Properties

Label 1008.2.q.g.529.3
Level $1008$
Weight $2$
Character 1008.529
Analytic conductor $8.049$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,2,Mod(529,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.529");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 529.3
Root \(0.500000 - 0.224437i\) of defining polynomial
Character \(\chi\) \(=\) 1008.529
Dual form 1008.2.q.g.625.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.64400 + 0.545231i) q^{3} +(-0.794182 + 1.37556i) q^{5} +(-1.23855 - 2.33795i) q^{7} +(2.40545 + 1.79272i) q^{9} +(-0.794182 - 1.37556i) q^{11} +(2.40545 + 4.16635i) q^{13} +(-2.05563 + 1.82841i) q^{15} +(-2.69963 + 4.67589i) q^{17} +(3.54944 + 6.14781i) q^{19} +(-0.761450 - 4.51887i) q^{21} +(0.150186 - 0.260130i) q^{23} +(1.23855 + 2.14523i) q^{25} +(2.97710 + 4.25874i) q^{27} +(4.13781 - 7.16689i) q^{29} +2.71201 q^{31} +(-0.555632 - 2.69443i) q^{33} +(4.19963 + 0.153051i) q^{35} +(0.500000 + 0.866025i) q^{37} +(1.68292 + 8.16100i) q^{39} +(2.93818 + 5.08907i) q^{41} +(0.833104 - 1.44298i) q^{43} +(-4.37636 + 1.88510i) q^{45} -2.66621 q^{47} +(-3.93199 + 5.79133i) q^{49} +(-6.98762 + 6.21523i) q^{51} +(2.44437 - 4.23377i) q^{53} +2.52290 q^{55} +(2.48329 + 12.0422i) q^{57} -6.47710 q^{59} -4.47710 q^{61} +(1.21201 - 7.84417i) q^{63} -7.64145 q^{65} +10.0531 q^{67} +(0.388736 - 0.345766i) q^{69} -12.7207 q^{71} +(8.02654 - 13.9024i) q^{73} +(0.866524 + 4.20205i) q^{75} +(-2.23236 + 3.56046i) q^{77} -8.38688 q^{79} +(2.57234 + 8.62456i) q^{81} +(-1.18292 + 2.04887i) q^{83} +(-4.28799 - 7.42702i) q^{85} +(10.7101 - 9.52628i) q^{87} +(1.60507 + 2.78007i) q^{89} +(6.76145 - 10.7840i) q^{91} +(4.45853 + 1.47867i) q^{93} -11.2756 q^{95} +(0.712008 - 1.23323i) q^{97} +(0.555632 - 4.73259i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} + q^{5} - 2 q^{7} + 8 q^{9} + q^{11} + 8 q^{13} - 12 q^{15} - 4 q^{17} + 3 q^{19} - 10 q^{21} + 7 q^{23} + 2 q^{25} + 7 q^{27} - 5 q^{29} + 40 q^{31} - 3 q^{33} + 13 q^{35} + 3 q^{37} + 5 q^{39}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.64400 + 0.545231i 0.949162 + 0.314789i
\(4\) 0 0
\(5\) −0.794182 + 1.37556i −0.355169 + 0.615171i −0.987147 0.159816i \(-0.948910\pi\)
0.631978 + 0.774986i \(0.282243\pi\)
\(6\) 0 0
\(7\) −1.23855 2.33795i −0.468128 0.883661i
\(8\) 0 0
\(9\) 2.40545 + 1.79272i 0.801815 + 0.597572i
\(10\) 0 0
\(11\) −0.794182 1.37556i −0.239455 0.414748i 0.721103 0.692828i \(-0.243635\pi\)
−0.960558 + 0.278080i \(0.910302\pi\)
\(12\) 0 0
\(13\) 2.40545 + 4.16635i 0.667151 + 1.15554i 0.978697 + 0.205308i \(0.0658196\pi\)
−0.311547 + 0.950231i \(0.600847\pi\)
\(14\) 0 0
\(15\) −2.05563 + 1.82841i −0.530762 + 0.472093i
\(16\) 0 0
\(17\) −2.69963 + 4.67589i −0.654756 + 1.13407i 0.327199 + 0.944955i \(0.393895\pi\)
−0.981955 + 0.189115i \(0.939438\pi\)
\(18\) 0 0
\(19\) 3.54944 + 6.14781i 0.814298 + 1.41041i 0.909831 + 0.414979i \(0.136211\pi\)
−0.0955331 + 0.995426i \(0.530456\pi\)
\(20\) 0 0
\(21\) −0.761450 4.51887i −0.166162 0.986098i
\(22\) 0 0
\(23\) 0.150186 0.260130i 0.0313159 0.0542408i −0.849943 0.526875i \(-0.823364\pi\)
0.881259 + 0.472634i \(0.156697\pi\)
\(24\) 0 0
\(25\) 1.23855 + 2.14523i 0.247710 + 0.429046i
\(26\) 0 0
\(27\) 2.97710 + 4.25874i 0.572943 + 0.819595i
\(28\) 0 0
\(29\) 4.13781 7.16689i 0.768371 1.33086i −0.170074 0.985431i \(-0.554401\pi\)
0.938446 0.345427i \(-0.112266\pi\)
\(30\) 0 0
\(31\) 2.71201 0.487091 0.243545 0.969889i \(-0.421689\pi\)
0.243545 + 0.969889i \(0.421689\pi\)
\(32\) 0 0
\(33\) −0.555632 2.69443i −0.0967231 0.469041i
\(34\) 0 0
\(35\) 4.19963 + 0.153051i 0.709867 + 0.0258703i
\(36\) 0 0
\(37\) 0.500000 + 0.866025i 0.0821995 + 0.142374i 0.904194 0.427121i \(-0.140472\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) 0 0
\(39\) 1.68292 + 8.16100i 0.269483 + 1.30681i
\(40\) 0 0
\(41\) 2.93818 + 5.08907i 0.458866 + 0.794780i 0.998901 0.0468628i \(-0.0149223\pi\)
−0.540035 + 0.841643i \(0.681589\pi\)
\(42\) 0 0
\(43\) 0.833104 1.44298i 0.127047 0.220052i −0.795484 0.605974i \(-0.792783\pi\)
0.922531 + 0.385922i \(0.126117\pi\)
\(44\) 0 0
\(45\) −4.37636 + 1.88510i −0.652389 + 0.281014i
\(46\) 0 0
\(47\) −2.66621 −0.388906 −0.194453 0.980912i \(-0.562293\pi\)
−0.194453 + 0.980912i \(0.562293\pi\)
\(48\) 0 0
\(49\) −3.93199 + 5.79133i −0.561713 + 0.827332i
\(50\) 0 0
\(51\) −6.98762 + 6.21523i −0.978463 + 0.870306i
\(52\) 0 0
\(53\) 2.44437 4.23377i 0.335760 0.581553i −0.647871 0.761750i \(-0.724340\pi\)
0.983630 + 0.180197i \(0.0576736\pi\)
\(54\) 0 0
\(55\) 2.52290 0.340188
\(56\) 0 0
\(57\) 2.48329 + 12.0422i 0.328920 + 1.59503i
\(58\) 0 0
\(59\) −6.47710 −0.843247 −0.421623 0.906771i \(-0.638540\pi\)
−0.421623 + 0.906771i \(0.638540\pi\)
\(60\) 0 0
\(61\) −4.47710 −0.573234 −0.286617 0.958045i \(-0.592531\pi\)
−0.286617 + 0.958045i \(0.592531\pi\)
\(62\) 0 0
\(63\) 1.21201 7.84417i 0.152699 0.988273i
\(64\) 0 0
\(65\) −7.64145 −0.947805
\(66\) 0 0
\(67\) 10.0531 1.22818 0.614090 0.789236i \(-0.289523\pi\)
0.614090 + 0.789236i \(0.289523\pi\)
\(68\) 0 0
\(69\) 0.388736 0.345766i 0.0467983 0.0416253i
\(70\) 0 0
\(71\) −12.7207 −1.50967 −0.754833 0.655917i \(-0.772282\pi\)
−0.754833 + 0.655917i \(0.772282\pi\)
\(72\) 0 0
\(73\) 8.02654 13.9024i 0.939436 1.62715i 0.172909 0.984938i \(-0.444683\pi\)
0.766527 0.642213i \(-0.221983\pi\)
\(74\) 0 0
\(75\) 0.866524 + 4.20205i 0.100058 + 0.485211i
\(76\) 0 0
\(77\) −2.23236 + 3.56046i −0.254401 + 0.405752i
\(78\) 0 0
\(79\) −8.38688 −0.943597 −0.471799 0.881706i \(-0.656395\pi\)
−0.471799 + 0.881706i \(0.656395\pi\)
\(80\) 0 0
\(81\) 2.57234 + 8.62456i 0.285816 + 0.958285i
\(82\) 0 0
\(83\) −1.18292 + 2.04887i −0.129842 + 0.224893i −0.923615 0.383321i \(-0.874780\pi\)
0.793773 + 0.608214i \(0.208114\pi\)
\(84\) 0 0
\(85\) −4.28799 7.42702i −0.465098 0.805573i
\(86\) 0 0
\(87\) 10.7101 9.52628i 1.14825 1.02132i
\(88\) 0 0
\(89\) 1.60507 + 2.78007i 0.170138 + 0.294687i 0.938468 0.345367i \(-0.112245\pi\)
−0.768330 + 0.640054i \(0.778912\pi\)
\(90\) 0 0
\(91\) 6.76145 10.7840i 0.708793 1.13047i
\(92\) 0 0
\(93\) 4.45853 + 1.47867i 0.462328 + 0.153331i
\(94\) 0 0
\(95\) −11.2756 −1.15685
\(96\) 0 0
\(97\) 0.712008 1.23323i 0.0722934 0.125216i −0.827613 0.561300i \(-0.810302\pi\)
0.899906 + 0.436084i \(0.143635\pi\)
\(98\) 0 0
\(99\) 0.555632 4.73259i 0.0558431 0.475643i
\(100\) 0 0
\(101\) −6.01671 10.4212i −0.598685 1.03695i −0.993015 0.117984i \(-0.962357\pi\)
0.394330 0.918969i \(-0.370977\pi\)
\(102\) 0 0
\(103\) −3.04944 + 5.28179i −0.300470 + 0.520430i −0.976243 0.216680i \(-0.930477\pi\)
0.675772 + 0.737111i \(0.263810\pi\)
\(104\) 0 0
\(105\) 6.82072 + 2.54138i 0.665635 + 0.248014i
\(106\) 0 0
\(107\) 1.54325 + 2.67299i 0.149192 + 0.258408i 0.930929 0.365200i \(-0.118999\pi\)
−0.781737 + 0.623608i \(0.785666\pi\)
\(108\) 0 0
\(109\) 1.14400 1.98146i 0.109575 0.189789i −0.806023 0.591884i \(-0.798384\pi\)
0.915598 + 0.402095i \(0.131718\pi\)
\(110\) 0 0
\(111\) 0.349814 + 1.69636i 0.0332029 + 0.161011i
\(112\) 0 0
\(113\) −9.73236 16.8569i −0.915543 1.58577i −0.806104 0.591774i \(-0.798428\pi\)
−0.109440 0.993993i \(-0.534906\pi\)
\(114\) 0 0
\(115\) 0.238550 + 0.413181i 0.0222449 + 0.0385293i
\(116\) 0 0
\(117\) −1.68292 + 14.3342i −0.155586 + 1.32520i
\(118\) 0 0
\(119\) 14.2756 + 0.520259i 1.30864 + 0.0476921i
\(120\) 0 0
\(121\) 4.23855 7.34138i 0.385323 0.667399i
\(122\) 0 0
\(123\) 2.05563 + 9.96840i 0.185350 + 0.898821i
\(124\) 0 0
\(125\) −11.8764 −1.06225
\(126\) 0 0
\(127\) 13.4400 1.19260 0.596302 0.802760i \(-0.296636\pi\)
0.596302 + 0.802760i \(0.296636\pi\)
\(128\) 0 0
\(129\) 2.15638 1.91802i 0.189858 0.168872i
\(130\) 0 0
\(131\) −1.58836 + 2.75113i −0.138776 + 0.240367i −0.927034 0.374978i \(-0.877650\pi\)
0.788258 + 0.615345i \(0.210983\pi\)
\(132\) 0 0
\(133\) 9.97710 15.9128i 0.865124 1.37981i
\(134\) 0 0
\(135\) −8.22253 + 0.712974i −0.707683 + 0.0613631i
\(136\) 0 0
\(137\) 10.6316 + 18.4145i 0.908320 + 1.57326i 0.816397 + 0.577491i \(0.195968\pi\)
0.0919231 + 0.995766i \(0.470699\pi\)
\(138\) 0 0
\(139\) −6.52654 11.3043i −0.553574 0.958818i −0.998013 0.0630092i \(-0.979930\pi\)
0.444439 0.895809i \(-0.353403\pi\)
\(140\) 0 0
\(141\) −4.38323 1.45370i −0.369135 0.122424i
\(142\) 0 0
\(143\) 3.82072 6.61769i 0.319505 0.553399i
\(144\) 0 0
\(145\) 6.57234 + 11.3836i 0.545803 + 0.945359i
\(146\) 0 0
\(147\) −9.62178 + 7.37708i −0.793591 + 0.608451i
\(148\) 0 0
\(149\) −2.60439 + 4.51093i −0.213360 + 0.369550i −0.952764 0.303712i \(-0.901774\pi\)
0.739404 + 0.673262i \(0.235107\pi\)
\(150\) 0 0
\(151\) −0.261450 0.452845i −0.0212765 0.0368520i 0.855191 0.518313i \(-0.173440\pi\)
−0.876468 + 0.481461i \(0.840106\pi\)
\(152\) 0 0
\(153\) −14.8764 + 6.40794i −1.20268 + 0.518052i
\(154\) 0 0
\(155\) −2.15383 + 3.73054i −0.173000 + 0.299644i
\(156\) 0 0
\(157\) 8.86398 0.707422 0.353711 0.935355i \(-0.384920\pi\)
0.353711 + 0.935355i \(0.384920\pi\)
\(158\) 0 0
\(159\) 6.32691 5.62755i 0.501757 0.446294i
\(160\) 0 0
\(161\) −0.794182 0.0289431i −0.0625903 0.00228104i
\(162\) 0 0
\(163\) −10.9814 19.0204i −0.860132 1.48979i −0.871801 0.489860i \(-0.837048\pi\)
0.0116689 0.999932i \(-0.496286\pi\)
\(164\) 0 0
\(165\) 4.14764 + 1.37556i 0.322893 + 0.107087i
\(166\) 0 0
\(167\) −1.65019 2.85821i −0.127695 0.221175i 0.795088 0.606494i \(-0.207425\pi\)
−0.922783 + 0.385319i \(0.874091\pi\)
\(168\) 0 0
\(169\) −5.07234 + 8.78555i −0.390180 + 0.675812i
\(170\) 0 0
\(171\) −2.48329 + 21.1514i −0.189902 + 1.61749i
\(172\) 0 0
\(173\) 19.1075 1.45272 0.726360 0.687315i \(-0.241211\pi\)
0.726360 + 0.687315i \(0.241211\pi\)
\(174\) 0 0
\(175\) 3.48143 5.55264i 0.263171 0.419740i
\(176\) 0 0
\(177\) −10.6483 3.53152i −0.800377 0.265445i
\(178\) 0 0
\(179\) 8.03706 13.9206i 0.600718 1.04047i −0.391994 0.919968i \(-0.628215\pi\)
0.992712 0.120507i \(-0.0384520\pi\)
\(180\) 0 0
\(181\) 8.05308 0.598581 0.299291 0.954162i \(-0.403250\pi\)
0.299291 + 0.954162i \(0.403250\pi\)
\(182\) 0 0
\(183\) −7.36033 2.44105i −0.544092 0.180448i
\(184\) 0 0
\(185\) −1.58836 −0.116779
\(186\) 0 0
\(187\) 8.57598 0.627138
\(188\) 0 0
\(189\) 6.26942 12.2350i 0.456033 0.889963i
\(190\) 0 0
\(191\) 23.9629 1.73389 0.866946 0.498402i \(-0.166080\pi\)
0.866946 + 0.498402i \(0.166080\pi\)
\(192\) 0 0
\(193\) 9.76509 0.702907 0.351453 0.936205i \(-0.385688\pi\)
0.351453 + 0.936205i \(0.385688\pi\)
\(194\) 0 0
\(195\) −12.5625 4.16635i −0.899620 0.298359i
\(196\) 0 0
\(197\) −18.2436 −1.29980 −0.649900 0.760020i \(-0.725189\pi\)
−0.649900 + 0.760020i \(0.725189\pi\)
\(198\) 0 0
\(199\) −9.04944 + 15.6741i −0.641498 + 1.11111i 0.343601 + 0.939116i \(0.388353\pi\)
−0.985098 + 0.171991i \(0.944980\pi\)
\(200\) 0 0
\(201\) 16.5272 + 5.48125i 1.16574 + 0.386618i
\(202\) 0 0
\(203\) −21.8807 0.797418i −1.53572 0.0559678i
\(204\) 0 0
\(205\) −9.33379 −0.651900
\(206\) 0 0
\(207\) 0.827603 0.356487i 0.0575224 0.0247776i
\(208\) 0 0
\(209\) 5.63781 9.76497i 0.389975 0.675457i
\(210\) 0 0
\(211\) −0.166208 0.287880i −0.0114422 0.0198185i 0.860248 0.509877i \(-0.170309\pi\)
−0.871690 + 0.490058i \(0.836976\pi\)
\(212\) 0 0
\(213\) −20.9127 6.93570i −1.43292 0.475227i
\(214\) 0 0
\(215\) 1.32327 + 2.29197i 0.0902464 + 0.156311i
\(216\) 0 0
\(217\) −3.35896 6.34053i −0.228021 0.430423i
\(218\) 0 0
\(219\) 20.7756 18.4791i 1.40389 1.24870i
\(220\) 0 0
\(221\) −25.9752 −1.74728
\(222\) 0 0
\(223\) −3.16621 + 5.48403i −0.212025 + 0.367238i −0.952348 0.305013i \(-0.901339\pi\)
0.740323 + 0.672251i \(0.234672\pi\)
\(224\) 0 0
\(225\) −0.866524 + 7.38061i −0.0577683 + 0.492040i
\(226\) 0 0
\(227\) −11.6545 20.1862i −0.773537 1.33981i −0.935613 0.353028i \(-0.885152\pi\)
0.162075 0.986778i \(-0.448181\pi\)
\(228\) 0 0
\(229\) 2.47710 4.29046i 0.163691 0.283522i −0.772498 0.635017i \(-0.780993\pi\)
0.936190 + 0.351495i \(0.114327\pi\)
\(230\) 0 0
\(231\) −5.61126 + 4.63623i −0.369194 + 0.305041i
\(232\) 0 0
\(233\) −7.13781 12.3630i −0.467613 0.809930i 0.531702 0.846932i \(-0.321553\pi\)
−0.999315 + 0.0370017i \(0.988219\pi\)
\(234\) 0 0
\(235\) 2.11745 3.66754i 0.138127 0.239244i
\(236\) 0 0
\(237\) −13.7880 4.57279i −0.895626 0.297034i
\(238\) 0 0
\(239\) −2.48762 4.30868i −0.160911 0.278706i 0.774285 0.632837i \(-0.218110\pi\)
−0.935196 + 0.354132i \(0.884776\pi\)
\(240\) 0 0
\(241\) 6.50000 + 11.2583i 0.418702 + 0.725213i 0.995809 0.0914555i \(-0.0291519\pi\)
−0.577107 + 0.816668i \(0.695819\pi\)
\(242\) 0 0
\(243\) −0.473458 + 15.5813i −0.0303723 + 0.999539i
\(244\) 0 0
\(245\) −4.84362 10.0081i −0.309448 0.639392i
\(246\) 0 0
\(247\) −17.0760 + 29.5765i −1.08652 + 1.88191i
\(248\) 0 0
\(249\) −3.06182 + 2.72338i −0.194035 + 0.172587i
\(250\) 0 0
\(251\) −2.43268 −0.153549 −0.0767746 0.997048i \(-0.524462\pi\)
−0.0767746 + 0.997048i \(0.524462\pi\)
\(252\) 0 0
\(253\) −0.477100 −0.0299950
\(254\) 0 0
\(255\) −3.00000 14.5479i −0.187867 0.911027i
\(256\) 0 0
\(257\) 0.493810 0.855304i 0.0308030 0.0533524i −0.850213 0.526439i \(-0.823527\pi\)
0.881016 + 0.473087i \(0.156860\pi\)
\(258\) 0 0
\(259\) 1.40545 2.24159i 0.0873302 0.139286i
\(260\) 0 0
\(261\) 22.8015 9.82166i 1.41138 0.607946i
\(262\) 0 0
\(263\) 8.59269 + 14.8830i 0.529848 + 0.917724i 0.999394 + 0.0348158i \(0.0110845\pi\)
−0.469545 + 0.882908i \(0.655582\pi\)
\(264\) 0 0
\(265\) 3.88255 + 6.72477i 0.238503 + 0.413099i
\(266\) 0 0
\(267\) 1.12296 + 5.44556i 0.0687237 + 0.333263i
\(268\) 0 0
\(269\) 11.4523 19.8360i 0.698262 1.20942i −0.270807 0.962634i \(-0.587291\pi\)
0.969069 0.246791i \(-0.0793761\pi\)
\(270\) 0 0
\(271\) −7.00364 12.1307i −0.425441 0.736885i 0.571021 0.820936i \(-0.306548\pi\)
−0.996462 + 0.0840504i \(0.973214\pi\)
\(272\) 0 0
\(273\) 16.9956 14.0424i 1.02862 0.849883i
\(274\) 0 0
\(275\) 1.96727 3.40741i 0.118631 0.205474i
\(276\) 0 0
\(277\) −14.1476 24.5044i −0.850049 1.47233i −0.881163 0.472813i \(-0.843239\pi\)
0.0311139 0.999516i \(-0.490095\pi\)
\(278\) 0 0
\(279\) 6.52359 + 4.86186i 0.390557 + 0.291072i
\(280\) 0 0
\(281\) −8.79782 + 15.2383i −0.524834 + 0.909039i 0.474748 + 0.880122i \(0.342539\pi\)
−0.999582 + 0.0289175i \(0.990794\pi\)
\(282\) 0 0
\(283\) 18.5229 1.10107 0.550536 0.834811i \(-0.314423\pi\)
0.550536 + 0.834811i \(0.314423\pi\)
\(284\) 0 0
\(285\) −18.5371 6.14781i −1.09804 0.364165i
\(286\) 0 0
\(287\) 8.25890 13.1724i 0.487508 0.777541i
\(288\) 0 0
\(289\) −6.07598 10.5239i −0.357411 0.619054i
\(290\) 0 0
\(291\) 1.84294 1.63922i 0.108035 0.0960929i
\(292\) 0 0
\(293\) −7.04256 12.1981i −0.411431 0.712619i 0.583616 0.812030i \(-0.301638\pi\)
−0.995046 + 0.0994108i \(0.968304\pi\)
\(294\) 0 0
\(295\) 5.14400 8.90966i 0.299495 0.518741i
\(296\) 0 0
\(297\) 3.49381 7.47741i 0.202731 0.433883i
\(298\) 0 0
\(299\) 1.44506 0.0835698
\(300\) 0 0
\(301\) −4.40545 0.160552i −0.253926 0.00925405i
\(302\) 0 0
\(303\) −4.20946 20.4130i −0.241827 1.17270i
\(304\) 0 0
\(305\) 3.55563 6.15854i 0.203595 0.352637i
\(306\) 0 0
\(307\) 5.85532 0.334180 0.167090 0.985942i \(-0.446563\pi\)
0.167090 + 0.985942i \(0.446563\pi\)
\(308\) 0 0
\(309\) −7.89307 + 7.02059i −0.449021 + 0.399387i
\(310\) 0 0
\(311\) −0.810892 −0.0459815 −0.0229907 0.999736i \(-0.507319\pi\)
−0.0229907 + 0.999736i \(0.507319\pi\)
\(312\) 0 0
\(313\) 10.5760 0.597790 0.298895 0.954286i \(-0.403382\pi\)
0.298895 + 0.954286i \(0.403382\pi\)
\(314\) 0 0
\(315\) 9.82760 + 7.89689i 0.553723 + 0.444940i
\(316\) 0 0
\(317\) 12.1964 0.685018 0.342509 0.939515i \(-0.388723\pi\)
0.342509 + 0.939515i \(0.388723\pi\)
\(318\) 0 0
\(319\) −13.1447 −0.735961
\(320\) 0 0
\(321\) 1.07970 + 5.23582i 0.0602631 + 0.292235i
\(322\) 0 0
\(323\) −38.3287 −2.13267
\(324\) 0 0
\(325\) −5.95853 + 10.3205i −0.330520 + 0.572477i
\(326\) 0 0
\(327\) 2.96108 2.63377i 0.163748 0.145648i
\(328\) 0 0
\(329\) 3.30223 + 6.23345i 0.182058 + 0.343661i
\(330\) 0 0
\(331\) 15.6662 0.861093 0.430546 0.902568i \(-0.358321\pi\)
0.430546 + 0.902568i \(0.358321\pi\)
\(332\) 0 0
\(333\) −0.349814 + 2.97954i −0.0191697 + 0.163278i
\(334\) 0 0
\(335\) −7.98398 + 13.8287i −0.436211 + 0.755540i
\(336\) 0 0
\(337\) −4.21201 7.29541i −0.229443 0.397406i 0.728200 0.685364i \(-0.240357\pi\)
−0.957643 + 0.287958i \(0.907024\pi\)
\(338\) 0 0
\(339\) −6.80903 33.0191i −0.369816 1.79335i
\(340\) 0 0
\(341\) −2.15383 3.73054i −0.116636 0.202020i
\(342\) 0 0
\(343\) 18.4098 + 2.01993i 0.994035 + 0.109066i
\(344\) 0 0
\(345\) 0.166896 + 0.809332i 0.00898539 + 0.0435730i
\(346\) 0 0
\(347\) −0.567323 −0.0304555 −0.0152277 0.999884i \(-0.504847\pi\)
−0.0152277 + 0.999884i \(0.504847\pi\)
\(348\) 0 0
\(349\) −0.00364189 + 0.00630794i −0.000194946 + 0.000337656i −0.866123 0.499831i \(-0.833395\pi\)
0.865928 + 0.500169i \(0.166729\pi\)
\(350\) 0 0
\(351\) −10.5822 + 22.6478i −0.564835 + 1.20885i
\(352\) 0 0
\(353\) −3.32691 5.76238i −0.177074 0.306701i 0.763803 0.645449i \(-0.223330\pi\)
−0.940877 + 0.338748i \(0.889996\pi\)
\(354\) 0 0
\(355\) 10.1025 17.4981i 0.536186 0.928702i
\(356\) 0 0
\(357\) 23.1854 + 8.63881i 1.22710 + 0.457214i
\(358\) 0 0
\(359\) 0.398568 + 0.690339i 0.0210356 + 0.0364347i 0.876352 0.481672i \(-0.159970\pi\)
−0.855316 + 0.518107i \(0.826637\pi\)
\(360\) 0 0
\(361\) −15.6971 + 27.1881i −0.826162 + 1.43095i
\(362\) 0 0
\(363\) 10.9709 9.75822i 0.575823 0.512174i
\(364\) 0 0
\(365\) 12.7491 + 22.0820i 0.667317 + 1.15583i
\(366\) 0 0
\(367\) −7.71634 13.3651i −0.402790 0.697652i 0.591272 0.806472i \(-0.298626\pi\)
−0.994061 + 0.108820i \(0.965293\pi\)
\(368\) 0 0
\(369\) −2.05563 + 17.5088i −0.107012 + 0.911472i
\(370\) 0 0
\(371\) −12.9258 0.471067i −0.671074 0.0244566i
\(372\) 0 0
\(373\) −5.12110 + 8.87000i −0.265160 + 0.459271i −0.967606 0.252467i \(-0.918758\pi\)
0.702445 + 0.711738i \(0.252092\pi\)
\(374\) 0 0
\(375\) −19.5247 6.47536i −1.00825 0.334386i
\(376\) 0 0
\(377\) 39.8131 2.05048
\(378\) 0 0
\(379\) −25.0087 −1.28461 −0.642304 0.766450i \(-0.722021\pi\)
−0.642304 + 0.766450i \(0.722021\pi\)
\(380\) 0 0
\(381\) 22.0952 + 7.32788i 1.13197 + 0.375419i
\(382\) 0 0
\(383\) −3.13348 + 5.42734i −0.160113 + 0.277324i −0.934909 0.354887i \(-0.884519\pi\)
0.774796 + 0.632211i \(0.217853\pi\)
\(384\) 0 0
\(385\) −3.12474 5.89841i −0.159251 0.300611i
\(386\) 0 0
\(387\) 4.59084 1.97749i 0.233365 0.100521i
\(388\) 0 0
\(389\) 10.8171 + 18.7357i 0.548448 + 0.949940i 0.998381 + 0.0568774i \(0.0181144\pi\)
−0.449933 + 0.893062i \(0.648552\pi\)
\(390\) 0 0
\(391\) 0.810892 + 1.40451i 0.0410086 + 0.0710290i
\(392\) 0 0
\(393\) −4.11126 + 3.65682i −0.207386 + 0.184462i
\(394\) 0 0
\(395\) 6.66071 11.5367i 0.335137 0.580473i
\(396\) 0 0
\(397\) 2.05308 + 3.55605i 0.103041 + 0.178473i 0.912936 0.408102i \(-0.133809\pi\)
−0.809895 + 0.586575i \(0.800476\pi\)
\(398\) 0 0
\(399\) 25.0785 20.7207i 1.25549 1.03733i
\(400\) 0 0
\(401\) −8.37085 + 14.4987i −0.418021 + 0.724033i −0.995740 0.0922024i \(-0.970609\pi\)
0.577720 + 0.816235i \(0.303943\pi\)
\(402\) 0 0
\(403\) 6.52359 + 11.2992i 0.324963 + 0.562853i
\(404\) 0 0
\(405\) −13.9065 3.31105i −0.691022 0.164527i
\(406\) 0 0
\(407\) 0.794182 1.37556i 0.0393661 0.0681842i
\(408\) 0 0
\(409\) −8.76509 −0.433406 −0.216703 0.976238i \(-0.569530\pi\)
−0.216703 + 0.976238i \(0.569530\pi\)
\(410\) 0 0
\(411\) 7.43818 + 36.0701i 0.366898 + 1.77920i
\(412\) 0 0
\(413\) 8.02221 + 15.1431i 0.394747 + 0.745144i
\(414\) 0 0
\(415\) −1.87890 3.25436i −0.0922318 0.159750i
\(416\) 0 0
\(417\) −4.56615 22.1427i −0.223605 1.08433i
\(418\) 0 0
\(419\) 0.210149 + 0.363988i 0.0102664 + 0.0177820i 0.871113 0.491083i \(-0.163399\pi\)
−0.860847 + 0.508865i \(0.830065\pi\)
\(420\) 0 0
\(421\) 3.28799 5.69497i 0.160247 0.277556i −0.774710 0.632316i \(-0.782104\pi\)
0.934957 + 0.354761i \(0.115438\pi\)
\(422\) 0 0
\(423\) −6.41342 4.77975i −0.311831 0.232399i
\(424\) 0 0
\(425\) −13.3745 −0.648758
\(426\) 0 0
\(427\) 5.54511 + 10.4672i 0.268347 + 0.506544i
\(428\) 0 0
\(429\) 9.88942 8.79628i 0.477466 0.424688i
\(430\) 0 0
\(431\) −11.0439 + 19.1287i −0.531968 + 0.921395i 0.467336 + 0.884080i \(0.345214\pi\)
−0.999304 + 0.0373155i \(0.988119\pi\)
\(432\) 0 0
\(433\) −9.43268 −0.453306 −0.226653 0.973976i \(-0.572778\pi\)
−0.226653 + 0.973976i \(0.572778\pi\)
\(434\) 0 0
\(435\) 4.59820 + 22.2981i 0.220467 + 1.06911i
\(436\) 0 0
\(437\) 2.13231 0.102002
\(438\) 0 0
\(439\) 31.2064 1.48940 0.744701 0.667398i \(-0.232592\pi\)
0.744701 + 0.667398i \(0.232592\pi\)
\(440\) 0 0
\(441\) −19.8404 + 6.88179i −0.944780 + 0.327704i
\(442\) 0 0
\(443\) −13.0545 −0.620236 −0.310118 0.950698i \(-0.600369\pi\)
−0.310118 + 0.950698i \(0.600369\pi\)
\(444\) 0 0
\(445\) −5.09888 −0.241710
\(446\) 0 0
\(447\) −6.74110 + 5.99596i −0.318843 + 0.283599i
\(448\) 0 0
\(449\) −9.91706 −0.468015 −0.234008 0.972235i \(-0.575184\pi\)
−0.234008 + 0.972235i \(0.575184\pi\)
\(450\) 0 0
\(451\) 4.66690 8.08330i 0.219756 0.380628i
\(452\) 0 0
\(453\) −0.182918 0.887026i −0.00859423 0.0416761i
\(454\) 0 0
\(455\) 9.46431 + 17.8653i 0.443694 + 0.837538i
\(456\) 0 0
\(457\) −24.5229 −1.14713 −0.573566 0.819159i \(-0.694441\pi\)
−0.573566 + 0.819159i \(0.694441\pi\)
\(458\) 0 0
\(459\) −27.9505 + 2.42358i −1.30462 + 0.113123i
\(460\) 0 0
\(461\) 1.75526 3.04020i 0.0817506 0.141596i −0.822251 0.569125i \(-0.807282\pi\)
0.904002 + 0.427528i \(0.140616\pi\)
\(462\) 0 0
\(463\) −8.69413 15.0587i −0.404050 0.699836i 0.590160 0.807286i \(-0.299065\pi\)
−0.994210 + 0.107451i \(0.965731\pi\)
\(464\) 0 0
\(465\) −5.57489 + 4.95866i −0.258529 + 0.229952i
\(466\) 0 0
\(467\) −6.69894 11.6029i −0.309990 0.536918i 0.668370 0.743829i \(-0.266992\pi\)
−0.978360 + 0.206911i \(0.933659\pi\)
\(468\) 0 0
\(469\) −12.4512 23.5036i −0.574945 1.08529i
\(470\) 0 0
\(471\) 14.5723 + 4.83292i 0.671458 + 0.222689i
\(472\) 0 0
\(473\) −2.64654 −0.121688
\(474\) 0 0
\(475\) −8.79232 + 15.2287i −0.403419 + 0.698743i
\(476\) 0 0
\(477\) 13.4697 5.80205i 0.616737 0.265658i
\(478\) 0 0
\(479\) 10.4029 + 18.0183i 0.475321 + 0.823279i 0.999600 0.0282667i \(-0.00899876\pi\)
−0.524280 + 0.851546i \(0.675665\pi\)
\(480\) 0 0
\(481\) −2.40545 + 4.16635i −0.109679 + 0.189969i
\(482\) 0 0
\(483\) −1.28985 0.480595i −0.0586903 0.0218678i
\(484\) 0 0
\(485\) 1.13093 + 1.95882i 0.0513528 + 0.0889456i
\(486\) 0 0
\(487\) −16.2472 + 28.1410i −0.736231 + 1.27519i 0.217950 + 0.975960i \(0.430063\pi\)
−0.954181 + 0.299230i \(0.903270\pi\)
\(488\) 0 0
\(489\) −7.68292 37.2569i −0.347434 1.68481i
\(490\) 0 0
\(491\) 9.66071 + 16.7328i 0.435982 + 0.755142i 0.997375 0.0724067i \(-0.0230679\pi\)
−0.561394 + 0.827549i \(0.689735\pi\)
\(492\) 0 0
\(493\) 22.3411 + 38.6959i 1.00619 + 1.74277i
\(494\) 0 0
\(495\) 6.06870 + 4.52284i 0.272768 + 0.203287i
\(496\) 0 0
\(497\) 15.7552 + 29.7402i 0.706717 + 1.33403i
\(498\) 0 0
\(499\) −5.57530 + 9.65670i −0.249585 + 0.432293i −0.963411 0.268030i \(-0.913627\pi\)
0.713826 + 0.700323i \(0.246961\pi\)
\(500\) 0 0
\(501\) −1.15452 5.59861i −0.0515800 0.250128i
\(502\) 0 0
\(503\) 40.7651 1.81763 0.908813 0.417204i \(-0.136990\pi\)
0.908813 + 0.417204i \(0.136990\pi\)
\(504\) 0 0
\(505\) 19.1135 0.850537
\(506\) 0 0
\(507\) −13.1291 + 11.6778i −0.583082 + 0.518630i
\(508\) 0 0
\(509\) −0.722528 + 1.25146i −0.0320255 + 0.0554698i −0.881594 0.472009i \(-0.843529\pi\)
0.849568 + 0.527478i \(0.176862\pi\)
\(510\) 0 0
\(511\) −42.4443 1.54684i −1.87762 0.0684280i
\(512\) 0 0
\(513\) −15.6149 + 33.4188i −0.689415 + 1.47548i
\(514\) 0 0
\(515\) −4.84362 8.38940i −0.213436 0.369681i
\(516\) 0 0
\(517\) 2.11745 + 3.66754i 0.0931255 + 0.161298i
\(518\) 0 0
\(519\) 31.4127 + 10.4180i 1.37887 + 0.457301i
\(520\) 0 0
\(521\) 9.64214 16.7007i 0.422430 0.731670i −0.573747 0.819033i \(-0.694511\pi\)
0.996177 + 0.0873630i \(0.0278440\pi\)
\(522\) 0 0
\(523\) 18.3454 + 31.7752i 0.802189 + 1.38943i 0.918173 + 0.396180i \(0.129665\pi\)
−0.115984 + 0.993251i \(0.537002\pi\)
\(524\) 0 0
\(525\) 8.75093 7.23033i 0.381922 0.315558i
\(526\) 0 0
\(527\) −7.32141 + 12.6811i −0.318926 + 0.552396i
\(528\) 0 0
\(529\) 11.4549 + 19.8404i 0.498039 + 0.862628i
\(530\) 0 0
\(531\) −15.5803 11.6116i −0.676128 0.503900i
\(532\) 0 0
\(533\) −14.1353 + 24.4830i −0.612266 + 1.06048i
\(534\) 0 0
\(535\) −4.90249 −0.211953
\(536\) 0 0
\(537\) 20.8028 18.5034i 0.897709 0.798479i
\(538\) 0 0
\(539\) 11.0891 + 0.809332i 0.477639 + 0.0348604i
\(540\) 0 0
\(541\) −1.62543 2.81532i −0.0698825 0.121040i 0.828967 0.559298i \(-0.188929\pi\)
−0.898849 + 0.438258i \(0.855596\pi\)
\(542\) 0 0
\(543\) 13.2392 + 4.39079i 0.568150 + 0.188427i
\(544\) 0 0
\(545\) 1.81708 + 3.14728i 0.0778352 + 0.134815i
\(546\) 0 0
\(547\) 2.95853 5.12432i 0.126498 0.219100i −0.795820 0.605534i \(-0.792960\pi\)
0.922317 + 0.386433i \(0.126293\pi\)
\(548\) 0 0
\(549\) −10.7694 8.02617i −0.459628 0.342548i
\(550\) 0 0
\(551\) 58.7476 2.50273
\(552\) 0 0
\(553\) 10.3876 + 19.6081i 0.441724 + 0.833820i
\(554\) 0 0
\(555\) −2.61126 0.866025i −0.110842 0.0367607i
\(556\) 0 0
\(557\) 12.8040 22.1772i 0.542523 0.939678i −0.456235 0.889859i \(-0.650802\pi\)
0.998758 0.0498188i \(-0.0158644\pi\)
\(558\) 0 0
\(559\) 8.01594 0.339038
\(560\) 0 0
\(561\) 14.0989 + 4.67589i 0.595255 + 0.197416i
\(562\) 0 0
\(563\) 46.6377 1.96555 0.982773 0.184817i \(-0.0591692\pi\)
0.982773 + 0.184817i \(0.0591692\pi\)
\(564\) 0 0
\(565\) 30.9171 1.30069
\(566\) 0 0
\(567\) 16.9778 16.6959i 0.713000 0.701164i
\(568\) 0 0
\(569\) 31.1978 1.30788 0.653939 0.756547i \(-0.273115\pi\)
0.653939 + 0.756547i \(0.273115\pi\)
\(570\) 0 0
\(571\) 15.6762 0.656030 0.328015 0.944672i \(-0.393620\pi\)
0.328015 + 0.944672i \(0.393620\pi\)
\(572\) 0 0
\(573\) 39.3948 + 13.0653i 1.64574 + 0.545811i
\(574\) 0 0
\(575\) 0.744051 0.0310291
\(576\) 0 0
\(577\) 6.99567 12.1169i 0.291234 0.504431i −0.682868 0.730542i \(-0.739268\pi\)
0.974102 + 0.226110i \(0.0726010\pi\)
\(578\) 0 0
\(579\) 16.0538 + 5.32423i 0.667172 + 0.221268i
\(580\) 0 0
\(581\) 6.25526 + 0.227966i 0.259512 + 0.00945763i
\(582\) 0 0
\(583\) −7.76509 −0.321597
\(584\) 0 0
\(585\) −18.3811 13.6989i −0.759965 0.566382i
\(586\) 0 0
\(587\) −1.44801 + 2.50803i −0.0597658 + 0.103517i −0.894360 0.447348i \(-0.852369\pi\)
0.834594 + 0.550865i \(0.185702\pi\)
\(588\) 0 0
\(589\) 9.62612 + 16.6729i 0.396637 + 0.686996i
\(590\) 0 0
\(591\) −29.9924 9.94696i −1.23372 0.409163i
\(592\) 0 0
\(593\) −2.04394 3.54021i −0.0839346 0.145379i 0.821002 0.570925i \(-0.193415\pi\)
−0.904937 + 0.425546i \(0.860082\pi\)
\(594\) 0 0
\(595\) −12.0531 + 19.2238i −0.494128 + 0.788100i
\(596\) 0 0
\(597\) −23.4233 + 20.8341i −0.958650 + 0.852683i
\(598\) 0 0
\(599\) 19.7651 0.807580 0.403790 0.914852i \(-0.367693\pi\)
0.403790 + 0.914852i \(0.367693\pi\)
\(600\) 0 0
\(601\) −13.4320 + 23.2649i −0.547902 + 0.948994i 0.450516 + 0.892768i \(0.351240\pi\)
−0.998418 + 0.0562261i \(0.982093\pi\)
\(602\) 0 0
\(603\) 24.1822 + 18.0223i 0.984773 + 0.733926i
\(604\) 0 0
\(605\) 6.73236 + 11.6608i 0.273709 + 0.474079i
\(606\) 0 0
\(607\) −7.62110 + 13.2001i −0.309331 + 0.535777i −0.978216 0.207589i \(-0.933438\pi\)
0.668885 + 0.743366i \(0.266772\pi\)
\(608\) 0 0
\(609\) −35.5370 13.2410i −1.44003 0.536552i
\(610\) 0 0
\(611\) −6.41342 11.1084i −0.259459 0.449396i
\(612\) 0 0
\(613\) −1.36033 + 2.35617i −0.0549434 + 0.0951648i −0.892189 0.451662i \(-0.850831\pi\)
0.837246 + 0.546827i \(0.184165\pi\)
\(614\) 0 0
\(615\) −15.3447 5.08907i −0.618759 0.205211i
\(616\) 0 0
\(617\) −9.21812 15.9663i −0.371108 0.642777i 0.618629 0.785684i \(-0.287689\pi\)
−0.989736 + 0.142906i \(0.954355\pi\)
\(618\) 0 0
\(619\) 0.0537728 + 0.0931373i 0.00216131 + 0.00374350i 0.867104 0.498127i \(-0.165979\pi\)
−0.864943 + 0.501871i \(0.832645\pi\)
\(620\) 0 0
\(621\) 1.55494 0.134829i 0.0623977 0.00541050i
\(622\) 0 0
\(623\) 4.51169 7.19583i 0.180757 0.288295i
\(624\) 0 0
\(625\) 3.23924 5.61053i 0.129570 0.224421i
\(626\) 0 0
\(627\) 14.5927 12.9797i 0.582776 0.518358i
\(628\) 0 0
\(629\) −5.39926 −0.215282
\(630\) 0 0
\(631\) −35.7266 −1.42225 −0.711126 0.703064i \(-0.751815\pi\)
−0.711126 + 0.703064i \(0.751815\pi\)
\(632\) 0 0
\(633\) −0.116283 0.563895i −0.00462185 0.0224128i
\(634\) 0 0
\(635\) −10.6738 + 18.4875i −0.423576 + 0.733655i
\(636\) 0 0
\(637\) −33.5869 2.45133i −1.33076 0.0971254i
\(638\) 0 0
\(639\) −30.5989 22.8045i −1.21047 0.902134i
\(640\) 0 0
\(641\) −8.65638 14.9933i −0.341906 0.592199i 0.642880 0.765967i \(-0.277739\pi\)
−0.984787 + 0.173767i \(0.944406\pi\)
\(642\) 0 0
\(643\) −14.4821 25.0838i −0.571119 0.989207i −0.996451 0.0841700i \(-0.973176\pi\)
0.425332 0.905037i \(-0.360157\pi\)
\(644\) 0 0
\(645\) 0.925798 + 4.48949i 0.0364533 + 0.176773i
\(646\) 0 0
\(647\) −1.27816 + 2.21384i −0.0502497 + 0.0870350i −0.890056 0.455851i \(-0.849335\pi\)
0.839807 + 0.542886i \(0.182668\pi\)
\(648\) 0 0
\(649\) 5.14400 + 8.90966i 0.201920 + 0.349735i
\(650\) 0 0
\(651\) −2.06506 12.2552i −0.0809360 0.480320i
\(652\) 0 0
\(653\) −14.9883 + 25.9605i −0.586538 + 1.01591i 0.408144 + 0.912918i \(0.366176\pi\)
−0.994682 + 0.102996i \(0.967157\pi\)
\(654\) 0 0
\(655\) −2.52290 4.36979i −0.0985779 0.170742i
\(656\) 0 0
\(657\) 44.2304 19.0521i 1.72559 0.743294i
\(658\) 0 0
\(659\) 7.63162 13.2183i 0.297286 0.514914i −0.678228 0.734851i \(-0.737252\pi\)
0.975514 + 0.219937i \(0.0705853\pi\)
\(660\) 0 0
\(661\) −27.2522 −1.05999 −0.529994 0.848001i \(-0.677806\pi\)
−0.529994 + 0.848001i \(0.677806\pi\)
\(662\) 0 0
\(663\) −42.7032 14.1625i −1.65845 0.550026i
\(664\) 0 0
\(665\) 13.9654 + 26.3618i 0.541555 + 1.02227i
\(666\) 0 0
\(667\) −1.24288 2.15273i −0.0481245 0.0833541i
\(668\) 0 0
\(669\) −8.19530 + 7.28941i −0.316849 + 0.281825i
\(670\) 0 0
\(671\) 3.55563 + 6.15854i 0.137264 + 0.237748i
\(672\) 0 0
\(673\) 23.2280 40.2320i 0.895372 1.55083i 0.0620280 0.998074i \(-0.480243\pi\)
0.833344 0.552755i \(-0.186423\pi\)
\(674\) 0 0
\(675\) −5.44870 + 11.6612i −0.209721 + 0.448841i
\(676\) 0 0
\(677\) 5.09888 0.195966 0.0979830 0.995188i \(-0.468761\pi\)
0.0979830 + 0.995188i \(0.468761\pi\)
\(678\) 0 0
\(679\) −3.76509 0.137215i −0.144491 0.00526582i
\(680\) 0 0
\(681\) −8.15383 39.5405i −0.312455 1.51519i
\(682\) 0 0
\(683\) 7.77197 13.4614i 0.297386 0.515088i −0.678151 0.734923i \(-0.737218\pi\)
0.975537 + 0.219835i \(0.0705518\pi\)
\(684\) 0 0
\(685\) −33.7738 −1.29043
\(686\) 0 0
\(687\) 6.41164 5.70291i 0.244619 0.217580i
\(688\) 0 0
\(689\) 23.5192 0.896009
\(690\) 0 0
\(691\) −23.2967 −0.886246 −0.443123 0.896461i \(-0.646130\pi\)
−0.443123 + 0.896461i \(0.646130\pi\)
\(692\) 0 0
\(693\) −11.7527 + 4.56251i −0.446449 + 0.173315i
\(694\) 0 0
\(695\) 20.7330 0.786449
\(696\) 0 0
\(697\) −31.7280 −1.20178
\(698\) 0 0
\(699\) −4.99381 24.2165i −0.188883 0.915954i
\(700\) 0 0
\(701\) −45.6464 −1.72404 −0.862020 0.506874i \(-0.830801\pi\)
−0.862020 + 0.506874i \(0.830801\pi\)
\(702\) 0 0
\(703\) −3.54944 + 6.14781i −0.133870 + 0.231869i
\(704\) 0 0
\(705\) 5.48074 4.87492i 0.206417 0.183600i
\(706\) 0 0
\(707\) −16.9123 + 26.9740i −0.636053 + 1.01446i
\(708\) 0 0
\(709\) 18.0014 0.676056 0.338028 0.941136i \(-0.390240\pi\)
0.338028 + 0.941136i \(0.390240\pi\)
\(710\) 0 0
\(711\) −20.1742 15.0353i −0.756591 0.563867i
\(712\) 0 0
\(713\) 0.407305 0.705474i 0.0152537 0.0264202i
\(714\) 0 0
\(715\) 6.06870 + 10.5113i 0.226957 + 0.393100i
\(716\) 0 0
\(717\) −1.74041 8.43979i −0.0649968 0.315190i
\(718\) 0 0
\(719\) −18.4389 31.9371i −0.687654 1.19105i −0.972595 0.232506i \(-0.925307\pi\)
0.284941 0.958545i \(-0.408026\pi\)
\(720\) 0 0
\(721\) 16.1254 + 0.587674i 0.600542 + 0.0218861i
\(722\) 0 0
\(723\) 4.54758 + 22.0527i 0.169126 + 0.820147i
\(724\) 0 0
\(725\) 20.4995 0.761333
\(726\) 0 0
\(727\) −15.2429 + 26.4014i −0.565327 + 0.979175i 0.431692 + 0.902021i \(0.357917\pi\)
−0.997019 + 0.0771543i \(0.975417\pi\)
\(728\) 0 0
\(729\) −9.27375 + 25.3574i −0.343472 + 0.939163i
\(730\) 0 0
\(731\) 4.49814 + 7.79101i 0.166370 + 0.288161i
\(732\) 0 0
\(733\) −3.07530 + 5.32657i −0.113589 + 0.196741i −0.917215 0.398393i \(-0.869568\pi\)
0.803626 + 0.595135i \(0.202901\pi\)
\(734\) 0 0
\(735\) −2.50619 19.0941i −0.0924422 0.704297i
\(736\) 0 0
\(737\) −7.98398 13.8287i −0.294094 0.509385i
\(738\) 0 0
\(739\) 20.3912 35.3186i 0.750103 1.29922i −0.197670 0.980269i \(-0.563337\pi\)
0.947772 0.318947i \(-0.103329\pi\)
\(740\) 0 0
\(741\) −44.1989 + 39.3132i −1.62369 + 1.44421i
\(742\) 0 0
\(743\) −7.25271 12.5621i −0.266076 0.460858i 0.701769 0.712405i \(-0.252394\pi\)
−0.967845 + 0.251547i \(0.919061\pi\)
\(744\) 0 0
\(745\) −4.13671 7.16500i −0.151557 0.262505i
\(746\) 0 0
\(747\) −6.51849 + 2.80782i −0.238499 + 0.102733i
\(748\) 0 0
\(749\) 4.33792 6.91867i 0.158504 0.252803i
\(750\) 0 0
\(751\) 2.09455 3.62787i 0.0764314 0.132383i −0.825276 0.564729i \(-0.808981\pi\)
0.901708 + 0.432346i \(0.142314\pi\)
\(752\) 0 0
\(753\) −3.99931 1.32637i −0.145743 0.0483356i
\(754\) 0 0
\(755\) 0.830556 0.0302270
\(756\) 0 0
\(757\) 2.38688 0.0867525 0.0433763 0.999059i \(-0.486189\pi\)
0.0433763 + 0.999059i \(0.486189\pi\)
\(758\) 0 0
\(759\) −0.784350 0.260130i −0.0284701 0.00944211i
\(760\) 0 0
\(761\) −1.81708 + 3.14728i −0.0658692 + 0.114089i −0.897079 0.441870i \(-0.854315\pi\)
0.831210 + 0.555959i \(0.187649\pi\)
\(762\) 0 0
\(763\) −6.04944 0.220465i −0.219005 0.00798138i
\(764\) 0 0
\(765\) 3.00000 25.5524i 0.108465 0.923851i
\(766\) 0 0
\(767\) −15.5803 26.9859i −0.562573 0.974404i
\(768\) 0 0
\(769\) −19.9672 34.5842i −0.720035 1.24714i −0.960985 0.276600i \(-0.910792\pi\)
0.240950 0.970538i \(-0.422541\pi\)
\(770\) 0 0
\(771\) 1.27816 1.13688i 0.0460318 0.0409436i
\(772\) 0 0
\(773\) 18.0698 31.2978i 0.649925 1.12570i −0.333215 0.942851i \(-0.608133\pi\)
0.983140 0.182853i \(-0.0585332\pi\)
\(774\) 0 0
\(775\) 3.35896 + 5.81788i 0.120657 + 0.208985i
\(776\) 0 0
\(777\) 3.53273 2.91887i 0.126736 0.104714i
\(778\) 0 0
\(779\) −20.8578 + 36.1267i −0.747308 + 1.29438i
\(780\) 0 0
\(781\) 10.1025 + 17.4981i 0.361497 + 0.626131i
\(782\) 0 0
\(783\) 42.8406 3.71470i 1.53100 0.132753i
\(784\) 0 0
\(785\) −7.03961 + 12.1930i −0.251254 + 0.435186i
\(786\) 0 0
\(787\) 44.6377 1.59116 0.795582 0.605846i \(-0.207165\pi\)
0.795582 + 0.605846i \(0.207165\pi\)
\(788\) 0 0
\(789\) 6.01169 + 29.1526i 0.214022 + 1.03786i
\(790\) 0 0
\(791\) −27.3566 + 43.6319i −0.972689 + 1.55137i
\(792\) 0 0
\(793\) −10.7694 18.6532i −0.382433 0.662394i
\(794\) 0 0
\(795\) 2.71634 + 13.1724i 0.0963386 + 0.467176i
\(796\) 0 0
\(797\) 26.2836 + 45.5245i 0.931012 + 1.61256i 0.781595 + 0.623786i \(0.214407\pi\)
0.149418 + 0.988774i \(0.452260\pi\)
\(798\) 0 0
\(799\) 7.19777 12.4669i 0.254639 0.441047i
\(800\) 0 0
\(801\) −1.12296 + 9.56475i −0.0396777 + 0.337954i
\(802\) 0 0
\(803\) −25.4981 −0.899810
\(804\) 0 0
\(805\) 0.670538 1.06946i 0.0236334 0.0376936i
\(806\) 0 0
\(807\) 29.6428 26.3662i 1.04348 0.928134i
\(808\) 0 0
\(809\) 7.40290 12.8222i 0.260272 0.450804i −0.706042 0.708170i \(-0.749521\pi\)
0.966314 + 0.257365i \(0.0828544\pi\)
\(810\) 0 0
\(811\) −27.0704 −0.950571 −0.475285 0.879832i \(-0.657655\pi\)
−0.475285 + 0.879832i \(0.657655\pi\)
\(812\) 0 0
\(813\) −4.89995 23.7614i −0.171849 0.833348i
\(814\) 0 0
\(815\) 34.8850 1.22197
\(816\) 0 0
\(817\) 11.8282 0.413817
\(818\) 0 0
\(819\) 35.5970 13.8191i 1.24386 0.482878i
\(820\) 0 0
\(821\) 43.8182 1.52926 0.764632 0.644467i \(-0.222921\pi\)
0.764632 + 0.644467i \(0.222921\pi\)
\(822\) 0 0
\(823\) −31.3425 −1.09253 −0.546265 0.837613i \(-0.683951\pi\)
−0.546265 + 0.837613i \(0.683951\pi\)
\(824\) 0 0
\(825\) 5.09201 4.52915i 0.177281 0.157685i
\(826\) 0 0
\(827\) 14.7665 0.513480 0.256740 0.966480i \(-0.417352\pi\)
0.256740 + 0.966480i \(0.417352\pi\)
\(828\) 0 0
\(829\) −15.0036 + 25.9871i −0.521098 + 0.902568i 0.478601 + 0.878033i \(0.341144\pi\)
−0.999699 + 0.0245357i \(0.992189\pi\)
\(830\) 0 0
\(831\) −9.89809 47.9989i −0.343361 1.66506i
\(832\) 0 0
\(833\) −16.4647 34.0200i −0.570469 1.17872i
\(834\) 0 0
\(835\) 5.24219 0.181414
\(836\) 0 0
\(837\) 8.07392 + 11.5497i 0.279075 + 0.399217i
\(838\) 0 0
\(839\) −18.0167 + 31.2059i −0.622006 + 1.07735i 0.367106 + 0.930179i \(0.380349\pi\)
−0.989112 + 0.147167i \(0.952985\pi\)
\(840\) 0 0
\(841\) −19.7429 34.1957i −0.680789 1.17916i
\(842\) 0 0
\(843\) −22.7720 + 20.2548i −0.784308 + 0.697613i
\(844\) 0 0
\(845\) −8.05673 13.9547i −0.277160 0.480055i
\(846\) 0 0
\(847\) −22.4134 0.816833i −0.770134 0.0280667i
\(848\) 0 0
\(849\) 30.4516 + 10.0993i 1.04510 + 0.346606i
\(850\) 0 0
\(851\) 0.300372 0.0102966
\(852\) 0 0
\(853\) −12.2658 + 21.2450i −0.419972 + 0.727413i −0.995936 0.0900617i \(-0.971294\pi\)
0.575964 + 0.817475i \(0.304627\pi\)
\(854\) 0 0
\(855\) −27.1229 20.2140i −0.927583 0.691303i
\(856\) 0 0
\(857\) −14.5240 25.1563i −0.496130 0.859323i 0.503860 0.863785i \(-0.331913\pi\)
−0.999990 + 0.00446273i \(0.998579\pi\)
\(858\) 0 0
\(859\) 12.6476 21.9064i 0.431532 0.747435i −0.565474 0.824766i \(-0.691307\pi\)
0.997005 + 0.0773313i \(0.0246399\pi\)
\(860\) 0 0
\(861\) 20.7596 17.1523i 0.707485 0.584550i
\(862\) 0 0
\(863\) 1.34981 + 2.33795i 0.0459482 + 0.0795846i 0.888085 0.459680i \(-0.152036\pi\)
−0.842137 + 0.539264i \(0.818702\pi\)
\(864\) 0 0
\(865\) −15.1749 + 26.2836i −0.515961 + 0.893671i
\(866\) 0 0
\(867\) −4.25093 20.6141i −0.144369 0.700091i
\(868\) 0 0
\(869\) 6.66071 + 11.5367i 0.225949 + 0.391355i
\(870\) 0 0
\(871\) 24.1822 + 41.8847i 0.819381 + 1.41921i
\(872\) 0 0
\(873\) 3.92353 1.69005i 0.132792 0.0571995i
\(874\) 0 0
\(875\) 14.7095 + 27.7663i 0.497271 + 0.938672i
\(876\) 0 0
\(877\) 5.54580 9.60561i 0.187268 0.324358i −0.757070 0.653334i \(-0.773370\pi\)
0.944339 + 0.328975i \(0.106703\pi\)
\(878\) 0 0
\(879\) −4.92718 23.8934i −0.166190 0.805905i
\(880\) 0 0
\(881\) −40.3942 −1.36091 −0.680457 0.732788i \(-0.738219\pi\)
−0.680457 + 0.732788i \(0.738219\pi\)
\(882\) 0 0
\(883\) 33.2581 1.11923 0.559613 0.828754i \(-0.310950\pi\)
0.559613 + 0.828754i \(0.310950\pi\)
\(884\) 0 0
\(885\) 13.3145 11.8428i 0.447563 0.398091i
\(886\) 0 0
\(887\) 20.2836 35.1322i 0.681056 1.17962i −0.293603 0.955928i \(-0.594854\pi\)
0.974659 0.223696i \(-0.0718124\pi\)
\(888\) 0 0
\(889\) −16.6461 31.4219i −0.558291 1.05386i
\(890\) 0 0
\(891\) 9.82072 10.3879i 0.329007 0.348007i
\(892\) 0 0
\(893\) −9.46355 16.3913i −0.316686 0.548516i
\(894\) 0 0
\(895\) 12.7658 + 22.1110i 0.426713 + 0.739089i
\(896\) 0 0
\(897\) 2.37567 + 0.787890i 0.0793212 + 0.0263069i
\(898\) 0 0
\(899\) 11.2218 19.4367i 0.374267 0.648249i
\(900\) 0 0
\(901\) 13.1978 + 22.8592i 0.439681 + 0.761551i
\(902\) 0 0
\(903\) −7.15500 2.66593i −0.238103 0.0887167i
\(904\) 0 0
\(905\) −6.39561 + 11.0775i −0.212597 + 0.368230i
\(906\) 0 0
\(907\) 15.0567 + 26.0790i 0.499950 + 0.865939i 1.00000 5.72941e-5i \(-1.82373e-5\pi\)
−0.500050 + 0.865997i \(0.666685\pi\)
\(908\) 0 0
\(909\) 4.20946 35.8540i 0.139619 1.18920i
\(910\) 0 0
\(911\) −14.6113 + 25.3075i −0.484093 + 0.838473i −0.999833 0.0182717i \(-0.994184\pi\)
0.515740 + 0.856745i \(0.327517\pi\)
\(912\) 0 0
\(913\) 3.75781 0.124365
\(914\) 0 0
\(915\) 9.20327 8.18597i 0.304251 0.270620i
\(916\) 0 0
\(917\) 8.39926 + 0.306102i 0.277368 + 0.0101084i
\(918\) 0 0
\(919\) 5.52359 + 9.56714i 0.182206 + 0.315591i 0.942632 0.333835i \(-0.108343\pi\)
−0.760425 + 0.649426i \(0.775009\pi\)
\(920\) 0 0
\(921\) 9.62612 + 3.19250i 0.317191 + 0.105196i
\(922\) 0 0
\(923\) −30.5989 52.9988i −1.00717 1.74448i
\(924\) 0 0
\(925\) −1.23855 + 2.14523i −0.0407233 + 0.0705348i
\(926\) 0 0
\(927\) −16.8040 + 7.23828i −0.551916 + 0.237736i
\(928\) 0 0
\(929\) −42.3338 −1.38893 −0.694463 0.719528i \(-0.744358\pi\)
−0.694463 + 0.719528i \(0.744358\pi\)
\(930\) 0 0
\(931\) −49.5604 3.61715i −1.62428 0.118547i
\(932\) 0 0
\(933\) −1.33310 0.442124i −0.0436439 0.0144745i
\(934\) 0 0
\(935\) −6.81089 + 11.7968i −0.222740 + 0.385797i
\(936\) 0 0
\(937\) −11.7651 −0.384349 −0.192174 0.981361i \(-0.561554\pi\)
−0.192174 + 0.981361i \(0.561554\pi\)
\(938\) 0 0
\(939\) 17.3869 + 5.76636i 0.567399 + 0.188178i
\(940\) 0 0
\(941\) 14.5760 0.475164 0.237582 0.971368i \(-0.423645\pi\)
0.237582 + 0.971368i \(0.423645\pi\)
\(942\) 0 0
\(943\) 1.76509 0.0574793
\(944\) 0 0
\(945\) 11.8509 + 18.3408i 0.385510 + 0.596626i
\(946\) 0 0
\(947\) −6.24357 −0.202889 −0.101444 0.994841i \(-0.532346\pi\)
−0.101444 + 0.994841i \(0.532346\pi\)
\(948\) 0 0
\(949\) 77.2297 2.50698
\(950\) 0 0
\(951\) 20.0508 + 6.64985i 0.650192 + 0.215636i
\(952\) 0 0
\(953\) 28.0173 0.907570 0.453785 0.891111i \(-0.350073\pi\)
0.453785 + 0.891111i \(0.350073\pi\)
\(954\) 0 0
\(955\) −19.0309 + 32.9624i −0.615825 + 1.06664i
\(956\) 0 0
\(957\) −21.6098 7.16689i −0.698546 0.231673i
\(958\) 0 0
\(959\) 29.8843 47.6634i 0.965015 1.53913i
\(960\) 0 0
\(961\) −23.6450 −0.762742
\(962\) 0 0
\(963\) −1.07970 + 9.19635i −0.0347929 + 0.296348i
\(964\) 0 0
\(965\) −7.75526 + 13.4325i −0.249651 + 0.432408i
\(966\) 0 0
\(967\) −15.7837 27.3381i −0.507568 0.879134i −0.999962 0.00876132i \(-0.997211\pi\)
0.492393 0.870373i \(-0.336122\pi\)
\(968\) 0 0
\(969\) −63.0122 20.8980i −2.02424 0.671340i
\(970\) 0 0
\(971\) −2.82141 4.88683i −0.0905434 0.156826i 0.817196 0.576359i \(-0.195527\pi\)
−0.907740 + 0.419533i \(0.862194\pi\)
\(972\) 0 0
\(973\) −18.3454 + 29.2596i −0.588127 + 0.938021i
\(974\) 0 0
\(975\) −15.4228 + 13.7180i −0.493926 + 0.439329i
\(976\) 0 0
\(977\) 6.49304 0.207731 0.103865 0.994591i \(-0.466879\pi\)
0.103865 + 0.994591i \(0.466879\pi\)
\(978\) 0 0
\(979\) 2.54944 4.41576i 0.0814805 0.141128i
\(980\) 0 0
\(981\) 6.30401 2.71543i 0.201272 0.0866971i
\(982\) 0 0
\(983\) −15.1531 26.2460i −0.483310 0.837118i 0.516506 0.856283i \(-0.327232\pi\)
−0.999816 + 0.0191658i \(0.993899\pi\)
\(984\) 0 0
\(985\) 14.4887 25.0952i 0.461649 0.799599i
\(986\) 0 0
\(987\) 2.03018 + 12.0482i 0.0646215 + 0.383500i
\(988\) 0 0
\(989\) −0.250241 0.433430i −0.00795720 0.0137823i
\(990\) 0 0
\(991\) −11.1669 + 19.3416i −0.354728 + 0.614407i −0.987071 0.160281i \(-0.948760\pi\)
0.632343 + 0.774688i \(0.282093\pi\)
\(992\) 0 0
\(993\) 25.7552 + 8.54170i 0.817316 + 0.271063i
\(994\) 0 0
\(995\) −14.3738 24.8962i −0.455680 0.789262i
\(996\) 0 0
\(997\) 4.38255 + 7.59079i 0.138797 + 0.240403i 0.927041 0.374959i \(-0.122343\pi\)
−0.788245 + 0.615362i \(0.789010\pi\)
\(998\) 0 0
\(999\) −2.19963 + 4.70761i −0.0695932 + 0.148942i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.q.g.529.3 6
3.2 odd 2 3024.2.q.g.2881.3 6
4.3 odd 2 126.2.e.c.25.1 6
7.2 even 3 1008.2.t.h.961.1 6
9.4 even 3 1008.2.t.h.193.1 6
9.5 odd 6 3024.2.t.h.1873.1 6
12.11 even 2 378.2.e.d.235.3 6
21.2 odd 6 3024.2.t.h.289.1 6
28.3 even 6 882.2.f.o.295.1 6
28.11 odd 6 882.2.f.n.295.3 6
28.19 even 6 882.2.h.p.79.1 6
28.23 odd 6 126.2.h.d.79.3 yes 6
28.27 even 2 882.2.e.o.655.3 6
36.7 odd 6 1134.2.g.m.487.1 6
36.11 even 6 1134.2.g.l.487.3 6
36.23 even 6 378.2.h.c.361.1 6
36.31 odd 6 126.2.h.d.67.3 yes 6
63.23 odd 6 3024.2.q.g.2305.3 6
63.58 even 3 inner 1008.2.q.g.625.3 6
84.11 even 6 2646.2.f.l.883.3 6
84.23 even 6 378.2.h.c.289.1 6
84.47 odd 6 2646.2.h.o.667.3 6
84.59 odd 6 2646.2.f.m.883.1 6
84.83 odd 2 2646.2.e.p.2125.1 6
252.11 even 6 7938.2.a.ca.1.1 3
252.23 even 6 378.2.e.d.37.3 6
252.31 even 6 882.2.f.o.589.1 6
252.59 odd 6 2646.2.f.m.1765.1 6
252.67 odd 6 882.2.f.n.589.3 6
252.79 odd 6 1134.2.g.m.163.1 6
252.95 even 6 2646.2.f.l.1765.3 6
252.103 even 6 882.2.e.o.373.3 6
252.115 even 6 7938.2.a.bw.1.1 3
252.131 odd 6 2646.2.e.p.1549.1 6
252.139 even 6 882.2.h.p.67.1 6
252.151 odd 6 7938.2.a.bv.1.3 3
252.167 odd 6 2646.2.h.o.361.3 6
252.191 even 6 1134.2.g.l.163.3 6
252.227 odd 6 7938.2.a.bz.1.3 3
252.247 odd 6 126.2.e.c.121.1 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.e.c.25.1 6 4.3 odd 2
126.2.e.c.121.1 yes 6 252.247 odd 6
126.2.h.d.67.3 yes 6 36.31 odd 6
126.2.h.d.79.3 yes 6 28.23 odd 6
378.2.e.d.37.3 6 252.23 even 6
378.2.e.d.235.3 6 12.11 even 2
378.2.h.c.289.1 6 84.23 even 6
378.2.h.c.361.1 6 36.23 even 6
882.2.e.o.373.3 6 252.103 even 6
882.2.e.o.655.3 6 28.27 even 2
882.2.f.n.295.3 6 28.11 odd 6
882.2.f.n.589.3 6 252.67 odd 6
882.2.f.o.295.1 6 28.3 even 6
882.2.f.o.589.1 6 252.31 even 6
882.2.h.p.67.1 6 252.139 even 6
882.2.h.p.79.1 6 28.19 even 6
1008.2.q.g.529.3 6 1.1 even 1 trivial
1008.2.q.g.625.3 6 63.58 even 3 inner
1008.2.t.h.193.1 6 9.4 even 3
1008.2.t.h.961.1 6 7.2 even 3
1134.2.g.l.163.3 6 252.191 even 6
1134.2.g.l.487.3 6 36.11 even 6
1134.2.g.m.163.1 6 252.79 odd 6
1134.2.g.m.487.1 6 36.7 odd 6
2646.2.e.p.1549.1 6 252.131 odd 6
2646.2.e.p.2125.1 6 84.83 odd 2
2646.2.f.l.883.3 6 84.11 even 6
2646.2.f.l.1765.3 6 252.95 even 6
2646.2.f.m.883.1 6 84.59 odd 6
2646.2.f.m.1765.1 6 252.59 odd 6
2646.2.h.o.361.3 6 252.167 odd 6
2646.2.h.o.667.3 6 84.47 odd 6
3024.2.q.g.2305.3 6 63.23 odd 6
3024.2.q.g.2881.3 6 3.2 odd 2
3024.2.t.h.289.1 6 21.2 odd 6
3024.2.t.h.1873.1 6 9.5 odd 6
7938.2.a.bv.1.3 3 252.151 odd 6
7938.2.a.bw.1.1 3 252.115 even 6
7938.2.a.bz.1.3 3 252.227 odd 6
7938.2.a.ca.1.1 3 252.11 even 6