Properties

Label 7056.2.h.o.4607.2
Level $7056$
Weight $2$
Character 7056.4607
Analytic conductor $56.342$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7056,2,Mod(4607,7056)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7056, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7056.4607");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7056 = 2^{4} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7056.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(56.3424436662\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 28x^{10} + 276x^{8} + 1178x^{6} + 2292x^{4} + 1888x^{2} + 529 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 1008)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 4607.2
Root \(1.62198i\) of defining polynomial
Character \(\chi\) \(=\) 7056.4607
Dual form 7056.2.h.o.4607.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.19116i q^{5} +1.57338 q^{11} -0.670500 q^{13} +5.91633i q^{17} -3.28885i q^{19} -3.95386 q^{23} -5.18348 q^{25} +0.585502i q^{29} +9.54875i q^{31} +7.69645 q^{37} -3.77666i q^{41} -12.3446i q^{43} -7.34847 q^{47} -13.3501i q^{53} -5.02090i q^{55} -4.96798 q^{59} -6.51298 q^{61} +2.13967i q^{65} -5.51394i q^{67} -6.85278 q^{71} -5.84248 q^{73} -6.08465i q^{79} -9.48111 q^{83} +18.8799 q^{85} -14.8676i q^{89} -10.4952 q^{95} +0.183476 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{13} - 4 q^{25} - 12 q^{37} - 32 q^{61} - 36 q^{73} + 64 q^{85} - 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7056\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1765\) \(4609\) \(6175\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 3.19116i − 1.42713i −0.700590 0.713564i \(-0.747080\pi\)
0.700590 0.713564i \(-0.252920\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.57338 0.474392 0.237196 0.971462i \(-0.423772\pi\)
0.237196 + 0.971462i \(0.423772\pi\)
\(12\) 0 0
\(13\) −0.670500 −0.185963 −0.0929817 0.995668i \(-0.529640\pi\)
−0.0929817 + 0.995668i \(0.529640\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.91633i 1.43492i 0.696599 + 0.717460i \(0.254696\pi\)
−0.696599 + 0.717460i \(0.745304\pi\)
\(18\) 0 0
\(19\) − 3.28885i − 0.754514i −0.926109 0.377257i \(-0.876867\pi\)
0.926109 0.377257i \(-0.123133\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.95386 −0.824438 −0.412219 0.911085i \(-0.635246\pi\)
−0.412219 + 0.911085i \(0.635246\pi\)
\(24\) 0 0
\(25\) −5.18348 −1.03670
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.585502i 0.108725i 0.998521 + 0.0543625i \(0.0173127\pi\)
−0.998521 + 0.0543625i \(0.982687\pi\)
\(30\) 0 0
\(31\) 9.54875i 1.71501i 0.514478 + 0.857503i \(0.327986\pi\)
−0.514478 + 0.857503i \(0.672014\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 7.69645 1.26529 0.632644 0.774442i \(-0.281969\pi\)
0.632644 + 0.774442i \(0.281969\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 3.77666i − 0.589815i −0.955526 0.294907i \(-0.904711\pi\)
0.955526 0.294907i \(-0.0952888\pi\)
\(42\) 0 0
\(43\) − 12.3446i − 1.88253i −0.337672 0.941264i \(-0.609639\pi\)
0.337672 0.941264i \(-0.390361\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −7.34847 −1.07188 −0.535942 0.844255i \(-0.680044\pi\)
−0.535942 + 0.844255i \(0.680044\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 13.3501i − 1.83378i −0.399139 0.916890i \(-0.630691\pi\)
0.399139 0.916890i \(-0.369309\pi\)
\(54\) 0 0
\(55\) − 5.02090i − 0.677018i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.96798 −0.646776 −0.323388 0.946266i \(-0.604822\pi\)
−0.323388 + 0.946266i \(0.604822\pi\)
\(60\) 0 0
\(61\) −6.51298 −0.833901 −0.416951 0.908929i \(-0.636901\pi\)
−0.416951 + 0.908929i \(0.636901\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.13967i 0.265394i
\(66\) 0 0
\(67\) − 5.51394i − 0.673635i −0.941570 0.336818i \(-0.890649\pi\)
0.941570 0.336818i \(-0.109351\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −6.85278 −0.813275 −0.406638 0.913590i \(-0.633299\pi\)
−0.406638 + 0.913590i \(0.633299\pi\)
\(72\) 0 0
\(73\) −5.84248 −0.683810 −0.341905 0.939735i \(-0.611072\pi\)
−0.341905 + 0.939735i \(0.611072\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) − 6.08465i − 0.684577i −0.939595 0.342288i \(-0.888798\pi\)
0.939595 0.342288i \(-0.111202\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −9.48111 −1.04069 −0.520343 0.853957i \(-0.674196\pi\)
−0.520343 + 0.853957i \(0.674196\pi\)
\(84\) 0 0
\(85\) 18.8799 2.04782
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 14.8676i − 1.57596i −0.615700 0.787981i \(-0.711127\pi\)
0.615700 0.787981i \(-0.288873\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −10.4952 −1.07679
\(96\) 0 0
\(97\) 0.183476 0.0186292 0.00931460 0.999957i \(-0.497035\pi\)
0.00931460 + 0.999957i \(0.497035\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 3.77666i − 0.375792i −0.982189 0.187896i \(-0.939833\pi\)
0.982189 0.187896i \(-0.0601667\pi\)
\(102\) 0 0
\(103\) 13.7787i 1.35766i 0.734296 + 0.678830i \(0.237513\pi\)
−0.734296 + 0.678830i \(0.762487\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −19.1692 −1.85316 −0.926580 0.376098i \(-0.877265\pi\)
−0.926580 + 0.376098i \(0.877265\pi\)
\(108\) 0 0
\(109\) 8.20943 0.786321 0.393160 0.919470i \(-0.371382\pi\)
0.393160 + 0.919470i \(0.371382\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.70862i 0.442950i 0.975166 + 0.221475i \(0.0710871\pi\)
−0.975166 + 0.221475i \(0.928913\pi\)
\(114\) 0 0
\(115\) 12.6174i 1.17658i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −8.52448 −0.774952
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0.585502i 0.0523689i
\(126\) 0 0
\(127\) − 14.3495i − 1.27331i −0.771150 0.636654i \(-0.780318\pi\)
0.771150 0.636654i \(-0.219682\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −13.1236 −1.14661 −0.573305 0.819342i \(-0.694339\pi\)
−0.573305 + 0.819342i \(0.694339\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 12.7646i 1.09056i 0.838255 + 0.545278i \(0.183576\pi\)
−0.838255 + 0.545278i \(0.816424\pi\)
\(138\) 0 0
\(139\) 4.52786i 0.384048i 0.981390 + 0.192024i \(0.0615051\pi\)
−0.981390 + 0.192024i \(0.938495\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.05495 −0.0882195
\(144\) 0 0
\(145\) 1.86843 0.155164
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 12.7646i − 1.04572i −0.852419 0.522859i \(-0.824865\pi\)
0.852419 0.522859i \(-0.175135\pi\)
\(150\) 0 0
\(151\) 14.2718i 1.16142i 0.814110 + 0.580711i \(0.197225\pi\)
−0.814110 + 0.580711i \(0.802775\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 30.4716 2.44754
\(156\) 0 0
\(157\) 1.02595 0.0818799 0.0409399 0.999162i \(-0.486965\pi\)
0.0409399 + 0.999162i \(0.486965\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 12.6174i 0.988271i 0.869385 + 0.494135i \(0.164515\pi\)
−0.869385 + 0.494135i \(0.835485\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.8066 0.836243 0.418122 0.908391i \(-0.362689\pi\)
0.418122 + 0.908391i \(0.362689\pi\)
\(168\) 0 0
\(169\) −12.5504 −0.965418
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 10.6617i 0.810591i 0.914186 + 0.405295i \(0.132831\pi\)
−0.914186 + 0.405295i \(0.867169\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −11.3023 −0.844776 −0.422388 0.906415i \(-0.638808\pi\)
−0.422388 + 0.906415i \(0.638808\pi\)
\(180\) 0 0
\(181\) 14.5245 1.07960 0.539798 0.841795i \(-0.318501\pi\)
0.539798 + 0.841795i \(0.318501\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 24.5606i − 1.80573i
\(186\) 0 0
\(187\) 9.30863i 0.680714i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 25.0079 1.80951 0.904754 0.425935i \(-0.140055\pi\)
0.904754 + 0.425935i \(0.140055\pi\)
\(192\) 0 0
\(193\) −13.7109 −0.986932 −0.493466 0.869765i \(-0.664270\pi\)
−0.493466 + 0.869765i \(0.664270\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.03494i 0.216230i 0.994138 + 0.108115i \(0.0344815\pi\)
−0.994138 + 0.108115i \(0.965518\pi\)
\(198\) 0 0
\(199\) − 10.0418i − 0.711844i −0.934516 0.355922i \(-0.884167\pi\)
0.934516 0.355922i \(-0.115833\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −12.0519 −0.841742
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 5.17461i − 0.357935i
\(210\) 0 0
\(211\) 7.46620i 0.513994i 0.966412 + 0.256997i \(0.0827331\pi\)
−0.966412 + 0.256997i \(0.917267\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −39.3934 −2.68661
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 3.96690i − 0.266843i
\(222\) 0 0
\(223\) 14.2718i 0.955709i 0.878439 + 0.477855i \(0.158585\pi\)
−0.878439 + 0.477855i \(0.841415\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −16.2703 −1.07990 −0.539949 0.841697i \(-0.681557\pi\)
−0.539949 + 0.841697i \(0.681557\pi\)
\(228\) 0 0
\(229\) −6.50147 −0.429630 −0.214815 0.976655i \(-0.568915\pi\)
−0.214815 + 0.976655i \(0.568915\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 17.0073i − 1.11418i −0.830451 0.557091i \(-0.811917\pi\)
0.830451 0.557091i \(-0.188083\pi\)
\(234\) 0 0
\(235\) 23.4501i 1.52972i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 28.3389 1.83309 0.916546 0.399928i \(-0.130965\pi\)
0.916546 + 0.399928i \(0.130965\pi\)
\(240\) 0 0
\(241\) −22.5504 −1.45260 −0.726300 0.687377i \(-0.758762\pi\)
−0.726300 + 0.687377i \(0.758762\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.20517i 0.140312i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −11.2615 −0.710820 −0.355410 0.934711i \(-0.615659\pi\)
−0.355410 + 0.934711i \(0.615659\pi\)
\(252\) 0 0
\(253\) −6.22093 −0.391106
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 20.7472i − 1.29418i −0.762415 0.647088i \(-0.775987\pi\)
0.762415 0.647088i \(-0.224013\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.311415 0.0192027 0.00960133 0.999954i \(-0.496944\pi\)
0.00960133 + 0.999954i \(0.496944\pi\)
\(264\) 0 0
\(265\) −42.6023 −2.61704
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 24.4411i − 1.49020i −0.666954 0.745099i \(-0.732402\pi\)
0.666954 0.745099i \(-0.267598\pi\)
\(270\) 0 0
\(271\) 31.0466i 1.88595i 0.332867 + 0.942974i \(0.391984\pi\)
−0.332867 + 0.942974i \(0.608016\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −8.15558 −0.491800
\(276\) 0 0
\(277\) 11.8944 0.714664 0.357332 0.933977i \(-0.383686\pi\)
0.357332 + 0.933977i \(0.383686\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 25.5292i 1.52295i 0.648196 + 0.761474i \(0.275524\pi\)
−0.648196 + 0.761474i \(0.724476\pi\)
\(282\) 0 0
\(283\) − 2.93834i − 0.174666i −0.996179 0.0873331i \(-0.972166\pi\)
0.996179 0.0873331i \(-0.0278345\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −18.0029 −1.05900
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 16.3851i 0.957225i 0.878026 + 0.478613i \(0.158860\pi\)
−0.878026 + 0.478613i \(0.841140\pi\)
\(294\) 0 0
\(295\) 15.8536i 0.923033i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.65107 0.153315
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 20.7839i 1.19008i
\(306\) 0 0
\(307\) 13.3306i 0.760820i 0.924818 + 0.380410i \(0.124217\pi\)
−0.924818 + 0.380410i \(0.875783\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −30.2646 −1.71615 −0.858073 0.513528i \(-0.828338\pi\)
−0.858073 + 0.513528i \(0.828338\pi\)
\(312\) 0 0
\(313\) −7.97405 −0.450720 −0.225360 0.974276i \(-0.572356\pi\)
−0.225360 + 0.974276i \(0.572356\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 26.1147i 1.46675i 0.679824 + 0.733375i \(0.262056\pi\)
−0.679824 + 0.733375i \(0.737944\pi\)
\(318\) 0 0
\(319\) 0.921217i 0.0515782i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 19.4579 1.08267
\(324\) 0 0
\(325\) 3.47552 0.192787
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 19.0198i 1.04543i 0.852509 + 0.522713i \(0.175080\pi\)
−0.852509 + 0.522713i \(0.824920\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −17.5959 −0.961364
\(336\) 0 0
\(337\) 5.02300 0.273620 0.136810 0.990597i \(-0.456315\pi\)
0.136810 + 0.990597i \(0.456315\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 15.0238i 0.813585i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −22.1090 −1.18687 −0.593436 0.804881i \(-0.702229\pi\)
−0.593436 + 0.804881i \(0.702229\pi\)
\(348\) 0 0
\(349\) 22.0519 1.18041 0.590206 0.807253i \(-0.299047\pi\)
0.590206 + 0.807253i \(0.299047\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.67369i 0.0890814i 0.999008 + 0.0445407i \(0.0141824\pi\)
−0.999008 + 0.0445407i \(0.985818\pi\)
\(354\) 0 0
\(355\) 21.8683i 1.16065i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −7.90773 −0.417354 −0.208677 0.977985i \(-0.566916\pi\)
−0.208677 + 0.977985i \(0.566916\pi\)
\(360\) 0 0
\(361\) 8.18348 0.430709
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 18.6443i 0.975885i
\(366\) 0 0
\(367\) − 8.84774i − 0.461848i −0.972972 0.230924i \(-0.925825\pi\)
0.972972 0.230924i \(-0.0741749\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 7.52743 0.389755 0.194878 0.980828i \(-0.437569\pi\)
0.194878 + 0.980828i \(0.437569\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 0.392579i − 0.0202189i
\(378\) 0 0
\(379\) − 25.1571i − 1.29224i −0.763238 0.646118i \(-0.776392\pi\)
0.763238 0.646118i \(-0.223608\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −11.5502 −0.590187 −0.295093 0.955468i \(-0.595351\pi\)
−0.295093 + 0.955468i \(0.595351\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 32.5799i − 1.65187i −0.563769 0.825933i \(-0.690649\pi\)
0.563769 0.825933i \(-0.309351\pi\)
\(390\) 0 0
\(391\) − 23.3924i − 1.18300i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −19.4171 −0.976979
\(396\) 0 0
\(397\) −34.2843 −1.72068 −0.860341 0.509719i \(-0.829749\pi\)
−0.860341 + 0.509719i \(0.829749\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 16.0386i − 0.800929i −0.916312 0.400465i \(-0.868849\pi\)
0.916312 0.400465i \(-0.131151\pi\)
\(402\) 0 0
\(403\) − 6.40244i − 0.318928i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 12.1094 0.600243
\(408\) 0 0
\(409\) 22.4448 1.10982 0.554912 0.831909i \(-0.312752\pi\)
0.554912 + 0.831909i \(0.312752\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 30.2557i 1.48519i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 23.8894 1.16707 0.583536 0.812087i \(-0.301669\pi\)
0.583536 + 0.812087i \(0.301669\pi\)
\(420\) 0 0
\(421\) 16.3555 0.797116 0.398558 0.917143i \(-0.369511\pi\)
0.398558 + 0.917143i \(0.369511\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 30.6672i − 1.48758i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −14.4491 −0.695988 −0.347994 0.937497i \(-0.613137\pi\)
−0.347994 + 0.937497i \(0.613137\pi\)
\(432\) 0 0
\(433\) 8.20943 0.394520 0.197260 0.980351i \(-0.436796\pi\)
0.197260 + 0.980351i \(0.436796\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 13.0037i 0.622050i
\(438\) 0 0
\(439\) 10.9630i 0.523236i 0.965171 + 0.261618i \(0.0842561\pi\)
−0.965171 + 0.261618i \(0.915744\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 10.8475 0.515379 0.257690 0.966228i \(-0.417039\pi\)
0.257690 + 0.966228i \(0.417039\pi\)
\(444\) 0 0
\(445\) −47.4448 −2.24910
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 4.48168i 0.211503i 0.994393 + 0.105752i \(0.0337249\pi\)
−0.994393 + 0.105752i \(0.966275\pi\)
\(450\) 0 0
\(451\) − 5.94212i − 0.279803i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 27.4189 1.28260 0.641300 0.767290i \(-0.278395\pi\)
0.641300 + 0.767290i \(0.278395\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 22.4943i − 1.04766i −0.851821 0.523832i \(-0.824502\pi\)
0.851821 0.523832i \(-0.175498\pi\)
\(462\) 0 0
\(463\) − 2.20517i − 0.102483i −0.998686 0.0512416i \(-0.983682\pi\)
0.998686 0.0512416i \(-0.0163178\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −7.03705 −0.325636 −0.162818 0.986656i \(-0.552058\pi\)
−0.162818 + 0.986656i \(0.552058\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 19.4227i − 0.893056i
\(474\) 0 0
\(475\) 17.0477i 0.782201i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.92563 0.0879841 0.0439921 0.999032i \(-0.485992\pi\)
0.0439921 + 0.999032i \(0.485992\pi\)
\(480\) 0 0
\(481\) −5.16047 −0.235297
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 0.585502i − 0.0265863i
\(486\) 0 0
\(487\) − 20.9271i − 0.948300i −0.880444 0.474150i \(-0.842756\pi\)
0.880444 0.474150i \(-0.157244\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1.32553 −0.0598205 −0.0299103 0.999553i \(-0.509522\pi\)
−0.0299103 + 0.999553i \(0.509522\pi\)
\(492\) 0 0
\(493\) −3.46402 −0.156012
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) − 13.7787i − 0.616821i −0.951253 0.308411i \(-0.900203\pi\)
0.951253 0.308411i \(-0.0997971\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 16.7887 0.748573 0.374287 0.927313i \(-0.377888\pi\)
0.374287 + 0.927313i \(0.377888\pi\)
\(504\) 0 0
\(505\) −12.0519 −0.536303
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 18.3712i − 0.814289i −0.913364 0.407144i \(-0.866525\pi\)
0.913364 0.407144i \(-0.133475\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 43.9701 1.93755
\(516\) 0 0
\(517\) −11.5619 −0.508493
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 2.64236i 0.115764i 0.998323 + 0.0578819i \(0.0184347\pi\)
−0.998323 + 0.0578819i \(0.981565\pi\)
\(522\) 0 0
\(523\) − 6.75295i − 0.295286i −0.989041 0.147643i \(-0.952831\pi\)
0.989041 0.147643i \(-0.0471686\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −56.4936 −2.46090
\(528\) 0 0
\(529\) −7.36695 −0.320302
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2.53225i 0.109684i
\(534\) 0 0
\(535\) 61.1720i 2.64470i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −15.4044 −0.662287 −0.331144 0.943580i \(-0.607434\pi\)
−0.331144 + 0.943580i \(0.607434\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 26.1976i − 1.12218i
\(546\) 0 0
\(547\) − 4.15743i − 0.177759i −0.996042 0.0888794i \(-0.971671\pi\)
0.996042 0.0888794i \(-0.0283286\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.92563 0.0820345
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 39.5477i − 1.67569i −0.545909 0.837845i \(-0.683815\pi\)
0.545909 0.837845i \(-0.316185\pi\)
\(558\) 0 0
\(559\) 8.27703i 0.350081i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −17.3888 −0.732852 −0.366426 0.930447i \(-0.619419\pi\)
−0.366426 + 0.930447i \(0.619419\pi\)
\(564\) 0 0
\(565\) 15.0260 0.632147
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 20.3546i 0.853311i 0.904414 + 0.426655i \(0.140308\pi\)
−0.904414 + 0.426655i \(0.859692\pi\)
\(570\) 0 0
\(571\) 11.3983i 0.477005i 0.971142 + 0.238502i \(0.0766564\pi\)
−0.971142 + 0.238502i \(0.923344\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 20.4948 0.854691
\(576\) 0 0
\(577\) −0.369903 −0.0153993 −0.00769963 0.999970i \(-0.502451\pi\)
−0.00769963 + 0.999970i \(0.502451\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) − 21.0048i − 0.869930i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −42.8924 −1.77036 −0.885180 0.465249i \(-0.845965\pi\)
−0.885180 + 0.465249i \(0.845965\pi\)
\(588\) 0 0
\(589\) 31.4044 1.29400
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 30.9429i − 1.27067i −0.772236 0.635336i \(-0.780862\pi\)
0.772236 0.635336i \(-0.219138\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1.61421 −0.0659549 −0.0329775 0.999456i \(-0.510499\pi\)
−0.0329775 + 0.999456i \(0.510499\pi\)
\(600\) 0 0
\(601\) −32.6850 −1.33325 −0.666623 0.745395i \(-0.732261\pi\)
−0.666623 + 0.745395i \(0.732261\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 27.2029i 1.10596i
\(606\) 0 0
\(607\) − 33.7320i − 1.36914i −0.728947 0.684571i \(-0.759990\pi\)
0.728947 0.684571i \(-0.240010\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.92715 0.199331
\(612\) 0 0
\(613\) 4.85693 0.196169 0.0980847 0.995178i \(-0.468728\pi\)
0.0980847 + 0.995178i \(0.468728\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 36.1542i − 1.45551i −0.685835 0.727757i \(-0.740563\pi\)
0.685835 0.727757i \(-0.259437\pi\)
\(618\) 0 0
\(619\) 43.0156i 1.72894i 0.502681 + 0.864472i \(0.332347\pi\)
−0.502681 + 0.864472i \(0.667653\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −24.0490 −0.961958
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 45.5347i 1.81559i
\(630\) 0 0
\(631\) − 27.7378i − 1.10423i −0.833769 0.552113i \(-0.813822\pi\)
0.833769 0.552113i \(-0.186178\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −45.7913 −1.81717
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 36.8225i 1.45440i 0.686425 + 0.727201i \(0.259179\pi\)
−0.686425 + 0.727201i \(0.740821\pi\)
\(642\) 0 0
\(643\) − 32.3306i − 1.27499i −0.770453 0.637497i \(-0.779970\pi\)
0.770453 0.637497i \(-0.220030\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −19.9355 −0.783746 −0.391873 0.920019i \(-0.628173\pi\)
−0.391873 + 0.920019i \(0.628173\pi\)
\(648\) 0 0
\(649\) −7.81652 −0.306825
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 13.7794i 0.539230i 0.962968 + 0.269615i \(0.0868964\pi\)
−0.962968 + 0.269615i \(0.913104\pi\)
\(654\) 0 0
\(655\) 41.8793i 1.63636i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −36.3102 −1.41445 −0.707223 0.706991i \(-0.750052\pi\)
−0.707223 + 0.706991i \(0.750052\pi\)
\(660\) 0 0
\(661\) 12.7224 0.494844 0.247422 0.968908i \(-0.420417\pi\)
0.247422 + 0.968908i \(0.420417\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 2.31500i − 0.0896370i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −10.2474 −0.395596
\(672\) 0 0
\(673\) 2.02595 0.0780947 0.0390474 0.999237i \(-0.487568\pi\)
0.0390474 + 0.999237i \(0.487568\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 9.14419i − 0.351440i −0.984440 0.175720i \(-0.943775\pi\)
0.984440 0.175720i \(-0.0562253\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −20.7834 −0.795256 −0.397628 0.917547i \(-0.630167\pi\)
−0.397628 + 0.917547i \(0.630167\pi\)
\(684\) 0 0
\(685\) 40.7339 1.55636
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 8.95126i 0.341016i
\(690\) 0 0
\(691\) 13.6234i 0.518259i 0.965843 + 0.259129i \(0.0834356\pi\)
−0.965843 + 0.259129i \(0.916564\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 14.4491 0.548085
\(696\) 0 0
\(697\) 22.3440 0.846337
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 24.0118i 0.906912i 0.891279 + 0.453456i \(0.149809\pi\)
−0.891279 + 0.453456i \(0.850191\pi\)
\(702\) 0 0
\(703\) − 25.3125i − 0.954678i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 50.1268 1.88255 0.941276 0.337638i \(-0.109628\pi\)
0.941276 + 0.337638i \(0.109628\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 37.7545i − 1.41392i
\(714\) 0 0
\(715\) 3.36651i 0.125901i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 25.9176 0.966564 0.483282 0.875465i \(-0.339445\pi\)
0.483282 + 0.875465i \(0.339445\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 3.03494i − 0.112715i
\(726\) 0 0
\(727\) 21.2777i 0.789144i 0.918865 + 0.394572i \(0.129107\pi\)
−0.918865 + 0.394572i \(0.870893\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 73.0345 2.70128
\(732\) 0 0
\(733\) 27.4044 1.01220 0.506102 0.862473i \(-0.331086\pi\)
0.506102 + 0.862473i \(0.331086\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 8.67552i − 0.319567i
\(738\) 0 0
\(739\) − 20.1613i − 0.741644i −0.928704 0.370822i \(-0.879076\pi\)
0.928704 0.370822i \(-0.120924\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −31.7971 −1.16652 −0.583261 0.812285i \(-0.698224\pi\)
−0.583261 + 0.812285i \(0.698224\pi\)
\(744\) 0 0
\(745\) −40.7339 −1.49237
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) − 15.4909i − 0.565270i −0.959228 0.282635i \(-0.908792\pi\)
0.959228 0.282635i \(-0.0912085\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 45.5435 1.65750
\(756\) 0 0
\(757\) 9.17198 0.333361 0.166681 0.986011i \(-0.446695\pi\)
0.166681 + 0.986011i \(0.446695\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 27.4787i 0.996101i 0.867148 + 0.498051i \(0.165951\pi\)
−0.867148 + 0.498051i \(0.834049\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.33103 0.120277
\(768\) 0 0
\(769\) 16.0779 0.579782 0.289891 0.957060i \(-0.406381\pi\)
0.289891 + 0.957060i \(0.406381\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 9.30041i − 0.334512i −0.985913 0.167256i \(-0.946509\pi\)
0.985913 0.167256i \(-0.0534907\pi\)
\(774\) 0 0
\(775\) − 49.4957i − 1.77794i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −12.4209 −0.445023
\(780\) 0 0
\(781\) −10.7820 −0.385811
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 3.27397i − 0.116853i
\(786\) 0 0
\(787\) 10.0995i 0.360010i 0.983666 + 0.180005i \(0.0576114\pi\)
−0.983666 + 0.180005i \(0.942389\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 4.36695 0.155075
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 39.1184i 1.38565i 0.721108 + 0.692823i \(0.243633\pi\)
−0.721108 + 0.692823i \(0.756367\pi\)
\(798\) 0 0
\(799\) − 43.4760i − 1.53807i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −9.19243 −0.324394
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 4.94766i 0.173951i 0.996210 + 0.0869753i \(0.0277201\pi\)
−0.996210 + 0.0869753i \(0.972280\pi\)
\(810\) 0 0
\(811\) − 42.8005i − 1.50293i −0.659773 0.751465i \(-0.729347\pi\)
0.659773 0.751465i \(-0.270653\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 40.2641 1.41039
\(816\) 0 0
\(817\) −40.5994 −1.42039
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 46.0034i − 1.60553i −0.596296 0.802765i \(-0.703361\pi\)
0.596296 0.802765i \(-0.296639\pi\)
\(822\) 0 0
\(823\) − 30.1254i − 1.05011i −0.851070 0.525053i \(-0.824046\pi\)
0.851070 0.525053i \(-0.175954\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −7.94856 −0.276399 −0.138199 0.990404i \(-0.544131\pi\)
−0.138199 + 0.990404i \(0.544131\pi\)
\(828\) 0 0
\(829\) −21.1413 −0.734266 −0.367133 0.930168i \(-0.619661\pi\)
−0.367133 + 0.930168i \(0.619661\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) − 34.4857i − 1.19343i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −35.0074 −1.20859 −0.604295 0.796760i \(-0.706545\pi\)
−0.604295 + 0.796760i \(0.706545\pi\)
\(840\) 0 0
\(841\) 28.6572 0.988179
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 40.0504i 1.37777i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −30.4307 −1.04315
\(852\) 0 0
\(853\) −6.26133 −0.214384 −0.107192 0.994238i \(-0.534186\pi\)
−0.107192 + 0.994238i \(0.534186\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 35.4125i − 1.20967i −0.796352 0.604834i \(-0.793240\pi\)
0.796352 0.604834i \(-0.206760\pi\)
\(858\) 0 0
\(859\) 28.3407i 0.966972i 0.875352 + 0.483486i \(0.160630\pi\)
−0.875352 + 0.483486i \(0.839370\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −20.7426 −0.706087 −0.353043 0.935607i \(-0.614853\pi\)
−0.353043 + 0.935607i \(0.614853\pi\)
\(864\) 0 0
\(865\) 34.0230 1.15682
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 9.57347i − 0.324758i
\(870\) 0 0
\(871\) 3.69710i 0.125271i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 17.3640 0.586341 0.293170 0.956060i \(-0.405290\pi\)
0.293170 + 0.956060i \(0.405290\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 51.9905i − 1.75160i −0.482671 0.875802i \(-0.660333\pi\)
0.482671 0.875802i \(-0.339667\pi\)
\(882\) 0 0
\(883\) − 15.9062i − 0.535288i −0.963518 0.267644i \(-0.913755\pi\)
0.963518 0.267644i \(-0.0862451\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 21.5497 0.723569 0.361784 0.932262i \(-0.382168\pi\)
0.361784 + 0.932262i \(0.382168\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 24.1680i 0.808751i
\(894\) 0 0
\(895\) 36.0675i 1.20560i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −5.59081 −0.186464
\(900\) 0 0
\(901\) 78.9837 2.63133
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 46.3499i − 1.54072i
\(906\) 0 0
\(907\) − 27.0317i − 0.897574i −0.893639 0.448787i \(-0.851856\pi\)
0.893639 0.448787i \(-0.148144\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −3.95386 −0.130997 −0.0654987 0.997853i \(-0.520864\pi\)
−0.0654987 + 0.997853i \(0.520864\pi\)
\(912\) 0 0
\(913\) −14.9174 −0.493693
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 25.3125i 0.834981i 0.908681 + 0.417491i \(0.137090\pi\)
−0.908681 + 0.417491i \(0.862910\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 4.59479 0.151239
\(924\) 0 0
\(925\) −39.8944 −1.31172
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 34.9832i 1.14776i 0.818939 + 0.573881i \(0.194563\pi\)
−0.818939 + 0.573881i \(0.805437\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 29.7053 0.971467
\(936\) 0 0
\(937\) 10.0779 0.329229 0.164615 0.986358i \(-0.447362\pi\)
0.164615 + 0.986358i \(0.447362\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 15.6921i − 0.511549i −0.966736 0.255774i \(-0.917670\pi\)
0.966736 0.255774i \(-0.0823304\pi\)
\(942\) 0 0
\(943\) 14.9324i 0.486266i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 39.7048 1.29023 0.645117 0.764084i \(-0.276809\pi\)
0.645117 + 0.764084i \(0.276809\pi\)
\(948\) 0 0
\(949\) 3.91738 0.127164
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 51.6901i − 1.67441i −0.546891 0.837203i \(-0.684189\pi\)
0.546891 0.837203i \(-0.315811\pi\)
\(954\) 0 0
\(955\) − 79.8041i − 2.58240i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −60.1787 −1.94125
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 43.7536i 1.40848i
\(966\) 0 0
\(967\) 13.9090i 0.447285i 0.974671 + 0.223642i \(0.0717948\pi\)
−0.974671 + 0.223642i \(0.928205\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 2.31692 0.0743534 0.0371767 0.999309i \(-0.488164\pi\)
0.0371767 + 0.999309i \(0.488164\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 30.6305i 0.979955i 0.871735 + 0.489977i \(0.162995\pi\)
−0.871735 + 0.489977i \(0.837005\pi\)
\(978\) 0 0
\(979\) − 23.3924i − 0.747623i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 11.5502 0.368394 0.184197 0.982889i \(-0.441032\pi\)
0.184197 + 0.982889i \(0.441032\pi\)
\(984\) 0 0
\(985\) 9.68495 0.308588
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 48.8087i 1.55203i
\(990\) 0 0
\(991\) − 20.2916i − 0.644583i −0.946641 0.322291i \(-0.895547\pi\)
0.946641 0.322291i \(-0.104453\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −32.0449 −1.01589
\(996\) 0 0
\(997\) 12.5015 0.395926 0.197963 0.980210i \(-0.436567\pi\)
0.197963 + 0.980210i \(0.436567\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7056.2.h.o.4607.2 12
3.2 odd 2 inner 7056.2.h.o.4607.11 12
4.3 odd 2 inner 7056.2.h.o.4607.1 12
7.3 odd 6 1008.2.cq.b.863.1 yes 12
7.5 odd 6 1008.2.cq.c.431.6 yes 12
7.6 odd 2 7056.2.h.n.4607.12 12
12.11 even 2 inner 7056.2.h.o.4607.12 12
21.5 even 6 1008.2.cq.c.431.1 yes 12
21.17 even 6 1008.2.cq.b.863.6 yes 12
21.20 even 2 7056.2.h.n.4607.1 12
28.3 even 6 1008.2.cq.c.863.1 yes 12
28.19 even 6 1008.2.cq.b.431.6 yes 12
28.27 even 2 7056.2.h.n.4607.11 12
84.47 odd 6 1008.2.cq.b.431.1 12
84.59 odd 6 1008.2.cq.c.863.6 yes 12
84.83 odd 2 7056.2.h.n.4607.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.cq.b.431.1 12 84.47 odd 6
1008.2.cq.b.431.6 yes 12 28.19 even 6
1008.2.cq.b.863.1 yes 12 7.3 odd 6
1008.2.cq.b.863.6 yes 12 21.17 even 6
1008.2.cq.c.431.1 yes 12 21.5 even 6
1008.2.cq.c.431.6 yes 12 7.5 odd 6
1008.2.cq.c.863.1 yes 12 28.3 even 6
1008.2.cq.c.863.6 yes 12 84.59 odd 6
7056.2.h.n.4607.1 12 21.20 even 2
7056.2.h.n.4607.2 12 84.83 odd 2
7056.2.h.n.4607.11 12 28.27 even 2
7056.2.h.n.4607.12 12 7.6 odd 2
7056.2.h.o.4607.1 12 4.3 odd 2 inner
7056.2.h.o.4607.2 12 1.1 even 1 trivial
7056.2.h.o.4607.11 12 3.2 odd 2 inner
7056.2.h.o.4607.12 12 12.11 even 2 inner