i)17-s − 0.0597i·18-s + (−0.436 + 1.34i)19-s + ⋯ |
L(s) = 1 | + (−0.415 + 0.572i)2-s + (−0.941 + 0.305i)3-s + (−0.154 − 0.475i)4-s + (0.216 − 0.665i)6-s + 1.04i·7-s + (0.336 + 0.109i)8-s + (−0.0161 + 0.0117i)9-s + (−0.676 − 0.491i)11-s + (0.290 + 0.400i)12-s + (−0.925 − 1.27i)13-s + (−0.599 − 0.435i)14-s + (−0.202 + 0.146i)16-s + (−1.18 − 0.386i)17-s − 0.0140i·18-s + (−0.100 + 0.308i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 250 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.763 + 0.646i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 250 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.763 + 0.646i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0330023 - 0.0900521i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0330023 - 0.0900521i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.587 - 0.809i)T \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (1.63 - 0.529i)T + (2.42 - 1.76i)T^{2} \) |
| 7 | \( 1 - 2.77iT - 7T^{2} \) |
| 11 | \( 1 + (2.24 + 1.63i)T + (3.39 + 10.4i)T^{2} \) |
| 13 | \( 1 + (3.33 + 4.59i)T + (-4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (4.90 + 1.59i)T + (13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (0.436 - 1.34i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + (0.384 - 0.529i)T + (-7.10 - 21.8i)T^{2} \) |
| 29 | \( 1 + (1.26 + 3.89i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (2.20 - 6.77i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (0.615 + 0.847i)T + (-11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (7.36 - 5.35i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 - 9.24iT - 43T^{2} \) |
| 47 | \( 1 + (2.63 - 0.857i)T + (38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-0.500 + 0.162i)T + (42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (3.05 - 2.22i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (-8.76 - 6.36i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + (-4.11 - 1.33i)T + (54.2 + 39.3i)T^{2} \) |
| 71 | \( 1 + (4.09 + 12.5i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (-2.47 + 3.40i)T + (-22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (-3.05 - 9.41i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (-4.44 - 1.44i)T + (67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 + (7.43 + 5.39i)T + (27.5 + 84.6i)T^{2} \) |
| 97 | \( 1 + (0.0857 - 0.0278i)T + (78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.50168061351087280279261389955, −11.52956187730900840152142668728, −10.69200574474216613745939999307, −9.837985335754167780056587334074, −8.670061287413652810654708878076, −7.83843511878621412530985430844, −6.44677915188911902472949247519, −5.50464523437364720374964653074, −4.92447219441194796258033307435, −2.67508809002860642110573996822,
0.090786021502937786033247959411, 2.07849459477000536661877081971, 4.02066871281858087168298368024, 5.10208969819098859262298256957, 6.72563604207811579598811714659, 7.26294156865133128446426165200, 8.694516595755901209366606227791, 9.783024369479531557725275643299, 10.71183983302168311182645997768, 11.36226191449777862988872221517