Properties

Label 2646.2.h.o.361.3
Level $2646$
Weight $2$
Character 2646.361
Analytic conductor $21.128$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2646,2,Mod(361,2646)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2646, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2646.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.3
Root \(0.500000 + 0.224437i\) of defining polynomial
Character \(\chi\) \(=\) 2646.361
Dual form 2646.2.h.o.667.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +1.58836 q^{5} +1.00000 q^{8} +(-0.794182 + 1.37556i) q^{10} +1.58836 q^{11} +(-2.40545 + 4.16635i) q^{13} +(-0.500000 + 0.866025i) q^{16} +(-2.69963 + 4.67589i) q^{17} +(3.54944 + 6.14781i) q^{19} +(-0.794182 - 1.37556i) q^{20} +(-0.794182 + 1.37556i) q^{22} -0.300372 q^{23} -2.47710 q^{25} +(-2.40545 - 4.16635i) q^{26} +(-4.13781 - 7.16689i) q^{29} +(-1.35600 - 2.34867i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(-2.69963 - 4.67589i) q^{34} +(0.500000 + 0.866025i) q^{37} -7.09888 q^{38} +1.58836 q^{40} +(2.93818 - 5.08907i) q^{41} +(-0.833104 - 1.44298i) q^{43} +(-0.794182 - 1.37556i) q^{44} +(0.150186 - 0.260130i) q^{46} +(-1.33310 + 2.30900i) q^{47} +(1.23855 - 2.14523i) q^{50} +4.81089 q^{52} +(-2.44437 + 4.23377i) q^{53} +2.52290 q^{55} +8.27561 q^{58} +(-3.23855 - 5.60933i) q^{59} +(-2.23855 + 3.87728i) q^{61} +2.71201 q^{62} +1.00000 q^{64} +(-3.82072 + 6.61769i) q^{65} +(5.02654 + 8.70623i) q^{67} +5.39926 q^{68} -12.7207 q^{71} +(-8.02654 + 13.9024i) q^{73} -1.00000 q^{74} +(3.54944 - 6.14781i) q^{76} +(-4.19344 + 7.26325i) q^{79} +(-0.794182 + 1.37556i) q^{80} +(2.93818 + 5.08907i) q^{82} +(1.18292 + 2.04887i) q^{83} +(-4.28799 + 7.42702i) q^{85} +1.66621 q^{86} +1.58836 q^{88} +(1.60507 + 2.78007i) q^{89} +(0.150186 + 0.260130i) q^{92} +(-1.33310 - 2.30900i) q^{94} +(5.63781 + 9.76497i) q^{95} +(-0.712008 - 1.23323i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} - 3 q^{4} - 2 q^{5} + 6 q^{8} + q^{10} - 2 q^{11} - 8 q^{13} - 3 q^{16} - 4 q^{17} + 3 q^{19} + q^{20} + q^{22} - 14 q^{23} - 4 q^{25} - 8 q^{26} + 5 q^{29} - 20 q^{31} - 3 q^{32} - 4 q^{34}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 1.58836 0.710338 0.355169 0.934802i \(-0.384423\pi\)
0.355169 + 0.934802i \(0.384423\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −0.794182 + 1.37556i −0.251142 + 0.434991i
\(11\) 1.58836 0.478910 0.239455 0.970907i \(-0.423031\pi\)
0.239455 + 0.970907i \(0.423031\pi\)
\(12\) 0 0
\(13\) −2.40545 + 4.16635i −0.667151 + 1.15554i 0.311547 + 0.950231i \(0.399153\pi\)
−0.978697 + 0.205308i \(0.934180\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −2.69963 + 4.67589i −0.654756 + 1.13407i 0.327199 + 0.944955i \(0.393895\pi\)
−0.981955 + 0.189115i \(0.939438\pi\)
\(18\) 0 0
\(19\) 3.54944 + 6.14781i 0.814298 + 1.41041i 0.909831 + 0.414979i \(0.136211\pi\)
−0.0955331 + 0.995426i \(0.530456\pi\)
\(20\) −0.794182 1.37556i −0.177584 0.307585i
\(21\) 0 0
\(22\) −0.794182 + 1.37556i −0.169320 + 0.293271i
\(23\) −0.300372 −0.0626319 −0.0313159 0.999510i \(-0.509970\pi\)
−0.0313159 + 0.999510i \(0.509970\pi\)
\(24\) 0 0
\(25\) −2.47710 −0.495420
\(26\) −2.40545 4.16635i −0.471747 0.817089i
\(27\) 0 0
\(28\) 0 0
\(29\) −4.13781 7.16689i −0.768371 1.33086i −0.938446 0.345427i \(-0.887734\pi\)
0.170074 0.985431i \(-0.445599\pi\)
\(30\) 0 0
\(31\) −1.35600 2.34867i −0.243545 0.421833i 0.718176 0.695861i \(-0.244977\pi\)
−0.961722 + 0.274028i \(0.911644\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 0 0
\(34\) −2.69963 4.67589i −0.462982 0.801909i
\(35\) 0 0
\(36\) 0 0
\(37\) 0.500000 + 0.866025i 0.0821995 + 0.142374i 0.904194 0.427121i \(-0.140472\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) −7.09888 −1.15159
\(39\) 0 0
\(40\) 1.58836 0.251142
\(41\) 2.93818 5.08907i 0.458866 0.794780i −0.540035 0.841643i \(-0.681589\pi\)
0.998901 + 0.0468628i \(0.0149223\pi\)
\(42\) 0 0
\(43\) −0.833104 1.44298i −0.127047 0.220052i 0.795484 0.605974i \(-0.207217\pi\)
−0.922531 + 0.385922i \(0.873883\pi\)
\(44\) −0.794182 1.37556i −0.119727 0.207374i
\(45\) 0 0
\(46\) 0.150186 0.260130i 0.0221437 0.0383540i
\(47\) −1.33310 + 2.30900i −0.194453 + 0.336803i −0.946721 0.322055i \(-0.895627\pi\)
0.752268 + 0.658857i \(0.228960\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 1.23855 2.14523i 0.175157 0.303382i
\(51\) 0 0
\(52\) 4.81089 0.667151
\(53\) −2.44437 + 4.23377i −0.335760 + 0.581553i −0.983630 0.180197i \(-0.942326\pi\)
0.647871 + 0.761750i \(0.275660\pi\)
\(54\) 0 0
\(55\) 2.52290 0.340188
\(56\) 0 0
\(57\) 0 0
\(58\) 8.27561 1.08664
\(59\) −3.23855 5.60933i −0.421623 0.730273i 0.574475 0.818522i \(-0.305206\pi\)
−0.996098 + 0.0882491i \(0.971873\pi\)
\(60\) 0 0
\(61\) −2.23855 + 3.87728i −0.286617 + 0.496435i −0.973000 0.230805i \(-0.925864\pi\)
0.686383 + 0.727240i \(0.259197\pi\)
\(62\) 2.71201 0.344425
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −3.82072 + 6.61769i −0.473902 + 0.820823i
\(66\) 0 0
\(67\) 5.02654 + 8.70623i 0.614090 + 1.06363i 0.990543 + 0.137199i \(0.0438101\pi\)
−0.376454 + 0.926435i \(0.622857\pi\)
\(68\) 5.39926 0.654756
\(69\) 0 0
\(70\) 0 0
\(71\) −12.7207 −1.50967 −0.754833 0.655917i \(-0.772282\pi\)
−0.754833 + 0.655917i \(0.772282\pi\)
\(72\) 0 0
\(73\) −8.02654 + 13.9024i −0.939436 + 1.62715i −0.172909 + 0.984938i \(0.555317\pi\)
−0.766527 + 0.642213i \(0.778017\pi\)
\(74\) −1.00000 −0.116248
\(75\) 0 0
\(76\) 3.54944 6.14781i 0.407149 0.705203i
\(77\) 0 0
\(78\) 0 0
\(79\) −4.19344 + 7.26325i −0.471799 + 0.817179i −0.999479 0.0322635i \(-0.989728\pi\)
0.527681 + 0.849443i \(0.323062\pi\)
\(80\) −0.794182 + 1.37556i −0.0887922 + 0.153793i
\(81\) 0 0
\(82\) 2.93818 + 5.08907i 0.324467 + 0.561994i
\(83\) 1.18292 + 2.04887i 0.129842 + 0.224893i 0.923615 0.383321i \(-0.125220\pi\)
−0.793773 + 0.608214i \(0.791886\pi\)
\(84\) 0 0
\(85\) −4.28799 + 7.42702i −0.465098 + 0.805573i
\(86\) 1.66621 0.179672
\(87\) 0 0
\(88\) 1.58836 0.169320
\(89\) 1.60507 + 2.78007i 0.170138 + 0.294687i 0.938468 0.345367i \(-0.112245\pi\)
−0.768330 + 0.640054i \(0.778912\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0.150186 + 0.260130i 0.0156580 + 0.0271204i
\(93\) 0 0
\(94\) −1.33310 2.30900i −0.137499 0.238156i
\(95\) 5.63781 + 9.76497i 0.578427 + 1.00186i
\(96\) 0 0
\(97\) −0.712008 1.23323i −0.0722934 0.125216i 0.827613 0.561300i \(-0.189698\pi\)
−0.899906 + 0.436084i \(0.856365\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 1.23855 + 2.14523i 0.123855 + 0.214523i
\(101\) 12.0334 1.19737 0.598685 0.800985i \(-0.295690\pi\)
0.598685 + 0.800985i \(0.295690\pi\)
\(102\) 0 0
\(103\) 6.09888 0.600941 0.300470 0.953791i \(-0.402856\pi\)
0.300470 + 0.953791i \(0.402856\pi\)
\(104\) −2.40545 + 4.16635i −0.235873 + 0.408545i
\(105\) 0 0
\(106\) −2.44437 4.23377i −0.237418 0.411220i
\(107\) 1.54325 + 2.67299i 0.149192 + 0.258408i 0.930929 0.365200i \(-0.118999\pi\)
−0.781737 + 0.623608i \(0.785666\pi\)
\(108\) 0 0
\(109\) 1.14400 1.98146i 0.109575 0.189789i −0.806023 0.591884i \(-0.798384\pi\)
0.915598 + 0.402095i \(0.131718\pi\)
\(110\) −1.26145 + 2.18490i −0.120275 + 0.208322i
\(111\) 0 0
\(112\) 0 0
\(113\) 9.73236 16.8569i 0.915543 1.58577i 0.109440 0.993993i \(-0.465094\pi\)
0.806104 0.591774i \(-0.201572\pi\)
\(114\) 0 0
\(115\) −0.477100 −0.0444898
\(116\) −4.13781 + 7.16689i −0.384186 + 0.665429i
\(117\) 0 0
\(118\) 6.47710 0.596265
\(119\) 0 0
\(120\) 0 0
\(121\) −8.47710 −0.770645
\(122\) −2.23855 3.87728i −0.202669 0.351033i
\(123\) 0 0
\(124\) −1.35600 + 2.34867i −0.121773 + 0.210917i
\(125\) −11.8764 −1.06225
\(126\) 0 0
\(127\) −13.4400 −1.19260 −0.596302 0.802760i \(-0.703364\pi\)
−0.596302 + 0.802760i \(0.703364\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −3.82072 6.61769i −0.335100 0.580410i
\(131\) −3.17673 −0.277552 −0.138776 0.990324i \(-0.544317\pi\)
−0.138776 + 0.990324i \(0.544317\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −10.0531 −0.868454
\(135\) 0 0
\(136\) −2.69963 + 4.67589i −0.231491 + 0.400955i
\(137\) 21.2632 1.81664 0.908320 0.418275i \(-0.137365\pi\)
0.908320 + 0.418275i \(0.137365\pi\)
\(138\) 0 0
\(139\) −6.52654 + 11.3043i −0.553574 + 0.958818i 0.444439 + 0.895809i \(0.353403\pi\)
−0.998013 + 0.0630092i \(0.979930\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 6.36033 11.0164i 0.533747 0.924478i
\(143\) −3.82072 + 6.61769i −0.319505 + 0.553399i
\(144\) 0 0
\(145\) −6.57234 11.3836i −0.545803 0.945359i
\(146\) −8.02654 13.9024i −0.664281 1.15057i
\(147\) 0 0
\(148\) 0.500000 0.866025i 0.0410997 0.0711868i
\(149\) −5.20877 −0.426719 −0.213360 0.976974i \(-0.568441\pi\)
−0.213360 + 0.976974i \(0.568441\pi\)
\(150\) 0 0
\(151\) −0.522900 −0.0425530 −0.0212765 0.999774i \(-0.506773\pi\)
−0.0212765 + 0.999774i \(0.506773\pi\)
\(152\) 3.54944 + 6.14781i 0.287898 + 0.498654i
\(153\) 0 0
\(154\) 0 0
\(155\) −2.15383 3.73054i −0.173000 0.299644i
\(156\) 0 0
\(157\) 4.43199 + 7.67643i 0.353711 + 0.612646i 0.986897 0.161354i \(-0.0515862\pi\)
−0.633185 + 0.774000i \(0.718253\pi\)
\(158\) −4.19344 7.26325i −0.333612 0.577833i
\(159\) 0 0
\(160\) −0.794182 1.37556i −0.0627856 0.108748i
\(161\) 0 0
\(162\) 0 0
\(163\) 10.9814 + 19.0204i 0.860132 + 1.48979i 0.871801 + 0.489860i \(0.162952\pi\)
−0.0116689 + 0.999932i \(0.503714\pi\)
\(164\) −5.87636 −0.458866
\(165\) 0 0
\(166\) −2.36584 −0.183624
\(167\) 1.65019 2.85821i 0.127695 0.221175i −0.795088 0.606494i \(-0.792575\pi\)
0.922783 + 0.385319i \(0.125909\pi\)
\(168\) 0 0
\(169\) −5.07234 8.78555i −0.390180 0.675812i
\(170\) −4.28799 7.42702i −0.328874 0.569626i
\(171\) 0 0
\(172\) −0.833104 + 1.44298i −0.0635236 + 0.110026i
\(173\) −9.55377 + 16.5476i −0.726360 + 1.25809i 0.232052 + 0.972703i \(0.425456\pi\)
−0.958412 + 0.285389i \(0.907877\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −0.794182 + 1.37556i −0.0598637 + 0.103687i
\(177\) 0 0
\(178\) −3.21015 −0.240611
\(179\) 8.03706 13.9206i 0.600718 1.04047i −0.391994 0.919968i \(-0.628215\pi\)
0.992712 0.120507i \(-0.0384520\pi\)
\(180\) 0 0
\(181\) −8.05308 −0.598581 −0.299291 0.954162i \(-0.596750\pi\)
−0.299291 + 0.954162i \(0.596750\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −0.300372 −0.0221437
\(185\) 0.794182 + 1.37556i 0.0583894 + 0.101133i
\(186\) 0 0
\(187\) −4.28799 + 7.42702i −0.313569 + 0.543118i
\(188\) 2.66621 0.194453
\(189\) 0 0
\(190\) −11.2756 −0.818019
\(191\) −11.9814 + 20.7524i −0.866946 + 1.50159i −0.00184390 + 0.999998i \(0.500587\pi\)
−0.865102 + 0.501596i \(0.832746\pi\)
\(192\) 0 0
\(193\) −4.88255 8.45682i −0.351453 0.608735i 0.635051 0.772470i \(-0.280979\pi\)
−0.986504 + 0.163735i \(0.947646\pi\)
\(194\) 1.42402 0.102238
\(195\) 0 0
\(196\) 0 0
\(197\) 18.2436 1.29980 0.649900 0.760020i \(-0.274811\pi\)
0.649900 + 0.760020i \(0.274811\pi\)
\(198\) 0 0
\(199\) −9.04944 + 15.6741i −0.641498 + 1.11111i 0.343601 + 0.939116i \(0.388353\pi\)
−0.985098 + 0.171991i \(0.944980\pi\)
\(200\) −2.47710 −0.175157
\(201\) 0 0
\(202\) −6.01671 + 10.4212i −0.423334 + 0.733236i
\(203\) 0 0
\(204\) 0 0
\(205\) 4.66690 8.08330i 0.325950 0.564562i
\(206\) −3.04944 + 5.28179i −0.212465 + 0.368000i
\(207\) 0 0
\(208\) −2.40545 4.16635i −0.166788 0.288885i
\(209\) 5.63781 + 9.76497i 0.389975 + 0.675457i
\(210\) 0 0
\(211\) 0.166208 0.287880i 0.0114422 0.0198185i −0.860248 0.509877i \(-0.829691\pi\)
0.871690 + 0.490058i \(0.163024\pi\)
\(212\) 4.88874 0.335760
\(213\) 0 0
\(214\) −3.08650 −0.210989
\(215\) −1.32327 2.29197i −0.0902464 0.156311i
\(216\) 0 0
\(217\) 0 0
\(218\) 1.14400 + 1.98146i 0.0774812 + 0.134201i
\(219\) 0 0
\(220\) −1.26145 2.18490i −0.0850469 0.147306i
\(221\) −12.9876 22.4952i −0.873642 1.51319i
\(222\) 0 0
\(223\) −3.16621 5.48403i −0.212025 0.367238i 0.740323 0.672251i \(-0.234672\pi\)
−0.952348 + 0.305013i \(0.901339\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 9.73236 + 16.8569i 0.647387 + 1.12131i
\(227\) −23.3090 −1.54707 −0.773537 0.633751i \(-0.781515\pi\)
−0.773537 + 0.633751i \(0.781515\pi\)
\(228\) 0 0
\(229\) 4.95420 0.327383 0.163691 0.986512i \(-0.447660\pi\)
0.163691 + 0.986512i \(0.447660\pi\)
\(230\) 0.238550 0.413181i 0.0157295 0.0272443i
\(231\) 0 0
\(232\) −4.13781 7.16689i −0.271660 0.470529i
\(233\) 7.13781 + 12.3630i 0.467613 + 0.809930i 0.999315 0.0370017i \(-0.0117807\pi\)
−0.531702 + 0.846932i \(0.678447\pi\)
\(234\) 0 0
\(235\) −2.11745 + 3.66754i −0.138127 + 0.239244i
\(236\) −3.23855 + 5.60933i −0.210812 + 0.365136i
\(237\) 0 0
\(238\) 0 0
\(239\) −2.48762 + 4.30868i −0.160911 + 0.278706i −0.935196 0.354132i \(-0.884776\pi\)
0.774285 + 0.632837i \(0.218110\pi\)
\(240\) 0 0
\(241\) 13.0000 0.837404 0.418702 0.908124i \(-0.362485\pi\)
0.418702 + 0.908124i \(0.362485\pi\)
\(242\) 4.23855 7.34138i 0.272464 0.471922i
\(243\) 0 0
\(244\) 4.47710 0.286617
\(245\) 0 0
\(246\) 0 0
\(247\) −34.1520 −2.17304
\(248\) −1.35600 2.34867i −0.0861063 0.149141i
\(249\) 0 0
\(250\) 5.93818 10.2852i 0.375563 0.650495i
\(251\) 2.43268 0.153549 0.0767746 0.997048i \(-0.475538\pi\)
0.0767746 + 0.997048i \(0.475538\pi\)
\(252\) 0 0
\(253\) −0.477100 −0.0299950
\(254\) 6.71998 11.6393i 0.421649 0.730318i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −0.987620 −0.0616061 −0.0308030 0.999525i \(-0.509806\pi\)
−0.0308030 + 0.999525i \(0.509806\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 7.64145 0.473902
\(261\) 0 0
\(262\) 1.58836 2.75113i 0.0981295 0.169965i
\(263\) −17.1854 −1.05970 −0.529848 0.848092i \(-0.677751\pi\)
−0.529848 + 0.848092i \(0.677751\pi\)
\(264\) 0 0
\(265\) −3.88255 + 6.72477i −0.238503 + 0.413099i
\(266\) 0 0
\(267\) 0 0
\(268\) 5.02654 8.70623i 0.307045 0.531817i
\(269\) 11.4523 19.8360i 0.698262 1.20942i −0.270807 0.962634i \(-0.587291\pi\)
0.969069 0.246791i \(-0.0793761\pi\)
\(270\) 0 0
\(271\) −7.00364 12.1307i −0.425441 0.736885i 0.571021 0.820936i \(-0.306548\pi\)
−0.996462 + 0.0840504i \(0.973214\pi\)
\(272\) −2.69963 4.67589i −0.163689 0.283518i
\(273\) 0 0
\(274\) −10.6316 + 18.4145i −0.642279 + 1.11246i
\(275\) −3.93454 −0.237261
\(276\) 0 0
\(277\) 28.2953 1.70010 0.850049 0.526703i \(-0.176572\pi\)
0.850049 + 0.526703i \(0.176572\pi\)
\(278\) −6.52654 11.3043i −0.391436 0.677987i
\(279\) 0 0
\(280\) 0 0
\(281\) 8.79782 + 15.2383i 0.524834 + 0.909039i 0.999582 + 0.0289175i \(0.00920600\pi\)
−0.474748 + 0.880122i \(0.657461\pi\)
\(282\) 0 0
\(283\) −9.26145 16.0413i −0.550536 0.953556i −0.998236 0.0593725i \(-0.981090\pi\)
0.447700 0.894184i \(-0.352243\pi\)
\(284\) 6.36033 + 11.0164i 0.377416 + 0.653704i
\(285\) 0 0
\(286\) −3.82072 6.61769i −0.225924 0.391312i
\(287\) 0 0
\(288\) 0 0
\(289\) −6.07598 10.5239i −0.357411 0.619054i
\(290\) 13.1447 0.771882
\(291\) 0 0
\(292\) 16.0531 0.939436
\(293\) −7.04256 + 12.1981i −0.411431 + 0.712619i −0.995046 0.0994108i \(-0.968304\pi\)
0.583616 + 0.812030i \(0.301638\pi\)
\(294\) 0 0
\(295\) −5.14400 8.90966i −0.299495 0.518741i
\(296\) 0.500000 + 0.866025i 0.0290619 + 0.0503367i
\(297\) 0 0
\(298\) 2.60439 4.51093i 0.150868 0.261311i
\(299\) 0.722528 1.25146i 0.0417849 0.0723736i
\(300\) 0 0
\(301\) 0 0
\(302\) 0.261450 0.452845i 0.0150448 0.0260583i
\(303\) 0 0
\(304\) −7.09888 −0.407149
\(305\) −3.55563 + 6.15854i −0.203595 + 0.352637i
\(306\) 0 0
\(307\) 5.85532 0.334180 0.167090 0.985942i \(-0.446563\pi\)
0.167090 + 0.985942i \(0.446563\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 4.30766 0.244658
\(311\) −0.405446 0.702253i −0.0229907 0.0398211i 0.854301 0.519778i \(-0.173985\pi\)
−0.877292 + 0.479957i \(0.840652\pi\)
\(312\) 0 0
\(313\) 5.28799 9.15907i 0.298895 0.517701i −0.676988 0.735994i \(-0.736715\pi\)
0.975883 + 0.218292i \(0.0700486\pi\)
\(314\) −8.86398 −0.500223
\(315\) 0 0
\(316\) 8.38688 0.471799
\(317\) 6.09820 10.5624i 0.342509 0.593243i −0.642389 0.766379i \(-0.722057\pi\)
0.984898 + 0.173136i \(0.0553900\pi\)
\(318\) 0 0
\(319\) −6.57234 11.3836i −0.367981 0.637361i
\(320\) 1.58836 0.0887922
\(321\) 0 0
\(322\) 0 0
\(323\) −38.3287 −2.13267
\(324\) 0 0
\(325\) 5.95853 10.3205i 0.330520 0.572477i
\(326\) −21.9629 −1.21641
\(327\) 0 0
\(328\) 2.93818 5.08907i 0.162234 0.280997i
\(329\) 0 0
\(330\) 0 0
\(331\) 7.83310 13.5673i 0.430546 0.745728i −0.566374 0.824148i \(-0.691654\pi\)
0.996920 + 0.0784202i \(0.0249876\pi\)
\(332\) 1.18292 2.04887i 0.0649211 0.112447i
\(333\) 0 0
\(334\) 1.65019 + 2.85821i 0.0902942 + 0.156394i
\(335\) 7.98398 + 13.8287i 0.436211 + 0.755540i
\(336\) 0 0
\(337\) −4.21201 + 7.29541i −0.229443 + 0.397406i −0.957643 0.287958i \(-0.907024\pi\)
0.728200 + 0.685364i \(0.240357\pi\)
\(338\) 10.1447 0.551798
\(339\) 0 0
\(340\) 8.57598 0.465098
\(341\) −2.15383 3.73054i −0.116636 0.202020i
\(342\) 0 0
\(343\) 0 0
\(344\) −0.833104 1.44298i −0.0449179 0.0778002i
\(345\) 0 0
\(346\) −9.55377 16.5476i −0.513614 0.889606i
\(347\) 0.283662 + 0.491316i 0.0152277 + 0.0263752i 0.873539 0.486754i \(-0.161819\pi\)
−0.858311 + 0.513130i \(0.828486\pi\)
\(348\) 0 0
\(349\) 0.00364189 + 0.00630794i 0.000194946 + 0.000337656i 0.866123 0.499831i \(-0.166605\pi\)
−0.865928 + 0.500169i \(0.833271\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −0.794182 1.37556i −0.0423300 0.0733178i
\(353\) 6.65383 0.354148 0.177074 0.984198i \(-0.443337\pi\)
0.177074 + 0.984198i \(0.443337\pi\)
\(354\) 0 0
\(355\) −20.2051 −1.07237
\(356\) 1.60507 2.78007i 0.0850688 0.147343i
\(357\) 0 0
\(358\) 8.03706 + 13.9206i 0.424772 + 0.735727i
\(359\) 0.398568 + 0.690339i 0.0210356 + 0.0364347i 0.876352 0.481672i \(-0.159970\pi\)
−0.855316 + 0.518107i \(0.826637\pi\)
\(360\) 0 0
\(361\) −15.6971 + 27.1881i −0.826162 + 1.43095i
\(362\) 4.02654 6.97418i 0.211630 0.366555i
\(363\) 0 0
\(364\) 0 0
\(365\) −12.7491 + 22.0820i −0.667317 + 1.15583i
\(366\) 0 0
\(367\) 15.4327 0.805579 0.402790 0.915293i \(-0.368041\pi\)
0.402790 + 0.915293i \(0.368041\pi\)
\(368\) 0.150186 0.260130i 0.00782898 0.0135602i
\(369\) 0 0
\(370\) −1.58836 −0.0825751
\(371\) 0 0
\(372\) 0 0
\(373\) 10.2422 0.530321 0.265160 0.964204i \(-0.414575\pi\)
0.265160 + 0.964204i \(0.414575\pi\)
\(374\) −4.28799 7.42702i −0.221727 0.384042i
\(375\) 0 0
\(376\) −1.33310 + 2.30900i −0.0687496 + 0.119078i
\(377\) 39.8131 2.05048
\(378\) 0 0
\(379\) 25.0087 1.28461 0.642304 0.766450i \(-0.277979\pi\)
0.642304 + 0.766450i \(0.277979\pi\)
\(380\) 5.63781 9.76497i 0.289213 0.500932i
\(381\) 0 0
\(382\) −11.9814 20.7524i −0.613023 1.06179i
\(383\) −6.26695 −0.320226 −0.160113 0.987099i \(-0.551186\pi\)
−0.160113 + 0.987099i \(0.551186\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 9.76509 0.497030
\(387\) 0 0
\(388\) −0.712008 + 1.23323i −0.0361467 + 0.0626080i
\(389\) 21.6342 1.09690 0.548448 0.836185i \(-0.315219\pi\)
0.548448 + 0.836185i \(0.315219\pi\)
\(390\) 0 0
\(391\) 0.810892 1.40451i 0.0410086 0.0710290i
\(392\) 0 0
\(393\) 0 0
\(394\) −9.12178 + 15.7994i −0.459549 + 0.795962i
\(395\) −6.66071 + 11.5367i −0.335137 + 0.580473i
\(396\) 0 0
\(397\) −2.05308 3.55605i −0.103041 0.178473i 0.809895 0.586575i \(-0.199524\pi\)
−0.912936 + 0.408102i \(0.866191\pi\)
\(398\) −9.04944 15.6741i −0.453608 0.785671i
\(399\) 0 0
\(400\) 1.23855 2.14523i 0.0619275 0.107262i
\(401\) −16.7417 −0.836041 −0.418021 0.908438i \(-0.637276\pi\)
−0.418021 + 0.908438i \(0.637276\pi\)
\(402\) 0 0
\(403\) 13.0472 0.649926
\(404\) −6.01671 10.4212i −0.299343 0.518476i
\(405\) 0 0
\(406\) 0 0
\(407\) 0.794182 + 1.37556i 0.0393661 + 0.0681842i
\(408\) 0 0
\(409\) −4.38255 7.59079i −0.216703 0.375341i 0.737095 0.675789i \(-0.236197\pi\)
−0.953798 + 0.300449i \(0.902864\pi\)
\(410\) 4.66690 + 8.08330i 0.230482 + 0.399206i
\(411\) 0 0
\(412\) −3.04944 5.28179i −0.150235 0.260215i
\(413\) 0 0
\(414\) 0 0
\(415\) 1.87890 + 3.25436i 0.0922318 + 0.159750i
\(416\) 4.81089 0.235873
\(417\) 0 0
\(418\) −11.2756 −0.551508
\(419\) −0.210149 + 0.363988i −0.0102664 + 0.0177820i −0.871113 0.491083i \(-0.836601\pi\)
0.860847 + 0.508865i \(0.169935\pi\)
\(420\) 0 0
\(421\) 3.28799 + 5.69497i 0.160247 + 0.277556i 0.934957 0.354761i \(-0.115438\pi\)
−0.774710 + 0.632316i \(0.782104\pi\)
\(422\) 0.166208 + 0.287880i 0.00809086 + 0.0140138i
\(423\) 0 0
\(424\) −2.44437 + 4.23377i −0.118709 + 0.205610i
\(425\) 6.68725 11.5827i 0.324379 0.561841i
\(426\) 0 0
\(427\) 0 0
\(428\) 1.54325 2.67299i 0.0745959 0.129204i
\(429\) 0 0
\(430\) 2.64654 0.127628
\(431\) −11.0439 + 19.1287i −0.531968 + 0.921395i 0.467336 + 0.884080i \(0.345214\pi\)
−0.999304 + 0.0373155i \(0.988119\pi\)
\(432\) 0 0
\(433\) 9.43268 0.453306 0.226653 0.973976i \(-0.427222\pi\)
0.226653 + 0.973976i \(0.427222\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −2.28799 −0.109575
\(437\) −1.06615 1.84663i −0.0510010 0.0883363i
\(438\) 0 0
\(439\) −15.6032 + 27.0256i −0.744701 + 1.28986i 0.205634 + 0.978629i \(0.434074\pi\)
−0.950334 + 0.311231i \(0.899259\pi\)
\(440\) 2.52290 0.120275
\(441\) 0 0
\(442\) 25.9752 1.23552
\(443\) 6.52723 11.3055i 0.310118 0.537140i −0.668270 0.743919i \(-0.732965\pi\)
0.978388 + 0.206779i \(0.0662981\pi\)
\(444\) 0 0
\(445\) 2.54944 + 4.41576i 0.120855 + 0.209327i
\(446\) 6.33242 0.299849
\(447\) 0 0
\(448\) 0 0
\(449\) 9.91706 0.468015 0.234008 0.972235i \(-0.424816\pi\)
0.234008 + 0.972235i \(0.424816\pi\)
\(450\) 0 0
\(451\) 4.66690 8.08330i 0.219756 0.380628i
\(452\) −19.4647 −0.915543
\(453\) 0 0
\(454\) 11.6545 20.1862i 0.546974 0.947386i
\(455\) 0 0
\(456\) 0 0
\(457\) 12.2615 21.2375i 0.573566 0.993446i −0.422629 0.906303i \(-0.638893\pi\)
0.996196 0.0871436i \(-0.0277739\pi\)
\(458\) −2.47710 + 4.29046i −0.115747 + 0.200480i
\(459\) 0 0
\(460\) 0.238550 + 0.413181i 0.0111224 + 0.0192646i
\(461\) 1.75526 + 3.04020i 0.0817506 + 0.141596i 0.904002 0.427528i \(-0.140616\pi\)
−0.822251 + 0.569125i \(0.807282\pi\)
\(462\) 0 0
\(463\) 8.69413 15.0587i 0.404050 0.699836i −0.590160 0.807286i \(-0.700935\pi\)
0.994210 + 0.107451i \(0.0342687\pi\)
\(464\) 8.27561 0.384186
\(465\) 0 0
\(466\) −14.2756 −0.661305
\(467\) 6.69894 + 11.6029i 0.309990 + 0.536918i 0.978360 0.206911i \(-0.0663410\pi\)
−0.668370 + 0.743829i \(0.733008\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −2.11745 3.66754i −0.0976709 0.169171i
\(471\) 0 0
\(472\) −3.23855 5.60933i −0.149066 0.258190i
\(473\) −1.32327 2.29197i −0.0608441 0.105385i
\(474\) 0 0
\(475\) −8.79232 15.2287i −0.403419 0.698743i
\(476\) 0 0
\(477\) 0 0
\(478\) −2.48762 4.30868i −0.113781 0.197075i
\(479\) 20.8058 0.950641 0.475321 0.879813i \(-0.342332\pi\)
0.475321 + 0.879813i \(0.342332\pi\)
\(480\) 0 0
\(481\) −4.81089 −0.219358
\(482\) −6.50000 + 11.2583i −0.296067 + 0.512803i
\(483\) 0 0
\(484\) 4.23855 + 7.34138i 0.192661 + 0.333699i
\(485\) −1.13093 1.95882i −0.0513528 0.0889456i
\(486\) 0 0
\(487\) 16.2472 28.1410i 0.736231 1.27519i −0.217950 0.975960i \(-0.569937\pi\)
0.954181 0.299230i \(-0.0967298\pi\)
\(488\) −2.23855 + 3.87728i −0.101334 + 0.175516i
\(489\) 0 0
\(490\) 0 0
\(491\) 9.66071 16.7328i 0.435982 0.755142i −0.561394 0.827549i \(-0.689735\pi\)
0.997375 + 0.0724067i \(0.0230679\pi\)
\(492\) 0 0
\(493\) 44.6822 2.01238
\(494\) 17.0760 29.5765i 0.768285 1.33071i
\(495\) 0 0
\(496\) 2.71201 0.121773
\(497\) 0 0
\(498\) 0 0
\(499\) −11.1506 −0.499169 −0.249585 0.968353i \(-0.580294\pi\)
−0.249585 + 0.968353i \(0.580294\pi\)
\(500\) 5.93818 + 10.2852i 0.265563 + 0.459969i
\(501\) 0 0
\(502\) −1.21634 + 2.10676i −0.0542878 + 0.0940293i
\(503\) −40.7651 −1.81763 −0.908813 0.417204i \(-0.863010\pi\)
−0.908813 + 0.417204i \(0.863010\pi\)
\(504\) 0 0
\(505\) 19.1135 0.850537
\(506\) 0.238550 0.413181i 0.0106048 0.0183681i
\(507\) 0 0
\(508\) 6.71998 + 11.6393i 0.298151 + 0.516413i
\(509\) 1.44506 0.0640510 0.0320255 0.999487i \(-0.489804\pi\)
0.0320255 + 0.999487i \(0.489804\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 0.493810 0.855304i 0.0217810 0.0377259i
\(515\) 9.68725 0.426871
\(516\) 0 0
\(517\) −2.11745 + 3.66754i −0.0931255 + 0.161298i
\(518\) 0 0
\(519\) 0 0
\(520\) −3.82072 + 6.61769i −0.167550 + 0.290205i
\(521\) 9.64214 16.7007i 0.422430 0.731670i −0.573747 0.819033i \(-0.694511\pi\)
0.996177 + 0.0873630i \(0.0278440\pi\)
\(522\) 0 0
\(523\) 18.3454 + 31.7752i 0.802189 + 1.38943i 0.918173 + 0.396180i \(0.129665\pi\)
−0.115984 + 0.993251i \(0.537002\pi\)
\(524\) 1.58836 + 2.75113i 0.0693880 + 0.120184i
\(525\) 0 0
\(526\) 8.59269 14.8830i 0.374659 0.648929i
\(527\) 14.6428 0.637851
\(528\) 0 0
\(529\) −22.9098 −0.996077
\(530\) −3.88255 6.72477i −0.168647 0.292105i
\(531\) 0 0
\(532\) 0 0
\(533\) 14.1353 + 24.4830i 0.612266 + 1.06048i
\(534\) 0 0
\(535\) 2.45125 + 4.24568i 0.105977 + 0.183557i
\(536\) 5.02654 + 8.70623i 0.217114 + 0.376052i
\(537\) 0 0
\(538\) 11.4523 + 19.8360i 0.493745 + 0.855192i
\(539\) 0 0
\(540\) 0 0
\(541\) −1.62543 2.81532i −0.0698825 0.121040i 0.828967 0.559298i \(-0.188929\pi\)
−0.898849 + 0.438258i \(0.855596\pi\)
\(542\) 14.0073 0.601664
\(543\) 0 0
\(544\) 5.39926 0.231491
\(545\) 1.81708 3.14728i 0.0778352 0.134815i
\(546\) 0 0
\(547\) −2.95853 5.12432i −0.126498 0.219100i 0.795820 0.605534i \(-0.207040\pi\)
−0.922317 + 0.386433i \(0.873707\pi\)
\(548\) −10.6316 18.4145i −0.454160 0.786628i
\(549\) 0 0
\(550\) 1.96727 3.40741i 0.0838846 0.145292i
\(551\) 29.3738 50.8769i 1.25137 2.16743i
\(552\) 0 0
\(553\) 0 0
\(554\) −14.1476 + 24.5044i −0.601076 + 1.04109i
\(555\) 0 0
\(556\) 13.0531 0.553574
\(557\) −12.8040 + 22.1772i −0.542523 + 0.939678i 0.456235 + 0.889859i \(0.349198\pi\)
−0.998758 + 0.0498188i \(0.984136\pi\)
\(558\) 0 0
\(559\) 8.01594 0.339038
\(560\) 0 0
\(561\) 0 0
\(562\) −17.5956 −0.742228
\(563\) 23.3189 + 40.3895i 0.982773 + 1.70221i 0.651443 + 0.758698i \(0.274164\pi\)
0.331330 + 0.943515i \(0.392503\pi\)
\(564\) 0 0
\(565\) 15.4585 26.7750i 0.650345 1.12643i
\(566\) 18.5229 0.778576
\(567\) 0 0
\(568\) −12.7207 −0.533747
\(569\) 15.5989 27.0181i 0.653939 1.13266i −0.328219 0.944602i \(-0.606449\pi\)
0.982159 0.188054i \(-0.0602182\pi\)
\(570\) 0 0
\(571\) 7.83812 + 13.5760i 0.328015 + 0.568139i 0.982118 0.188267i \(-0.0602869\pi\)
−0.654103 + 0.756406i \(0.726954\pi\)
\(572\) 7.64145 0.319505
\(573\) 0 0
\(574\) 0 0
\(575\) 0.744051 0.0310291
\(576\) 0 0
\(577\) −6.99567 + 12.1169i −0.291234 + 0.504431i −0.974102 0.226110i \(-0.927399\pi\)
0.682868 + 0.730542i \(0.260732\pi\)
\(578\) 12.1520 0.505455
\(579\) 0 0
\(580\) −6.57234 + 11.3836i −0.272902 + 0.472680i
\(581\) 0 0
\(582\) 0 0
\(583\) −3.88255 + 6.72477i −0.160799 + 0.278511i
\(584\) −8.02654 + 13.9024i −0.332141 + 0.575285i
\(585\) 0 0
\(586\) −7.04256 12.1981i −0.290926 0.503898i
\(587\) 1.44801 + 2.50803i 0.0597658 + 0.103517i 0.894360 0.447348i \(-0.147631\pi\)
−0.834594 + 0.550865i \(0.814298\pi\)
\(588\) 0 0
\(589\) 9.62612 16.6729i 0.396637 0.686996i
\(590\) 10.2880 0.423550
\(591\) 0 0
\(592\) −1.00000 −0.0410997
\(593\) −2.04394 3.54021i −0.0839346 0.145379i 0.821002 0.570925i \(-0.193415\pi\)
−0.904937 + 0.425546i \(0.860082\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 2.60439 + 4.51093i 0.106680 + 0.184775i
\(597\) 0 0
\(598\) 0.722528 + 1.25146i 0.0295464 + 0.0511758i
\(599\) −9.88255 17.1171i −0.403790 0.699385i 0.590390 0.807118i \(-0.298974\pi\)
−0.994180 + 0.107734i \(0.965641\pi\)
\(600\) 0 0
\(601\) 13.4320 + 23.2649i 0.547902 + 0.948994i 0.998418 + 0.0562261i \(0.0179068\pi\)
−0.450516 + 0.892768i \(0.648760\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0.261450 + 0.452845i 0.0106383 + 0.0184260i
\(605\) −13.4647 −0.547419
\(606\) 0 0
\(607\) 15.2422 0.618661 0.309331 0.950955i \(-0.399895\pi\)
0.309331 + 0.950955i \(0.399895\pi\)
\(608\) 3.54944 6.14781i 0.143949 0.249327i
\(609\) 0 0
\(610\) −3.55563 6.15854i −0.143963 0.249352i
\(611\) −6.41342 11.1084i −0.259459 0.449396i
\(612\) 0 0
\(613\) −1.36033 + 2.35617i −0.0549434 + 0.0951648i −0.892189 0.451662i \(-0.850831\pi\)
0.837246 + 0.546827i \(0.184165\pi\)
\(614\) −2.92766 + 5.07085i −0.118151 + 0.204643i
\(615\) 0 0
\(616\) 0 0
\(617\) 9.21812 15.9663i 0.371108 0.642777i −0.618629 0.785684i \(-0.712311\pi\)
0.989736 + 0.142906i \(0.0456448\pi\)
\(618\) 0 0
\(619\) −0.107546 −0.00432262 −0.00216131 0.999998i \(-0.500688\pi\)
−0.00216131 + 0.999998i \(0.500688\pi\)
\(620\) −2.15383 + 3.73054i −0.0864998 + 0.149822i
\(621\) 0 0
\(622\) 0.810892 0.0325138
\(623\) 0 0
\(624\) 0 0
\(625\) −6.47848 −0.259139
\(626\) 5.28799 + 9.15907i 0.211351 + 0.366070i
\(627\) 0 0
\(628\) 4.43199 7.67643i 0.176856 0.306323i
\(629\) −5.39926 −0.215282
\(630\) 0 0
\(631\) 35.7266 1.42225 0.711126 0.703064i \(-0.248185\pi\)
0.711126 + 0.703064i \(0.248185\pi\)
\(632\) −4.19344 + 7.26325i −0.166806 + 0.288916i
\(633\) 0 0
\(634\) 6.09820 + 10.5624i 0.242190 + 0.419486i
\(635\) −21.3475 −0.847152
\(636\) 0 0
\(637\) 0 0
\(638\) 13.1447 0.520403
\(639\) 0 0
\(640\) −0.794182 + 1.37556i −0.0313928 + 0.0543739i
\(641\) −17.3128 −0.683813 −0.341906 0.939734i \(-0.611073\pi\)
−0.341906 + 0.939734i \(0.611073\pi\)
\(642\) 0 0
\(643\) −14.4821 + 25.0838i −0.571119 + 0.989207i 0.425332 + 0.905037i \(0.360157\pi\)
−0.996451 + 0.0841700i \(0.973176\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 19.1643 33.1936i 0.754011 1.30599i
\(647\) 1.27816 2.21384i 0.0502497 0.0870350i −0.839807 0.542886i \(-0.817332\pi\)
0.890056 + 0.455851i \(0.150665\pi\)
\(648\) 0 0
\(649\) −5.14400 8.90966i −0.201920 0.349735i
\(650\) 5.95853 + 10.3205i 0.233713 + 0.404802i
\(651\) 0 0
\(652\) 10.9814 19.0204i 0.430066 0.744896i
\(653\) −29.9766 −1.17308 −0.586538 0.809922i \(-0.699509\pi\)
−0.586538 + 0.809922i \(0.699509\pi\)
\(654\) 0 0
\(655\) −5.04580 −0.197156
\(656\) 2.93818 + 5.08907i 0.114717 + 0.198695i
\(657\) 0 0
\(658\) 0 0
\(659\) 7.63162 + 13.2183i 0.297286 + 0.514914i 0.975514 0.219937i \(-0.0705853\pi\)
−0.678228 + 0.734851i \(0.737252\pi\)
\(660\) 0 0
\(661\) −13.6261 23.6011i −0.529994 0.917977i −0.999388 0.0349881i \(-0.988861\pi\)
0.469393 0.882989i \(-0.344473\pi\)
\(662\) 7.83310 + 13.5673i 0.304442 + 0.527309i
\(663\) 0 0
\(664\) 1.18292 + 2.04887i 0.0459061 + 0.0795117i
\(665\) 0 0
\(666\) 0 0
\(667\) 1.24288 + 2.15273i 0.0481245 + 0.0833541i
\(668\) −3.30037 −0.127695
\(669\) 0 0
\(670\) −15.9680 −0.616896
\(671\) −3.55563 + 6.15854i −0.137264 + 0.237748i
\(672\) 0 0
\(673\) 23.2280 + 40.2320i 0.895372 + 1.55083i 0.833344 + 0.552755i \(0.186423\pi\)
0.0620280 + 0.998074i \(0.480243\pi\)
\(674\) −4.21201 7.29541i −0.162240 0.281009i
\(675\) 0 0
\(676\) −5.07234 + 8.78555i −0.195090 + 0.337906i
\(677\) −2.54944 + 4.41576i −0.0979830 + 0.169712i −0.910850 0.412738i \(-0.864572\pi\)
0.812867 + 0.582450i \(0.197906\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −4.28799 + 7.42702i −0.164437 + 0.284813i
\(681\) 0 0
\(682\) 4.30766 0.164949
\(683\) 7.77197 13.4614i 0.297386 0.515088i −0.678151 0.734923i \(-0.737218\pi\)
0.975537 + 0.219835i \(0.0705518\pi\)
\(684\) 0 0
\(685\) 33.7738 1.29043
\(686\) 0 0
\(687\) 0 0
\(688\) 1.66621 0.0635236
\(689\) −11.7596 20.3682i −0.448005 0.775967i
\(690\) 0 0
\(691\) 11.6483 20.1755i 0.443123 0.767512i −0.554796 0.831986i \(-0.687204\pi\)
0.997919 + 0.0644744i \(0.0205371\pi\)
\(692\) 19.1075 0.726360
\(693\) 0 0
\(694\) −0.567323 −0.0215353
\(695\) −10.3665 + 17.9553i −0.393225 + 0.681085i
\(696\) 0 0
\(697\) 15.8640 + 27.4772i 0.600891 + 1.04077i
\(698\) −0.00728378 −0.000275695
\(699\) 0 0
\(700\) 0 0
\(701\) 45.6464 1.72404 0.862020 0.506874i \(-0.169199\pi\)
0.862020 + 0.506874i \(0.169199\pi\)
\(702\) 0 0
\(703\) −3.54944 + 6.14781i −0.133870 + 0.231869i
\(704\) 1.58836 0.0598637
\(705\) 0 0
\(706\) −3.32691 + 5.76238i −0.125210 + 0.216870i
\(707\) 0 0
\(708\) 0 0
\(709\) −9.00069 + 15.5897i −0.338028 + 0.585482i −0.984062 0.177827i \(-0.943093\pi\)
0.646034 + 0.763309i \(0.276427\pi\)
\(710\) 10.1025 17.4981i 0.379141 0.656692i
\(711\) 0 0
\(712\) 1.60507 + 2.78007i 0.0601527 + 0.104188i
\(713\) 0.407305 + 0.705474i 0.0152537 + 0.0264202i
\(714\) 0 0
\(715\) −6.06870 + 10.5113i −0.226957 + 0.393100i
\(716\) −16.0741 −0.600718
\(717\) 0 0
\(718\) −0.797135 −0.0297488
\(719\) 18.4389 + 31.9371i 0.687654 + 1.19105i 0.972595 + 0.232506i \(0.0746926\pi\)
−0.284941 + 0.958545i \(0.591974\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −15.6971 27.1881i −0.584185 1.01184i
\(723\) 0 0
\(724\) 4.02654 + 6.97418i 0.149645 + 0.259193i
\(725\) 10.2498 + 17.7531i 0.380666 + 0.659334i
\(726\) 0 0
\(727\) −15.2429 26.4014i −0.565327 0.979175i −0.997019 0.0771543i \(-0.975417\pi\)
0.431692 0.902021i \(-0.357917\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −12.7491 22.0820i −0.471864 0.817293i
\(731\) 8.99628 0.332739
\(732\) 0 0
\(733\) −6.15059 −0.227177 −0.113589 0.993528i \(-0.536235\pi\)
−0.113589 + 0.993528i \(0.536235\pi\)
\(734\) −7.71634 + 13.3651i −0.284815 + 0.493314i
\(735\) 0 0
\(736\) 0.150186 + 0.260130i 0.00553593 + 0.00958851i
\(737\) 7.98398 + 13.8287i 0.294094 + 0.509385i
\(738\) 0 0
\(739\) −20.3912 + 35.3186i −0.750103 + 1.29922i 0.197670 + 0.980269i \(0.436663\pi\)
−0.947772 + 0.318947i \(0.896671\pi\)
\(740\) 0.794182 1.37556i 0.0291947 0.0505667i
\(741\) 0 0
\(742\) 0 0
\(743\) −7.25271 + 12.5621i −0.266076 + 0.460858i −0.967845 0.251547i \(-0.919061\pi\)
0.701769 + 0.712405i \(0.252394\pi\)
\(744\) 0 0
\(745\) −8.27342 −0.303115
\(746\) −5.12110 + 8.87000i −0.187497 + 0.324754i
\(747\) 0 0
\(748\) 8.57598 0.313569
\(749\) 0 0
\(750\) 0 0
\(751\) 4.18911 0.152863 0.0764314 0.997075i \(-0.475647\pi\)
0.0764314 + 0.997075i \(0.475647\pi\)
\(752\) −1.33310 2.30900i −0.0486133 0.0842007i
\(753\) 0 0
\(754\) −19.9065 + 34.4791i −0.724953 + 1.25566i
\(755\) −0.830556 −0.0302270
\(756\) 0 0
\(757\) 2.38688 0.0867525 0.0433763 0.999059i \(-0.486189\pi\)
0.0433763 + 0.999059i \(0.486189\pi\)
\(758\) −12.5043 + 21.6581i −0.454178 + 0.786659i
\(759\) 0 0
\(760\) 5.63781 + 9.76497i 0.204505 + 0.354213i
\(761\) 3.63416 0.131738 0.0658692 0.997828i \(-0.479018\pi\)
0.0658692 + 0.997828i \(0.479018\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 23.9629 0.866946
\(765\) 0 0
\(766\) 3.13348 5.42734i 0.113217 0.196098i
\(767\) 31.1606 1.12515
\(768\) 0 0
\(769\) 19.9672 34.5842i 0.720035 1.24714i −0.240950 0.970538i \(-0.577459\pi\)
0.960985 0.276600i \(-0.0892078\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −4.88255 + 8.45682i −0.175727 + 0.304368i
\(773\) 18.0698 31.2978i 0.649925 1.12570i −0.333215 0.942851i \(-0.608133\pi\)
0.983140 0.182853i \(-0.0585332\pi\)
\(774\) 0 0
\(775\) 3.35896 + 5.81788i 0.120657 + 0.208985i
\(776\) −0.712008 1.23323i −0.0255596 0.0442705i
\(777\) 0 0
\(778\) −10.8171 + 18.7357i −0.387811 + 0.671709i
\(779\) 41.7156 1.49462
\(780\) 0 0
\(781\) −20.2051 −0.722994
\(782\) 0.810892 + 1.40451i 0.0289974 + 0.0502251i
\(783\) 0 0
\(784\) 0 0
\(785\) 7.03961 + 12.1930i 0.251254 + 0.435186i
\(786\) 0 0
\(787\) −22.3189 38.6574i −0.795582 1.37799i −0.922469 0.386071i \(-0.873832\pi\)
0.126888 0.991917i \(-0.459501\pi\)
\(788\) −9.12178 15.7994i −0.324950 0.562830i
\(789\) 0 0
\(790\) −6.66071 11.5367i −0.236977 0.410457i
\(791\) 0 0
\(792\) 0 0
\(793\) −10.7694 18.6532i −0.382433 0.662394i
\(794\) 4.10617 0.145722
\(795\) 0 0
\(796\) 18.0989 0.641498
\(797\) 26.2836 45.5245i 0.931012 1.61256i 0.149418 0.988774i \(-0.452260\pi\)
0.781595 0.623786i \(-0.214407\pi\)
\(798\) 0 0
\(799\) −7.19777 12.4669i −0.254639 0.441047i
\(800\) 1.23855 + 2.14523i 0.0437894 + 0.0758454i
\(801\) 0 0
\(802\) 8.37085 14.4987i 0.295585 0.511969i
\(803\) −12.7491 + 22.0820i −0.449905 + 0.779258i
\(804\) 0 0
\(805\) 0 0
\(806\) −6.52359 + 11.2992i −0.229784 + 0.397997i
\(807\) 0 0
\(808\) 12.0334 0.423334
\(809\) −7.40290 + 12.8222i −0.260272 + 0.450804i −0.966314 0.257365i \(-0.917146\pi\)
0.706042 + 0.708170i \(0.250479\pi\)
\(810\) 0 0
\(811\) −27.0704 −0.950571 −0.475285 0.879832i \(-0.657655\pi\)
−0.475285 + 0.879832i \(0.657655\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −1.58836 −0.0556721
\(815\) 17.4425 + 30.2113i 0.610984 + 1.05826i
\(816\) 0 0
\(817\) 5.91411 10.2435i 0.206908 0.358376i
\(818\) 8.76509 0.306464
\(819\) 0 0
\(820\) −9.33379 −0.325950
\(821\) 21.9091 37.9477i 0.764632 1.32438i −0.175808 0.984424i \(-0.556254\pi\)
0.940441 0.339958i \(-0.110413\pi\)
\(822\) 0 0
\(823\) −15.6712 27.1434i −0.546265 0.946158i −0.998526 0.0542727i \(-0.982716\pi\)
0.452262 0.891885i \(-0.350617\pi\)
\(824\) 6.09888 0.212465
\(825\) 0 0
\(826\) 0 0
\(827\) 14.7665 0.513480 0.256740 0.966480i \(-0.417352\pi\)
0.256740 + 0.966480i \(0.417352\pi\)
\(828\) 0 0
\(829\) 15.0036 25.9871i 0.521098 0.902568i −0.478601 0.878033i \(-0.658856\pi\)
0.999699 0.0245357i \(-0.00781074\pi\)
\(830\) −3.75781 −0.130435
\(831\) 0 0
\(832\) −2.40545 + 4.16635i −0.0833938 + 0.144442i
\(833\) 0 0
\(834\) 0 0
\(835\) 2.62110 4.53987i 0.0907068 0.157109i
\(836\) 5.63781 9.76497i 0.194988 0.337728i
\(837\) 0 0
\(838\) −0.210149 0.363988i −0.00725946 0.0125738i
\(839\) 18.0167 + 31.2059i 0.622006 + 1.07735i 0.989112 + 0.147167i \(0.0470154\pi\)
−0.367106 + 0.930179i \(0.619651\pi\)
\(840\) 0 0
\(841\) −19.7429 + 34.1957i −0.680789 + 1.17916i
\(842\) −6.57598 −0.226623
\(843\) 0 0
\(844\) −0.332415 −0.0114422
\(845\) −8.05673 13.9547i −0.277160 0.480055i
\(846\) 0 0
\(847\) 0 0
\(848\) −2.44437 4.23377i −0.0839399 0.145388i
\(849\) 0 0
\(850\) 6.68725 + 11.5827i 0.229371 + 0.397282i
\(851\) −0.150186 0.260130i −0.00514831 0.00891713i
\(852\) 0 0
\(853\) 12.2658 + 21.2450i 0.419972 + 0.727413i 0.995936 0.0900617i \(-0.0287064\pi\)
−0.575964 + 0.817475i \(0.695373\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 1.54325 + 2.67299i 0.0527473 + 0.0913610i
\(857\) 29.0480 0.992260 0.496130 0.868248i \(-0.334754\pi\)
0.496130 + 0.868248i \(0.334754\pi\)
\(858\) 0 0
\(859\) −25.2953 −0.863064 −0.431532 0.902098i \(-0.642027\pi\)
−0.431532 + 0.902098i \(0.642027\pi\)
\(860\) −1.32327 + 2.29197i −0.0451232 + 0.0781557i
\(861\) 0 0
\(862\) −11.0439 19.1287i −0.376158 0.651525i
\(863\) 1.34981 + 2.33795i 0.0459482 + 0.0795846i 0.888085 0.459680i \(-0.152036\pi\)
−0.842137 + 0.539264i \(0.818702\pi\)
\(864\) 0 0
\(865\) −15.1749 + 26.2836i −0.515961 + 0.893671i
\(866\) −4.71634 + 8.16894i −0.160268 + 0.277592i
\(867\) 0 0
\(868\) 0 0
\(869\) −6.66071 + 11.5367i −0.225949 + 0.391355i
\(870\) 0 0
\(871\) −48.3643 −1.63876
\(872\) 1.14400 1.98146i 0.0387406 0.0671007i
\(873\) 0 0
\(874\) 2.13231 0.0721263
\(875\) 0 0
\(876\) 0 0
\(877\) −11.0916 −0.374537 −0.187268 0.982309i \(-0.559963\pi\)
−0.187268 + 0.982309i \(0.559963\pi\)
\(878\) −15.6032 27.0256i −0.526583 0.912069i
\(879\) 0 0
\(880\) −1.26145 + 2.18490i −0.0425235 + 0.0736528i
\(881\) −40.3942 −1.36091 −0.680457 0.732788i \(-0.738219\pi\)
−0.680457 + 0.732788i \(0.738219\pi\)
\(882\) 0 0
\(883\) −33.2581 −1.11923 −0.559613 0.828754i \(-0.689050\pi\)
−0.559613 + 0.828754i \(0.689050\pi\)
\(884\) −12.9876 + 22.4952i −0.436821 + 0.756596i
\(885\) 0 0
\(886\) 6.52723 + 11.3055i 0.219287 + 0.379816i
\(887\) 40.5672 1.36211 0.681056 0.732231i \(-0.261521\pi\)
0.681056 + 0.732231i \(0.261521\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −5.09888 −0.170915
\(891\) 0 0
\(892\) −3.16621 + 5.48403i −0.106012 + 0.183619i
\(893\) −18.9271 −0.633371
\(894\) 0 0
\(895\) 12.7658 22.1110i 0.426713 0.739089i
\(896\) 0 0
\(897\) 0 0
\(898\) −4.95853 + 8.58843i −0.165468 + 0.286599i
\(899\) −11.2218 + 19.4367i −0.374267 + 0.648249i
\(900\) 0 0
\(901\) −13.1978 22.8592i −0.439681 0.761551i
\(902\) 4.66690 + 8.08330i 0.155391 + 0.269144i
\(903\) 0 0
\(904\) 9.73236 16.8569i 0.323693 0.560654i
\(905\) −12.7912 −0.425195
\(906\) 0 0
\(907\) 30.1135 0.999901 0.499950 0.866054i \(-0.333352\pi\)
0.499950 + 0.866054i \(0.333352\pi\)
\(908\) 11.6545 + 20.1862i 0.386769 + 0.669903i
\(909\) 0 0
\(910\) 0 0
\(911\) −14.6113 25.3075i −0.484093 0.838473i 0.515740 0.856745i \(-0.327517\pi\)
−0.999833 + 0.0182717i \(0.994184\pi\)
\(912\) 0 0
\(913\) 1.87890 + 3.25436i 0.0621826 + 0.107704i
\(914\) 12.2615 + 21.2375i 0.405573 + 0.702473i
\(915\) 0 0
\(916\) −2.47710 4.29046i −0.0818457 0.141761i
\(917\) 0 0
\(918\) 0 0
\(919\) −5.52359 9.56714i −0.182206 0.315591i 0.760425 0.649426i \(-0.224991\pi\)
−0.942632 + 0.333835i \(0.891657\pi\)
\(920\) −0.477100 −0.0157295
\(921\) 0 0
\(922\) −3.51052 −0.115613
\(923\) 30.5989 52.9988i 1.00717 1.74448i
\(924\) 0 0
\(925\) −1.23855 2.14523i −0.0407233 0.0705348i
\(926\) 8.69413 + 15.0587i 0.285707 + 0.494859i
\(927\) 0 0
\(928\) −4.13781 + 7.16689i −0.135830 + 0.235265i
\(929\) 21.1669 36.6621i 0.694463 1.20285i −0.275898 0.961187i \(-0.588975\pi\)
0.970361 0.241659i \(-0.0776915\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 7.13781 12.3630i 0.233807 0.404965i
\(933\) 0 0
\(934\) −13.3979 −0.438392
\(935\) −6.81089 + 11.7968i −0.222740 + 0.385797i
\(936\) 0 0
\(937\) 11.7651 0.384349 0.192174 0.981361i \(-0.438446\pi\)
0.192174 + 0.981361i \(0.438446\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 4.23491 0.138127
\(941\) −7.28799 12.6232i −0.237582 0.411504i 0.722438 0.691436i \(-0.243021\pi\)
−0.960020 + 0.279932i \(0.909688\pi\)
\(942\) 0 0
\(943\) −0.882546 + 1.52861i −0.0287397 + 0.0497785i
\(944\) 6.47710 0.210812
\(945\) 0 0
\(946\) 2.64654 0.0860466
\(947\) 3.12178 5.40709i 0.101444 0.175707i −0.810836 0.585274i \(-0.800987\pi\)
0.912280 + 0.409567i \(0.134320\pi\)
\(948\) 0 0
\(949\) −38.6148 66.8828i −1.25349 2.17111i
\(950\) 17.5846 0.570521
\(951\) 0 0
\(952\) 0 0
\(953\) −28.0173 −0.907570 −0.453785 0.891111i \(-0.649927\pi\)
−0.453785 + 0.891111i \(0.649927\pi\)
\(954\) 0 0
\(955\) −19.0309 + 32.9624i −0.615825 + 1.06664i
\(956\) 4.97524 0.160911
\(957\) 0 0
\(958\) −10.4029 + 18.0183i −0.336102 + 0.582146i
\(959\) 0 0
\(960\) 0 0
\(961\) 11.8225 20.4772i 0.381371 0.660554i
\(962\) 2.40545 4.16635i 0.0775547 0.134329i
\(963\) 0 0
\(964\) −6.50000 11.2583i −0.209351 0.362606i
\(965\) −7.75526 13.4325i −0.249651 0.432408i
\(966\) 0 0
\(967\) 15.7837 27.3381i 0.507568 0.879134i −0.492393 0.870373i \(-0.663878\pi\)
0.999962 0.00876132i \(-0.00278885\pi\)
\(968\) −8.47710 −0.272464
\(969\) 0 0
\(970\) 2.26186 0.0726238
\(971\) 2.82141 + 4.88683i 0.0905434 + 0.156826i 0.907740 0.419533i \(-0.137806\pi\)
−0.817196 + 0.576359i \(0.804473\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 16.2472 + 28.1410i 0.520594 + 0.901696i
\(975\) 0 0
\(976\) −2.23855 3.87728i −0.0716542 0.124109i
\(977\) 3.24652 + 5.62314i 0.103865 + 0.179900i 0.913274 0.407346i \(-0.133546\pi\)
−0.809409 + 0.587246i \(0.800212\pi\)
\(978\) 0 0
\(979\) 2.54944 + 4.41576i 0.0814805 + 0.141128i
\(980\) 0 0
\(981\) 0 0
\(982\) 9.66071 + 16.7328i 0.308286 + 0.533966i
\(983\) −30.3063 −0.966620 −0.483310 0.875449i \(-0.660566\pi\)
−0.483310 + 0.875449i \(0.660566\pi\)
\(984\) 0 0
\(985\) 28.9774 0.923298
\(986\) −22.3411 + 38.6959i −0.711485 + 1.23233i
\(987\) 0 0
\(988\) 17.0760 + 29.5765i 0.543259 + 0.940953i
\(989\) 0.250241 + 0.433430i 0.00795720 + 0.0137823i
\(990\) 0 0
\(991\) 11.1669 19.3416i 0.354728 0.614407i −0.632343 0.774688i \(-0.717907\pi\)
0.987071 + 0.160281i \(0.0512401\pi\)
\(992\) −1.35600 + 2.34867i −0.0430532 + 0.0745703i
\(993\) 0 0
\(994\) 0 0
\(995\) −14.3738 + 24.8962i −0.455680 + 0.789262i
\(996\) 0 0
\(997\) 8.76509 0.277593 0.138797 0.990321i \(-0.455677\pi\)
0.138797 + 0.990321i \(0.455677\pi\)
\(998\) 5.57530 9.65670i 0.176483 0.305677i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2646.2.h.o.361.3 6
3.2 odd 2 882.2.h.p.67.1 6
7.2 even 3 2646.2.e.p.1549.1 6
7.3 odd 6 2646.2.f.l.1765.3 6
7.4 even 3 2646.2.f.m.1765.1 6
7.5 odd 6 378.2.e.d.37.3 6
7.6 odd 2 378.2.h.c.361.1 6
9.2 odd 6 882.2.e.o.655.3 6
9.7 even 3 2646.2.e.p.2125.1 6
21.2 odd 6 882.2.e.o.373.3 6
21.5 even 6 126.2.e.c.121.1 yes 6
21.11 odd 6 882.2.f.o.589.1 6
21.17 even 6 882.2.f.n.589.3 6
21.20 even 2 126.2.h.d.67.3 yes 6
28.19 even 6 3024.2.q.g.2305.3 6
28.27 even 2 3024.2.t.h.1873.1 6
63.2 odd 6 882.2.h.p.79.1 6
63.4 even 3 7938.2.a.bz.1.3 3
63.5 even 6 1134.2.g.m.163.1 6
63.11 odd 6 882.2.f.o.295.1 6
63.13 odd 6 1134.2.g.l.487.3 6
63.16 even 3 inner 2646.2.h.o.667.3 6
63.20 even 6 126.2.e.c.25.1 6
63.25 even 3 2646.2.f.m.883.1 6
63.31 odd 6 7938.2.a.ca.1.1 3
63.32 odd 6 7938.2.a.bw.1.1 3
63.34 odd 6 378.2.e.d.235.3 6
63.38 even 6 882.2.f.n.295.3 6
63.40 odd 6 1134.2.g.l.163.3 6
63.41 even 6 1134.2.g.m.487.1 6
63.47 even 6 126.2.h.d.79.3 yes 6
63.52 odd 6 2646.2.f.l.883.3 6
63.59 even 6 7938.2.a.bv.1.3 3
63.61 odd 6 378.2.h.c.289.1 6
84.47 odd 6 1008.2.q.g.625.3 6
84.83 odd 2 1008.2.t.h.193.1 6
252.47 odd 6 1008.2.t.h.961.1 6
252.83 odd 6 1008.2.q.g.529.3 6
252.187 even 6 3024.2.t.h.289.1 6
252.223 even 6 3024.2.q.g.2881.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.e.c.25.1 6 63.20 even 6
126.2.e.c.121.1 yes 6 21.5 even 6
126.2.h.d.67.3 yes 6 21.20 even 2
126.2.h.d.79.3 yes 6 63.47 even 6
378.2.e.d.37.3 6 7.5 odd 6
378.2.e.d.235.3 6 63.34 odd 6
378.2.h.c.289.1 6 63.61 odd 6
378.2.h.c.361.1 6 7.6 odd 2
882.2.e.o.373.3 6 21.2 odd 6
882.2.e.o.655.3 6 9.2 odd 6
882.2.f.n.295.3 6 63.38 even 6
882.2.f.n.589.3 6 21.17 even 6
882.2.f.o.295.1 6 63.11 odd 6
882.2.f.o.589.1 6 21.11 odd 6
882.2.h.p.67.1 6 3.2 odd 2
882.2.h.p.79.1 6 63.2 odd 6
1008.2.q.g.529.3 6 252.83 odd 6
1008.2.q.g.625.3 6 84.47 odd 6
1008.2.t.h.193.1 6 84.83 odd 2
1008.2.t.h.961.1 6 252.47 odd 6
1134.2.g.l.163.3 6 63.40 odd 6
1134.2.g.l.487.3 6 63.13 odd 6
1134.2.g.m.163.1 6 63.5 even 6
1134.2.g.m.487.1 6 63.41 even 6
2646.2.e.p.1549.1 6 7.2 even 3
2646.2.e.p.2125.1 6 9.7 even 3
2646.2.f.l.883.3 6 63.52 odd 6
2646.2.f.l.1765.3 6 7.3 odd 6
2646.2.f.m.883.1 6 63.25 even 3
2646.2.f.m.1765.1 6 7.4 even 3
2646.2.h.o.361.3 6 1.1 even 1 trivial
2646.2.h.o.667.3 6 63.16 even 3 inner
3024.2.q.g.2305.3 6 28.19 even 6
3024.2.q.g.2881.3 6 252.223 even 6
3024.2.t.h.289.1 6 252.187 even 6
3024.2.t.h.1873.1 6 28.27 even 2
7938.2.a.bv.1.3 3 63.59 even 6
7938.2.a.bw.1.1 3 63.32 odd 6
7938.2.a.bz.1.3 3 63.4 even 3
7938.2.a.ca.1.1 3 63.31 odd 6