Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [504,2,Mod(193,504)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(504, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 2, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("504.193");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 504.t (of order \(3\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.02446026187\) |
Analytic rank: | \(0\) |
Dimension: | \(22\) |
Relative dimension: | \(11\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
193.1 | 0 | −1.61774 | − | 0.618811i | 0 | −1.83657 | 0 | 2.45061 | + | 0.997255i | 0 | 2.23415 | + | 2.00215i | 0 | ||||||||||||
193.2 | 0 | −1.40598 | − | 1.01154i | 0 | 3.84095 | 0 | 0.676469 | − | 2.55781i | 0 | 0.953553 | + | 2.84442i | 0 | ||||||||||||
193.3 | 0 | −1.21966 | + | 1.22980i | 0 | −0.481387 | 0 | 2.53326 | − | 0.763277i | 0 | −0.0248369 | − | 2.99990i | 0 | ||||||||||||
193.4 | 0 | −0.849966 | − | 1.50916i | 0 | −1.58188 | 0 | −1.80922 | + | 1.93047i | 0 | −1.55512 | + | 2.56547i | 0 | ||||||||||||
193.5 | 0 | 0.134843 | + | 1.72679i | 0 | −3.43592 | 0 | −1.83889 | − | 1.90223i | 0 | −2.96363 | + | 0.465691i | 0 | ||||||||||||
193.6 | 0 | 0.371921 | + | 1.69165i | 0 | 1.68316 | 0 | 0.960133 | + | 2.46539i | 0 | −2.72335 | + | 1.25832i | 0 | ||||||||||||
193.7 | 0 | 0.444471 | − | 1.67405i | 0 | −3.52959 | 0 | 1.16715 | − | 2.37440i | 0 | −2.60489 | − | 1.48813i | 0 | ||||||||||||
193.8 | 0 | 0.577666 | − | 1.63288i | 0 | 1.85591 | 0 | −2.60465 | − | 0.464545i | 0 | −2.33261 | − | 1.88652i | 0 | ||||||||||||
193.9 | 0 | 1.34414 | − | 1.09237i | 0 | 2.66802 | 0 | 1.94471 | + | 1.79391i | 0 | 0.613444 | − | 2.93661i | 0 | ||||||||||||
193.10 | 0 | 1.51940 | + | 0.831519i | 0 | −2.52290 | 0 | −1.07705 | + | 2.41660i | 0 | 1.61715 | + | 2.52682i | 0 | ||||||||||||
193.11 | 0 | 1.70090 | + | 0.327002i | 0 | 0.340200 | 0 | 1.09748 | − | 2.40739i | 0 | 2.78614 | + | 1.11240i | 0 | ||||||||||||
457.1 | 0 | −1.61774 | + | 0.618811i | 0 | −1.83657 | 0 | 2.45061 | − | 0.997255i | 0 | 2.23415 | − | 2.00215i | 0 | ||||||||||||
457.2 | 0 | −1.40598 | + | 1.01154i | 0 | 3.84095 | 0 | 0.676469 | + | 2.55781i | 0 | 0.953553 | − | 2.84442i | 0 | ||||||||||||
457.3 | 0 | −1.21966 | − | 1.22980i | 0 | −0.481387 | 0 | 2.53326 | + | 0.763277i | 0 | −0.0248369 | + | 2.99990i | 0 | ||||||||||||
457.4 | 0 | −0.849966 | + | 1.50916i | 0 | −1.58188 | 0 | −1.80922 | − | 1.93047i | 0 | −1.55512 | − | 2.56547i | 0 | ||||||||||||
457.5 | 0 | 0.134843 | − | 1.72679i | 0 | −3.43592 | 0 | −1.83889 | + | 1.90223i | 0 | −2.96363 | − | 0.465691i | 0 | ||||||||||||
457.6 | 0 | 0.371921 | − | 1.69165i | 0 | 1.68316 | 0 | 0.960133 | − | 2.46539i | 0 | −2.72335 | − | 1.25832i | 0 | ||||||||||||
457.7 | 0 | 0.444471 | + | 1.67405i | 0 | −3.52959 | 0 | 1.16715 | + | 2.37440i | 0 | −2.60489 | + | 1.48813i | 0 | ||||||||||||
457.8 | 0 | 0.577666 | + | 1.63288i | 0 | 1.85591 | 0 | −2.60465 | + | 0.464545i | 0 | −2.33261 | + | 1.88652i | 0 | ||||||||||||
457.9 | 0 | 1.34414 | + | 1.09237i | 0 | 2.66802 | 0 | 1.94471 | − | 1.79391i | 0 | 0.613444 | + | 2.93661i | 0 | ||||||||||||
See all 22 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
63.g | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 504.2.t.d | yes | 22 |
3.b | odd | 2 | 1 | 1512.2.t.d | 22 | ||
4.b | odd | 2 | 1 | 1008.2.t.k | 22 | ||
7.c | even | 3 | 1 | 504.2.q.d | ✓ | 22 | |
9.c | even | 3 | 1 | 504.2.q.d | ✓ | 22 | |
9.d | odd | 6 | 1 | 1512.2.q.c | 22 | ||
12.b | even | 2 | 1 | 3024.2.t.l | 22 | ||
21.h | odd | 6 | 1 | 1512.2.q.c | 22 | ||
28.g | odd | 6 | 1 | 1008.2.q.k | 22 | ||
36.f | odd | 6 | 1 | 1008.2.q.k | 22 | ||
36.h | even | 6 | 1 | 3024.2.q.k | 22 | ||
63.g | even | 3 | 1 | inner | 504.2.t.d | yes | 22 |
63.n | odd | 6 | 1 | 1512.2.t.d | 22 | ||
84.n | even | 6 | 1 | 3024.2.q.k | 22 | ||
252.o | even | 6 | 1 | 3024.2.t.l | 22 | ||
252.bl | odd | 6 | 1 | 1008.2.t.k | 22 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
504.2.q.d | ✓ | 22 | 7.c | even | 3 | 1 | |
504.2.q.d | ✓ | 22 | 9.c | even | 3 | 1 | |
504.2.t.d | yes | 22 | 1.a | even | 1 | 1 | trivial |
504.2.t.d | yes | 22 | 63.g | even | 3 | 1 | inner |
1008.2.q.k | 22 | 28.g | odd | 6 | 1 | ||
1008.2.q.k | 22 | 36.f | odd | 6 | 1 | ||
1008.2.t.k | 22 | 4.b | odd | 2 | 1 | ||
1008.2.t.k | 22 | 252.bl | odd | 6 | 1 | ||
1512.2.q.c | 22 | 9.d | odd | 6 | 1 | ||
1512.2.q.c | 22 | 21.h | odd | 6 | 1 | ||
1512.2.t.d | 22 | 3.b | odd | 2 | 1 | ||
1512.2.t.d | 22 | 63.n | odd | 6 | 1 | ||
3024.2.q.k | 22 | 36.h | even | 6 | 1 | ||
3024.2.q.k | 22 | 84.n | even | 6 | 1 | ||
3024.2.t.l | 22 | 12.b | even | 2 | 1 | ||
3024.2.t.l | 22 | 252.o | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{11} + 3 T_{5}^{10} - 28 T_{5}^{9} - 85 T_{5}^{8} + 249 T_{5}^{7} + 766 T_{5}^{6} - 841 T_{5}^{5} + \cdots - 466 \) acting on \(S_{2}^{\mathrm{new}}(504, [\chi])\).