Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1008,2,Mod(529,1008)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1008, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 4, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1008.529");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1008.q (of order \(3\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(8.04892052375\) |
Analytic rank: | \(0\) |
Dimension: | \(22\) |
Relative dimension: | \(11\) over \(\Q(\zeta_{3})\) |
Twist minimal: | no (minimal twist has level 504) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
529.1 | 0 | −1.73195 | + | 0.0184869i | 0 | 0.790938 | − | 1.36994i | 0 | −2.57645 | − | 0.601597i | 0 | 2.99932 | − | 0.0640368i | 0 | ||||||||||
529.2 | 0 | −1.57901 | − | 0.711841i | 0 | −1.92048 | + | 3.32636i | 0 | 2.55336 | − | 0.693065i | 0 | 1.98656 | + | 2.24801i | 0 | ||||||||||
529.3 | 0 | −1.34477 | − | 1.09160i | 0 | 0.918286 | − | 1.59052i | 0 | 0.361656 | + | 2.62092i | 0 | 0.616838 | + | 2.93590i | 0 | ||||||||||
529.4 | 0 | −1.22753 | + | 1.22195i | 0 | 1.76479 | − | 3.05671i | 0 | 2.63986 | − | 0.176417i | 0 | 0.0136831 | − | 2.99997i | 0 | ||||||||||
529.5 | 0 | −1.12528 | + | 1.31671i | 0 | −0.927957 | + | 1.60727i | 0 | −0.900017 | − | 2.48796i | 0 | −0.467471 | − | 2.96335i | 0 | ||||||||||
529.6 | 0 | −0.273951 | + | 1.71025i | 0 | −1.33401 | + | 2.31057i | 0 | −0.581213 | + | 2.58112i | 0 | −2.84990 | − | 0.937047i | 0 | ||||||||||
529.7 | 0 | 0.455209 | − | 1.67116i | 0 | 0.240694 | − | 0.416893i | 0 | 1.92765 | + | 1.81223i | 0 | −2.58557 | − | 1.52146i | 0 | ||||||||||
529.8 | 0 | 1.13364 | + | 1.30952i | 0 | −0.170100 | + | 0.294622i | 0 | 2.63360 | − | 0.253251i | 0 | −0.429705 | + | 2.96907i | 0 | ||||||||||
529.9 | 0 | 1.47982 | + | 0.900079i | 0 | 1.26145 | − | 2.18490i | 0 | −2.63136 | + | 0.275550i | 0 | 1.37972 | + | 2.66390i | 0 | ||||||||||
529.10 | 0 | 1.56287 | − | 0.746620i | 0 | 1.71796 | − | 2.97559i | 0 | 0.727932 | − | 2.54364i | 0 | 1.88512 | − | 2.33374i | 0 | ||||||||||
529.11 | 0 | 1.65097 | − | 0.523731i | 0 | −0.841578 | + | 1.45766i | 0 | −1.65502 | + | 2.06419i | 0 | 2.45141 | − | 1.72933i | 0 | ||||||||||
625.1 | 0 | −1.73195 | − | 0.0184869i | 0 | 0.790938 | + | 1.36994i | 0 | −2.57645 | + | 0.601597i | 0 | 2.99932 | + | 0.0640368i | 0 | ||||||||||
625.2 | 0 | −1.57901 | + | 0.711841i | 0 | −1.92048 | − | 3.32636i | 0 | 2.55336 | + | 0.693065i | 0 | 1.98656 | − | 2.24801i | 0 | ||||||||||
625.3 | 0 | −1.34477 | + | 1.09160i | 0 | 0.918286 | + | 1.59052i | 0 | 0.361656 | − | 2.62092i | 0 | 0.616838 | − | 2.93590i | 0 | ||||||||||
625.4 | 0 | −1.22753 | − | 1.22195i | 0 | 1.76479 | + | 3.05671i | 0 | 2.63986 | + | 0.176417i | 0 | 0.0136831 | + | 2.99997i | 0 | ||||||||||
625.5 | 0 | −1.12528 | − | 1.31671i | 0 | −0.927957 | − | 1.60727i | 0 | −0.900017 | + | 2.48796i | 0 | −0.467471 | + | 2.96335i | 0 | ||||||||||
625.6 | 0 | −0.273951 | − | 1.71025i | 0 | −1.33401 | − | 2.31057i | 0 | −0.581213 | − | 2.58112i | 0 | −2.84990 | + | 0.937047i | 0 | ||||||||||
625.7 | 0 | 0.455209 | + | 1.67116i | 0 | 0.240694 | + | 0.416893i | 0 | 1.92765 | − | 1.81223i | 0 | −2.58557 | + | 1.52146i | 0 | ||||||||||
625.8 | 0 | 1.13364 | − | 1.30952i | 0 | −0.170100 | − | 0.294622i | 0 | 2.63360 | + | 0.253251i | 0 | −0.429705 | − | 2.96907i | 0 | ||||||||||
625.9 | 0 | 1.47982 | − | 0.900079i | 0 | 1.26145 | + | 2.18490i | 0 | −2.63136 | − | 0.275550i | 0 | 1.37972 | − | 2.66390i | 0 | ||||||||||
See all 22 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
63.h | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1008.2.q.k | 22 | |
3.b | odd | 2 | 1 | 3024.2.q.k | 22 | ||
4.b | odd | 2 | 1 | 504.2.q.d | ✓ | 22 | |
7.c | even | 3 | 1 | 1008.2.t.k | 22 | ||
9.c | even | 3 | 1 | 1008.2.t.k | 22 | ||
9.d | odd | 6 | 1 | 3024.2.t.l | 22 | ||
12.b | even | 2 | 1 | 1512.2.q.c | 22 | ||
21.h | odd | 6 | 1 | 3024.2.t.l | 22 | ||
28.g | odd | 6 | 1 | 504.2.t.d | yes | 22 | |
36.f | odd | 6 | 1 | 504.2.t.d | yes | 22 | |
36.h | even | 6 | 1 | 1512.2.t.d | 22 | ||
63.h | even | 3 | 1 | inner | 1008.2.q.k | 22 | |
63.j | odd | 6 | 1 | 3024.2.q.k | 22 | ||
84.n | even | 6 | 1 | 1512.2.t.d | 22 | ||
252.u | odd | 6 | 1 | 504.2.q.d | ✓ | 22 | |
252.bb | even | 6 | 1 | 1512.2.q.c | 22 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
504.2.q.d | ✓ | 22 | 4.b | odd | 2 | 1 | |
504.2.q.d | ✓ | 22 | 252.u | odd | 6 | 1 | |
504.2.t.d | yes | 22 | 28.g | odd | 6 | 1 | |
504.2.t.d | yes | 22 | 36.f | odd | 6 | 1 | |
1008.2.q.k | 22 | 1.a | even | 1 | 1 | trivial | |
1008.2.q.k | 22 | 63.h | even | 3 | 1 | inner | |
1008.2.t.k | 22 | 7.c | even | 3 | 1 | ||
1008.2.t.k | 22 | 9.c | even | 3 | 1 | ||
1512.2.q.c | 22 | 12.b | even | 2 | 1 | ||
1512.2.q.c | 22 | 252.bb | even | 6 | 1 | ||
1512.2.t.d | 22 | 36.h | even | 6 | 1 | ||
1512.2.t.d | 22 | 84.n | even | 6 | 1 | ||
3024.2.q.k | 22 | 3.b | odd | 2 | 1 | ||
3024.2.q.k | 22 | 63.j | odd | 6 | 1 | ||
3024.2.t.l | 22 | 9.d | odd | 6 | 1 | ||
3024.2.t.l | 22 | 21.h | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1008, [\chi])\):
\( T_{5}^{22} - 3 T_{5}^{21} + 37 T_{5}^{20} - 86 T_{5}^{19} + 790 T_{5}^{18} - 1652 T_{5}^{17} + \cdots + 217156 \) |
\( T_{11}^{22} - 3 T_{11}^{21} + 64 T_{11}^{20} - 165 T_{11}^{19} + 2605 T_{11}^{18} - 6138 T_{11}^{17} + \cdots + 282643344 \) |