Properties

Label 1008.2.q.k.529.2
Level $1008$
Weight $2$
Character 1008.529
Analytic conductor $8.049$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,2,Mod(529,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.529");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 529.2
Character \(\chi\) \(=\) 1008.529
Dual form 1008.2.q.k.625.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.57901 - 0.711841i) q^{3} +(-1.92048 + 3.32636i) q^{5} +(2.55336 - 0.693065i) q^{7} +(1.98656 + 2.24801i) q^{9} +O(q^{10})\) \(q+(-1.57901 - 0.711841i) q^{3} +(-1.92048 + 3.32636i) q^{5} +(2.55336 - 0.693065i) q^{7} +(1.98656 + 2.24801i) q^{9} +(0.903316 + 1.56459i) q^{11} +(-0.692713 - 1.19981i) q^{13} +(5.40030 - 3.88530i) q^{15} +(-0.833405 + 1.44350i) q^{17} +(0.0802084 + 0.138925i) q^{19} +(-4.52515 - 0.723229i) q^{21} +(1.60019 - 2.77161i) q^{23} +(-4.87646 - 8.44627i) q^{25} +(-1.53658 - 4.96376i) q^{27} +(-3.78000 + 6.54716i) q^{29} -3.22021 q^{31} +(-0.312609 - 3.11352i) q^{33} +(-2.59829 + 9.82442i) q^{35} +(1.58395 + 2.74348i) q^{37} +(0.239726 + 2.38762i) q^{39} +(6.00329 + 10.3980i) q^{41} +(-3.45480 + 5.98389i) q^{43} +(-11.2929 + 2.29078i) q^{45} -11.4384 q^{47} +(6.03932 - 3.53929i) q^{49} +(2.34350 - 1.68605i) q^{51} +(1.37450 - 2.38071i) q^{53} -6.93918 q^{55} +(-0.0277576 - 0.276460i) q^{57} -15.0705 q^{59} -9.20285 q^{61} +(6.63044 + 4.36317i) q^{63} +5.32136 q^{65} +12.3366 q^{67} +(-4.49967 + 3.23733i) q^{69} +6.93289 q^{71} +(-6.22457 + 10.7813i) q^{73} +(1.68759 + 16.8080i) q^{75} +(3.39085 + 3.36891i) q^{77} -16.0743 q^{79} +(-1.10712 + 8.93165i) q^{81} +(1.45280 - 2.51633i) q^{83} +(-3.20107 - 5.54441i) q^{85} +(10.6292 - 7.64729i) q^{87} +(5.04034 + 8.73012i) q^{89} +(-2.60030 - 2.58347i) q^{91} +(5.08476 + 2.29228i) q^{93} -0.616153 q^{95} +(4.18830 - 7.25435i) q^{97} +(-1.72272 + 5.13882i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 2 q^{3} + 3 q^{5} + 5 q^{7} + 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 22 q - 2 q^{3} + 3 q^{5} + 5 q^{7} + 10 q^{9} + 3 q^{11} - 3 q^{13} + q^{15} + 7 q^{17} + q^{19} - 2 q^{23} - 10 q^{25} + 4 q^{27} + 9 q^{29} - 8 q^{31} + 29 q^{33} - 14 q^{35} + 2 q^{37} + 16 q^{39} + 16 q^{41} + q^{45} + 10 q^{47} + 15 q^{49} - 7 q^{51} + 11 q^{53} - 22 q^{55} + 7 q^{57} - 38 q^{59} + 26 q^{61} - 48 q^{63} - 26 q^{65} + 52 q^{67} - 4 q^{69} + 48 q^{71} - 35 q^{73} + 23 q^{75} + 17 q^{77} + 20 q^{79} - 38 q^{81} + 28 q^{83} - 20 q^{85} + 33 q^{87} + 6 q^{89} + 37 q^{91} + 19 q^{93} + 24 q^{95} - 29 q^{97} + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.57901 0.711841i −0.911644 0.410982i
\(4\) 0 0
\(5\) −1.92048 + 3.32636i −0.858863 + 1.48759i 0.0141515 + 0.999900i \(0.495495\pi\)
−0.873014 + 0.487694i \(0.837838\pi\)
\(6\) 0 0
\(7\) 2.55336 0.693065i 0.965080 0.261954i
\(8\) 0 0
\(9\) 1.98656 + 2.24801i 0.662188 + 0.749337i
\(10\) 0 0
\(11\) 0.903316 + 1.56459i 0.272360 + 0.471741i 0.969466 0.245227i \(-0.0788625\pi\)
−0.697106 + 0.716968i \(0.745529\pi\)
\(12\) 0 0
\(13\) −0.692713 1.19981i −0.192124 0.332769i 0.753830 0.657070i \(-0.228204\pi\)
−0.945954 + 0.324301i \(0.894871\pi\)
\(14\) 0 0
\(15\) 5.40030 3.88530i 1.39435 1.00318i
\(16\) 0 0
\(17\) −0.833405 + 1.44350i −0.202130 + 0.350100i −0.949215 0.314629i \(-0.898120\pi\)
0.747084 + 0.664729i \(0.231453\pi\)
\(18\) 0 0
\(19\) 0.0802084 + 0.138925i 0.0184011 + 0.0318716i 0.875079 0.483980i \(-0.160809\pi\)
−0.856678 + 0.515851i \(0.827476\pi\)
\(20\) 0 0
\(21\) −4.52515 0.723229i −0.987468 0.157822i
\(22\) 0 0
\(23\) 1.60019 2.77161i 0.333663 0.577921i −0.649564 0.760307i \(-0.725049\pi\)
0.983227 + 0.182386i \(0.0583819\pi\)
\(24\) 0 0
\(25\) −4.87646 8.44627i −0.975291 1.68925i
\(26\) 0 0
\(27\) −1.53658 4.96376i −0.295716 0.955276i
\(28\) 0 0
\(29\) −3.78000 + 6.54716i −0.701929 + 1.21578i 0.265859 + 0.964012i \(0.414344\pi\)
−0.967788 + 0.251765i \(0.918989\pi\)
\(30\) 0 0
\(31\) −3.22021 −0.578367 −0.289184 0.957274i \(-0.593384\pi\)
−0.289184 + 0.957274i \(0.593384\pi\)
\(32\) 0 0
\(33\) −0.312609 3.11352i −0.0544182 0.541995i
\(34\) 0 0
\(35\) −2.59829 + 9.82442i −0.439190 + 1.66063i
\(36\) 0 0
\(37\) 1.58395 + 2.74348i 0.260399 + 0.451025i 0.966348 0.257238i \(-0.0828124\pi\)
−0.705949 + 0.708263i \(0.749479\pi\)
\(38\) 0 0
\(39\) 0.239726 + 2.38762i 0.0383869 + 0.382326i
\(40\) 0 0
\(41\) 6.00329 + 10.3980i 0.937556 + 1.62389i 0.770011 + 0.638030i \(0.220250\pi\)
0.167545 + 0.985864i \(0.446416\pi\)
\(42\) 0 0
\(43\) −3.45480 + 5.98389i −0.526852 + 0.912535i 0.472658 + 0.881246i \(0.343295\pi\)
−0.999510 + 0.0312891i \(0.990039\pi\)
\(44\) 0 0
\(45\) −11.2929 + 2.29078i −1.68344 + 0.341489i
\(46\) 0 0
\(47\) −11.4384 −1.66846 −0.834232 0.551414i \(-0.814089\pi\)
−0.834232 + 0.551414i \(0.814089\pi\)
\(48\) 0 0
\(49\) 6.03932 3.53929i 0.862760 0.505613i
\(50\) 0 0
\(51\) 2.34350 1.68605i 0.328156 0.236095i
\(52\) 0 0
\(53\) 1.37450 2.38071i 0.188802 0.327015i −0.756049 0.654515i \(-0.772873\pi\)
0.944851 + 0.327500i \(0.106206\pi\)
\(54\) 0 0
\(55\) −6.93918 −0.935679
\(56\) 0 0
\(57\) −0.0277576 0.276460i −0.00367658 0.0366180i
\(58\) 0 0
\(59\) −15.0705 −1.96202 −0.981009 0.193964i \(-0.937866\pi\)
−0.981009 + 0.193964i \(0.937866\pi\)
\(60\) 0 0
\(61\) −9.20285 −1.17830 −0.589152 0.808022i \(-0.700538\pi\)
−0.589152 + 0.808022i \(0.700538\pi\)
\(62\) 0 0
\(63\) 6.63044 + 4.36317i 0.835357 + 0.549708i
\(64\) 0 0
\(65\) 5.32136 0.660033
\(66\) 0 0
\(67\) 12.3366 1.50716 0.753578 0.657359i \(-0.228326\pi\)
0.753578 + 0.657359i \(0.228326\pi\)
\(68\) 0 0
\(69\) −4.49967 + 3.23733i −0.541697 + 0.389729i
\(70\) 0 0
\(71\) 6.93289 0.822783 0.411391 0.911459i \(-0.365043\pi\)
0.411391 + 0.911459i \(0.365043\pi\)
\(72\) 0 0
\(73\) −6.22457 + 10.7813i −0.728531 + 1.26185i 0.228973 + 0.973433i \(0.426463\pi\)
−0.957504 + 0.288420i \(0.906870\pi\)
\(74\) 0 0
\(75\) 1.68759 + 16.8080i 0.194866 + 1.94082i
\(76\) 0 0
\(77\) 3.39085 + 3.36891i 0.386424 + 0.383922i
\(78\) 0 0
\(79\) −16.0743 −1.80850 −0.904251 0.427001i \(-0.859570\pi\)
−0.904251 + 0.427001i \(0.859570\pi\)
\(80\) 0 0
\(81\) −1.10712 + 8.93165i −0.123013 + 0.992405i
\(82\) 0 0
\(83\) 1.45280 2.51633i 0.159466 0.276203i −0.775210 0.631703i \(-0.782356\pi\)
0.934676 + 0.355500i \(0.115689\pi\)
\(84\) 0 0
\(85\) −3.20107 5.54441i −0.347205 0.601376i
\(86\) 0 0
\(87\) 10.6292 7.64729i 1.13957 0.819875i
\(88\) 0 0
\(89\) 5.04034 + 8.73012i 0.534275 + 0.925391i 0.999198 + 0.0400399i \(0.0127485\pi\)
−0.464923 + 0.885351i \(0.653918\pi\)
\(90\) 0 0
\(91\) −2.60030 2.58347i −0.272585 0.270821i
\(92\) 0 0
\(93\) 5.08476 + 2.29228i 0.527265 + 0.237698i
\(94\) 0 0
\(95\) −0.616153 −0.0632160
\(96\) 0 0
\(97\) 4.18830 7.25435i 0.425257 0.736567i −0.571187 0.820820i \(-0.693517\pi\)
0.996444 + 0.0842527i \(0.0268503\pi\)
\(98\) 0 0
\(99\) −1.72272 + 5.13882i −0.173140 + 0.516471i
\(100\) 0 0
\(101\) −4.05750 7.02780i −0.403736 0.699292i 0.590437 0.807084i \(-0.298955\pi\)
−0.994173 + 0.107792i \(0.965622\pi\)
\(102\) 0 0
\(103\) −3.76891 + 6.52794i −0.371362 + 0.643217i −0.989775 0.142635i \(-0.954442\pi\)
0.618414 + 0.785853i \(0.287776\pi\)
\(104\) 0 0
\(105\) 11.0962 13.6633i 1.08287 1.33340i
\(106\) 0 0
\(107\) 2.95731 + 5.12221i 0.285894 + 0.495183i 0.972826 0.231539i \(-0.0743762\pi\)
−0.686932 + 0.726722i \(0.741043\pi\)
\(108\) 0 0
\(109\) −4.48409 + 7.76668i −0.429498 + 0.743913i −0.996829 0.0795776i \(-0.974643\pi\)
0.567331 + 0.823490i \(0.307976\pi\)
\(110\) 0 0
\(111\) −0.548154 5.45951i −0.0520285 0.518193i
\(112\) 0 0
\(113\) −7.98131 13.8240i −0.750819 1.30046i −0.947426 0.319974i \(-0.896326\pi\)
0.196608 0.980482i \(-0.437007\pi\)
\(114\) 0 0
\(115\) 6.14626 + 10.6456i 0.573142 + 0.992710i
\(116\) 0 0
\(117\) 1.32108 3.94074i 0.122134 0.364321i
\(118\) 0 0
\(119\) −1.12755 + 4.26338i −0.103362 + 0.390824i
\(120\) 0 0
\(121\) 3.86804 6.69964i 0.351640 0.609059i
\(122\) 0 0
\(123\) −2.07755 20.6920i −0.187326 1.86573i
\(124\) 0 0
\(125\) 18.2557 1.63284
\(126\) 0 0
\(127\) −8.60913 −0.763937 −0.381968 0.924175i \(-0.624754\pi\)
−0.381968 + 0.924175i \(0.624754\pi\)
\(128\) 0 0
\(129\) 9.71476 6.98937i 0.855337 0.615380i
\(130\) 0 0
\(131\) −0.964831 + 1.67114i −0.0842976 + 0.146008i −0.905092 0.425216i \(-0.860198\pi\)
0.820794 + 0.571224i \(0.193531\pi\)
\(132\) 0 0
\(133\) 0.301085 + 0.299136i 0.0261074 + 0.0259384i
\(134\) 0 0
\(135\) 19.4622 + 4.42154i 1.67504 + 0.380546i
\(136\) 0 0
\(137\) 1.85442 + 3.21195i 0.158434 + 0.274416i 0.934304 0.356477i \(-0.116022\pi\)
−0.775870 + 0.630893i \(0.782689\pi\)
\(138\) 0 0
\(139\) −0.134568 0.233079i −0.0114139 0.0197695i 0.860262 0.509852i \(-0.170300\pi\)
−0.871676 + 0.490083i \(0.836967\pi\)
\(140\) 0 0
\(141\) 18.0614 + 8.14233i 1.52104 + 0.685708i
\(142\) 0 0
\(143\) 1.25148 2.16762i 0.104654 0.181266i
\(144\) 0 0
\(145\) −14.5188 25.1473i −1.20572 2.08837i
\(146\) 0 0
\(147\) −12.0556 + 1.28955i −0.994328 + 0.106361i
\(148\) 0 0
\(149\) −4.15880 + 7.20325i −0.340702 + 0.590113i −0.984563 0.175029i \(-0.943998\pi\)
0.643861 + 0.765142i \(0.277331\pi\)
\(150\) 0 0
\(151\) 4.87069 + 8.43628i 0.396371 + 0.686535i 0.993275 0.115778i \(-0.0369360\pi\)
−0.596904 + 0.802313i \(0.703603\pi\)
\(152\) 0 0
\(153\) −4.90062 + 0.994101i −0.396192 + 0.0803683i
\(154\) 0 0
\(155\) 6.18434 10.7116i 0.496738 0.860376i
\(156\) 0 0
\(157\) 24.2580 1.93600 0.968001 0.250947i \(-0.0807420\pi\)
0.968001 + 0.250947i \(0.0807420\pi\)
\(158\) 0 0
\(159\) −3.86504 + 2.78074i −0.306518 + 0.220527i
\(160\) 0 0
\(161\) 2.16496 8.18597i 0.170623 0.645145i
\(162\) 0 0
\(163\) −3.91401 6.77927i −0.306569 0.530993i 0.671040 0.741421i \(-0.265848\pi\)
−0.977609 + 0.210428i \(0.932514\pi\)
\(164\) 0 0
\(165\) 10.9571 + 4.93960i 0.853006 + 0.384547i
\(166\) 0 0
\(167\) 2.15395 + 3.73076i 0.166678 + 0.288695i 0.937250 0.348658i \(-0.113363\pi\)
−0.770572 + 0.637353i \(0.780029\pi\)
\(168\) 0 0
\(169\) 5.54030 9.59608i 0.426177 0.738160i
\(170\) 0 0
\(171\) −0.152966 + 0.456293i −0.0116976 + 0.0348936i
\(172\) 0 0
\(173\) −17.3359 −1.31803 −0.659014 0.752131i \(-0.729026\pi\)
−0.659014 + 0.752131i \(0.729026\pi\)
\(174\) 0 0
\(175\) −18.3052 18.1867i −1.38374 1.37478i
\(176\) 0 0
\(177\) 23.7966 + 10.7278i 1.78866 + 0.806353i
\(178\) 0 0
\(179\) 9.68644 16.7774i 0.723998 1.25400i −0.235387 0.971902i \(-0.575636\pi\)
0.959385 0.282100i \(-0.0910310\pi\)
\(180\) 0 0
\(181\) 2.89036 0.214839 0.107420 0.994214i \(-0.465741\pi\)
0.107420 + 0.994214i \(0.465741\pi\)
\(182\) 0 0
\(183\) 14.5314 + 6.55097i 1.07419 + 0.484261i
\(184\) 0 0
\(185\) −12.1677 −0.894590
\(186\) 0 0
\(187\) −3.01131 −0.220209
\(188\) 0 0
\(189\) −7.36367 11.6093i −0.535628 0.844454i
\(190\) 0 0
\(191\) −3.70044 −0.267755 −0.133877 0.990998i \(-0.542743\pi\)
−0.133877 + 0.990998i \(0.542743\pi\)
\(192\) 0 0
\(193\) −12.7670 −0.918991 −0.459495 0.888180i \(-0.651970\pi\)
−0.459495 + 0.888180i \(0.651970\pi\)
\(194\) 0 0
\(195\) −8.40249 3.78796i −0.601715 0.271261i
\(196\) 0 0
\(197\) 2.44715 0.174352 0.0871762 0.996193i \(-0.472216\pi\)
0.0871762 + 0.996193i \(0.472216\pi\)
\(198\) 0 0
\(199\) −2.24829 + 3.89415i −0.159377 + 0.276049i −0.934644 0.355584i \(-0.884282\pi\)
0.775267 + 0.631633i \(0.217615\pi\)
\(200\) 0 0
\(201\) −19.4797 8.78170i −1.37399 0.619413i
\(202\) 0 0
\(203\) −5.11411 + 19.3371i −0.358940 + 1.35720i
\(204\) 0 0
\(205\) −46.1167 −3.22093
\(206\) 0 0
\(207\) 9.40950 1.90874i 0.654006 0.132666i
\(208\) 0 0
\(209\) −0.144907 + 0.250986i −0.0100234 + 0.0173611i
\(210\) 0 0
\(211\) −1.09087 1.88945i −0.0750987 0.130075i 0.826030 0.563625i \(-0.190594\pi\)
−0.901129 + 0.433551i \(0.857261\pi\)
\(212\) 0 0
\(213\) −10.9471 4.93512i −0.750085 0.338149i
\(214\) 0 0
\(215\) −13.2697 22.9838i −0.904988 1.56749i
\(216\) 0 0
\(217\) −8.22237 + 2.23182i −0.558171 + 0.151506i
\(218\) 0 0
\(219\) 17.5032 12.5929i 1.18276 0.850947i
\(220\) 0 0
\(221\) 2.30924 0.155336
\(222\) 0 0
\(223\) 2.87967 4.98773i 0.192837 0.334003i −0.753352 0.657617i \(-0.771564\pi\)
0.946189 + 0.323614i \(0.104898\pi\)
\(224\) 0 0
\(225\) 9.29992 27.7414i 0.619995 1.84943i
\(226\) 0 0
\(227\) 8.29135 + 14.3610i 0.550316 + 0.953175i 0.998252 + 0.0591094i \(0.0188261\pi\)
−0.447935 + 0.894066i \(0.647841\pi\)
\(228\) 0 0
\(229\) 7.29688 12.6386i 0.482191 0.835180i −0.517600 0.855623i \(-0.673174\pi\)
0.999791 + 0.0204432i \(0.00650771\pi\)
\(230\) 0 0
\(231\) −2.95608 7.73329i −0.194496 0.508813i
\(232\) 0 0
\(233\) 0.949438 + 1.64448i 0.0621998 + 0.107733i 0.895448 0.445165i \(-0.146855\pi\)
−0.833249 + 0.552898i \(0.813522\pi\)
\(234\) 0 0
\(235\) 21.9672 38.0483i 1.43298 2.48200i
\(236\) 0 0
\(237\) 25.3816 + 11.4424i 1.64871 + 0.743261i
\(238\) 0 0
\(239\) 4.46351 + 7.73103i 0.288721 + 0.500079i 0.973505 0.228667i \(-0.0734368\pi\)
−0.684784 + 0.728746i \(0.740103\pi\)
\(240\) 0 0
\(241\) 12.1465 + 21.0383i 0.782423 + 1.35520i 0.930527 + 0.366224i \(0.119350\pi\)
−0.148104 + 0.988972i \(0.547317\pi\)
\(242\) 0 0
\(243\) 8.10607 13.3151i 0.520005 0.854164i
\(244\) 0 0
\(245\) 0.174600 + 26.8861i 0.0111548 + 1.71769i
\(246\) 0 0
\(247\) 0.111123 0.192470i 0.00707057 0.0122466i
\(248\) 0 0
\(249\) −4.08522 + 2.93915i −0.258890 + 0.186261i
\(250\) 0 0
\(251\) 5.64873 0.356545 0.178272 0.983981i \(-0.442949\pi\)
0.178272 + 0.983981i \(0.442949\pi\)
\(252\) 0 0
\(253\) 5.78191 0.363506
\(254\) 0 0
\(255\) 1.10779 + 11.0334i 0.0693724 + 0.690935i
\(256\) 0 0
\(257\) 11.7856 20.4132i 0.735163 1.27334i −0.219489 0.975615i \(-0.570439\pi\)
0.954652 0.297724i \(-0.0962275\pi\)
\(258\) 0 0
\(259\) 5.94580 + 5.90731i 0.369454 + 0.367063i
\(260\) 0 0
\(261\) −22.2273 + 4.50886i −1.37584 + 0.279091i
\(262\) 0 0
\(263\) 12.8203 + 22.2053i 0.790531 + 1.36924i 0.925639 + 0.378409i \(0.123529\pi\)
−0.135108 + 0.990831i \(0.543138\pi\)
\(264\) 0 0
\(265\) 5.27940 + 9.14419i 0.324311 + 0.561723i
\(266\) 0 0
\(267\) −1.74430 17.3729i −0.106749 1.06320i
\(268\) 0 0
\(269\) −8.27239 + 14.3282i −0.504376 + 0.873606i 0.495611 + 0.868545i \(0.334944\pi\)
−0.999987 + 0.00506090i \(0.998389\pi\)
\(270\) 0 0
\(271\) −8.90748 15.4282i −0.541091 0.937197i −0.998842 0.0481166i \(-0.984678\pi\)
0.457751 0.889081i \(-0.348655\pi\)
\(272\) 0 0
\(273\) 2.26689 + 5.93032i 0.137198 + 0.358920i
\(274\) 0 0
\(275\) 8.80996 15.2593i 0.531260 0.920170i
\(276\) 0 0
\(277\) 2.92191 + 5.06089i 0.175560 + 0.304080i 0.940355 0.340194i \(-0.110493\pi\)
−0.764795 + 0.644274i \(0.777160\pi\)
\(278\) 0 0
\(279\) −6.39716 7.23908i −0.382988 0.433392i
\(280\) 0 0
\(281\) −10.5591 + 18.2889i −0.629905 + 1.09103i 0.357666 + 0.933850i \(0.383573\pi\)
−0.987570 + 0.157177i \(0.949761\pi\)
\(282\) 0 0
\(283\) 12.7762 0.759468 0.379734 0.925096i \(-0.376016\pi\)
0.379734 + 0.925096i \(0.376016\pi\)
\(284\) 0 0
\(285\) 0.972914 + 0.438603i 0.0576304 + 0.0259806i
\(286\) 0 0
\(287\) 22.5351 + 22.3892i 1.33020 + 1.32159i
\(288\) 0 0
\(289\) 7.11087 + 12.3164i 0.418287 + 0.724494i
\(290\) 0 0
\(291\) −11.7773 + 8.47330i −0.690399 + 0.496714i
\(292\) 0 0
\(293\) 5.93828 + 10.2854i 0.346918 + 0.600880i 0.985700 0.168508i \(-0.0538948\pi\)
−0.638782 + 0.769388i \(0.720561\pi\)
\(294\) 0 0
\(295\) 28.9426 50.1301i 1.68510 2.91869i
\(296\) 0 0
\(297\) 6.37822 6.88796i 0.370102 0.399680i
\(298\) 0 0
\(299\) −4.43389 −0.256419
\(300\) 0 0
\(301\) −4.67413 + 17.6734i −0.269413 + 1.01868i
\(302\) 0 0
\(303\) 1.40417 + 13.9853i 0.0806676 + 0.803433i
\(304\) 0 0
\(305\) 17.6739 30.6120i 1.01200 1.75284i
\(306\) 0 0
\(307\) 3.93298 0.224467 0.112234 0.993682i \(-0.464200\pi\)
0.112234 + 0.993682i \(0.464200\pi\)
\(308\) 0 0
\(309\) 10.5980 7.62484i 0.602900 0.433762i
\(310\) 0 0
\(311\) −1.98221 −0.112401 −0.0562005 0.998420i \(-0.517899\pi\)
−0.0562005 + 0.998420i \(0.517899\pi\)
\(312\) 0 0
\(313\) 20.4995 1.15870 0.579349 0.815080i \(-0.303307\pi\)
0.579349 + 0.815080i \(0.303307\pi\)
\(314\) 0 0
\(315\) −27.2471 + 13.6759i −1.53520 + 0.770548i
\(316\) 0 0
\(317\) 9.51416 0.534369 0.267184 0.963645i \(-0.413907\pi\)
0.267184 + 0.963645i \(0.413907\pi\)
\(318\) 0 0
\(319\) −13.6581 −0.764709
\(320\) 0 0
\(321\) −1.02343 10.1932i −0.0571224 0.568927i
\(322\) 0 0
\(323\) −0.267384 −0.0148777
\(324\) 0 0
\(325\) −6.75597 + 11.7017i −0.374754 + 0.649093i
\(326\) 0 0
\(327\) 12.6091 9.07172i 0.697284 0.501667i
\(328\) 0 0
\(329\) −29.2064 + 7.92756i −1.61020 + 0.437061i
\(330\) 0 0
\(331\) −1.52986 −0.0840886 −0.0420443 0.999116i \(-0.513387\pi\)
−0.0420443 + 0.999116i \(0.513387\pi\)
\(332\) 0 0
\(333\) −3.02076 + 9.01083i −0.165536 + 0.493790i
\(334\) 0 0
\(335\) −23.6921 + 41.0360i −1.29444 + 2.24204i
\(336\) 0 0
\(337\) 10.6972 + 18.5281i 0.582714 + 1.00929i 0.995156 + 0.0983063i \(0.0313425\pi\)
−0.412442 + 0.910984i \(0.635324\pi\)
\(338\) 0 0
\(339\) 2.76208 + 27.5098i 0.150016 + 1.49413i
\(340\) 0 0
\(341\) −2.90887 5.03831i −0.157524 0.272840i
\(342\) 0 0
\(343\) 12.9676 13.2227i 0.700185 0.713961i
\(344\) 0 0
\(345\) −2.12703 21.1848i −0.114515 1.14055i
\(346\) 0 0
\(347\) −5.14381 −0.276134 −0.138067 0.990423i \(-0.544089\pi\)
−0.138067 + 0.990423i \(0.544089\pi\)
\(348\) 0 0
\(349\) 0.207526 0.359446i 0.0111086 0.0192407i −0.860418 0.509590i \(-0.829797\pi\)
0.871526 + 0.490349i \(0.163131\pi\)
\(350\) 0 0
\(351\) −4.89118 + 5.28208i −0.261072 + 0.281936i
\(352\) 0 0
\(353\) 6.04122 + 10.4637i 0.321542 + 0.556926i 0.980806 0.194985i \(-0.0624657\pi\)
−0.659265 + 0.751911i \(0.729132\pi\)
\(354\) 0 0
\(355\) −13.3145 + 23.0613i −0.706658 + 1.22397i
\(356\) 0 0
\(357\) 4.81526 5.92930i 0.254851 0.313812i
\(358\) 0 0
\(359\) 8.14926 + 14.1149i 0.430102 + 0.744958i 0.996882 0.0789113i \(-0.0251444\pi\)
−0.566780 + 0.823869i \(0.691811\pi\)
\(360\) 0 0
\(361\) 9.48713 16.4322i 0.499323 0.864852i
\(362\) 0 0
\(363\) −10.8768 + 7.82540i −0.570882 + 0.410727i
\(364\) 0 0
\(365\) −23.9083 41.4104i −1.25142 2.16752i
\(366\) 0 0
\(367\) 17.3500 + 30.0511i 0.905664 + 1.56866i 0.820024 + 0.572330i \(0.193960\pi\)
0.0856404 + 0.996326i \(0.472706\pi\)
\(368\) 0 0
\(369\) −11.4489 + 34.1518i −0.596007 + 1.77787i
\(370\) 0 0
\(371\) 1.85962 7.03143i 0.0965465 0.365054i
\(372\) 0 0
\(373\) 7.75329 13.4291i 0.401450 0.695332i −0.592451 0.805606i \(-0.701840\pi\)
0.993901 + 0.110274i \(0.0351730\pi\)
\(374\) 0 0
\(375\) −28.8260 12.9952i −1.48857 0.671067i
\(376\) 0 0
\(377\) 10.4738 0.539430
\(378\) 0 0
\(379\) 16.1820 0.831214 0.415607 0.909544i \(-0.363569\pi\)
0.415607 + 0.909544i \(0.363569\pi\)
\(380\) 0 0
\(381\) 13.5939 + 6.12833i 0.696438 + 0.313964i
\(382\) 0 0
\(383\) 2.17027 3.75902i 0.110896 0.192077i −0.805236 0.592955i \(-0.797961\pi\)
0.916132 + 0.400877i \(0.131295\pi\)
\(384\) 0 0
\(385\) −17.7183 + 4.80931i −0.903006 + 0.245105i
\(386\) 0 0
\(387\) −20.3151 + 4.12095i −1.03267 + 0.209480i
\(388\) 0 0
\(389\) −12.7731 22.1237i −0.647624 1.12172i −0.983689 0.179879i \(-0.942429\pi\)
0.336065 0.941839i \(-0.390904\pi\)
\(390\) 0 0
\(391\) 2.66722 + 4.61975i 0.134887 + 0.233631i
\(392\) 0 0
\(393\) 2.71306 1.95194i 0.136856 0.0984623i
\(394\) 0 0
\(395\) 30.8703 53.4690i 1.55326 2.69032i
\(396\) 0 0
\(397\) 2.28225 + 3.95297i 0.114543 + 0.198394i 0.917597 0.397512i \(-0.130126\pi\)
−0.803054 + 0.595906i \(0.796793\pi\)
\(398\) 0 0
\(399\) −0.262480 0.686665i −0.0131404 0.0343762i
\(400\) 0 0
\(401\) −0.668128 + 1.15723i −0.0333647 + 0.0577894i −0.882226 0.470827i \(-0.843956\pi\)
0.848861 + 0.528616i \(0.177289\pi\)
\(402\) 0 0
\(403\) 2.23068 + 3.86366i 0.111118 + 0.192463i
\(404\) 0 0
\(405\) −27.5837 20.8357i −1.37064 1.03533i
\(406\) 0 0
\(407\) −2.86161 + 4.95645i −0.141845 + 0.245682i
\(408\) 0 0
\(409\) 20.6664 1.02189 0.510944 0.859614i \(-0.329296\pi\)
0.510944 + 0.859614i \(0.329296\pi\)
\(410\) 0 0
\(411\) −0.641757 6.39177i −0.0316555 0.315283i
\(412\) 0 0
\(413\) −38.4806 + 10.4449i −1.89350 + 0.513958i
\(414\) 0 0
\(415\) 5.58015 + 9.66510i 0.273919 + 0.474441i
\(416\) 0 0
\(417\) 0.0465699 + 0.463826i 0.00228054 + 0.0227137i
\(418\) 0 0
\(419\) −10.5227 18.2259i −0.514069 0.890394i −0.999867 0.0163228i \(-0.994804\pi\)
0.485797 0.874071i \(-0.338529\pi\)
\(420\) 0 0
\(421\) −8.51630 + 14.7507i −0.415059 + 0.718903i −0.995435 0.0954456i \(-0.969572\pi\)
0.580376 + 0.814349i \(0.302906\pi\)
\(422\) 0 0
\(423\) −22.7231 25.7137i −1.10484 1.25024i
\(424\) 0 0
\(425\) 16.2563 0.788544
\(426\) 0 0
\(427\) −23.4982 + 6.37818i −1.13716 + 0.308662i
\(428\) 0 0
\(429\) −3.51910 + 2.53185i −0.169904 + 0.122239i
\(430\) 0 0
\(431\) −18.2925 + 31.6836i −0.881121 + 1.52615i −0.0310244 + 0.999519i \(0.509877\pi\)
−0.850096 + 0.526627i \(0.823456\pi\)
\(432\) 0 0
\(433\) −23.6571 −1.13689 −0.568444 0.822722i \(-0.692454\pi\)
−0.568444 + 0.822722i \(0.692454\pi\)
\(434\) 0 0
\(435\) 5.02450 + 50.0430i 0.240906 + 2.39938i
\(436\) 0 0
\(437\) 0.513395 0.0245590
\(438\) 0 0
\(439\) −20.7864 −0.992082 −0.496041 0.868299i \(-0.665213\pi\)
−0.496041 + 0.868299i \(0.665213\pi\)
\(440\) 0 0
\(441\) 19.9539 + 6.54543i 0.950185 + 0.311687i
\(442\) 0 0
\(443\) −7.42807 −0.352918 −0.176459 0.984308i \(-0.556464\pi\)
−0.176459 + 0.984308i \(0.556464\pi\)
\(444\) 0 0
\(445\) −38.7194 −1.83547
\(446\) 0 0
\(447\) 11.6944 8.41363i 0.553125 0.397951i
\(448\) 0 0
\(449\) −8.15800 −0.385000 −0.192500 0.981297i \(-0.561660\pi\)
−0.192500 + 0.981297i \(0.561660\pi\)
\(450\) 0 0
\(451\) −10.8457 + 18.7854i −0.510705 + 0.884568i
\(452\) 0 0
\(453\) −1.68559 16.7882i −0.0791960 0.788776i
\(454\) 0 0
\(455\) 13.5873 3.68805i 0.636985 0.172898i
\(456\) 0 0
\(457\) 14.3058 0.669199 0.334600 0.942360i \(-0.391399\pi\)
0.334600 + 0.942360i \(0.391399\pi\)
\(458\) 0 0
\(459\) 8.44578 + 1.91876i 0.394215 + 0.0895602i
\(460\) 0 0
\(461\) 7.71961 13.3708i 0.359538 0.622738i −0.628346 0.777934i \(-0.716268\pi\)
0.987884 + 0.155196i \(0.0496009\pi\)
\(462\) 0 0
\(463\) −10.5531 18.2785i −0.490444 0.849474i 0.509496 0.860473i \(-0.329832\pi\)
−0.999940 + 0.0109995i \(0.996499\pi\)
\(464\) 0 0
\(465\) −17.3901 + 12.5115i −0.806447 + 0.580206i
\(466\) 0 0
\(467\) −3.49896 6.06037i −0.161912 0.280440i 0.773642 0.633623i \(-0.218433\pi\)
−0.935555 + 0.353182i \(0.885100\pi\)
\(468\) 0 0
\(469\) 31.4998 8.55007i 1.45453 0.394805i
\(470\) 0 0
\(471\) −38.3037 17.2679i −1.76494 0.795661i
\(472\) 0 0
\(473\) −12.4831 −0.573974
\(474\) 0 0
\(475\) 0.782265 1.35492i 0.0358928 0.0621681i
\(476\) 0 0
\(477\) 8.08240 1.63953i 0.370068 0.0750691i
\(478\) 0 0
\(479\) 1.54406 + 2.67440i 0.0705500 + 0.122196i 0.899142 0.437656i \(-0.144191\pi\)
−0.828592 + 0.559852i \(0.810858\pi\)
\(480\) 0 0
\(481\) 2.19444 3.80089i 0.100058 0.173305i
\(482\) 0 0
\(483\) −9.24561 + 11.3846i −0.420690 + 0.518019i
\(484\) 0 0
\(485\) 16.0871 + 27.8636i 0.730475 + 1.26522i
\(486\) 0 0
\(487\) −4.90011 + 8.48725i −0.222045 + 0.384594i −0.955429 0.295221i \(-0.904607\pi\)
0.733384 + 0.679815i \(0.237940\pi\)
\(488\) 0 0
\(489\) 1.35452 + 13.4907i 0.0612533 + 0.610071i
\(490\) 0 0
\(491\) −9.98641 17.2970i −0.450680 0.780601i 0.547748 0.836643i \(-0.315485\pi\)
−0.998428 + 0.0560419i \(0.982152\pi\)
\(492\) 0 0
\(493\) −6.30055 10.9129i −0.283762 0.491491i
\(494\) 0 0
\(495\) −13.7851 15.5994i −0.619596 0.701140i
\(496\) 0 0
\(497\) 17.7022 4.80495i 0.794052 0.215531i
\(498\) 0 0
\(499\) −10.1650 + 17.6062i −0.455046 + 0.788163i −0.998691 0.0511526i \(-0.983710\pi\)
0.543645 + 0.839315i \(0.317044\pi\)
\(500\) 0 0
\(501\) −0.745415 7.42419i −0.0333027 0.331688i
\(502\) 0 0
\(503\) 23.9595 1.06830 0.534151 0.845389i \(-0.320631\pi\)
0.534151 + 0.845389i \(0.320631\pi\)
\(504\) 0 0
\(505\) 31.1693 1.38702
\(506\) 0 0
\(507\) −15.5791 + 11.2085i −0.691891 + 0.497788i
\(508\) 0 0
\(509\) −5.03046 + 8.71302i −0.222971 + 0.386198i −0.955709 0.294314i \(-0.904909\pi\)
0.732737 + 0.680511i \(0.238242\pi\)
\(510\) 0 0
\(511\) −8.42146 + 31.8425i −0.372544 + 1.40863i
\(512\) 0 0
\(513\) 0.566343 0.611605i 0.0250047 0.0270030i
\(514\) 0 0
\(515\) −14.4762 25.0735i −0.637898 1.10487i
\(516\) 0 0
\(517\) −10.3325 17.8964i −0.454423 0.787083i
\(518\) 0 0
\(519\) 27.3737 + 12.3404i 1.20157 + 0.541685i
\(520\) 0 0
\(521\) 7.99821 13.8533i 0.350408 0.606924i −0.635913 0.771761i \(-0.719376\pi\)
0.986321 + 0.164836i \(0.0527096\pi\)
\(522\) 0 0
\(523\) 18.7103 + 32.4072i 0.818146 + 1.41707i 0.907047 + 0.421029i \(0.138331\pi\)
−0.0889016 + 0.996040i \(0.528336\pi\)
\(524\) 0 0
\(525\) 15.9581 + 41.7474i 0.696468 + 1.82201i
\(526\) 0 0
\(527\) 2.68374 4.64838i 0.116906 0.202487i
\(528\) 0 0
\(529\) 6.37877 + 11.0484i 0.277338 + 0.480364i
\(530\) 0 0
\(531\) −29.9386 33.8788i −1.29922 1.47021i
\(532\) 0 0
\(533\) 8.31711 14.4057i 0.360254 0.623978i
\(534\) 0 0
\(535\) −22.7178 −0.982175
\(536\) 0 0
\(537\) −27.2379 + 19.5965i −1.17540 + 0.845653i
\(538\) 0 0
\(539\) 10.9930 + 6.25195i 0.473500 + 0.269291i
\(540\) 0 0
\(541\) 0.229159 + 0.396916i 0.00985233 + 0.0170647i 0.870910 0.491443i \(-0.163531\pi\)
−0.861057 + 0.508508i \(0.830197\pi\)
\(542\) 0 0
\(543\) −4.56392 2.05748i −0.195857 0.0882949i
\(544\) 0 0
\(545\) −17.2232 29.8314i −0.737760 1.27784i
\(546\) 0 0
\(547\) 11.2013 19.4011i 0.478931 0.829533i −0.520777 0.853693i \(-0.674358\pi\)
0.999708 + 0.0241596i \(0.00769098\pi\)
\(548\) 0 0
\(549\) −18.2821 20.6881i −0.780259 0.882948i
\(550\) 0 0
\(551\) −1.21275 −0.0516650
\(552\) 0 0
\(553\) −41.0436 + 11.1405i −1.74535 + 0.473744i
\(554\) 0 0
\(555\) 19.2130 + 8.66149i 0.815547 + 0.367660i
\(556\) 0 0
\(557\) 10.4155 18.0401i 0.441317 0.764383i −0.556471 0.830867i \(-0.687845\pi\)
0.997787 + 0.0664841i \(0.0211782\pi\)
\(558\) 0 0
\(559\) 9.57275 0.404884
\(560\) 0 0
\(561\) 4.75490 + 2.14357i 0.200752 + 0.0905018i
\(562\) 0 0
\(563\) −8.80605 −0.371131 −0.185565 0.982632i \(-0.559412\pi\)
−0.185565 + 0.982632i \(0.559412\pi\)
\(564\) 0 0
\(565\) 61.3117 2.57940
\(566\) 0 0
\(567\) 3.36333 + 23.5730i 0.141247 + 0.989974i
\(568\) 0 0
\(569\) 18.9857 0.795923 0.397962 0.917402i \(-0.369718\pi\)
0.397962 + 0.917402i \(0.369718\pi\)
\(570\) 0 0
\(571\) 15.7597 0.659523 0.329762 0.944064i \(-0.393032\pi\)
0.329762 + 0.944064i \(0.393032\pi\)
\(572\) 0 0
\(573\) 5.84305 + 2.63413i 0.244097 + 0.110042i
\(574\) 0 0
\(575\) −31.2131 −1.30167
\(576\) 0 0
\(577\) −15.9306 + 27.5927i −0.663201 + 1.14870i 0.316569 + 0.948570i \(0.397469\pi\)
−0.979770 + 0.200128i \(0.935864\pi\)
\(578\) 0 0
\(579\) 20.1593 + 9.08809i 0.837792 + 0.377688i
\(580\) 0 0
\(581\) 1.96555 7.43199i 0.0815449 0.308331i
\(582\) 0 0
\(583\) 4.96644 0.205689
\(584\) 0 0
\(585\) 10.5712 + 11.9625i 0.437066 + 0.494587i
\(586\) 0 0
\(587\) 20.3597 35.2640i 0.840333 1.45550i −0.0492799 0.998785i \(-0.515693\pi\)
0.889613 0.456715i \(-0.150974\pi\)
\(588\) 0 0
\(589\) −0.258288 0.447368i −0.0106426 0.0184335i
\(590\) 0 0
\(591\) −3.86409 1.74198i −0.158947 0.0716557i
\(592\) 0 0
\(593\) −14.0693 24.3688i −0.577759 1.00071i −0.995736 0.0922500i \(-0.970594\pi\)
0.417977 0.908458i \(-0.362739\pi\)
\(594\) 0 0
\(595\) −12.0161 11.9383i −0.492613 0.489425i
\(596\) 0 0
\(597\) 6.32209 4.54849i 0.258746 0.186157i
\(598\) 0 0
\(599\) −32.9926 −1.34804 −0.674020 0.738713i \(-0.735434\pi\)
−0.674020 + 0.738713i \(0.735434\pi\)
\(600\) 0 0
\(601\) −1.98103 + 3.43124i −0.0808079 + 0.139963i −0.903597 0.428383i \(-0.859083\pi\)
0.822789 + 0.568347i \(0.192417\pi\)
\(602\) 0 0
\(603\) 24.5075 + 27.7328i 0.998021 + 1.12937i
\(604\) 0 0
\(605\) 14.8570 + 25.7330i 0.604021 + 1.04620i
\(606\) 0 0
\(607\) 17.0132 29.4676i 0.690543 1.19605i −0.281118 0.959673i \(-0.590705\pi\)
0.971660 0.236382i \(-0.0759615\pi\)
\(608\) 0 0
\(609\) 21.8402 26.8930i 0.885008 1.08976i
\(610\) 0 0
\(611\) 7.92354 + 13.7240i 0.320552 + 0.555212i
\(612\) 0 0
\(613\) −15.2967 + 26.4946i −0.617827 + 1.07011i 0.372054 + 0.928211i \(0.378654\pi\)
−0.989881 + 0.141897i \(0.954680\pi\)
\(614\) 0 0
\(615\) 72.8188 + 32.8277i 2.93634 + 1.32374i
\(616\) 0 0
\(617\) 18.7646 + 32.5013i 0.755435 + 1.30845i 0.945158 + 0.326614i \(0.105908\pi\)
−0.189723 + 0.981838i \(0.560759\pi\)
\(618\) 0 0
\(619\) −2.92302 5.06282i −0.117486 0.203492i 0.801285 0.598283i \(-0.204150\pi\)
−0.918771 + 0.394791i \(0.870817\pi\)
\(620\) 0 0
\(621\) −16.2164 3.68415i −0.650744 0.147840i
\(622\) 0 0
\(623\) 18.9203 + 18.7979i 0.758028 + 0.753121i
\(624\) 0 0
\(625\) −10.6774 + 18.4937i −0.427095 + 0.739749i
\(626\) 0 0
\(627\) 0.407472 0.293160i 0.0162729 0.0117077i
\(628\) 0 0
\(629\) −5.28028 −0.210539
\(630\) 0 0
\(631\) −25.6347 −1.02050 −0.510251 0.860025i \(-0.670448\pi\)
−0.510251 + 0.860025i \(0.670448\pi\)
\(632\) 0 0
\(633\) 0.377516 + 3.75999i 0.0150049 + 0.149446i
\(634\) 0 0
\(635\) 16.5336 28.6371i 0.656117 1.13643i
\(636\) 0 0
\(637\) −8.43001 4.79435i −0.334009 0.189959i
\(638\) 0 0
\(639\) 13.7726 + 15.5852i 0.544837 + 0.616542i
\(640\) 0 0
\(641\) −12.9824 22.4861i −0.512772 0.888147i −0.999890 0.0148113i \(-0.995285\pi\)
0.487118 0.873336i \(-0.338048\pi\)
\(642\) 0 0
\(643\) 22.5634 + 39.0809i 0.889812 + 1.54120i 0.840097 + 0.542436i \(0.182498\pi\)
0.0497151 + 0.998763i \(0.484169\pi\)
\(644\) 0 0
\(645\) 4.59223 + 45.7377i 0.180819 + 1.80092i
\(646\) 0 0
\(647\) −2.70324 + 4.68215i −0.106275 + 0.184074i −0.914259 0.405131i \(-0.867226\pi\)
0.807983 + 0.589206i \(0.200559\pi\)
\(648\) 0 0
\(649\) −13.6135 23.5792i −0.534375 0.925564i
\(650\) 0 0
\(651\) 14.5719 + 2.32895i 0.571119 + 0.0912788i
\(652\) 0 0
\(653\) 15.9515 27.6288i 0.624231 1.08120i −0.364458 0.931220i \(-0.618746\pi\)
0.988689 0.149980i \(-0.0479211\pi\)
\(654\) 0 0
\(655\) −3.70587 6.41875i −0.144800 0.250801i
\(656\) 0 0
\(657\) −36.6020 + 7.42479i −1.42798 + 0.289669i
\(658\) 0 0
\(659\) −2.50215 + 4.33385i −0.0974699 + 0.168823i −0.910637 0.413208i \(-0.864408\pi\)
0.813167 + 0.582031i \(0.197742\pi\)
\(660\) 0 0
\(661\) 9.63406 0.374721 0.187361 0.982291i \(-0.440007\pi\)
0.187361 + 0.982291i \(0.440007\pi\)
\(662\) 0 0
\(663\) −3.64632 1.64381i −0.141611 0.0638404i
\(664\) 0 0
\(665\) −1.57326 + 0.427034i −0.0610085 + 0.0165597i
\(666\) 0 0
\(667\) 12.0975 + 20.9534i 0.468415 + 0.811319i
\(668\) 0 0
\(669\) −8.09751 + 5.82583i −0.313068 + 0.225240i
\(670\) 0 0
\(671\) −8.31308 14.3987i −0.320923 0.555855i
\(672\) 0 0
\(673\) 13.5885 23.5359i 0.523797 0.907243i −0.475819 0.879543i \(-0.657848\pi\)
0.999616 0.0276998i \(-0.00881825\pi\)
\(674\) 0 0
\(675\) −34.4322 + 37.1840i −1.32529 + 1.43121i
\(676\) 0 0
\(677\) −38.0502 −1.46239 −0.731194 0.682169i \(-0.761037\pi\)
−0.731194 + 0.682169i \(0.761037\pi\)
\(678\) 0 0
\(679\) 5.66651 21.4257i 0.217461 0.822244i
\(680\) 0 0
\(681\) −2.86937 28.5784i −0.109955 1.09513i
\(682\) 0 0
\(683\) −15.0571 + 26.0797i −0.576146 + 0.997913i 0.419771 + 0.907630i \(0.362111\pi\)
−0.995916 + 0.0902831i \(0.971223\pi\)
\(684\) 0 0
\(685\) −14.2455 −0.544293
\(686\) 0 0
\(687\) −20.5185 + 14.7622i −0.782830 + 0.563215i
\(688\) 0 0
\(689\) −3.80854 −0.145094
\(690\) 0 0
\(691\) −14.3902 −0.547429 −0.273714 0.961811i \(-0.588252\pi\)
−0.273714 + 0.961811i \(0.588252\pi\)
\(692\) 0 0
\(693\) −0.837189 + 14.3152i −0.0318022 + 0.543791i
\(694\) 0 0
\(695\) 1.03374 0.0392120
\(696\) 0 0
\(697\) −20.0127 −0.758034
\(698\) 0 0
\(699\) −0.328571 3.27250i −0.0124277 0.123777i
\(700\) 0 0
\(701\) 14.4170 0.544521 0.272261 0.962224i \(-0.412229\pi\)
0.272261 + 0.962224i \(0.412229\pi\)
\(702\) 0 0
\(703\) −0.254092 + 0.440100i −0.00958325 + 0.0165987i
\(704\) 0 0
\(705\) −61.7708 + 44.4416i −2.32642 + 1.67377i
\(706\) 0 0
\(707\) −15.2310 15.1324i −0.572820 0.569113i
\(708\) 0 0
\(709\) 11.4882 0.431448 0.215724 0.976454i \(-0.430789\pi\)
0.215724 + 0.976454i \(0.430789\pi\)
\(710\) 0 0
\(711\) −31.9327 36.1353i −1.19757 1.35518i
\(712\) 0 0
\(713\) −5.15296 + 8.92519i −0.192980 + 0.334251i
\(714\) 0 0
\(715\) 4.80686 + 8.32573i 0.179766 + 0.311365i
\(716\) 0 0
\(717\) −1.54468 15.3847i −0.0576871 0.574552i
\(718\) 0 0
\(719\) −17.9451 31.0818i −0.669240 1.15916i −0.978117 0.208055i \(-0.933287\pi\)
0.308877 0.951102i \(-0.400047\pi\)
\(720\) 0 0
\(721\) −5.09910 + 19.2803i −0.189901 + 0.718036i
\(722\) 0 0
\(723\) −4.20351 41.8661i −0.156330 1.55702i
\(724\) 0 0
\(725\) 73.7321 2.73834
\(726\) 0 0
\(727\) 5.03060 8.71326i 0.186575 0.323157i −0.757531 0.652799i \(-0.773595\pi\)
0.944106 + 0.329642i \(0.106928\pi\)
\(728\) 0 0
\(729\) −22.2778 + 15.2545i −0.825104 + 0.564980i
\(730\) 0 0
\(731\) −5.75850 9.97401i −0.212986 0.368902i
\(732\) 0 0
\(733\) −16.5690 + 28.6984i −0.611992 + 1.06000i 0.378913 + 0.925432i \(0.376298\pi\)
−0.990904 + 0.134568i \(0.957035\pi\)
\(734\) 0 0
\(735\) 18.8629 42.5778i 0.695770 1.57051i
\(736\) 0 0
\(737\) 11.1438 + 19.3017i 0.410489 + 0.710987i
\(738\) 0 0
\(739\) −21.9237 + 37.9729i −0.806475 + 1.39686i 0.108816 + 0.994062i \(0.465294\pi\)
−0.915291 + 0.402793i \(0.868039\pi\)
\(740\) 0 0
\(741\) −0.312473 + 0.224811i −0.0114790 + 0.00825865i
\(742\) 0 0
\(743\) −4.50115 7.79622i −0.165131 0.286016i 0.771571 0.636144i \(-0.219471\pi\)
−0.936702 + 0.350128i \(0.886138\pi\)
\(744\) 0 0
\(745\) −15.9738 27.6673i −0.585233 1.01365i
\(746\) 0 0
\(747\) 8.54283 1.73293i 0.312566 0.0634046i
\(748\) 0 0
\(749\) 11.1011 + 11.0293i 0.405626 + 0.403000i
\(750\) 0 0
\(751\) 5.59141 9.68460i 0.204033 0.353396i −0.745791 0.666180i \(-0.767928\pi\)
0.949824 + 0.312784i \(0.101262\pi\)
\(752\) 0 0
\(753\) −8.91942 4.02100i −0.325042 0.146533i
\(754\) 0 0
\(755\) −37.4162 −1.36171
\(756\) 0 0
\(757\) 42.1431 1.53172 0.765859 0.643009i \(-0.222314\pi\)
0.765859 + 0.643009i \(0.222314\pi\)
\(758\) 0 0
\(759\) −9.12971 4.11580i −0.331388 0.149394i
\(760\) 0 0
\(761\) −1.14155 + 1.97721i −0.0413810 + 0.0716740i −0.885974 0.463735i \(-0.846509\pi\)
0.844593 + 0.535409i \(0.179842\pi\)
\(762\) 0 0
\(763\) −6.06670 + 22.9389i −0.219629 + 0.830444i
\(764\) 0 0
\(765\) 6.10478 18.2104i 0.220719 0.658398i
\(766\) 0 0
\(767\) 10.4396 + 18.0819i 0.376951 + 0.652898i
\(768\) 0 0
\(769\) 8.96676 + 15.5309i 0.323350 + 0.560058i 0.981177 0.193111i \(-0.0618577\pi\)
−0.657827 + 0.753169i \(0.728524\pi\)
\(770\) 0 0
\(771\) −33.1405 + 23.8432i −1.19353 + 0.858693i
\(772\) 0 0
\(773\) 17.4807 30.2775i 0.628737 1.08901i −0.359068 0.933311i \(-0.616905\pi\)
0.987805 0.155694i \(-0.0497613\pi\)
\(774\) 0 0
\(775\) 15.7032 + 27.1988i 0.564077 + 0.977009i
\(776\) 0 0
\(777\) −5.18343 13.5602i −0.185955 0.486469i
\(778\) 0 0
\(779\) −0.963028 + 1.66801i −0.0345041 + 0.0597628i
\(780\) 0 0
\(781\) 6.26259 + 10.8471i 0.224093 + 0.388141i
\(782\) 0 0
\(783\) 38.3068 + 8.70277i 1.36897 + 0.311011i
\(784\) 0 0
\(785\) −46.5870 + 80.6910i −1.66276 + 2.87998i
\(786\) 0 0
\(787\) 28.3564 1.01079 0.505397 0.862887i \(-0.331346\pi\)
0.505397 + 0.862887i \(0.331346\pi\)
\(788\) 0 0
\(789\) −4.43668 44.1885i −0.157950 1.57315i
\(790\) 0 0
\(791\) −29.9601 29.7662i −1.06526 1.05836i
\(792\) 0 0
\(793\) 6.37494 + 11.0417i 0.226381 + 0.392103i
\(794\) 0 0
\(795\) −1.82703 18.1969i −0.0647982 0.645377i
\(796\) 0 0
\(797\) −9.51922 16.4878i −0.337188 0.584027i 0.646715 0.762732i \(-0.276143\pi\)
−0.983903 + 0.178705i \(0.942809\pi\)
\(798\) 0 0
\(799\) 9.53283 16.5113i 0.337247 0.584129i
\(800\) 0 0
\(801\) −9.61246 + 28.6737i −0.339640 + 1.01313i
\(802\) 0 0
\(803\) −22.4910 −0.793691
\(804\) 0 0
\(805\) 23.0717 + 22.9224i 0.813172 + 0.807908i
\(806\) 0 0
\(807\) 23.2616 16.7358i 0.818847 0.589128i
\(808\) 0 0
\(809\) −10.4529 + 18.1050i −0.367505 + 0.636538i −0.989175 0.146742i \(-0.953121\pi\)
0.621670 + 0.783280i \(0.286455\pi\)
\(810\) 0 0
\(811\) −17.5392 −0.615884 −0.307942 0.951405i \(-0.599640\pi\)
−0.307942 + 0.951405i \(0.599640\pi\)
\(812\) 0 0
\(813\) 3.08260 + 30.7021i 0.108111 + 1.07677i
\(814\) 0 0
\(815\) 30.0671 1.05320
\(816\) 0 0
\(817\) −1.10842 −0.0387786
\(818\) 0 0
\(819\) 0.642004 10.9777i 0.0224334 0.383593i
\(820\) 0 0
\(821\) −34.9762 −1.22068 −0.610339 0.792140i \(-0.708967\pi\)
−0.610339 + 0.792140i \(0.708967\pi\)
\(822\) 0 0
\(823\) 30.4235 1.06050 0.530249 0.847842i \(-0.322099\pi\)
0.530249 + 0.847842i \(0.322099\pi\)
\(824\) 0 0
\(825\) −24.7732 + 17.8233i −0.862493 + 0.620529i
\(826\) 0 0
\(827\) 25.6276 0.891158 0.445579 0.895243i \(-0.352998\pi\)
0.445579 + 0.895243i \(0.352998\pi\)
\(828\) 0 0
\(829\) 23.9403 41.4658i 0.831481 1.44017i −0.0653833 0.997860i \(-0.520827\pi\)
0.896864 0.442307i \(-0.145840\pi\)
\(830\) 0 0
\(831\) −1.01118 10.0712i −0.0350775 0.349364i
\(832\) 0 0
\(833\) 0.0757689 + 11.6674i 0.00262524 + 0.404252i
\(834\) 0 0
\(835\) −16.5465 −0.572614
\(836\) 0 0
\(837\) 4.94813 + 15.9844i 0.171032 + 0.552501i
\(838\) 0 0
\(839\) 21.8466 37.8394i 0.754227 1.30636i −0.191530 0.981487i \(-0.561345\pi\)
0.945758 0.324873i \(-0.105322\pi\)
\(840\) 0 0
\(841\) −14.0769 24.3818i −0.485409 0.840753i
\(842\) 0 0
\(843\) 29.6918 21.3621i 1.02264 0.735749i
\(844\) 0 0
\(845\) 21.2800 + 36.8581i 0.732055 + 1.26796i
\(846\) 0 0
\(847\) 5.23322 19.7874i 0.179816 0.679904i
\(848\) 0 0
\(849\) −20.1738 9.09464i −0.692364 0.312127i
\(850\) 0 0
\(851\) 10.1385 0.347543
\(852\) 0 0
\(853\) 8.33994 14.4452i 0.285554 0.494594i −0.687189 0.726478i \(-0.741156\pi\)
0.972743 + 0.231884i \(0.0744890\pi\)
\(854\) 0 0
\(855\) −1.22403 1.38512i −0.0418609 0.0473701i
\(856\) 0 0
\(857\) −7.21452 12.4959i −0.246443 0.426852i 0.716093 0.698005i \(-0.245929\pi\)
−0.962536 + 0.271152i \(0.912595\pi\)
\(858\) 0 0
\(859\) 11.3867 19.7223i 0.388508 0.672915i −0.603741 0.797180i \(-0.706324\pi\)
0.992249 + 0.124265i \(0.0396573\pi\)
\(860\) 0 0
\(861\) −19.6456 51.3942i −0.669521 1.75151i
\(862\) 0 0
\(863\) 5.97266 + 10.3450i 0.203312 + 0.352146i 0.949594 0.313484i \(-0.101496\pi\)
−0.746282 + 0.665630i \(0.768163\pi\)
\(864\) 0 0
\(865\) 33.2933 57.6656i 1.13200 1.96069i
\(866\) 0 0
\(867\) −2.46085 24.5096i −0.0835748 0.832388i
\(868\) 0 0
\(869\) −14.5202 25.1497i −0.492563 0.853145i
\(870\) 0 0
\(871\) −8.54572 14.8016i −0.289561 0.501534i
\(872\) 0 0
\(873\) 24.6282 4.99588i 0.833538 0.169085i
\(874\) 0 0
\(875\) 46.6134 12.6524i 1.57582 0.427729i
\(876\) 0 0
\(877\) 28.3099 49.0342i 0.955957 1.65577i 0.223794 0.974636i \(-0.428156\pi\)
0.732163 0.681130i \(-0.238511\pi\)
\(878\) 0 0
\(879\) −2.05505 20.4679i −0.0693152 0.690365i
\(880\) 0 0
\(881\) −6.41130 −0.216002 −0.108001 0.994151i \(-0.534445\pi\)
−0.108001 + 0.994151i \(0.534445\pi\)
\(882\) 0 0
\(883\) 25.7180 0.865481 0.432741 0.901518i \(-0.357547\pi\)
0.432741 + 0.901518i \(0.357547\pi\)
\(884\) 0 0
\(885\) −81.3854 + 58.5535i −2.73574 + 1.96825i
\(886\) 0 0
\(887\) 9.99472 17.3114i 0.335590 0.581259i −0.648008 0.761633i \(-0.724398\pi\)
0.983598 + 0.180375i \(0.0577311\pi\)
\(888\) 0 0
\(889\) −21.9822 + 5.96669i −0.737261 + 0.200116i
\(890\) 0 0
\(891\) −14.9744 + 6.33591i −0.501662 + 0.212261i
\(892\) 0 0
\(893\) −0.917456 1.58908i −0.0307015 0.0531766i
\(894\) 0 0
\(895\) 37.2051 + 64.4412i 1.24363 + 2.15403i
\(896\) 0 0
\(897\) 7.00118 + 3.15623i 0.233762 + 0.105383i
\(898\) 0 0
\(899\) 12.1724 21.0832i 0.405973 0.703166i
\(900\) 0 0
\(901\) 2.29104 + 3.96819i 0.0763254 + 0.132200i
\(902\) 0 0
\(903\) 19.9612 24.5794i 0.664267 0.817950i
\(904\) 0 0
\(905\) −5.55087 + 9.61439i −0.184517 + 0.319593i
\(906\) 0 0
\(907\) 12.1517 + 21.0474i 0.403491 + 0.698866i 0.994145 0.108059i \(-0.0344635\pi\)
−0.590654 + 0.806925i \(0.701130\pi\)
\(908\) 0 0
\(909\) 7.73809 23.0825i 0.256656 0.765598i
\(910\) 0 0
\(911\) −19.7871 + 34.2723i −0.655577 + 1.13549i 0.326171 + 0.945311i \(0.394241\pi\)
−0.981749 + 0.190183i \(0.939092\pi\)
\(912\) 0 0
\(913\) 5.24936 0.173728
\(914\) 0 0
\(915\) −49.6981 + 35.7558i −1.64297 + 1.18205i
\(916\) 0 0
\(917\) −1.30536 + 4.93571i −0.0431067 + 0.162991i
\(918\) 0 0
\(919\) 12.9220 + 22.3815i 0.426257 + 0.738298i 0.996537 0.0831519i \(-0.0264987\pi\)
−0.570280 + 0.821450i \(0.693165\pi\)
\(920\) 0 0
\(921\) −6.21023 2.79966i −0.204634 0.0922518i
\(922\) 0 0
\(923\) −4.80251 8.31818i −0.158076 0.273796i
\(924\) 0 0
\(925\) 15.4481 26.7569i 0.507930 0.879761i
\(926\) 0 0
\(927\) −22.1621 + 4.49563i −0.727898 + 0.147656i
\(928\) 0 0
\(929\) 50.8506 1.66836 0.834178 0.551496i \(-0.185943\pi\)
0.834178 + 0.551496i \(0.185943\pi\)
\(930\) 0 0
\(931\) 0.976100 + 0.555132i 0.0319904 + 0.0181937i
\(932\) 0 0
\(933\) 3.12994 + 1.41102i 0.102470 + 0.0461948i
\(934\) 0 0
\(935\) 5.78315 10.0167i 0.189129 0.327581i
\(936\) 0 0
\(937\) 32.7623 1.07030 0.535149 0.844758i \(-0.320256\pi\)
0.535149 + 0.844758i \(0.320256\pi\)
\(938\) 0 0
\(939\) −32.3689 14.5923i −1.05632 0.476203i
\(940\) 0 0
\(941\) 50.6793 1.65210 0.826048 0.563599i \(-0.190584\pi\)
0.826048 + 0.563599i \(0.190584\pi\)
\(942\) 0 0
\(943\) 38.4256 1.25131
\(944\) 0 0
\(945\) 52.7586 2.19879i 1.71624 0.0715267i
\(946\) 0 0
\(947\) 11.5255 0.374530 0.187265 0.982309i \(-0.440038\pi\)
0.187265 + 0.982309i \(0.440038\pi\)
\(948\) 0 0
\(949\) 17.2474 0.559873
\(950\) 0 0
\(951\) −15.0230 6.77257i −0.487154 0.219616i
\(952\) 0 0
\(953\) −45.7747 −1.48279 −0.741395 0.671069i \(-0.765835\pi\)
−0.741395 + 0.671069i \(0.765835\pi\)
\(954\) 0 0
\(955\) 7.10661 12.3090i 0.229965 0.398310i
\(956\) 0 0
\(957\) 21.5664 + 9.72243i 0.697142 + 0.314281i
\(958\) 0 0
\(959\) 6.96111 + 6.91605i 0.224786 + 0.223331i
\(960\) 0 0
\(961\) −20.6302 −0.665491
\(962\) 0 0
\(963\) −5.63990 + 16.8237i −0.181743 + 0.542135i
\(964\) 0 0
\(965\) 24.5188 42.4678i 0.789287 1.36709i
\(966\) 0 0
\(967\) 4.07666 + 7.06098i 0.131097 + 0.227066i 0.924100 0.382152i \(-0.124817\pi\)
−0.793003 + 0.609218i \(0.791484\pi\)
\(968\) 0 0
\(969\) 0.422203 + 0.190335i 0.0135631 + 0.00611444i
\(970\) 0 0
\(971\) −14.1137 24.4457i −0.452932 0.784501i 0.545635 0.838023i \(-0.316288\pi\)
−0.998567 + 0.0535223i \(0.982955\pi\)
\(972\) 0 0
\(973\) −0.505141 0.501871i −0.0161941 0.0160893i
\(974\) 0 0
\(975\) 18.9975 13.6679i 0.608407 0.437724i
\(976\) 0 0
\(977\) −15.6502 −0.500694 −0.250347 0.968156i \(-0.580545\pi\)
−0.250347 + 0.968156i \(0.580545\pi\)
\(978\) 0 0
\(979\) −9.10603 + 15.7721i −0.291030 + 0.504079i
\(980\) 0 0
\(981\) −26.3675 + 5.34871i −0.841850 + 0.170771i
\(982\) 0 0
\(983\) 1.47581 + 2.55617i 0.0470710 + 0.0815293i 0.888601 0.458681i \(-0.151678\pi\)
−0.841530 + 0.540210i \(0.818345\pi\)
\(984\) 0 0
\(985\) −4.69970 + 8.14012i −0.149745 + 0.259366i
\(986\) 0 0
\(987\) 51.7605 + 8.27259i 1.64755 + 0.263319i
\(988\) 0 0
\(989\) 11.0567 + 19.1507i 0.351582 + 0.608958i
\(990\) 0 0
\(991\) −15.8182 + 27.3979i −0.502482 + 0.870324i 0.497514 + 0.867456i \(0.334246\pi\)
−0.999996 + 0.00286819i \(0.999087\pi\)
\(992\) 0 0
\(993\) 2.41567 + 1.08902i 0.0766588 + 0.0345589i
\(994\) 0 0
\(995\) −8.63557 14.9572i −0.273766 0.474176i
\(996\) 0 0
\(997\) 0.792608 + 1.37284i 0.0251021 + 0.0434782i 0.878304 0.478103i \(-0.158676\pi\)
−0.853201 + 0.521582i \(0.825342\pi\)
\(998\) 0 0
\(999\) 11.1841 12.0779i 0.353849 0.382129i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.q.k.529.2 22
3.2 odd 2 3024.2.q.k.2881.11 22
4.3 odd 2 504.2.q.d.25.10 22
7.2 even 3 1008.2.t.k.961.10 22
9.4 even 3 1008.2.t.k.193.10 22
9.5 odd 6 3024.2.t.l.1873.1 22
12.11 even 2 1512.2.q.c.1369.11 22
21.2 odd 6 3024.2.t.l.289.1 22
28.23 odd 6 504.2.t.d.457.2 yes 22
36.23 even 6 1512.2.t.d.361.1 22
36.31 odd 6 504.2.t.d.193.2 yes 22
63.23 odd 6 3024.2.q.k.2305.11 22
63.58 even 3 inner 1008.2.q.k.625.2 22
84.23 even 6 1512.2.t.d.289.1 22
252.23 even 6 1512.2.q.c.793.11 22
252.247 odd 6 504.2.q.d.121.10 yes 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.q.d.25.10 22 4.3 odd 2
504.2.q.d.121.10 yes 22 252.247 odd 6
504.2.t.d.193.2 yes 22 36.31 odd 6
504.2.t.d.457.2 yes 22 28.23 odd 6
1008.2.q.k.529.2 22 1.1 even 1 trivial
1008.2.q.k.625.2 22 63.58 even 3 inner
1008.2.t.k.193.10 22 9.4 even 3
1008.2.t.k.961.10 22 7.2 even 3
1512.2.q.c.793.11 22 252.23 even 6
1512.2.q.c.1369.11 22 12.11 even 2
1512.2.t.d.289.1 22 84.23 even 6
1512.2.t.d.361.1 22 36.23 even 6
3024.2.q.k.2305.11 22 63.23 odd 6
3024.2.q.k.2881.11 22 3.2 odd 2
3024.2.t.l.289.1 22 21.2 odd 6
3024.2.t.l.1873.1 22 9.5 odd 6