Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [7056,2,Mod(4607,7056)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7056, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("7056.4607");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 7056 = 2^{4} \cdot 3^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 7056.h (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(56.3424436662\) |
Analytic rank: | \(0\) |
Dimension: | \(12\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{12} + 28x^{10} + 276x^{8} + 1178x^{6} + 2292x^{4} + 1888x^{2} + 529 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{19}]\) |
Coefficient ring index: | \( 2^{10}\cdot 3^{2} \) |
Twist minimal: | no (minimal twist has level 1008) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 4607.2 | ||
Root | \(1.62198i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 7056.4607 |
Dual form | 7056.2.h.o.4607.12 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7056\mathbb{Z}\right)^\times\).
\(n\) | \(785\) | \(1765\) | \(4609\) | \(6175\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | − 3.19116i | − 1.42713i | −0.700590 | − | 0.713564i | \(-0.747080\pi\) | ||||
0.700590 | − | 0.713564i | \(-0.252920\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | ||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 1.57338 | 0.474392 | 0.237196 | − | 0.971462i | \(-0.423772\pi\) | ||||
0.237196 | + | 0.971462i | \(0.423772\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | −0.670500 | −0.185963 | −0.0929817 | − | 0.995668i | \(-0.529640\pi\) | ||||
−0.0929817 | + | 0.995668i | \(0.529640\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 5.91633i | 1.43492i | 0.696599 | + | 0.717460i | \(0.254696\pi\) | ||||
−0.696599 | + | 0.717460i | \(0.745304\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | − 3.28885i | − 0.754514i | −0.926109 | − | 0.377257i | \(-0.876867\pi\) | ||||
0.926109 | − | 0.377257i | \(-0.123133\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | −3.95386 | −0.824438 | −0.412219 | − | 0.911085i | \(-0.635246\pi\) | ||||
−0.412219 | + | 0.911085i | \(0.635246\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −5.18348 | −1.03670 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 0.585502i | 0.108725i | 0.998521 | + | 0.0543625i | \(0.0173127\pi\) | ||||
−0.998521 | + | 0.0543625i | \(0.982687\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 9.54875i | 1.71501i | 0.514478 | + | 0.857503i | \(0.327986\pi\) | ||||
−0.514478 | + | 0.857503i | \(0.672014\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 7.69645 | 1.26529 | 0.632644 | − | 0.774442i | \(-0.281969\pi\) | ||||
0.632644 | + | 0.774442i | \(0.281969\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | − 3.77666i | − 0.589815i | −0.955526 | − | 0.294907i | \(-0.904711\pi\) | ||||
0.955526 | − | 0.294907i | \(-0.0952888\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | − 12.3446i | − 1.88253i | −0.337672 | − | 0.941264i | \(-0.609639\pi\) | ||||
0.337672 | − | 0.941264i | \(-0.390361\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | −7.34847 | −1.07188 | −0.535942 | − | 0.844255i | \(-0.680044\pi\) | ||||
−0.535942 | + | 0.844255i | \(0.680044\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 0 | 0 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | − 13.3501i | − 1.83378i | −0.399139 | − | 0.916890i | \(-0.630691\pi\) | ||||
0.399139 | − | 0.916890i | \(-0.369309\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | − 5.02090i | − 0.677018i | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −4.96798 | −0.646776 | −0.323388 | − | 0.946266i | \(-0.604822\pi\) | ||||
−0.323388 | + | 0.946266i | \(0.604822\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −6.51298 | −0.833901 | −0.416951 | − | 0.908929i | \(-0.636901\pi\) | ||||
−0.416951 | + | 0.908929i | \(0.636901\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 2.13967i | 0.265394i | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − 5.51394i | − 0.673635i | −0.941570 | − | 0.336818i | \(-0.890649\pi\) | ||||
0.941570 | − | 0.336818i | \(-0.109351\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −6.85278 | −0.813275 | −0.406638 | − | 0.913590i | \(-0.633299\pi\) | ||||
−0.406638 | + | 0.913590i | \(0.633299\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | −5.84248 | −0.683810 | −0.341905 | − | 0.939735i | \(-0.611072\pi\) | ||||
−0.341905 | + | 0.939735i | \(0.611072\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | − 6.08465i | − 0.684577i | −0.939595 | − | 0.342288i | \(-0.888798\pi\) | ||||
0.939595 | − | 0.342288i | \(-0.111202\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | −9.48111 | −1.04069 | −0.520343 | − | 0.853957i | \(-0.674196\pi\) | ||||
−0.520343 | + | 0.853957i | \(0.674196\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 18.8799 | 2.04782 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | − 14.8676i | − 1.57596i | −0.615700 | − | 0.787981i | \(-0.711127\pi\) | ||||
0.615700 | − | 0.787981i | \(-0.288873\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | −10.4952 | −1.07679 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 0.183476 | 0.0186292 | 0.00931460 | − | 0.999957i | \(-0.497035\pi\) | ||||
0.00931460 | + | 0.999957i | \(0.497035\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | − 3.77666i | − 0.375792i | −0.982189 | − | 0.187896i | \(-0.939833\pi\) | ||||
0.982189 | − | 0.187896i | \(-0.0601667\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 13.7787i | 1.35766i | 0.734296 | + | 0.678830i | \(0.237513\pi\) | ||||
−0.734296 | + | 0.678830i | \(0.762487\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | −19.1692 | −1.85316 | −0.926580 | − | 0.376098i | \(-0.877265\pi\) | ||||
−0.926580 | + | 0.376098i | \(0.877265\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 8.20943 | 0.786321 | 0.393160 | − | 0.919470i | \(-0.371382\pi\) | ||||
0.393160 | + | 0.919470i | \(0.371382\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 4.70862i | 0.442950i | 0.975166 | + | 0.221475i | \(0.0710871\pi\) | ||||
−0.975166 | + | 0.221475i | \(0.928913\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 12.6174i | 1.17658i | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −8.52448 | −0.774952 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0.585502i | 0.0523689i | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | − 14.3495i | − 1.27331i | −0.771150 | − | 0.636654i | \(-0.780318\pi\) | ||||
0.771150 | − | 0.636654i | \(-0.219682\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −13.1236 | −1.14661 | −0.573305 | − | 0.819342i | \(-0.694339\pi\) | ||||
−0.573305 | + | 0.819342i | \(0.694339\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 12.7646i | 1.09056i | 0.838255 | + | 0.545278i | \(0.183576\pi\) | ||||
−0.838255 | + | 0.545278i | \(0.816424\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 4.52786i | 0.384048i | 0.981390 | + | 0.192024i | \(0.0615051\pi\) | ||||
−0.981390 | + | 0.192024i | \(0.938495\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | −1.05495 | −0.0882195 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 1.86843 | 0.155164 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | − 12.7646i | − 1.04572i | −0.852419 | − | 0.522859i | \(-0.824865\pi\) | ||||
0.852419 | − | 0.522859i | \(-0.175135\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 14.2718i | 1.16142i | 0.814110 | + | 0.580711i | \(0.197225\pi\) | ||||
−0.814110 | + | 0.580711i | \(0.802775\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 30.4716 | 2.44754 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 1.02595 | 0.0818799 | 0.0409399 | − | 0.999162i | \(-0.486965\pi\) | ||||
0.0409399 | + | 0.999162i | \(0.486965\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 12.6174i | 0.988271i | 0.869385 | + | 0.494135i | \(0.164515\pi\) | ||||
−0.869385 | + | 0.494135i | \(0.835485\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 10.8066 | 0.836243 | 0.418122 | − | 0.908391i | \(-0.362689\pi\) | ||||
0.418122 | + | 0.908391i | \(0.362689\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −12.5504 | −0.965418 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 10.6617i | 0.810591i | 0.914186 | + | 0.405295i | \(0.132831\pi\) | ||||
−0.914186 | + | 0.405295i | \(0.867169\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −11.3023 | −0.844776 | −0.422388 | − | 0.906415i | \(-0.638808\pi\) | ||||
−0.422388 | + | 0.906415i | \(0.638808\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 14.5245 | 1.07960 | 0.539798 | − | 0.841795i | \(-0.318501\pi\) | ||||
0.539798 | + | 0.841795i | \(0.318501\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | − 24.5606i | − 1.80573i | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 9.30863i | 0.680714i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 25.0079 | 1.80951 | 0.904754 | − | 0.425935i | \(-0.140055\pi\) | ||||
0.904754 | + | 0.425935i | \(0.140055\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −13.7109 | −0.986932 | −0.493466 | − | 0.869765i | \(-0.664270\pi\) | ||||
−0.493466 | + | 0.869765i | \(0.664270\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 3.03494i | 0.216230i | 0.994138 | + | 0.108115i | \(0.0344815\pi\) | ||||
−0.994138 | + | 0.108115i | \(0.965518\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | − 10.0418i | − 0.711844i | −0.934516 | − | 0.355922i | \(-0.884167\pi\) | ||||
0.934516 | − | 0.355922i | \(-0.115833\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | −12.0519 | −0.841742 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | − 5.17461i | − 0.357935i | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 7.46620i | 0.513994i | 0.966412 | + | 0.256997i | \(0.0827331\pi\) | ||||
−0.966412 | + | 0.256997i | \(0.917267\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | −39.3934 | −2.68661 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | − 3.96690i | − 0.266843i | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 14.2718i | 0.955709i | 0.878439 | + | 0.477855i | \(0.158585\pi\) | ||||
−0.878439 | + | 0.477855i | \(0.841415\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | −16.2703 | −1.07990 | −0.539949 | − | 0.841697i | \(-0.681557\pi\) | ||||
−0.539949 | + | 0.841697i | \(0.681557\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −6.50147 | −0.429630 | −0.214815 | − | 0.976655i | \(-0.568915\pi\) | ||||
−0.214815 | + | 0.976655i | \(0.568915\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | − 17.0073i | − 1.11418i | −0.830451 | − | 0.557091i | \(-0.811917\pi\) | ||||
0.830451 | − | 0.557091i | \(-0.188083\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 23.4501i | 1.52972i | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 28.3389 | 1.83309 | 0.916546 | − | 0.399928i | \(-0.130965\pi\) | ||||
0.916546 | + | 0.399928i | \(0.130965\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −22.5504 | −1.45260 | −0.726300 | − | 0.687377i | \(-0.758762\pi\) | ||||
−0.726300 | + | 0.687377i | \(0.758762\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 2.20517i | 0.140312i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −11.2615 | −0.710820 | −0.355410 | − | 0.934711i | \(-0.615659\pi\) | ||||
−0.355410 | + | 0.934711i | \(0.615659\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | −6.22093 | −0.391106 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | − 20.7472i | − 1.29418i | −0.762415 | − | 0.647088i | \(-0.775987\pi\) | ||||
0.762415 | − | 0.647088i | \(-0.224013\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 0.311415 | 0.0192027 | 0.00960133 | − | 0.999954i | \(-0.496944\pi\) | ||||
0.00960133 | + | 0.999954i | \(0.496944\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | −42.6023 | −2.61704 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | − 24.4411i | − 1.49020i | −0.666954 | − | 0.745099i | \(-0.732402\pi\) | ||||
0.666954 | − | 0.745099i | \(-0.267598\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 31.0466i | 1.88595i | 0.332867 | + | 0.942974i | \(0.391984\pi\) | ||||
−0.332867 | + | 0.942974i | \(0.608016\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | −8.15558 | −0.491800 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 11.8944 | 0.714664 | 0.357332 | − | 0.933977i | \(-0.383686\pi\) | ||||
0.357332 | + | 0.933977i | \(0.383686\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 25.5292i | 1.52295i | 0.648196 | + | 0.761474i | \(0.275524\pi\) | ||||
−0.648196 | + | 0.761474i | \(0.724476\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | − 2.93834i | − 0.174666i | −0.996179 | − | 0.0873331i | \(-0.972166\pi\) | ||||
0.996179 | − | 0.0873331i | \(-0.0278345\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −18.0029 | −1.05900 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 16.3851i | 0.957225i | 0.878026 | + | 0.478613i | \(0.158860\pi\) | ||||
−0.878026 | + | 0.478613i | \(0.841140\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 15.8536i | 0.923033i | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 2.65107 | 0.153315 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 20.7839i | 1.19008i | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 13.3306i | 0.760820i | 0.924818 | + | 0.380410i | \(0.124217\pi\) | ||||
−0.924818 | + | 0.380410i | \(0.875783\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −30.2646 | −1.71615 | −0.858073 | − | 0.513528i | \(-0.828338\pi\) | ||||
−0.858073 | + | 0.513528i | \(0.828338\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −7.97405 | −0.450720 | −0.225360 | − | 0.974276i | \(-0.572356\pi\) | ||||
−0.225360 | + | 0.974276i | \(0.572356\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 26.1147i | 1.46675i | 0.679824 | + | 0.733375i | \(0.262056\pi\) | ||||
−0.679824 | + | 0.733375i | \(0.737944\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0.921217i | 0.0515782i | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 19.4579 | 1.08267 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 3.47552 | 0.192787 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 19.0198i | 1.04543i | 0.852509 | + | 0.522713i | \(0.175080\pi\) | ||||
−0.852509 | + | 0.522713i | \(0.824920\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | −17.5959 | −0.961364 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 5.02300 | 0.273620 | 0.136810 | − | 0.990597i | \(-0.456315\pi\) | ||||
0.136810 | + | 0.990597i | \(0.456315\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 15.0238i | 0.813585i | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | −22.1090 | −1.18687 | −0.593436 | − | 0.804881i | \(-0.702229\pi\) | ||||
−0.593436 | + | 0.804881i | \(0.702229\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 22.0519 | 1.18041 | 0.590206 | − | 0.807253i | \(-0.299047\pi\) | ||||
0.590206 | + | 0.807253i | \(0.299047\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 1.67369i | 0.0890814i | 0.999008 | + | 0.0445407i | \(0.0141824\pi\) | ||||
−0.999008 | + | 0.0445407i | \(0.985818\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 21.8683i | 1.16065i | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −7.90773 | −0.417354 | −0.208677 | − | 0.977985i | \(-0.566916\pi\) | ||||
−0.208677 | + | 0.977985i | \(0.566916\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 8.18348 | 0.430709 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 18.6443i | 0.975885i | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | − 8.84774i | − 0.461848i | −0.972972 | − | 0.230924i | \(-0.925825\pi\) | ||||
0.972972 | − | 0.230924i | \(-0.0741749\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 7.52743 | 0.389755 | 0.194878 | − | 0.980828i | \(-0.437569\pi\) | ||||
0.194878 | + | 0.980828i | \(0.437569\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | − 0.392579i | − 0.0202189i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | − 25.1571i | − 1.29224i | −0.763238 | − | 0.646118i | \(-0.776392\pi\) | ||||
0.763238 | − | 0.646118i | \(-0.223608\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −11.5502 | −0.590187 | −0.295093 | − | 0.955468i | \(-0.595351\pi\) | ||||
−0.295093 | + | 0.955468i | \(0.595351\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | − 32.5799i | − 1.65187i | −0.563769 | − | 0.825933i | \(-0.690649\pi\) | ||||
0.563769 | − | 0.825933i | \(-0.309351\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | − 23.3924i | − 1.18300i | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | −19.4171 | −0.976979 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | −34.2843 | −1.72068 | −0.860341 | − | 0.509719i | \(-0.829749\pi\) | ||||
−0.860341 | + | 0.509719i | \(0.829749\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | − 16.0386i | − 0.800929i | −0.916312 | − | 0.400465i | \(-0.868849\pi\) | ||||
0.916312 | − | 0.400465i | \(-0.131151\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | − 6.40244i | − 0.318928i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 12.1094 | 0.600243 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 22.4448 | 1.10982 | 0.554912 | − | 0.831909i | \(-0.312752\pi\) | ||||
0.554912 | + | 0.831909i | \(0.312752\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 30.2557i | 1.48519i | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 23.8894 | 1.16707 | 0.583536 | − | 0.812087i | \(-0.301669\pi\) | ||||
0.583536 | + | 0.812087i | \(0.301669\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 16.3555 | 0.797116 | 0.398558 | − | 0.917143i | \(-0.369511\pi\) | ||||
0.398558 | + | 0.917143i | \(0.369511\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | − 30.6672i | − 1.48758i | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −14.4491 | −0.695988 | −0.347994 | − | 0.937497i | \(-0.613137\pi\) | ||||
−0.347994 | + | 0.937497i | \(0.613137\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 8.20943 | 0.394520 | 0.197260 | − | 0.980351i | \(-0.436796\pi\) | ||||
0.197260 | + | 0.980351i | \(0.436796\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 13.0037i | 0.622050i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 10.9630i | 0.523236i | 0.965171 | + | 0.261618i | \(0.0842561\pi\) | ||||
−0.965171 | + | 0.261618i | \(0.915744\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 10.8475 | 0.515379 | 0.257690 | − | 0.966228i | \(-0.417039\pi\) | ||||
0.257690 | + | 0.966228i | \(0.417039\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | −47.4448 | −2.24910 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 4.48168i | 0.211503i | 0.994393 | + | 0.105752i | \(0.0337249\pi\) | ||||
−0.994393 | + | 0.105752i | \(0.966275\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | − 5.94212i | − 0.279803i | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 27.4189 | 1.28260 | 0.641300 | − | 0.767290i | \(-0.278395\pi\) | ||||
0.641300 | + | 0.767290i | \(0.278395\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | − 22.4943i | − 1.04766i | −0.851821 | − | 0.523832i | \(-0.824502\pi\) | ||||
0.851821 | − | 0.523832i | \(-0.175498\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | − 2.20517i | − 0.102483i | −0.998686 | − | 0.0512416i | \(-0.983682\pi\) | ||||
0.998686 | − | 0.0512416i | \(-0.0163178\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | −7.03705 | −0.325636 | −0.162818 | − | 0.986656i | \(-0.552058\pi\) | ||||
−0.162818 | + | 0.986656i | \(0.552058\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | − 19.4227i | − 0.893056i | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 17.0477i | 0.782201i | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 1.92563 | 0.0879841 | 0.0439921 | − | 0.999032i | \(-0.485992\pi\) | ||||
0.0439921 | + | 0.999032i | \(0.485992\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −5.16047 | −0.235297 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | − 0.585502i | − 0.0265863i | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | − 20.9271i | − 0.948300i | −0.880444 | − | 0.474150i | \(-0.842756\pi\) | ||||
0.880444 | − | 0.474150i | \(-0.157244\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −1.32553 | −0.0598205 | −0.0299103 | − | 0.999553i | \(-0.509522\pi\) | ||||
−0.0299103 | + | 0.999553i | \(0.509522\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | −3.46402 | −0.156012 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | − 13.7787i | − 0.616821i | −0.951253 | − | 0.308411i | \(-0.900203\pi\) | ||||
0.951253 | − | 0.308411i | \(-0.0997971\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 16.7887 | 0.748573 | 0.374287 | − | 0.927313i | \(-0.377888\pi\) | ||||
0.374287 | + | 0.927313i | \(0.377888\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | −12.0519 | −0.536303 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | − 18.3712i | − 0.814289i | −0.913364 | − | 0.407144i | \(-0.866525\pi\) | ||||
0.913364 | − | 0.407144i | \(-0.133475\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 43.9701 | 1.93755 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | −11.5619 | −0.508493 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 2.64236i | 0.115764i | 0.998323 | + | 0.0578819i | \(0.0184347\pi\) | ||||
−0.998323 | + | 0.0578819i | \(0.981565\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | − 6.75295i | − 0.295286i | −0.989041 | − | 0.147643i | \(-0.952831\pi\) | ||||
0.989041 | − | 0.147643i | \(-0.0471686\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | −56.4936 | −2.46090 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −7.36695 | −0.320302 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 2.53225i | 0.109684i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 61.1720i | 2.64470i | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −15.4044 | −0.662287 | −0.331144 | − | 0.943580i | \(-0.607434\pi\) | ||||
−0.331144 | + | 0.943580i | \(0.607434\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | − 26.1976i | − 1.12218i | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | − 4.15743i | − 0.177759i | −0.996042 | − | 0.0888794i | \(-0.971671\pi\) | ||||
0.996042 | − | 0.0888794i | \(-0.0283286\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 1.92563 | 0.0820345 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | − 39.5477i | − 1.67569i | −0.545909 | − | 0.837845i | \(-0.683815\pi\) | ||||
0.545909 | − | 0.837845i | \(-0.316185\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 8.27703i | 0.350081i | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | −17.3888 | −0.732852 | −0.366426 | − | 0.930447i | \(-0.619419\pi\) | ||||
−0.366426 | + | 0.930447i | \(0.619419\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 15.0260 | 0.632147 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 20.3546i | 0.853311i | 0.904414 | + | 0.426655i | \(0.140308\pi\) | ||||
−0.904414 | + | 0.426655i | \(0.859692\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 11.3983i | 0.477005i | 0.971142 | + | 0.238502i | \(0.0766564\pi\) | ||||
−0.971142 | + | 0.238502i | \(0.923344\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 20.4948 | 0.854691 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −0.369903 | −0.0153993 | −0.00769963 | − | 0.999970i | \(-0.502451\pi\) | ||||
−0.00769963 | + | 0.999970i | \(0.502451\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | − 21.0048i | − 0.869930i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | −42.8924 | −1.77036 | −0.885180 | − | 0.465249i | \(-0.845965\pi\) | ||||
−0.885180 | + | 0.465249i | \(0.845965\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 31.4044 | 1.29400 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | − 30.9429i | − 1.27067i | −0.772236 | − | 0.635336i | \(-0.780862\pi\) | ||||
0.772236 | − | 0.635336i | \(-0.219138\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −1.61421 | −0.0659549 | −0.0329775 | − | 0.999456i | \(-0.510499\pi\) | ||||
−0.0329775 | + | 0.999456i | \(0.510499\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −32.6850 | −1.33325 | −0.666623 | − | 0.745395i | \(-0.732261\pi\) | ||||
−0.666623 | + | 0.745395i | \(0.732261\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 27.2029i | 1.10596i | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | − 33.7320i | − 1.36914i | −0.728947 | − | 0.684571i | \(-0.759990\pi\) | ||||
0.728947 | − | 0.684571i | \(-0.240010\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 4.92715 | 0.199331 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 4.85693 | 0.196169 | 0.0980847 | − | 0.995178i | \(-0.468728\pi\) | ||||
0.0980847 | + | 0.995178i | \(0.468728\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | − 36.1542i | − 1.45551i | −0.685835 | − | 0.727757i | \(-0.740563\pi\) | ||||
0.685835 | − | 0.727757i | \(-0.259437\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 43.0156i | 1.72894i | 0.502681 | + | 0.864472i | \(0.332347\pi\) | ||||
−0.502681 | + | 0.864472i | \(0.667653\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | −24.0490 | −0.961958 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 45.5347i | 1.81559i | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | − 27.7378i | − 1.10423i | −0.833769 | − | 0.552113i | \(-0.813822\pi\) | ||||
0.833769 | − | 0.552113i | \(-0.186178\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | −45.7913 | −1.81717 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 36.8225i | 1.45440i | 0.686425 | + | 0.727201i | \(0.259179\pi\) | ||||
−0.686425 | + | 0.727201i | \(0.740821\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | − 32.3306i | − 1.27499i | −0.770453 | − | 0.637497i | \(-0.779970\pi\) | ||||
0.770453 | − | 0.637497i | \(-0.220030\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −19.9355 | −0.783746 | −0.391873 | − | 0.920019i | \(-0.628173\pi\) | ||||
−0.391873 | + | 0.920019i | \(0.628173\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −7.81652 | −0.306825 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 13.7794i | 0.539230i | 0.962968 | + | 0.269615i | \(0.0868964\pi\) | ||||
−0.962968 | + | 0.269615i | \(0.913104\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 41.8793i | 1.63636i | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −36.3102 | −1.41445 | −0.707223 | − | 0.706991i | \(-0.750052\pi\) | ||||
−0.707223 | + | 0.706991i | \(0.750052\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 12.7224 | 0.494844 | 0.247422 | − | 0.968908i | \(-0.420417\pi\) | ||||
0.247422 | + | 0.968908i | \(0.420417\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | − 2.31500i | − 0.0896370i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −10.2474 | −0.395596 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 2.02595 | 0.0780947 | 0.0390474 | − | 0.999237i | \(-0.487568\pi\) | ||||
0.0390474 | + | 0.999237i | \(0.487568\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | − 9.14419i | − 0.351440i | −0.984440 | − | 0.175720i | \(-0.943775\pi\) | ||||
0.984440 | − | 0.175720i | \(-0.0562253\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | −20.7834 | −0.795256 | −0.397628 | − | 0.917547i | \(-0.630167\pi\) | ||||
−0.397628 | + | 0.917547i | \(0.630167\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 40.7339 | 1.55636 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 8.95126i | 0.341016i | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 13.6234i | 0.518259i | 0.965843 | + | 0.259129i | \(0.0834356\pi\) | ||||
−0.965843 | + | 0.259129i | \(0.916564\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 14.4491 | 0.548085 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 22.3440 | 0.846337 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 24.0118i | 0.906912i | 0.891279 | + | 0.453456i | \(0.149809\pi\) | ||||
−0.891279 | + | 0.453456i | \(0.850191\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | − 25.3125i | − 0.954678i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 50.1268 | 1.88255 | 0.941276 | − | 0.337638i | \(-0.109628\pi\) | ||||
0.941276 | + | 0.337638i | \(0.109628\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | − 37.7545i | − 1.41392i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 3.36651i | 0.125901i | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 25.9176 | 0.966564 | 0.483282 | − | 0.875465i | \(-0.339445\pi\) | ||||
0.483282 | + | 0.875465i | \(0.339445\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | − 3.03494i | − 0.112715i | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 21.2777i | 0.789144i | 0.918865 | + | 0.394572i | \(0.129107\pi\) | ||||
−0.918865 | + | 0.394572i | \(0.870893\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 73.0345 | 2.70128 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 27.4044 | 1.01220 | 0.506102 | − | 0.862473i | \(-0.331086\pi\) | ||||
0.506102 | + | 0.862473i | \(0.331086\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | − 8.67552i | − 0.319567i | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | − 20.1613i | − 0.741644i | −0.928704 | − | 0.370822i | \(-0.879076\pi\) | ||||
0.928704 | − | 0.370822i | \(-0.120924\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | −31.7971 | −1.16652 | −0.583261 | − | 0.812285i | \(-0.698224\pi\) | ||||
−0.583261 | + | 0.812285i | \(0.698224\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | −40.7339 | −1.49237 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | − 15.4909i | − 0.565270i | −0.959228 | − | 0.282635i | \(-0.908792\pi\) | ||||
0.959228 | − | 0.282635i | \(-0.0912085\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 45.5435 | 1.65750 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 9.17198 | 0.333361 | 0.166681 | − | 0.986011i | \(-0.446695\pi\) | ||||
0.166681 | + | 0.986011i | \(0.446695\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 27.4787i | 0.996101i | 0.867148 | + | 0.498051i | \(0.165951\pi\) | ||||
−0.867148 | + | 0.498051i | \(0.834049\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 3.33103 | 0.120277 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 16.0779 | 0.579782 | 0.289891 | − | 0.957060i | \(-0.406381\pi\) | ||||
0.289891 | + | 0.957060i | \(0.406381\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | − 9.30041i | − 0.334512i | −0.985913 | − | 0.167256i | \(-0.946509\pi\) | ||||
0.985913 | − | 0.167256i | \(-0.0534907\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | − 49.4957i | − 1.77794i | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −12.4209 | −0.445023 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | −10.7820 | −0.385811 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | − 3.27397i | − 0.116853i | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 10.0995i | 0.360010i | 0.983666 | + | 0.180005i | \(0.0576114\pi\) | ||||
−0.983666 | + | 0.180005i | \(0.942389\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 4.36695 | 0.155075 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 39.1184i | 1.38565i | 0.721108 | + | 0.692823i | \(0.243633\pi\) | ||||
−0.721108 | + | 0.692823i | \(0.756367\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | − 43.4760i | − 1.53807i | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | −9.19243 | −0.324394 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 4.94766i | 0.173951i | 0.996210 | + | 0.0869753i | \(0.0277201\pi\) | ||||
−0.996210 | + | 0.0869753i | \(0.972280\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | − 42.8005i | − 1.50293i | −0.659773 | − | 0.751465i | \(-0.729347\pi\) | ||||
0.659773 | − | 0.751465i | \(-0.270653\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 40.2641 | 1.41039 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | −40.5994 | −1.42039 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | − 46.0034i | − 1.60553i | −0.596296 | − | 0.802765i | \(-0.703361\pi\) | ||||
0.596296 | − | 0.802765i | \(-0.296639\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | − 30.1254i | − 1.05011i | −0.851070 | − | 0.525053i | \(-0.824046\pi\) | ||||
0.851070 | − | 0.525053i | \(-0.175954\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | −7.94856 | −0.276399 | −0.138199 | − | 0.990404i | \(-0.544131\pi\) | ||||
−0.138199 | + | 0.990404i | \(0.544131\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −21.1413 | −0.734266 | −0.367133 | − | 0.930168i | \(-0.619661\pi\) | ||||
−0.367133 | + | 0.930168i | \(0.619661\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 0 | 0 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | − 34.4857i | − 1.19343i | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −35.0074 | −1.20859 | −0.604295 | − | 0.796760i | \(-0.706545\pi\) | ||||
−0.604295 | + | 0.796760i | \(0.706545\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 28.6572 | 0.988179 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 40.0504i | 1.37777i | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −30.4307 | −1.04315 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | −6.26133 | −0.214384 | −0.107192 | − | 0.994238i | \(-0.534186\pi\) | ||||
−0.107192 | + | 0.994238i | \(0.534186\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | − 35.4125i | − 1.20967i | −0.796352 | − | 0.604834i | \(-0.793240\pi\) | ||||
0.796352 | − | 0.604834i | \(-0.206760\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 28.3407i | 0.966972i | 0.875352 | + | 0.483486i | \(0.160630\pi\) | ||||
−0.875352 | + | 0.483486i | \(0.839370\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | −20.7426 | −0.706087 | −0.353043 | − | 0.935607i | \(-0.614853\pi\) | ||||
−0.353043 | + | 0.935607i | \(0.614853\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 34.0230 | 1.15682 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | − 9.57347i | − 0.324758i | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 3.69710i | 0.125271i | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 17.3640 | 0.586341 | 0.293170 | − | 0.956060i | \(-0.405290\pi\) | ||||
0.293170 | + | 0.956060i | \(0.405290\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | − 51.9905i | − 1.75160i | −0.482671 | − | 0.875802i | \(-0.660333\pi\) | ||||
0.482671 | − | 0.875802i | \(-0.339667\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | − 15.9062i | − 0.535288i | −0.963518 | − | 0.267644i | \(-0.913755\pi\) | ||||
0.963518 | − | 0.267644i | \(-0.0862451\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 21.5497 | 0.723569 | 0.361784 | − | 0.932262i | \(-0.382168\pi\) | ||||
0.361784 | + | 0.932262i | \(0.382168\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 24.1680i | 0.808751i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 36.0675i | 1.20560i | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | −5.59081 | −0.186464 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 78.9837 | 2.63133 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | − 46.3499i | − 1.54072i | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | − 27.0317i | − 0.897574i | −0.893639 | − | 0.448787i | \(-0.851856\pi\) | ||||
0.893639 | − | 0.448787i | \(-0.148144\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −3.95386 | −0.130997 | −0.0654987 | − | 0.997853i | \(-0.520864\pi\) | ||||
−0.0654987 | + | 0.997853i | \(0.520864\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | −14.9174 | −0.493693 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 25.3125i | 0.834981i | 0.908681 | + | 0.417491i | \(0.137090\pi\) | ||||
−0.908681 | + | 0.417491i | \(0.862910\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 4.59479 | 0.151239 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | −39.8944 | −1.31172 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 34.9832i | 1.14776i | 0.818939 | + | 0.573881i | \(0.194563\pi\) | ||||
−0.818939 | + | 0.573881i | \(0.805437\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 0 | 0 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 29.7053 | 0.971467 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 10.0779 | 0.329229 | 0.164615 | − | 0.986358i | \(-0.447362\pi\) | ||||
0.164615 | + | 0.986358i | \(0.447362\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | − 15.6921i | − 0.511549i | −0.966736 | − | 0.255774i | \(-0.917670\pi\) | ||||
0.966736 | − | 0.255774i | \(-0.0823304\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 14.9324i | 0.486266i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 39.7048 | 1.29023 | 0.645117 | − | 0.764084i | \(-0.276809\pi\) | ||||
0.645117 | + | 0.764084i | \(0.276809\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 3.91738 | 0.127164 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | − 51.6901i | − 1.67441i | −0.546891 | − | 0.837203i | \(-0.684189\pi\) | ||||
0.546891 | − | 0.837203i | \(-0.315811\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | − 79.8041i | − 2.58240i | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −60.1787 | −1.94125 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 43.7536i | 1.40848i | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 13.9090i | 0.447285i | 0.974671 | + | 0.223642i | \(0.0717948\pi\) | ||||
−0.974671 | + | 0.223642i | \(0.928205\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 2.31692 | 0.0743534 | 0.0371767 | − | 0.999309i | \(-0.488164\pi\) | ||||
0.0371767 | + | 0.999309i | \(0.488164\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 30.6305i | 0.979955i | 0.871735 | + | 0.489977i | \(0.162995\pi\) | ||||
−0.871735 | + | 0.489977i | \(0.837005\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | − 23.3924i | − 0.747623i | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 11.5502 | 0.368394 | 0.184197 | − | 0.982889i | \(-0.441032\pi\) | ||||
0.184197 | + | 0.982889i | \(0.441032\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 9.68495 | 0.308588 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 48.8087i | 1.55203i | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | − 20.2916i | − 0.644583i | −0.946641 | − | 0.322291i | \(-0.895547\pi\) | ||||
0.946641 | − | 0.322291i | \(-0.104453\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | −32.0449 | −1.01589 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 12.5015 | 0.395926 | 0.197963 | − | 0.980210i | \(-0.436567\pi\) | ||||
0.197963 | + | 0.980210i | \(0.436567\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 7056.2.h.o.4607.2 | 12 | ||
3.2 | odd | 2 | inner | 7056.2.h.o.4607.11 | 12 | ||
4.3 | odd | 2 | inner | 7056.2.h.o.4607.1 | 12 | ||
7.3 | odd | 6 | 1008.2.cq.b.863.1 | yes | 12 | ||
7.5 | odd | 6 | 1008.2.cq.c.431.6 | yes | 12 | ||
7.6 | odd | 2 | 7056.2.h.n.4607.12 | 12 | |||
12.11 | even | 2 | inner | 7056.2.h.o.4607.12 | 12 | ||
21.5 | even | 6 | 1008.2.cq.c.431.1 | yes | 12 | ||
21.17 | even | 6 | 1008.2.cq.b.863.6 | yes | 12 | ||
21.20 | even | 2 | 7056.2.h.n.4607.1 | 12 | |||
28.3 | even | 6 | 1008.2.cq.c.863.1 | yes | 12 | ||
28.19 | even | 6 | 1008.2.cq.b.431.6 | yes | 12 | ||
28.27 | even | 2 | 7056.2.h.n.4607.11 | 12 | |||
84.47 | odd | 6 | 1008.2.cq.b.431.1 | ✓ | 12 | ||
84.59 | odd | 6 | 1008.2.cq.c.863.6 | yes | 12 | ||
84.83 | odd | 2 | 7056.2.h.n.4607.2 | 12 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
1008.2.cq.b.431.1 | ✓ | 12 | 84.47 | odd | 6 | ||
1008.2.cq.b.431.6 | yes | 12 | 28.19 | even | 6 | ||
1008.2.cq.b.863.1 | yes | 12 | 7.3 | odd | 6 | ||
1008.2.cq.b.863.6 | yes | 12 | 21.17 | even | 6 | ||
1008.2.cq.c.431.1 | yes | 12 | 21.5 | even | 6 | ||
1008.2.cq.c.431.6 | yes | 12 | 7.5 | odd | 6 | ||
1008.2.cq.c.863.1 | yes | 12 | 28.3 | even | 6 | ||
1008.2.cq.c.863.6 | yes | 12 | 84.59 | odd | 6 | ||
7056.2.h.n.4607.1 | 12 | 21.20 | even | 2 | |||
7056.2.h.n.4607.2 | 12 | 84.83 | odd | 2 | |||
7056.2.h.n.4607.11 | 12 | 28.27 | even | 2 | |||
7056.2.h.n.4607.12 | 12 | 7.6 | odd | 2 | |||
7056.2.h.o.4607.1 | 12 | 4.3 | odd | 2 | inner | ||
7056.2.h.o.4607.2 | 12 | 1.1 | even | 1 | trivial | ||
7056.2.h.o.4607.11 | 12 | 3.2 | odd | 2 | inner | ||
7056.2.h.o.4607.12 | 12 | 12.11 | even | 2 | inner |