Properties

Label 1008.2.cq.b.431.6
Level $1008$
Weight $2$
Character 1008.431
Analytic conductor $8.049$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,2,Mod(431,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.431");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.cq (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 28x^{10} + 276x^{8} + 1178x^{6} + 2292x^{4} + 1888x^{2} + 529 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 431.6
Root \(-3.39892i\) of defining polynomial
Character \(\chi\) \(=\) 1008.431
Dual form 1008.2.cq.b.863.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.76362 - 1.59558i) q^{5} +(1.75649 - 1.97857i) q^{7} +(0.786690 - 1.36259i) q^{11} +0.670500 q^{13} +(5.12369 + 2.95816i) q^{17} +(-2.84823 + 1.64442i) q^{19} +(-1.97693 - 3.42415i) q^{23} +(2.59174 - 4.48902i) q^{25} +0.585502i q^{29} +(-8.26946 - 4.77438i) q^{31} +(1.69730 - 8.27064i) q^{35} +(-3.84823 - 6.66532i) q^{37} +3.77666i q^{41} +12.3446i q^{43} +(3.67423 + 6.36396i) q^{47} +(-0.829500 - 6.95068i) q^{49} +(11.5615 + 6.67506i) q^{53} -5.02090i q^{55} +(2.48399 - 4.30240i) q^{59} +(-3.25649 - 5.64040i) q^{61} +(1.85301 - 1.06984i) q^{65} +(-4.77521 - 2.75697i) q^{67} +6.85278 q^{71} +(-2.92124 + 5.05973i) q^{73} +(-1.31417 - 3.94989i) q^{77} +(5.26946 - 3.04233i) q^{79} -9.48111 q^{83} +18.8799 q^{85} +(12.8757 - 7.43380i) q^{89} +(1.17773 - 1.32663i) q^{91} +(-5.24761 + 9.08913i) q^{95} -0.183476 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{7} - 4 q^{13} + 18 q^{19} + 2 q^{25} - 30 q^{31} + 6 q^{37} - 22 q^{49} - 16 q^{61} + 30 q^{67} - 18 q^{73} - 6 q^{79} + 64 q^{85} - 26 q^{91} + 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.76362 1.59558i 1.23593 0.713564i 0.267670 0.963511i \(-0.413746\pi\)
0.968260 + 0.249947i \(0.0804131\pi\)
\(6\) 0 0
\(7\) 1.75649 1.97857i 0.663890 0.747830i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.786690 1.36259i 0.237196 0.410835i −0.722713 0.691149i \(-0.757105\pi\)
0.959909 + 0.280313i \(0.0904383\pi\)
\(12\) 0 0
\(13\) 0.670500 0.185963 0.0929817 0.995668i \(-0.470360\pi\)
0.0929817 + 0.995668i \(0.470360\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.12369 + 2.95816i 1.24268 + 0.717460i 0.969639 0.244543i \(-0.0786378\pi\)
0.273039 + 0.962003i \(0.411971\pi\)
\(18\) 0 0
\(19\) −2.84823 + 1.64442i −0.653428 + 0.377257i −0.789768 0.613405i \(-0.789799\pi\)
0.136340 + 0.990662i \(0.456466\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.97693 3.42415i −0.412219 0.713984i 0.582913 0.812534i \(-0.301913\pi\)
−0.995132 + 0.0985504i \(0.968579\pi\)
\(24\) 0 0
\(25\) 2.59174 4.48902i 0.518348 0.897804i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.585502i 0.108725i 0.998521 + 0.0543625i \(0.0173127\pi\)
−0.998521 + 0.0543625i \(0.982687\pi\)
\(30\) 0 0
\(31\) −8.26946 4.77438i −1.48524 0.857503i −0.485381 0.874303i \(-0.661319\pi\)
−0.999859 + 0.0167994i \(0.994652\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.69730 8.27064i 0.286896 1.39799i
\(36\) 0 0
\(37\) −3.84823 6.66532i −0.632644 1.09577i −0.987009 0.160665i \(-0.948636\pi\)
0.354364 0.935107i \(-0.384697\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.77666i 0.589815i 0.955526 + 0.294907i \(0.0952888\pi\)
−0.955526 + 0.294907i \(0.904711\pi\)
\(42\) 0 0
\(43\) 12.3446i 1.88253i 0.337672 + 0.941264i \(0.390361\pi\)
−0.337672 + 0.941264i \(0.609639\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.67423 + 6.36396i 0.535942 + 0.928279i 0.999117 + 0.0420122i \(0.0133768\pi\)
−0.463175 + 0.886267i \(0.653290\pi\)
\(48\) 0 0
\(49\) −0.829500 6.95068i −0.118500 0.992954i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.5615 + 6.67506i 1.58810 + 0.916890i 0.993620 + 0.112781i \(0.0359757\pi\)
0.594481 + 0.804110i \(0.297358\pi\)
\(54\) 0 0
\(55\) 5.02090i 0.677018i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.48399 4.30240i 0.323388 0.560125i −0.657797 0.753196i \(-0.728511\pi\)
0.981185 + 0.193071i \(0.0618447\pi\)
\(60\) 0 0
\(61\) −3.25649 5.64040i −0.416951 0.722180i 0.578680 0.815554i \(-0.303568\pi\)
−0.995631 + 0.0933748i \(0.970235\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.85301 1.06984i 0.229838 0.132697i
\(66\) 0 0
\(67\) −4.77521 2.75697i −0.583385 0.336818i 0.179092 0.983832i \(-0.442684\pi\)
−0.762478 + 0.647015i \(0.776017\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.85278 0.813275 0.406638 0.913590i \(-0.366701\pi\)
0.406638 + 0.913590i \(0.366701\pi\)
\(72\) 0 0
\(73\) −2.92124 + 5.05973i −0.341905 + 0.592197i −0.984786 0.173769i \(-0.944405\pi\)
0.642881 + 0.765966i \(0.277739\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.31417 3.94989i −0.149763 0.450132i
\(78\) 0 0
\(79\) 5.26946 3.04233i 0.592861 0.342288i −0.173367 0.984857i \(-0.555465\pi\)
0.766228 + 0.642569i \(0.222131\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −9.48111 −1.04069 −0.520343 0.853957i \(-0.674196\pi\)
−0.520343 + 0.853957i \(0.674196\pi\)
\(84\) 0 0
\(85\) 18.8799 2.04782
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 12.8757 7.43380i 1.36482 0.787981i 0.374562 0.927202i \(-0.377793\pi\)
0.990261 + 0.139221i \(0.0444599\pi\)
\(90\) 0 0
\(91\) 1.17773 1.32663i 0.123459 0.139069i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −5.24761 + 9.08913i −0.538394 + 0.932525i
\(96\) 0 0
\(97\) −0.183476 −0.0186292 −0.00931460 0.999957i \(-0.502965\pi\)
−0.00931460 + 0.999957i \(0.502965\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.27068 1.88833i −0.325445 0.187896i 0.328372 0.944548i \(-0.393500\pi\)
−0.653817 + 0.756653i \(0.726833\pi\)
\(102\) 0 0
\(103\) 11.9327 6.88937i 1.17577 0.678830i 0.220736 0.975334i \(-0.429154\pi\)
0.955032 + 0.296504i \(0.0958207\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.58462 16.6010i −0.926580 1.60488i −0.789001 0.614392i \(-0.789401\pi\)
−0.137579 0.990491i \(-0.543932\pi\)
\(108\) 0 0
\(109\) −4.10471 + 7.10957i −0.393160 + 0.680974i −0.992864 0.119248i \(-0.961952\pi\)
0.599704 + 0.800222i \(0.295285\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.70862i 0.442950i 0.975166 + 0.221475i \(0.0710871\pi\)
−0.975166 + 0.221475i \(0.928913\pi\)
\(114\) 0 0
\(115\) −10.9270 6.30870i −1.01895 0.588289i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 14.8526 4.94161i 1.36154 0.452997i
\(120\) 0 0
\(121\) 4.26224 + 7.38241i 0.387476 + 0.671129i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0.585502i 0.0523689i
\(126\) 0 0
\(127\) 14.3495i 1.27331i 0.771150 + 0.636654i \(0.219682\pi\)
−0.771150 + 0.636654i \(0.780318\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.56178 + 11.3653i 0.573305 + 0.992994i 0.996223 + 0.0868261i \(0.0276724\pi\)
−0.422918 + 0.906168i \(0.638994\pi\)
\(132\) 0 0
\(133\) −1.74926 + 8.52383i −0.151680 + 0.739110i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −11.0545 6.38231i −0.944449 0.545278i −0.0530966 0.998589i \(-0.516909\pi\)
−0.891352 + 0.453312i \(0.850242\pi\)
\(138\) 0 0
\(139\) 4.52786i 0.384048i 0.981390 + 0.192024i \(0.0615051\pi\)
−0.981390 + 0.192024i \(0.938495\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.527476 0.913615i 0.0441097 0.0764003i
\(144\) 0 0
\(145\) 0.934214 + 1.61811i 0.0775822 + 0.134376i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −11.0545 + 6.38231i −0.905619 + 0.522859i −0.879019 0.476787i \(-0.841801\pi\)
−0.0266000 + 0.999646i \(0.508468\pi\)
\(150\) 0 0
\(151\) 12.3597 + 7.13589i 1.00582 + 0.580711i 0.909965 0.414685i \(-0.136108\pi\)
0.0958552 + 0.995395i \(0.469441\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −30.4716 −2.44754
\(156\) 0 0
\(157\) 0.512976 0.888501i 0.0409399 0.0709101i −0.844829 0.535036i \(-0.820298\pi\)
0.885769 + 0.464126i \(0.153631\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −10.2474 2.10297i −0.807607 0.165737i
\(162\) 0 0
\(163\) −10.9270 + 6.30870i −0.855868 + 0.494135i −0.862626 0.505842i \(-0.831182\pi\)
0.00675856 + 0.999977i \(0.497849\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.8066 0.836243 0.418122 0.908391i \(-0.362689\pi\)
0.418122 + 0.908391i \(0.362689\pi\)
\(168\) 0 0
\(169\) −12.5504 −0.965418
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.23326 + 5.33083i −0.701992 + 0.405295i −0.808089 0.589061i \(-0.799498\pi\)
0.106097 + 0.994356i \(0.466165\pi\)
\(174\) 0 0
\(175\) −4.32950 13.0129i −0.327279 0.983679i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −5.65117 + 9.78811i −0.422388 + 0.731598i −0.996173 0.0874088i \(-0.972141\pi\)
0.573784 + 0.819006i \(0.305475\pi\)
\(180\) 0 0
\(181\) −14.5245 −1.07960 −0.539798 0.841795i \(-0.681499\pi\)
−0.539798 + 0.841795i \(0.681499\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −21.2701 12.2803i −1.56381 0.902865i
\(186\) 0 0
\(187\) 8.06151 4.65432i 0.589516 0.340357i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.5039 + 21.6575i 0.904754 + 1.56708i 0.821247 + 0.570572i \(0.193279\pi\)
0.0835063 + 0.996507i \(0.473388\pi\)
\(192\) 0 0
\(193\) 6.85545 11.8740i 0.493466 0.854709i −0.506505 0.862237i \(-0.669063\pi\)
0.999972 + 0.00752821i \(0.00239633\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.03494i 0.216230i 0.994138 + 0.108115i \(0.0344815\pi\)
−0.994138 + 0.108115i \(0.965518\pi\)
\(198\) 0 0
\(199\) 8.69645 + 5.02090i 0.616475 + 0.355922i 0.775495 0.631353i \(-0.217500\pi\)
−0.159020 + 0.987275i \(0.550834\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.15846 + 1.02843i 0.0813078 + 0.0721814i
\(204\) 0 0
\(205\) 6.02595 + 10.4373i 0.420871 + 0.728970i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 5.17461i 0.357935i
\(210\) 0 0
\(211\) 7.46620i 0.513994i −0.966412 0.256997i \(-0.917267\pi\)
0.966412 0.256997i \(-0.0827331\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 19.6967 + 34.1157i 1.34330 + 2.32667i
\(216\) 0 0
\(217\) −23.9717 + 7.97560i −1.62730 + 0.541419i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.43544 + 1.98345i 0.231092 + 0.133421i
\(222\) 0 0
\(223\) 14.2718i 0.955709i 0.878439 + 0.477855i \(0.158585\pi\)
−0.878439 + 0.477855i \(0.841415\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 8.13516 14.0905i 0.539949 0.935220i −0.458957 0.888459i \(-0.651777\pi\)
0.998906 0.0467612i \(-0.0148900\pi\)
\(228\) 0 0
\(229\) −3.25074 5.63044i −0.214815 0.372070i 0.738400 0.674362i \(-0.235581\pi\)
−0.953215 + 0.302292i \(0.902248\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −14.7287 + 8.50363i −0.964911 + 0.557091i −0.897681 0.440646i \(-0.854749\pi\)
−0.0672298 + 0.997738i \(0.521416\pi\)
\(234\) 0 0
\(235\) 20.3084 + 11.7251i 1.32477 + 0.764858i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −28.3389 −1.83309 −0.916546 0.399928i \(-0.869035\pi\)
−0.916546 + 0.399928i \(0.869035\pi\)
\(240\) 0 0
\(241\) −11.2752 + 19.5292i −0.726300 + 1.25799i 0.232136 + 0.972683i \(0.425429\pi\)
−0.958437 + 0.285306i \(0.907905\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −13.3828 17.8855i −0.854994 1.14266i
\(246\) 0 0
\(247\) −1.90974 + 1.10259i −0.121514 + 0.0701559i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −11.2615 −0.710820 −0.355410 0.934711i \(-0.615659\pi\)
−0.355410 + 0.934711i \(0.615659\pi\)
\(252\) 0 0
\(253\) −6.22093 −0.391106
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 17.9676 10.3736i 1.12079 0.647088i 0.179187 0.983815i \(-0.442653\pi\)
0.941602 + 0.336727i \(0.109320\pi\)
\(258\) 0 0
\(259\) −19.9472 4.09357i −1.23946 0.254362i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.155707 0.269693i 0.00960133 0.0166300i −0.861185 0.508292i \(-0.830277\pi\)
0.870786 + 0.491662i \(0.163610\pi\)
\(264\) 0 0
\(265\) 42.6023 2.61704
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −21.1666 12.2205i −1.29055 0.745099i −0.311798 0.950149i \(-0.600931\pi\)
−0.978752 + 0.205050i \(0.934264\pi\)
\(270\) 0 0
\(271\) 26.8872 15.5233i 1.63328 0.942974i 0.650205 0.759758i \(-0.274683\pi\)
0.983073 0.183215i \(-0.0586505\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.07779 7.06294i −0.245900 0.425911i
\(276\) 0 0
\(277\) −5.94719 + 10.3008i −0.357332 + 0.618917i −0.987514 0.157530i \(-0.949647\pi\)
0.630182 + 0.776447i \(0.282980\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 25.5292i 1.52295i 0.648196 + 0.761474i \(0.275524\pi\)
−0.648196 + 0.761474i \(0.724476\pi\)
\(282\) 0 0
\(283\) 2.54468 + 1.46917i 0.151265 + 0.0873331i 0.573722 0.819050i \(-0.305499\pi\)
−0.422457 + 0.906383i \(0.638832\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.47239 + 6.63365i 0.441081 + 0.391572i
\(288\) 0 0
\(289\) 9.00147 + 15.5910i 0.529499 + 0.917118i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 16.3851i 0.957225i −0.878026 0.478613i \(-0.841140\pi\)
0.878026 0.478613i \(-0.158860\pi\)
\(294\) 0 0
\(295\) 15.8536i 0.923033i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.32553 2.29589i −0.0766576 0.132775i
\(300\) 0 0
\(301\) 24.4246 + 21.6831i 1.40781 + 1.24979i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −17.9994 10.3920i −1.03064 0.595042i
\(306\) 0 0
\(307\) 13.3306i 0.760820i 0.924818 + 0.380410i \(0.124217\pi\)
−0.924818 + 0.380410i \(0.875783\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 15.1323 26.2099i 0.858073 1.48623i −0.0156922 0.999877i \(-0.504995\pi\)
0.873765 0.486349i \(-0.161671\pi\)
\(312\) 0 0
\(313\) −3.98702 6.90573i −0.225360 0.390335i 0.731067 0.682305i \(-0.239022\pi\)
−0.956427 + 0.291970i \(0.905689\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 22.6160 13.0574i 1.27024 0.733375i 0.295210 0.955433i \(-0.404611\pi\)
0.975034 + 0.222057i \(0.0712772\pi\)
\(318\) 0 0
\(319\) 0.797797 + 0.460608i 0.0446681 + 0.0257891i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −19.4579 −1.08267
\(324\) 0 0
\(325\) 1.73776 3.00989i 0.0963937 0.166959i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 19.0453 + 3.90848i 1.05000 + 0.215482i
\(330\) 0 0
\(331\) −16.4717 + 9.50992i −0.905365 + 0.522713i −0.878937 0.476938i \(-0.841747\pi\)
−0.0264279 + 0.999651i \(0.508413\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −17.5959 −0.961364
\(336\) 0 0
\(337\) 5.02300 0.273620 0.136810 0.990597i \(-0.456315\pi\)
0.136810 + 0.990597i \(0.456315\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −13.0110 + 7.51191i −0.704585 + 0.406793i
\(342\) 0 0
\(343\) −15.2094 10.5676i −0.821232 0.570595i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −11.0545 + 19.1469i −0.593436 + 1.02786i 0.400330 + 0.916371i \(0.368896\pi\)
−0.993766 + 0.111490i \(0.964438\pi\)
\(348\) 0 0
\(349\) −22.0519 −1.18041 −0.590206 0.807253i \(-0.700953\pi\)
−0.590206 + 0.807253i \(0.700953\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.44946 + 0.836844i 0.0771468 + 0.0445407i 0.538077 0.842896i \(-0.319151\pi\)
−0.460930 + 0.887436i \(0.652484\pi\)
\(354\) 0 0
\(355\) 18.9385 10.9341i 1.00515 0.580324i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −3.95386 6.84829i −0.208677 0.361439i 0.742621 0.669712i \(-0.233582\pi\)
−0.951298 + 0.308273i \(0.900249\pi\)
\(360\) 0 0
\(361\) −4.09174 + 7.08710i −0.215355 + 0.373005i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 18.6443i 0.975885i
\(366\) 0 0
\(367\) 7.66237 + 4.42387i 0.399972 + 0.230924i 0.686472 0.727156i \(-0.259158\pi\)
−0.286500 + 0.958080i \(0.592492\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 33.5148 11.1507i 1.74000 0.578915i
\(372\) 0 0
\(373\) −3.76371 6.51894i −0.194878 0.337538i 0.751983 0.659183i \(-0.229098\pi\)
−0.946860 + 0.321645i \(0.895764\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.392579i 0.0202189i
\(378\) 0 0
\(379\) 25.1571i 1.29224i 0.763238 + 0.646118i \(0.223608\pi\)
−0.763238 + 0.646118i \(0.776392\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5.77509 + 10.0027i 0.295093 + 0.511117i 0.975007 0.222176i \(-0.0713159\pi\)
−0.679913 + 0.733293i \(0.737983\pi\)
\(384\) 0 0
\(385\) −9.93421 8.81915i −0.506294 0.449465i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 28.2150 + 16.2899i 1.43056 + 0.825933i 0.997163 0.0752717i \(-0.0239824\pi\)
0.433394 + 0.901204i \(0.357316\pi\)
\(390\) 0 0
\(391\) 23.3924i 1.18300i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 9.70854 16.8157i 0.488490 0.846089i
\(396\) 0 0
\(397\) −17.1422 29.6911i −0.860341 1.49015i −0.871600 0.490217i \(-0.836917\pi\)
0.0112596 0.999937i \(-0.496416\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −13.8898 + 8.01930i −0.693625 + 0.400465i −0.804969 0.593317i \(-0.797818\pi\)
0.111344 + 0.993782i \(0.464485\pi\)
\(402\) 0 0
\(403\) −5.54468 3.20122i −0.276200 0.159464i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −12.1094 −0.600243
\(408\) 0 0
\(409\) 11.2224 19.4378i 0.554912 0.961136i −0.442998 0.896523i \(-0.646085\pi\)
0.997910 0.0646136i \(-0.0205815\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −4.14951 12.4719i −0.204184 0.613701i
\(414\) 0 0
\(415\) −26.2022 + 15.1278i −1.28622 + 0.742597i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 23.8894 1.16707 0.583536 0.812087i \(-0.301669\pi\)
0.583536 + 0.812087i \(0.301669\pi\)
\(420\) 0 0
\(421\) 16.3555 0.797116 0.398558 0.917143i \(-0.369511\pi\)
0.398558 + 0.917143i \(0.369511\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 26.5585 15.3336i 1.28828 0.743788i
\(426\) 0 0
\(427\) −16.8799 3.46410i −0.816877 0.167640i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −7.22455 + 12.5133i −0.347994 + 0.602744i −0.985893 0.167377i \(-0.946470\pi\)
0.637899 + 0.770120i \(0.279804\pi\)
\(432\) 0 0
\(433\) −8.20943 −0.394520 −0.197260 0.980351i \(-0.563204\pi\)
−0.197260 + 0.980351i \(0.563204\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 11.2615 + 6.50183i 0.538711 + 0.311025i
\(438\) 0 0
\(439\) 9.49425 5.48151i 0.453136 0.261618i −0.256018 0.966672i \(-0.582411\pi\)
0.709154 + 0.705054i \(0.249077\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 5.42374 + 9.39419i 0.257690 + 0.446331i 0.965623 0.259948i \(-0.0837055\pi\)
−0.707933 + 0.706280i \(0.750372\pi\)
\(444\) 0 0
\(445\) 23.7224 41.0884i 1.12455 1.94778i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 4.48168i 0.211503i 0.994393 + 0.105752i \(0.0337249\pi\)
−0.994393 + 0.105752i \(0.966275\pi\)
\(450\) 0 0
\(451\) 5.14602 + 2.97106i 0.242317 + 0.139902i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.13804 5.54547i 0.0533522 0.259976i
\(456\) 0 0
\(457\) −13.7094 23.7454i −0.641300 1.11076i −0.985143 0.171737i \(-0.945062\pi\)
0.343843 0.939027i \(-0.388271\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 22.4943i 1.04766i 0.851821 + 0.523832i \(0.175498\pi\)
−0.851821 + 0.523832i \(0.824502\pi\)
\(462\) 0 0
\(463\) 2.20517i 0.102483i 0.998686 + 0.0512416i \(0.0163178\pi\)
−0.998686 + 0.0512416i \(0.983682\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3.51853 + 6.09427i 0.162818 + 0.282009i 0.935878 0.352324i \(-0.114608\pi\)
−0.773060 + 0.634333i \(0.781275\pi\)
\(468\) 0 0
\(469\) −13.8425 + 4.60552i −0.639186 + 0.212663i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 16.8205 + 9.71134i 0.773409 + 0.446528i
\(474\) 0 0
\(475\) 17.0477i 0.782201i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −0.962813 + 1.66764i −0.0439921 + 0.0761965i −0.887183 0.461418i \(-0.847341\pi\)
0.843191 + 0.537614i \(0.180674\pi\)
\(480\) 0 0
\(481\) −2.58024 4.46910i −0.117649 0.203774i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.507059 + 0.292751i −0.0230244 + 0.0132931i
\(486\) 0 0
\(487\) −18.1234 10.4636i −0.821251 0.474150i 0.0295964 0.999562i \(-0.490578\pi\)
−0.850848 + 0.525412i \(0.823911\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.32553 0.0598205 0.0299103 0.999553i \(-0.490478\pi\)
0.0299103 + 0.999553i \(0.490478\pi\)
\(492\) 0 0
\(493\) −1.73201 + 2.99993i −0.0780058 + 0.135110i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 12.0368 13.5587i 0.539925 0.608192i
\(498\) 0 0
\(499\) 11.9327 6.88937i 0.534183 0.308411i −0.208535 0.978015i \(-0.566870\pi\)
0.742718 + 0.669604i \(0.233536\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 16.7887 0.748573 0.374287 0.927313i \(-0.377888\pi\)
0.374287 + 0.927313i \(0.377888\pi\)
\(504\) 0 0
\(505\) −12.0519 −0.536303
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 15.9099 9.18560i 0.705195 0.407144i −0.104085 0.994568i \(-0.533191\pi\)
0.809279 + 0.587424i \(0.199858\pi\)
\(510\) 0 0
\(511\) 4.87993 + 14.6672i 0.215875 + 0.648841i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 21.9851 38.0792i 0.968777 1.67797i
\(516\) 0 0
\(517\) 11.5619 0.508493
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 2.28835 + 1.32118i 0.100254 + 0.0578819i 0.549289 0.835633i \(-0.314899\pi\)
−0.449035 + 0.893514i \(0.648232\pi\)
\(522\) 0 0
\(523\) −5.84823 + 3.37647i −0.255725 + 0.147643i −0.622383 0.782713i \(-0.713835\pi\)
0.366658 + 0.930356i \(0.380502\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −28.2468 48.9249i −1.23045 2.13120i
\(528\) 0 0
\(529\) 3.68348 6.37997i 0.160151 0.277390i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2.53225i 0.109684i
\(534\) 0 0
\(535\) −52.9765 30.5860i −2.29037 1.32235i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −10.1235 4.33776i −0.436048 0.186841i
\(540\) 0 0
\(541\) 7.70220 + 13.3406i 0.331144 + 0.573557i 0.982736 0.185011i \(-0.0592322\pi\)
−0.651593 + 0.758569i \(0.725899\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 26.1976i 1.12218i
\(546\) 0 0
\(547\) 4.15743i 0.177759i 0.996042 + 0.0888794i \(0.0283286\pi\)
−0.996042 + 0.0888794i \(0.971671\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −0.962813 1.66764i −0.0410172 0.0710439i
\(552\) 0 0
\(553\) 3.23629 15.7698i 0.137621 0.670601i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 34.2493 + 19.7738i 1.45119 + 0.837845i 0.998549 0.0538483i \(-0.0171487\pi\)
0.452641 + 0.891693i \(0.350482\pi\)
\(558\) 0 0
\(559\) 8.27703i 0.350081i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8.69442 15.0592i 0.366426 0.634669i −0.622578 0.782558i \(-0.713915\pi\)
0.989004 + 0.147889i \(0.0472479\pi\)
\(564\) 0 0
\(565\) 7.51298 + 13.0129i 0.316073 + 0.547455i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 17.6276 10.1773i 0.738989 0.426655i −0.0827126 0.996573i \(-0.526358\pi\)
0.821702 + 0.569918i \(0.193025\pi\)
\(570\) 0 0
\(571\) 9.87123 + 5.69916i 0.413098 + 0.238502i 0.692120 0.721782i \(-0.256677\pi\)
−0.279022 + 0.960285i \(0.590010\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −20.4948 −0.854691
\(576\) 0 0
\(577\) −0.184951 + 0.320345i −0.00769963 + 0.0133361i −0.869850 0.493317i \(-0.835784\pi\)
0.862150 + 0.506653i \(0.169118\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −16.6535 + 18.7591i −0.690902 + 0.778257i
\(582\) 0 0
\(583\) 18.1907 10.5024i 0.753382 0.434965i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −42.8924 −1.77036 −0.885180 0.465249i \(-0.845965\pi\)
−0.885180 + 0.465249i \(0.845965\pi\)
\(588\) 0 0
\(589\) 31.4044 1.29400
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 26.7973 15.4714i 1.10043 0.635336i 0.164099 0.986444i \(-0.447528\pi\)
0.936335 + 0.351108i \(0.114195\pi\)
\(594\) 0 0
\(595\) 33.1624 37.3553i 1.35952 1.53142i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −0.807106 + 1.39795i −0.0329775 + 0.0571186i −0.882043 0.471169i \(-0.843832\pi\)
0.849066 + 0.528287i \(0.177166\pi\)
\(600\) 0 0
\(601\) 32.6850 1.33325 0.666623 0.745395i \(-0.267739\pi\)
0.666623 + 0.745395i \(0.267739\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 23.5584 + 13.6015i 0.957787 + 0.552978i
\(606\) 0 0
\(607\) −29.2128 + 16.8660i −1.18571 + 0.684571i −0.957329 0.289001i \(-0.906677\pi\)
−0.228382 + 0.973572i \(0.573344\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.46358 + 4.26704i 0.0996656 + 0.172626i
\(612\) 0 0
\(613\) −2.42846 + 4.20622i −0.0980847 + 0.169888i −0.910892 0.412645i \(-0.864605\pi\)
0.812807 + 0.582533i \(0.197938\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 36.1542i 1.45551i −0.685835 0.727757i \(-0.740563\pi\)
0.685835 0.727757i \(-0.259437\pi\)
\(618\) 0 0
\(619\) −37.2526 21.5078i −1.49731 0.864472i −0.497315 0.867570i \(-0.665680\pi\)
−0.999995 + 0.00309817i \(0.999014\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 7.90773 38.5329i 0.316816 1.54379i
\(624\) 0 0
\(625\) 12.0245 + 20.8270i 0.480979 + 0.833080i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 45.5347i 1.81559i
\(630\) 0 0
\(631\) 27.7378i 1.10423i 0.833769 + 0.552113i \(0.186178\pi\)
−0.833769 + 0.552113i \(0.813822\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 22.8957 + 39.6565i 0.908587 + 1.57372i
\(636\) 0 0
\(637\) −0.556180 4.66043i −0.0220366 0.184653i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −31.8892 18.4113i −1.25955 0.727201i −0.286562 0.958062i \(-0.592513\pi\)
−0.972987 + 0.230861i \(0.925846\pi\)
\(642\) 0 0
\(643\) 32.3306i 1.27499i −0.770453 0.637497i \(-0.779970\pi\)
0.770453 0.637497i \(-0.220030\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 9.96775 17.2647i 0.391873 0.678744i −0.600824 0.799381i \(-0.705161\pi\)
0.992697 + 0.120638i \(0.0384940\pi\)
\(648\) 0 0
\(649\) −3.90826 6.76931i −0.153413 0.265719i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 11.9333 6.88970i 0.466987 0.269615i −0.247991 0.968762i \(-0.579770\pi\)
0.714977 + 0.699147i \(0.246437\pi\)
\(654\) 0 0
\(655\) 36.2686 + 20.9397i 1.41713 + 0.818180i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 36.3102 1.41445 0.707223 0.706991i \(-0.249948\pi\)
0.707223 + 0.706991i \(0.249948\pi\)
\(660\) 0 0
\(661\) 6.36120 11.0179i 0.247422 0.428548i −0.715388 0.698728i \(-0.753750\pi\)
0.962810 + 0.270180i \(0.0870832\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 8.76614 + 26.3477i 0.339936 + 1.02172i
\(666\) 0 0
\(667\) 2.00484 1.15750i 0.0776279 0.0448185i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −10.2474 −0.395596
\(672\) 0 0
\(673\) 2.02595 0.0780947 0.0390474 0.999237i \(-0.487568\pi\)
0.0390474 + 0.999237i \(0.487568\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.91910 4.57209i 0.304356 0.175720i −0.340042 0.940410i \(-0.610441\pi\)
0.644398 + 0.764690i \(0.277108\pi\)
\(678\) 0 0
\(679\) −0.322274 + 0.363021i −0.0123677 + 0.0139315i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −10.3917 + 17.9990i −0.397628 + 0.688712i −0.993433 0.114417i \(-0.963500\pi\)
0.595805 + 0.803129i \(0.296833\pi\)
\(684\) 0 0
\(685\) −40.7339 −1.55636
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 7.75202 + 4.47563i 0.295329 + 0.170508i
\(690\) 0 0
\(691\) 11.7982 6.81170i 0.448825 0.259129i −0.258509 0.966009i \(-0.583231\pi\)
0.707334 + 0.706880i \(0.249898\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.22455 + 12.5133i 0.274043 + 0.474656i
\(696\) 0 0
\(697\) −11.1720 + 19.3504i −0.423169 + 0.732950i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 24.0118i 0.906912i 0.891279 + 0.453456i \(0.149809\pi\)
−0.891279 + 0.453456i \(0.850191\pi\)
\(702\) 0 0
\(703\) 21.9212 + 12.6562i 0.826775 + 0.477339i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −9.48111 + 3.15445i −0.356574 + 0.118635i
\(708\) 0 0
\(709\) −25.0634 43.4111i −0.941276 1.63034i −0.763041 0.646350i \(-0.776295\pi\)
−0.178235 0.983988i \(-0.557039\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 37.7545i 1.41392i
\(714\) 0 0
\(715\) 3.36651i 0.125901i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −12.9588 22.4453i −0.483282 0.837069i 0.516534 0.856267i \(-0.327222\pi\)
−0.999816 + 0.0191981i \(0.993889\pi\)
\(720\) 0 0
\(721\) 7.32859 35.7109i 0.272931 1.32994i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.62833 + 1.51747i 0.0976138 + 0.0563573i
\(726\) 0 0
\(727\) 21.2777i 0.789144i 0.918865 + 0.394572i \(0.129107\pi\)
−0.918865 + 0.394572i \(0.870893\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −36.5172 + 63.2497i −1.35064 + 2.33938i
\(732\) 0 0
\(733\) 13.7022 + 23.7329i 0.506102 + 0.876595i 0.999975 + 0.00706086i \(0.00224756\pi\)
−0.493873 + 0.869534i \(0.664419\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −7.51322 + 4.33776i −0.276753 + 0.159784i
\(738\) 0 0
\(739\) −17.4602 10.0806i −0.642283 0.370822i 0.143211 0.989692i \(-0.454257\pi\)
−0.785493 + 0.618870i \(0.787591\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 31.7971 1.16652 0.583261 0.812285i \(-0.301776\pi\)
0.583261 + 0.812285i \(0.301776\pi\)
\(744\) 0 0
\(745\) −20.3670 + 35.2766i −0.746187 + 1.29243i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −49.6816 10.1957i −1.81533 0.372542i
\(750\) 0 0
\(751\) 13.4155 7.74544i 0.489538 0.282635i −0.234845 0.972033i \(-0.575458\pi\)
0.724383 + 0.689398i \(0.242125\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 45.5435 1.65750
\(756\) 0 0
\(757\) 9.17198 0.333361 0.166681 0.986011i \(-0.446695\pi\)
0.166681 + 0.986011i \(0.446695\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −23.7972 + 13.7393i −0.862649 + 0.498051i −0.864898 0.501947i \(-0.832617\pi\)
0.00224950 + 0.999997i \(0.499284\pi\)
\(762\) 0 0
\(763\) 6.85693 + 20.6094i 0.248237 + 0.746109i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.66552 2.88476i 0.0601384 0.104163i
\(768\) 0 0
\(769\) −16.0779 −0.579782 −0.289891 0.957060i \(-0.593619\pi\)
−0.289891 + 0.957060i \(0.593619\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −8.05439 4.65020i −0.289696 0.167256i 0.348109 0.937454i \(-0.386824\pi\)
−0.637805 + 0.770198i \(0.720157\pi\)
\(774\) 0 0
\(775\) −42.8646 + 24.7479i −1.53974 + 0.888970i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −6.21043 10.7568i −0.222512 0.385401i
\(780\) 0 0
\(781\) 5.39101 9.33750i 0.192906 0.334122i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 3.27397i 0.116853i
\(786\) 0 0
\(787\) −8.74646 5.04977i −0.311778 0.180005i 0.335944 0.941882i \(-0.390945\pi\)
−0.647722 + 0.761877i \(0.724278\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 9.31635 + 8.27064i 0.331251 + 0.294070i
\(792\) 0 0
\(793\) −2.18348 3.78189i −0.0775375 0.134299i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 39.1184i 1.38565i −0.721108 0.692823i \(-0.756367\pi\)
0.721108 0.692823i \(-0.243633\pi\)
\(798\) 0 0
\(799\) 43.4760i 1.53807i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.59622 + 7.96088i 0.162197 + 0.280933i
\(804\) 0 0
\(805\) −31.6753 + 10.5387i −1.11641 + 0.371440i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −4.28480 2.47383i −0.150646 0.0869753i 0.422782 0.906231i \(-0.361053\pi\)
−0.573428 + 0.819256i \(0.694387\pi\)
\(810\) 0 0
\(811\) 42.8005i 1.50293i −0.659773 0.751465i \(-0.729347\pi\)
0.659773 0.751465i \(-0.270653\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −20.1320 + 34.8697i −0.705195 + 1.22143i
\(816\) 0 0
\(817\) −20.2997 35.1601i −0.710196 1.23010i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −39.8401 + 23.0017i −1.39043 + 0.802765i −0.993363 0.115025i \(-0.963305\pi\)
−0.397067 + 0.917790i \(0.629972\pi\)
\(822\) 0 0
\(823\) −26.0894 15.0627i −0.909418 0.525053i −0.0291740 0.999574i \(-0.509288\pi\)
−0.880244 + 0.474522i \(0.842621\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 7.94856 0.276399 0.138199 0.990404i \(-0.455869\pi\)
0.138199 + 0.990404i \(0.455869\pi\)
\(828\) 0 0
\(829\) −10.5706 + 18.3089i −0.367133 + 0.635893i −0.989116 0.147138i \(-0.952994\pi\)
0.621983 + 0.783031i \(0.286327\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 16.3112 38.0669i 0.565148 1.31894i
\(834\) 0 0
\(835\) 29.8655 17.2428i 1.03354 0.596713i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −35.0074 −1.20859 −0.604295 0.796760i \(-0.706545\pi\)
−0.604295 + 0.796760i \(0.706545\pi\)
\(840\) 0 0
\(841\) 28.6572 0.988179
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −34.6846 + 20.0252i −1.19319 + 0.688887i
\(846\) 0 0
\(847\) 22.0932 + 4.53397i 0.759132 + 0.155789i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −15.2154 + 26.3538i −0.521576 + 0.903396i
\(852\) 0 0
\(853\) 6.26133 0.214384 0.107192 0.994238i \(-0.465814\pi\)
0.107192 + 0.994238i \(0.465814\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −30.6681 17.7062i −1.04760 0.604834i −0.125625 0.992078i \(-0.540094\pi\)
−0.921977 + 0.387244i \(0.873427\pi\)
\(858\) 0 0
\(859\) 24.5438 14.1704i 0.837423 0.483486i −0.0189646 0.999820i \(-0.506037\pi\)
0.856387 + 0.516334i \(0.172704\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −10.3713 17.9636i −0.353043 0.611489i 0.633738 0.773548i \(-0.281520\pi\)
−0.986781 + 0.162059i \(0.948187\pi\)
\(864\) 0 0
\(865\) −17.0115 + 29.4648i −0.578408 + 1.00183i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 9.57347i 0.324758i
\(870\) 0 0
\(871\) −3.20178 1.84855i −0.108488 0.0626357i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.15846 1.02843i −0.0391630 0.0347672i
\(876\) 0 0
\(877\) −8.68200 15.0377i −0.293170 0.507786i 0.681387 0.731923i \(-0.261377\pi\)
−0.974558 + 0.224137i \(0.928044\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 51.9905i 1.75160i 0.482671 + 0.875802i \(0.339667\pi\)
−0.482671 + 0.875802i \(0.660333\pi\)
\(882\) 0 0
\(883\) 15.9062i 0.535288i 0.963518 + 0.267644i \(0.0862451\pi\)
−0.963518 + 0.267644i \(0.913755\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −10.7749 18.6626i −0.361784 0.626629i 0.626470 0.779445i \(-0.284499\pi\)
−0.988255 + 0.152816i \(0.951166\pi\)
\(888\) 0 0
\(889\) 28.3914 + 25.2046i 0.952218 + 0.845336i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −20.9301 12.0840i −0.700399 0.404376i
\(894\) 0 0
\(895\) 36.0675i 1.20560i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.79541 4.84179i 0.0932320 0.161483i
\(900\) 0 0
\(901\) 39.4919 + 68.4019i 1.31566 + 2.27880i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −40.1402 + 23.1749i −1.33430 + 0.770361i
\(906\) 0 0
\(907\) −23.4102 13.5159i −0.777321 0.448787i 0.0581587 0.998307i \(-0.481477\pi\)
−0.835480 + 0.549521i \(0.814810\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 3.95386 0.130997 0.0654987 0.997853i \(-0.479136\pi\)
0.0654987 + 0.997853i \(0.479136\pi\)
\(912\) 0 0
\(913\) −7.45869 + 12.9188i −0.246847 + 0.427551i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 34.0128 + 6.98012i 1.12320 + 0.230504i
\(918\) 0 0
\(919\) −21.9212 + 12.6562i −0.723115 + 0.417491i −0.815898 0.578196i \(-0.803757\pi\)
0.0927832 + 0.995686i \(0.470424\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 4.59479 0.151239
\(924\) 0 0
\(925\) −39.8944 −1.31172
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −30.2963 + 17.4916i −0.993991 + 0.573881i −0.906465 0.422282i \(-0.861229\pi\)
−0.0875258 + 0.996162i \(0.527896\pi\)
\(930\) 0 0
\(931\) 13.7925 + 18.4331i 0.452030 + 0.604119i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 14.8526 25.7255i 0.485733 0.841315i
\(936\) 0 0
\(937\) −10.0779 −0.329229 −0.164615 0.986358i \(-0.552638\pi\)
−0.164615 + 0.986358i \(0.552638\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −13.5898 7.84607i −0.443014 0.255774i 0.261861 0.965106i \(-0.415664\pi\)
−0.704875 + 0.709331i \(0.748997\pi\)
\(942\) 0 0
\(943\) 12.9318 7.46620i 0.421118 0.243133i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 19.8524 + 34.3854i 0.645117 + 1.11738i 0.984275 + 0.176646i \(0.0565246\pi\)
−0.339158 + 0.940730i \(0.610142\pi\)
\(948\) 0 0
\(949\) −1.95869 + 3.39255i −0.0635818 + 0.110127i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 51.6901i 1.67441i −0.546891 0.837203i \(-0.684189\pi\)
0.546891 0.837203i \(-0.315811\pi\)
\(954\) 0 0
\(955\) 69.1124 + 39.9020i 2.23642 + 1.29120i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −32.0449 + 10.6617i −1.03479 + 0.344283i
\(960\) 0 0
\(961\) 30.0894 + 52.1163i 0.970624 + 1.68117i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 43.7536i 1.40848i
\(966\) 0 0
\(967\) 13.9090i 0.447285i −0.974671 0.223642i \(-0.928205\pi\)
0.974671 0.223642i \(-0.0717948\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1.15846 2.00651i −0.0371767 0.0643919i 0.846838 0.531850i \(-0.178503\pi\)
−0.884015 + 0.467458i \(0.845170\pi\)
\(972\) 0 0
\(973\) 8.95869 + 7.95312i 0.287202 + 0.254965i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −26.5267 15.3152i −0.848666 0.489977i 0.0115346 0.999933i \(-0.496328\pi\)
−0.860200 + 0.509956i \(0.829662\pi\)
\(978\) 0 0
\(979\) 23.3924i 0.747623i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −5.77509 + 10.0027i −0.184197 + 0.319038i −0.943306 0.331926i \(-0.892302\pi\)
0.759109 + 0.650964i \(0.225635\pi\)
\(984\) 0 0
\(985\) 4.84248 + 8.38741i 0.154294 + 0.267245i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 42.2696 24.4044i 1.34409 0.776013i
\(990\) 0 0
\(991\) −17.5730 10.1458i −0.558225 0.322291i 0.194208 0.980960i \(-0.437786\pi\)
−0.752433 + 0.658669i \(0.771120\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 32.0449 1.01589
\(996\) 0 0
\(997\) 6.25074 10.8266i 0.197963 0.342882i −0.749905 0.661546i \(-0.769901\pi\)
0.947868 + 0.318664i \(0.103234\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.cq.b.431.6 yes 12
3.2 odd 2 inner 1008.2.cq.b.431.1 12
4.3 odd 2 1008.2.cq.c.431.6 yes 12
7.2 even 3 1008.2.cq.c.863.1 yes 12
7.3 odd 6 7056.2.h.o.4607.1 12
7.4 even 3 7056.2.h.n.4607.11 12
12.11 even 2 1008.2.cq.c.431.1 yes 12
21.2 odd 6 1008.2.cq.c.863.6 yes 12
21.11 odd 6 7056.2.h.n.4607.2 12
21.17 even 6 7056.2.h.o.4607.12 12
28.3 even 6 7056.2.h.o.4607.2 12
28.11 odd 6 7056.2.h.n.4607.12 12
28.23 odd 6 inner 1008.2.cq.b.863.1 yes 12
84.11 even 6 7056.2.h.n.4607.1 12
84.23 even 6 inner 1008.2.cq.b.863.6 yes 12
84.59 odd 6 7056.2.h.o.4607.11 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.cq.b.431.1 12 3.2 odd 2 inner
1008.2.cq.b.431.6 yes 12 1.1 even 1 trivial
1008.2.cq.b.863.1 yes 12 28.23 odd 6 inner
1008.2.cq.b.863.6 yes 12 84.23 even 6 inner
1008.2.cq.c.431.1 yes 12 12.11 even 2
1008.2.cq.c.431.6 yes 12 4.3 odd 2
1008.2.cq.c.863.1 yes 12 7.2 even 3
1008.2.cq.c.863.6 yes 12 21.2 odd 6
7056.2.h.n.4607.1 12 84.11 even 6
7056.2.h.n.4607.2 12 21.11 odd 6
7056.2.h.n.4607.11 12 7.4 even 3
7056.2.h.n.4607.12 12 28.11 odd 6
7056.2.h.o.4607.1 12 7.3 odd 6
7056.2.h.o.4607.2 12 28.3 even 6
7056.2.h.o.4607.11 12 84.59 odd 6
7056.2.h.o.4607.12 12 21.17 even 6