Properties

Label 3024.2.q.k
Level $3024$
Weight $2$
Character orbit 3024.q
Analytic conductor $24.147$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3024,2,Mod(2305,3024)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3024, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3024.2305");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 22 q - 3 q^{5} + 5 q^{7}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 22 q - 3 q^{5} + 5 q^{7} - 3 q^{11} - 3 q^{13} - 7 q^{17} + q^{19} + 2 q^{23} - 10 q^{25} - 9 q^{29} - 8 q^{31} + 14 q^{35} + 2 q^{37} - 16 q^{41} - 10 q^{47} + 15 q^{49} - 11 q^{53} - 22 q^{55} + 38 q^{59} + 26 q^{61} + 26 q^{65} + 52 q^{67} - 48 q^{71} - 35 q^{73} - 17 q^{77} + 20 q^{79} - 28 q^{83} - 20 q^{85} - 6 q^{89} + 37 q^{91} - 24 q^{95} - 29 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2305.1 0 0 0 −1.76479 3.05671i 0 2.63986 + 0.176417i 0 0 0
2305.2 0 0 0 −1.71796 2.97559i 0 0.727932 + 2.54364i 0 0 0
2305.3 0 0 0 −1.26145 2.18490i 0 −2.63136 0.275550i 0 0 0
2305.4 0 0 0 −0.918286 1.59052i 0 0.361656 2.62092i 0 0 0
2305.5 0 0 0 −0.790938 1.36994i 0 −2.57645 + 0.601597i 0 0 0
2305.6 0 0 0 −0.240694 0.416893i 0 1.92765 1.81223i 0 0 0
2305.7 0 0 0 0.170100 + 0.294622i 0 2.63360 + 0.253251i 0 0 0
2305.8 0 0 0 0.841578 + 1.45766i 0 −1.65502 2.06419i 0 0 0
2305.9 0 0 0 0.927957 + 1.60727i 0 −0.900017 + 2.48796i 0 0 0
2305.10 0 0 0 1.33401 + 2.31057i 0 −0.581213 2.58112i 0 0 0
2305.11 0 0 0 1.92048 + 3.32636i 0 2.55336 + 0.693065i 0 0 0
2881.1 0 0 0 −1.76479 + 3.05671i 0 2.63986 0.176417i 0 0 0
2881.2 0 0 0 −1.71796 + 2.97559i 0 0.727932 2.54364i 0 0 0
2881.3 0 0 0 −1.26145 + 2.18490i 0 −2.63136 + 0.275550i 0 0 0
2881.4 0 0 0 −0.918286 + 1.59052i 0 0.361656 + 2.62092i 0 0 0
2881.5 0 0 0 −0.790938 + 1.36994i 0 −2.57645 0.601597i 0 0 0
2881.6 0 0 0 −0.240694 + 0.416893i 0 1.92765 + 1.81223i 0 0 0
2881.7 0 0 0 0.170100 0.294622i 0 2.63360 0.253251i 0 0 0
2881.8 0 0 0 0.841578 1.45766i 0 −1.65502 + 2.06419i 0 0 0
2881.9 0 0 0 0.927957 1.60727i 0 −0.900017 2.48796i 0 0 0
See all 22 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2305.11
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.h even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3024.2.q.k 22
3.b odd 2 1 1008.2.q.k 22
4.b odd 2 1 1512.2.q.c 22
7.c even 3 1 3024.2.t.l 22
9.c even 3 1 3024.2.t.l 22
9.d odd 6 1 1008.2.t.k 22
12.b even 2 1 504.2.q.d 22
21.h odd 6 1 1008.2.t.k 22
28.g odd 6 1 1512.2.t.d 22
36.f odd 6 1 1512.2.t.d 22
36.h even 6 1 504.2.t.d yes 22
63.h even 3 1 inner 3024.2.q.k 22
63.j odd 6 1 1008.2.q.k 22
84.n even 6 1 504.2.t.d yes 22
252.u odd 6 1 1512.2.q.c 22
252.bb even 6 1 504.2.q.d 22
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
504.2.q.d 22 12.b even 2 1
504.2.q.d 22 252.bb even 6 1
504.2.t.d yes 22 36.h even 6 1
504.2.t.d yes 22 84.n even 6 1
1008.2.q.k 22 3.b odd 2 1
1008.2.q.k 22 63.j odd 6 1
1008.2.t.k 22 9.d odd 6 1
1008.2.t.k 22 21.h odd 6 1
1512.2.q.c 22 4.b odd 2 1
1512.2.q.c 22 252.u odd 6 1
1512.2.t.d 22 28.g odd 6 1
1512.2.t.d 22 36.f odd 6 1
3024.2.q.k 22 1.a even 1 1 trivial
3024.2.q.k 22 63.h even 3 1 inner
3024.2.t.l 22 7.c even 3 1
3024.2.t.l 22 9.c even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3024, [\chi])\):

\( T_{5}^{22} + 3 T_{5}^{21} + 37 T_{5}^{20} + 86 T_{5}^{19} + 790 T_{5}^{18} + 1652 T_{5}^{17} + \cdots + 217156 \) Copy content Toggle raw display
\( T_{11}^{22} + 3 T_{11}^{21} + 64 T_{11}^{20} + 165 T_{11}^{19} + 2605 T_{11}^{18} + 6138 T_{11}^{17} + \cdots + 282643344 \) Copy content Toggle raw display