Properties

Label 1008.2.s.n.865.1
Level $1008$
Weight $2$
Character 1008.865
Analytic conductor $8.049$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,2,Mod(289,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.s (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 865.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1008.865
Dual form 1008.2.s.n.289.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 + 2.59808i) q^{5} +(-2.50000 + 0.866025i) q^{7} +(-1.50000 + 2.59808i) q^{11} -4.00000 q^{13} +(-2.00000 - 3.46410i) q^{19} +(-2.00000 + 3.46410i) q^{25} -9.00000 q^{29} +(-0.500000 + 0.866025i) q^{31} +(-6.00000 - 5.19615i) q^{35} +(-4.00000 - 6.92820i) q^{37} +10.0000 q^{43} +(3.00000 + 5.19615i) q^{47} +(5.50000 - 4.33013i) q^{49} +(-1.50000 + 2.59808i) q^{53} -9.00000 q^{55} +(-1.50000 + 2.59808i) q^{59} +(5.00000 + 8.66025i) q^{61} +(-6.00000 - 10.3923i) q^{65} +(-5.00000 + 8.66025i) q^{67} -6.00000 q^{71} +(-1.00000 + 1.73205i) q^{73} +(1.50000 - 7.79423i) q^{77} +(-0.500000 - 0.866025i) q^{79} -9.00000 q^{83} +(3.00000 + 5.19615i) q^{89} +(10.0000 - 3.46410i) q^{91} +(6.00000 - 10.3923i) q^{95} -1.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{5} - 5 q^{7} - 3 q^{11} - 8 q^{13} - 4 q^{19} - 4 q^{25} - 18 q^{29} - q^{31} - 12 q^{35} - 8 q^{37} + 20 q^{43} + 6 q^{47} + 11 q^{49} - 3 q^{53} - 18 q^{55} - 3 q^{59} + 10 q^{61} - 12 q^{65}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.50000 + 2.59808i 0.670820 + 1.16190i 0.977672 + 0.210138i \(0.0673912\pi\)
−0.306851 + 0.951757i \(0.599275\pi\)
\(6\) 0 0
\(7\) −2.50000 + 0.866025i −0.944911 + 0.327327i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.50000 + 2.59808i −0.452267 + 0.783349i −0.998526 0.0542666i \(-0.982718\pi\)
0.546259 + 0.837616i \(0.316051\pi\)
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(18\) 0 0
\(19\) −2.00000 3.46410i −0.458831 0.794719i 0.540068 0.841621i \(-0.318398\pi\)
−0.998899 + 0.0469020i \(0.985065\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 0 0
\(25\) −2.00000 + 3.46410i −0.400000 + 0.692820i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −9.00000 −1.67126 −0.835629 0.549294i \(-0.814897\pi\)
−0.835629 + 0.549294i \(0.814897\pi\)
\(30\) 0 0
\(31\) −0.500000 + 0.866025i −0.0898027 + 0.155543i −0.907428 0.420208i \(-0.861957\pi\)
0.817625 + 0.575751i \(0.195290\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −6.00000 5.19615i −1.01419 0.878310i
\(36\) 0 0
\(37\) −4.00000 6.92820i −0.657596 1.13899i −0.981236 0.192809i \(-0.938240\pi\)
0.323640 0.946180i \(-0.395093\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 10.0000 1.52499 0.762493 0.646997i \(-0.223975\pi\)
0.762493 + 0.646997i \(0.223975\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.00000 + 5.19615i 0.437595 + 0.757937i 0.997503 0.0706177i \(-0.0224970\pi\)
−0.559908 + 0.828554i \(0.689164\pi\)
\(48\) 0 0
\(49\) 5.50000 4.33013i 0.785714 0.618590i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.50000 + 2.59808i −0.206041 + 0.356873i −0.950464 0.310835i \(-0.899391\pi\)
0.744423 + 0.667708i \(0.232725\pi\)
\(54\) 0 0
\(55\) −9.00000 −1.21356
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.50000 + 2.59808i −0.195283 + 0.338241i −0.946993 0.321253i \(-0.895896\pi\)
0.751710 + 0.659494i \(0.229229\pi\)
\(60\) 0 0
\(61\) 5.00000 + 8.66025i 0.640184 + 1.10883i 0.985391 + 0.170305i \(0.0544754\pi\)
−0.345207 + 0.938527i \(0.612191\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −6.00000 10.3923i −0.744208 1.28901i
\(66\) 0 0
\(67\) −5.00000 + 8.66025i −0.610847 + 1.05802i 0.380251 + 0.924883i \(0.375838\pi\)
−0.991098 + 0.133135i \(0.957496\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) −1.00000 + 1.73205i −0.117041 + 0.202721i −0.918594 0.395203i \(-0.870674\pi\)
0.801553 + 0.597924i \(0.204008\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.50000 7.79423i 0.170941 0.888235i
\(78\) 0 0
\(79\) −0.500000 0.866025i −0.0562544 0.0974355i 0.836527 0.547926i \(-0.184582\pi\)
−0.892781 + 0.450490i \(0.851249\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −9.00000 −0.987878 −0.493939 0.869496i \(-0.664443\pi\)
−0.493939 + 0.869496i \(0.664443\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.00000 + 5.19615i 0.317999 + 0.550791i 0.980071 0.198650i \(-0.0636557\pi\)
−0.662071 + 0.749441i \(0.730322\pi\)
\(90\) 0 0
\(91\) 10.0000 3.46410i 1.04828 0.363137i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 6.00000 10.3923i 0.615587 1.06623i
\(96\) 0 0
\(97\) −1.00000 −0.101535 −0.0507673 0.998711i \(-0.516167\pi\)
−0.0507673 + 0.998711i \(0.516167\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −9.00000 + 15.5885i −0.895533 + 1.55111i −0.0623905 + 0.998052i \(0.519872\pi\)
−0.833143 + 0.553058i \(0.813461\pi\)
\(102\) 0 0
\(103\) 4.00000 + 6.92820i 0.394132 + 0.682656i 0.992990 0.118199i \(-0.0377120\pi\)
−0.598858 + 0.800855i \(0.704379\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.50000 + 2.59808i 0.145010 + 0.251166i 0.929377 0.369132i \(-0.120345\pi\)
−0.784366 + 0.620298i \(0.787012\pi\)
\(108\) 0 0
\(109\) −7.00000 + 12.1244i −0.670478 + 1.16130i 0.307290 + 0.951616i \(0.400578\pi\)
−0.977769 + 0.209687i \(0.932756\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 + 1.73205i 0.0909091 + 0.157459i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) −5.00000 −0.443678 −0.221839 0.975083i \(-0.571206\pi\)
−0.221839 + 0.975083i \(0.571206\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.50000 + 7.79423i 0.393167 + 0.680985i 0.992865 0.119241i \(-0.0380462\pi\)
−0.599699 + 0.800226i \(0.704713\pi\)
\(132\) 0 0
\(133\) 8.00000 + 6.92820i 0.693688 + 0.600751i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 9.00000 15.5885i 0.768922 1.33181i −0.169226 0.985577i \(-0.554127\pi\)
0.938148 0.346235i \(-0.112540\pi\)
\(138\) 0 0
\(139\) −2.00000 −0.169638 −0.0848189 0.996396i \(-0.527031\pi\)
−0.0848189 + 0.996396i \(0.527031\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.00000 10.3923i 0.501745 0.869048i
\(144\) 0 0
\(145\) −13.5000 23.3827i −1.12111 1.94183i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 9.00000 + 15.5885i 0.737309 + 1.27706i 0.953703 + 0.300750i \(0.0972370\pi\)
−0.216394 + 0.976306i \(0.569430\pi\)
\(150\) 0 0
\(151\) −0.500000 + 0.866025i −0.0406894 + 0.0704761i −0.885653 0.464348i \(-0.846289\pi\)
0.844963 + 0.534824i \(0.179622\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.00000 −0.240966
\(156\) 0 0
\(157\) 2.00000 3.46410i 0.159617 0.276465i −0.775113 0.631822i \(-0.782307\pi\)
0.934731 + 0.355357i \(0.115641\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −8.00000 13.8564i −0.626608 1.08532i −0.988227 0.152992i \(-0.951109\pi\)
0.361619 0.932326i \(-0.382224\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.00000 0.464294 0.232147 0.972681i \(-0.425425\pi\)
0.232147 + 0.972681i \(0.425425\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.00000 + 15.5885i 0.684257 + 1.18517i 0.973670 + 0.227964i \(0.0732068\pi\)
−0.289412 + 0.957205i \(0.593460\pi\)
\(174\) 0 0
\(175\) 2.00000 10.3923i 0.151186 0.785584i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −6.00000 + 10.3923i −0.448461 + 0.776757i −0.998286 0.0585225i \(-0.981361\pi\)
0.549825 + 0.835280i \(0.314694\pi\)
\(180\) 0 0
\(181\) 8.00000 0.594635 0.297318 0.954779i \(-0.403908\pi\)
0.297318 + 0.954779i \(0.403908\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 12.0000 20.7846i 0.882258 1.52811i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(192\) 0 0
\(193\) 9.50000 16.4545i 0.683825 1.18442i −0.289980 0.957033i \(-0.593649\pi\)
0.973805 0.227387i \(-0.0730182\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) 10.0000 17.3205i 0.708881 1.22782i −0.256391 0.966573i \(-0.582534\pi\)
0.965272 0.261245i \(-0.0841331\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 22.5000 7.79423i 1.57919 0.547048i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 12.0000 0.830057
\(210\) 0 0
\(211\) −14.0000 −0.963800 −0.481900 0.876226i \(-0.660053\pi\)
−0.481900 + 0.876226i \(0.660053\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 15.0000 + 25.9808i 1.02299 + 1.77187i
\(216\) 0 0
\(217\) 0.500000 2.59808i 0.0339422 0.176369i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 19.0000 1.27233 0.636167 0.771551i \(-0.280519\pi\)
0.636167 + 0.771551i \(0.280519\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 13.5000 23.3827i 0.896026 1.55196i 0.0634974 0.997982i \(-0.479775\pi\)
0.832529 0.553981i \(-0.186892\pi\)
\(228\) 0 0
\(229\) 2.00000 + 3.46410i 0.132164 + 0.228914i 0.924510 0.381157i \(-0.124474\pi\)
−0.792347 + 0.610071i \(0.791141\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −12.0000 20.7846i −0.786146 1.36165i −0.928312 0.371802i \(-0.878740\pi\)
0.142166 0.989843i \(-0.454593\pi\)
\(234\) 0 0
\(235\) −9.00000 + 15.5885i −0.587095 + 1.01688i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) 0.500000 0.866025i 0.0322078 0.0557856i −0.849472 0.527633i \(-0.823079\pi\)
0.881680 + 0.471848i \(0.156413\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 19.5000 + 7.79423i 1.24581 + 0.497955i
\(246\) 0 0
\(247\) 8.00000 + 13.8564i 0.509028 + 0.881662i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 27.0000 1.70422 0.852112 0.523359i \(-0.175321\pi\)
0.852112 + 0.523359i \(0.175321\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.00000 + 5.19615i 0.187135 + 0.324127i 0.944294 0.329104i \(-0.106747\pi\)
−0.757159 + 0.653231i \(0.773413\pi\)
\(258\) 0 0
\(259\) 16.0000 + 13.8564i 0.994192 + 0.860995i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3.00000 5.19615i 0.184988 0.320408i −0.758585 0.651575i \(-0.774109\pi\)
0.943572 + 0.331166i \(0.107442\pi\)
\(264\) 0 0
\(265\) −9.00000 −0.552866
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 10.5000 18.1865i 0.640196 1.10885i −0.345192 0.938532i \(-0.612186\pi\)
0.985389 0.170321i \(-0.0544803\pi\)
\(270\) 0 0
\(271\) 5.50000 + 9.52628i 0.334101 + 0.578680i 0.983312 0.181928i \(-0.0582339\pi\)
−0.649211 + 0.760609i \(0.724901\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −6.00000 10.3923i −0.361814 0.626680i
\(276\) 0 0
\(277\) −4.00000 + 6.92820i −0.240337 + 0.416275i −0.960810 0.277207i \(-0.910591\pi\)
0.720473 + 0.693482i \(0.243925\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) 7.00000 12.1244i 0.416107 0.720718i −0.579437 0.815017i \(-0.696728\pi\)
0.995544 + 0.0942988i \(0.0300609\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.50000 + 14.7224i 0.500000 + 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −33.0000 −1.92788 −0.963940 0.266119i \(-0.914259\pi\)
−0.963940 + 0.266119i \(0.914259\pi\)
\(294\) 0 0
\(295\) −9.00000 −0.524000
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −25.0000 + 8.66025i −1.44098 + 0.499169i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −15.0000 + 25.9808i −0.858898 + 1.48765i
\(306\) 0 0
\(307\) −8.00000 −0.456584 −0.228292 0.973593i \(-0.573314\pi\)
−0.228292 + 0.973593i \(0.573314\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −12.0000 + 20.7846i −0.680458 + 1.17859i 0.294384 + 0.955687i \(0.404886\pi\)
−0.974841 + 0.222900i \(0.928448\pi\)
\(312\) 0 0
\(313\) 15.5000 + 26.8468i 0.876112 + 1.51747i 0.855574 + 0.517681i \(0.173205\pi\)
0.0205381 + 0.999789i \(0.493462\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.50000 + 7.79423i 0.252745 + 0.437767i 0.964281 0.264883i \(-0.0853332\pi\)
−0.711535 + 0.702650i \(0.752000\pi\)
\(318\) 0 0
\(319\) 13.5000 23.3827i 0.755855 1.30918i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 8.00000 13.8564i 0.443760 0.768615i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −12.0000 10.3923i −0.661581 0.572946i
\(330\) 0 0
\(331\) 10.0000 + 17.3205i 0.549650 + 0.952021i 0.998298 + 0.0583130i \(0.0185721\pi\)
−0.448649 + 0.893708i \(0.648095\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −30.0000 −1.63908
\(336\) 0 0
\(337\) −7.00000 −0.381314 −0.190657 0.981657i \(-0.561062\pi\)
−0.190657 + 0.981657i \(0.561062\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.50000 2.59808i −0.0812296 0.140694i
\(342\) 0 0
\(343\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6.00000 + 10.3923i −0.322097 + 0.557888i −0.980921 0.194409i \(-0.937721\pi\)
0.658824 + 0.752297i \(0.271054\pi\)
\(348\) 0 0
\(349\) 26.0000 1.39175 0.695874 0.718164i \(-0.255017\pi\)
0.695874 + 0.718164i \(0.255017\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.0000 20.7846i 0.638696 1.10625i −0.347024 0.937856i \(-0.612808\pi\)
0.985719 0.168397i \(-0.0538590\pi\)
\(354\) 0 0
\(355\) −9.00000 15.5885i −0.477670 0.827349i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −15.0000 25.9808i −0.791670 1.37121i −0.924932 0.380131i \(-0.875879\pi\)
0.133263 0.991081i \(-0.457455\pi\)
\(360\) 0 0
\(361\) 1.50000 2.59808i 0.0789474 0.136741i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −6.00000 −0.314054
\(366\) 0 0
\(367\) −9.50000 + 16.4545i −0.495896 + 0.858917i −0.999989 0.00473247i \(-0.998494\pi\)
0.504093 + 0.863649i \(0.331827\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.50000 7.79423i 0.0778761 0.404656i
\(372\) 0 0
\(373\) −4.00000 6.92820i −0.207112 0.358729i 0.743691 0.668523i \(-0.233073\pi\)
−0.950804 + 0.309794i \(0.899740\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 36.0000 1.85409
\(378\) 0 0
\(379\) −8.00000 −0.410932 −0.205466 0.978664i \(-0.565871\pi\)
−0.205466 + 0.978664i \(0.565871\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −9.00000 15.5885i −0.459879 0.796533i 0.539076 0.842257i \(-0.318774\pi\)
−0.998954 + 0.0457244i \(0.985440\pi\)
\(384\) 0 0
\(385\) 22.5000 7.79423i 1.14671 0.397231i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −3.00000 + 5.19615i −0.152106 + 0.263455i −0.932002 0.362454i \(-0.881939\pi\)
0.779895 + 0.625910i \(0.215272\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.50000 2.59808i 0.0754732 0.130723i
\(396\) 0 0
\(397\) 2.00000 + 3.46410i 0.100377 + 0.173858i 0.911840 0.410546i \(-0.134662\pi\)
−0.811463 + 0.584404i \(0.801328\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 12.0000 + 20.7846i 0.599251 + 1.03793i 0.992932 + 0.118686i \(0.0378683\pi\)
−0.393680 + 0.919247i \(0.628798\pi\)
\(402\) 0 0
\(403\) 2.00000 3.46410i 0.0996271 0.172559i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 24.0000 1.18964
\(408\) 0 0
\(409\) 12.5000 21.6506i 0.618085 1.07056i −0.371750 0.928333i \(-0.621242\pi\)
0.989835 0.142222i \(-0.0454247\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.50000 7.79423i 0.0738102 0.383529i
\(414\) 0 0
\(415\) −13.5000 23.3827i −0.662689 1.14781i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −22.0000 −1.07221 −0.536107 0.844150i \(-0.680106\pi\)
−0.536107 + 0.844150i \(0.680106\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −20.0000 17.3205i −0.967868 0.838198i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −6.00000 + 10.3923i −0.289010 + 0.500580i −0.973574 0.228373i \(-0.926659\pi\)
0.684564 + 0.728953i \(0.259993\pi\)
\(432\) 0 0
\(433\) −34.0000 −1.63394 −0.816968 0.576683i \(-0.804347\pi\)
−0.816968 + 0.576683i \(0.804347\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 17.5000 + 30.3109i 0.835229 + 1.44666i 0.893843 + 0.448379i \(0.147999\pi\)
−0.0586141 + 0.998281i \(0.518668\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 16.5000 + 28.5788i 0.783939 + 1.35782i 0.929631 + 0.368492i \(0.120126\pi\)
−0.145692 + 0.989330i \(0.546541\pi\)
\(444\) 0 0
\(445\) −9.00000 + 15.5885i −0.426641 + 0.738964i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −12.0000 −0.566315 −0.283158 0.959073i \(-0.591382\pi\)
−0.283158 + 0.959073i \(0.591382\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 24.0000 + 20.7846i 1.12514 + 0.974398i
\(456\) 0 0
\(457\) 0.500000 + 0.866025i 0.0233890 + 0.0405110i 0.877483 0.479608i \(-0.159221\pi\)
−0.854094 + 0.520119i \(0.825888\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −30.0000 −1.39724 −0.698620 0.715493i \(-0.746202\pi\)
−0.698620 + 0.715493i \(0.746202\pi\)
\(462\) 0 0
\(463\) −8.00000 −0.371792 −0.185896 0.982569i \(-0.559519\pi\)
−0.185896 + 0.982569i \(0.559519\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −18.0000 31.1769i −0.832941 1.44270i −0.895696 0.444667i \(-0.853322\pi\)
0.0627555 0.998029i \(-0.480011\pi\)
\(468\) 0 0
\(469\) 5.00000 25.9808i 0.230879 1.19968i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −15.0000 + 25.9808i −0.689701 + 1.19460i
\(474\) 0 0
\(475\) 16.0000 0.734130
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9.00000 15.5885i 0.411220 0.712255i −0.583803 0.811895i \(-0.698436\pi\)
0.995023 + 0.0996406i \(0.0317693\pi\)
\(480\) 0 0
\(481\) 16.0000 + 27.7128i 0.729537 + 1.26360i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.50000 2.59808i −0.0681115 0.117973i
\(486\) 0 0
\(487\) 20.5000 35.5070i 0.928944 1.60898i 0.143851 0.989599i \(-0.454051\pi\)
0.785093 0.619378i \(-0.212615\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −33.0000 −1.48927 −0.744635 0.667472i \(-0.767376\pi\)
−0.744635 + 0.667472i \(0.767376\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 15.0000 5.19615i 0.672842 0.233079i
\(498\) 0 0
\(499\) 1.00000 + 1.73205i 0.0447661 + 0.0775372i 0.887540 0.460730i \(-0.152412\pi\)
−0.842774 + 0.538267i \(0.819079\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −12.0000 −0.535054 −0.267527 0.963550i \(-0.586206\pi\)
−0.267527 + 0.963550i \(0.586206\pi\)
\(504\) 0 0
\(505\) −54.0000 −2.40297
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1.50000 2.59808i −0.0664863 0.115158i 0.830866 0.556473i \(-0.187846\pi\)
−0.897352 + 0.441315i \(0.854512\pi\)
\(510\) 0 0
\(511\) 1.00000 5.19615i 0.0442374 0.229864i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −12.0000 + 20.7846i −0.528783 + 0.915879i
\(516\) 0 0
\(517\) −18.0000 −0.791639
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −9.00000 + 15.5885i −0.394297 + 0.682943i −0.993011 0.118020i \(-0.962345\pi\)
0.598714 + 0.800963i \(0.295679\pi\)
\(522\) 0 0
\(523\) −2.00000 3.46410i −0.0874539 0.151475i 0.818980 0.573822i \(-0.194540\pi\)
−0.906434 + 0.422347i \(0.861206\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 11.5000 19.9186i 0.500000 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −4.50000 + 7.79423i −0.194552 + 0.336974i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 3.00000 + 20.7846i 0.129219 + 0.895257i
\(540\) 0 0
\(541\) −13.0000 22.5167i −0.558914 0.968067i −0.997587 0.0694205i \(-0.977885\pi\)
0.438674 0.898646i \(-0.355448\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −42.0000 −1.79908
\(546\) 0 0
\(547\) −8.00000 −0.342055 −0.171028 0.985266i \(-0.554709\pi\)
−0.171028 + 0.985266i \(0.554709\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 18.0000 + 31.1769i 0.766826 + 1.32818i
\(552\) 0 0
\(553\) 2.00000 + 1.73205i 0.0850487 + 0.0736543i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.50000 2.59808i 0.0635570 0.110084i −0.832496 0.554031i \(-0.813089\pi\)
0.896053 + 0.443947i \(0.146422\pi\)
\(558\) 0 0
\(559\) −40.0000 −1.69182
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −19.5000 + 33.7750i −0.821827 + 1.42345i 0.0824933 + 0.996592i \(0.473712\pi\)
−0.904320 + 0.426855i \(0.859622\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −18.0000 31.1769i −0.754599 1.30700i −0.945573 0.325409i \(-0.894498\pi\)
0.190974 0.981595i \(-0.438835\pi\)
\(570\) 0 0
\(571\) −17.0000 + 29.4449i −0.711428 + 1.23223i 0.252893 + 0.967494i \(0.418618\pi\)
−0.964321 + 0.264735i \(0.914716\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −11.5000 + 19.9186i −0.478751 + 0.829222i −0.999703 0.0243645i \(-0.992244\pi\)
0.520952 + 0.853586i \(0.325577\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 22.5000 7.79423i 0.933457 0.323359i
\(582\) 0 0
\(583\) −4.50000 7.79423i −0.186371 0.322804i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 21.0000 0.866763 0.433381 0.901211i \(-0.357320\pi\)
0.433381 + 0.901211i \(0.357320\pi\)
\(588\) 0 0
\(589\) 4.00000 0.164817
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 12.0000 + 20.7846i 0.492781 + 0.853522i 0.999965 0.00831589i \(-0.00264706\pi\)
−0.507184 + 0.861838i \(0.669314\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 9.00000 15.5885i 0.367730 0.636927i −0.621480 0.783430i \(-0.713468\pi\)
0.989210 + 0.146503i \(0.0468017\pi\)
\(600\) 0 0
\(601\) 11.0000 0.448699 0.224350 0.974509i \(-0.427974\pi\)
0.224350 + 0.974509i \(0.427974\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3.00000 + 5.19615i −0.121967 + 0.211254i
\(606\) 0 0
\(607\) −3.50000 6.06218i −0.142061 0.246056i 0.786212 0.617957i \(-0.212039\pi\)
−0.928272 + 0.371901i \(0.878706\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −12.0000 20.7846i −0.485468 0.840855i
\(612\) 0 0
\(613\) 8.00000 13.8564i 0.323117 0.559655i −0.658012 0.753007i \(-0.728603\pi\)
0.981129 + 0.193352i \(0.0619359\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.00000 0.241551 0.120775 0.992680i \(-0.461462\pi\)
0.120775 + 0.992680i \(0.461462\pi\)
\(618\) 0 0
\(619\) −17.0000 + 29.4449i −0.683288 + 1.18349i 0.290684 + 0.956819i \(0.406117\pi\)
−0.973972 + 0.226670i \(0.927216\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −12.0000 10.3923i −0.480770 0.416359i
\(624\) 0 0
\(625\) 14.5000 + 25.1147i 0.580000 + 1.00459i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 7.00000 0.278666 0.139333 0.990246i \(-0.455504\pi\)
0.139333 + 0.990246i \(0.455504\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −7.50000 12.9904i −0.297628 0.515508i
\(636\) 0 0
\(637\) −22.0000 + 17.3205i −0.871672 + 0.686264i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −15.0000 + 25.9808i −0.592464 + 1.02618i 0.401435 + 0.915888i \(0.368512\pi\)
−0.993899 + 0.110291i \(0.964822\pi\)
\(642\) 0 0
\(643\) 34.0000 1.34083 0.670415 0.741987i \(-0.266116\pi\)
0.670415 + 0.741987i \(0.266116\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 9.00000 15.5885i 0.353827 0.612845i −0.633090 0.774078i \(-0.718214\pi\)
0.986916 + 0.161233i \(0.0515470\pi\)
\(648\) 0 0
\(649\) −4.50000 7.79423i −0.176640 0.305950i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.50000 + 2.59808i 0.0586995 + 0.101671i 0.893882 0.448303i \(-0.147971\pi\)
−0.835182 + 0.549973i \(0.814638\pi\)
\(654\) 0 0
\(655\) −13.5000 + 23.3827i −0.527489 + 0.913637i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −24.0000 −0.934907 −0.467454 0.884018i \(-0.654829\pi\)
−0.467454 + 0.884018i \(0.654829\pi\)
\(660\) 0 0
\(661\) −7.00000 + 12.1244i −0.272268 + 0.471583i −0.969442 0.245319i \(-0.921107\pi\)
0.697174 + 0.716902i \(0.254441\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −6.00000 + 31.1769i −0.232670 + 1.20899i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −30.0000 −1.15814
\(672\) 0 0
\(673\) 29.0000 1.11787 0.558934 0.829212i \(-0.311211\pi\)
0.558934 + 0.829212i \(0.311211\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −16.5000 28.5788i −0.634147 1.09837i −0.986695 0.162581i \(-0.948018\pi\)
0.352549 0.935793i \(-0.385315\pi\)
\(678\) 0 0
\(679\) 2.50000 0.866025i 0.0959412 0.0332350i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −16.5000 + 28.5788i −0.631355 + 1.09354i 0.355920 + 0.934516i \(0.384168\pi\)
−0.987275 + 0.159022i \(0.949166\pi\)
\(684\) 0 0
\(685\) 54.0000 2.06323
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 6.00000 10.3923i 0.228582 0.395915i
\(690\) 0 0
\(691\) 4.00000 + 6.92820i 0.152167 + 0.263561i 0.932024 0.362397i \(-0.118041\pi\)
−0.779857 + 0.625958i \(0.784708\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −3.00000 5.19615i −0.113796 0.197101i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 15.0000 0.566542 0.283271 0.959040i \(-0.408580\pi\)
0.283271 + 0.959040i \(0.408580\pi\)
\(702\) 0 0
\(703\) −16.0000 + 27.7128i −0.603451 + 1.04521i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 9.00000 46.7654i 0.338480 1.75879i
\(708\) 0 0
\(709\) 5.00000 + 8.66025i 0.187779 + 0.325243i 0.944509 0.328484i \(-0.106538\pi\)
−0.756730 + 0.653727i \(0.773204\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 36.0000 1.34632
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 9.00000 + 15.5885i 0.335643 + 0.581351i 0.983608 0.180319i \(-0.0577130\pi\)
−0.647965 + 0.761670i \(0.724380\pi\)
\(720\) 0 0
\(721\) −16.0000 13.8564i −0.595871 0.516040i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 18.0000 31.1769i 0.668503 1.15788i
\(726\) 0 0
\(727\) 13.0000 0.482143 0.241072 0.970507i \(-0.422501\pi\)
0.241072 + 0.970507i \(0.422501\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 5.00000 + 8.66025i 0.184679 + 0.319874i 0.943468 0.331463i \(-0.107542\pi\)
−0.758789 + 0.651336i \(0.774209\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −15.0000 25.9808i −0.552532 0.957014i
\(738\) 0 0
\(739\) 25.0000 43.3013i 0.919640 1.59286i 0.119677 0.992813i \(-0.461814\pi\)
0.799962 0.600050i \(-0.204853\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 42.0000 1.54083 0.770415 0.637542i \(-0.220049\pi\)
0.770415 + 0.637542i \(0.220049\pi\)
\(744\) 0 0
\(745\) −27.0000 + 46.7654i −0.989203 + 1.71335i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −6.00000 5.19615i −0.219235 0.189863i
\(750\) 0 0
\(751\) −3.50000 6.06218i −0.127717 0.221212i 0.795075 0.606511i \(-0.207432\pi\)
−0.922792 + 0.385299i \(0.874098\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −3.00000 −0.109181
\(756\) 0 0
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6.00000 + 10.3923i 0.217500 + 0.376721i 0.954043 0.299670i \(-0.0968765\pi\)
−0.736543 + 0.676391i \(0.763543\pi\)
\(762\) 0 0
\(763\) 7.00000 36.3731i 0.253417 1.31679i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 6.00000 10.3923i 0.216647 0.375244i
\(768\) 0 0
\(769\) −19.0000 −0.685158 −0.342579 0.939489i \(-0.611300\pi\)
−0.342579 + 0.939489i \(0.611300\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 3.00000 5.19615i 0.107903 0.186893i −0.807018 0.590527i \(-0.798920\pi\)
0.914920 + 0.403634i \(0.132253\pi\)
\(774\) 0 0
\(775\) −2.00000 3.46410i −0.0718421 0.124434i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 9.00000 15.5885i 0.322045 0.557799i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 12.0000 0.428298
\(786\) 0 0
\(787\) 25.0000 43.3013i 0.891154 1.54352i 0.0526599 0.998613i \(-0.483230\pi\)
0.838494 0.544911i \(-0.183437\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −20.0000 34.6410i −0.710221 1.23014i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 33.0000 1.16892 0.584460 0.811423i \(-0.301306\pi\)
0.584460 + 0.811423i \(0.301306\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −3.00000 5.19615i −0.105868 0.183368i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(810\) 0 0
\(811\) −2.00000 −0.0702295 −0.0351147 0.999383i \(-0.511180\pi\)
−0.0351147 + 0.999383i \(0.511180\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 24.0000 41.5692i 0.840683 1.45611i
\(816\) 0 0
\(817\) −20.0000 34.6410i −0.699711 1.21194i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.50000 2.59808i −0.0523504 0.0906735i 0.838663 0.544651i \(-0.183338\pi\)
−0.891013 + 0.453978i \(0.850005\pi\)
\(822\) 0 0
\(823\) −20.0000 + 34.6410i −0.697156 + 1.20751i 0.272292 + 0.962215i \(0.412218\pi\)
−0.969448 + 0.245295i \(0.921115\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 15.0000 0.521601 0.260801 0.965393i \(-0.416014\pi\)
0.260801 + 0.965393i \(0.416014\pi\)
\(828\) 0 0
\(829\) 2.00000 3.46410i 0.0694629 0.120313i −0.829202 0.558949i \(-0.811205\pi\)
0.898665 + 0.438636i \(0.144538\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 9.00000 + 15.5885i 0.311458 + 0.539461i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −24.0000 −0.828572 −0.414286 0.910147i \(-0.635969\pi\)
−0.414286 + 0.910147i \(0.635969\pi\)
\(840\) 0 0
\(841\) 52.0000 1.79310
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 4.50000 + 7.79423i 0.154805 + 0.268130i
\(846\) 0 0
\(847\) −4.00000 3.46410i −0.137442 0.119028i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −10.0000 −0.342393 −0.171197 0.985237i \(-0.554763\pi\)
−0.171197 + 0.985237i \(0.554763\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −21.0000 + 36.3731i −0.717346 + 1.24248i 0.244701 + 0.969599i \(0.421310\pi\)
−0.962048 + 0.272882i \(0.912023\pi\)
\(858\) 0 0
\(859\) 25.0000 + 43.3013i 0.852989 + 1.47742i 0.878498 + 0.477746i \(0.158546\pi\)
−0.0255092 + 0.999675i \(0.508121\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −3.00000 5.19615i −0.102121 0.176879i 0.810437 0.585826i \(-0.199230\pi\)
−0.912558 + 0.408946i \(0.865896\pi\)
\(864\) 0 0
\(865\) −27.0000 + 46.7654i −0.918028 + 1.59007i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3.00000 0.101768
\(870\) 0 0
\(871\) 20.0000 34.6410i 0.677674 1.17377i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −7.50000 + 2.59808i −0.253546 + 0.0878310i
\(876\) 0 0
\(877\) −16.0000 27.7128i −0.540282 0.935795i −0.998888 0.0471555i \(-0.984984\pi\)
0.458606 0.888640i \(-0.348349\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 6.00000 0.202145 0.101073 0.994879i \(-0.467773\pi\)
0.101073 + 0.994879i \(0.467773\pi\)
\(882\) 0 0
\(883\) −32.0000 −1.07689 −0.538443 0.842662i \(-0.680987\pi\)
−0.538443 + 0.842662i \(0.680987\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 12.0000 + 20.7846i 0.402921 + 0.697879i 0.994077 0.108678i \(-0.0346618\pi\)
−0.591156 + 0.806557i \(0.701328\pi\)
\(888\) 0 0
\(889\) 12.5000 4.33013i 0.419237 0.145228i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 12.0000 20.7846i 0.401565 0.695530i
\(894\) 0 0
\(895\) −36.0000 −1.20335
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 4.50000 7.79423i 0.150083 0.259952i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 12.0000 + 20.7846i 0.398893 + 0.690904i
\(906\) 0 0
\(907\) 4.00000 6.92820i 0.132818 0.230047i −0.791944 0.610594i \(-0.790931\pi\)
0.924762 + 0.380547i \(0.124264\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 6.00000 0.198789 0.0993944 0.995048i \(-0.468309\pi\)
0.0993944 + 0.995048i \(0.468309\pi\)
\(912\) 0 0
\(913\) 13.5000 23.3827i 0.446785 0.773854i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −18.0000 15.5885i −0.594412 0.514776i
\(918\) 0 0
\(919\) 4.00000 + 6.92820i 0.131948 + 0.228540i 0.924427 0.381358i \(-0.124544\pi\)
−0.792480 + 0.609898i \(0.791210\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 24.0000 0.789970
\(924\) 0 0
\(925\) 32.0000 1.05215
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −3.00000 5.19615i −0.0984268 0.170480i 0.812607 0.582812i \(-0.198048\pi\)
−0.911034 + 0.412332i \(0.864714\pi\)
\(930\) 0 0
\(931\) −26.0000 10.3923i −0.852116 0.340594i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 35.0000 1.14340 0.571700 0.820463i \(-0.306284\pi\)
0.571700 + 0.820463i \(0.306284\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −4.50000 + 7.79423i −0.146696 + 0.254085i −0.930004 0.367549i \(-0.880197\pi\)
0.783309 + 0.621633i \(0.213531\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(948\) 0 0
\(949\) 4.00000 6.92820i 0.129845 0.224899i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −9.00000 + 46.7654i −0.290625 + 1.51013i
\(960\) 0 0
\(961\) 15.0000 + 25.9808i 0.483871 + 0.838089i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 57.0000 1.83489
\(966\) 0 0
\(967\) 1.00000 0.0321578 0.0160789 0.999871i \(-0.494882\pi\)
0.0160789 + 0.999871i \(0.494882\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 19.5000 + 33.7750i 0.625785 + 1.08389i 0.988389 + 0.151948i \(0.0485545\pi\)
−0.362604 + 0.931943i \(0.618112\pi\)
\(972\) 0 0
\(973\) 5.00000 1.73205i 0.160293 0.0555270i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 21.0000 36.3731i 0.671850 1.16368i −0.305530 0.952183i \(-0.598833\pi\)
0.977379 0.211495i \(-0.0678332\pi\)
\(978\) 0 0
\(979\) −18.0000 −0.575282
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −18.0000 + 31.1769i −0.574111 + 0.994389i 0.422027 + 0.906583i \(0.361319\pi\)
−0.996138 + 0.0878058i \(0.972015\pi\)
\(984\) 0 0
\(985\) −9.00000 15.5885i −0.286764 0.496690i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −6.50000 + 11.2583i −0.206479 + 0.357633i −0.950603 0.310409i \(-0.899534\pi\)
0.744124 + 0.668042i \(0.232867\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 60.0000 1.90213
\(996\) 0 0
\(997\) −7.00000 + 12.1244i −0.221692 + 0.383982i −0.955322 0.295567i \(-0.904491\pi\)
0.733630 + 0.679549i \(0.237825\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.s.n.865.1 2
3.2 odd 2 336.2.q.d.193.1 2
4.3 odd 2 126.2.g.b.109.1 2
7.2 even 3 inner 1008.2.s.n.289.1 2
7.3 odd 6 7056.2.a.bz.1.1 1
7.4 even 3 7056.2.a.g.1.1 1
12.11 even 2 42.2.e.b.25.1 2
21.2 odd 6 336.2.q.d.289.1 2
21.5 even 6 2352.2.q.m.961.1 2
21.11 odd 6 2352.2.a.m.1.1 1
21.17 even 6 2352.2.a.n.1.1 1
21.20 even 2 2352.2.q.m.1537.1 2
24.5 odd 2 1344.2.q.j.193.1 2
24.11 even 2 1344.2.q.v.193.1 2
28.3 even 6 882.2.a.k.1.1 1
28.11 odd 6 882.2.a.g.1.1 1
28.19 even 6 882.2.g.b.667.1 2
28.23 odd 6 126.2.g.b.37.1 2
28.27 even 2 882.2.g.b.361.1 2
36.7 odd 6 1134.2.h.a.109.1 2
36.11 even 6 1134.2.h.p.109.1 2
36.23 even 6 1134.2.e.a.865.1 2
36.31 odd 6 1134.2.e.p.865.1 2
60.23 odd 4 1050.2.o.b.949.2 4
60.47 odd 4 1050.2.o.b.949.1 4
60.59 even 2 1050.2.i.e.151.1 2
84.11 even 6 294.2.a.d.1.1 1
84.23 even 6 42.2.e.b.37.1 yes 2
84.47 odd 6 294.2.e.f.79.1 2
84.59 odd 6 294.2.a.a.1.1 1
84.83 odd 2 294.2.e.f.67.1 2
168.11 even 6 9408.2.a.d.1.1 1
168.53 odd 6 9408.2.a.bu.1.1 1
168.59 odd 6 9408.2.a.db.1.1 1
168.101 even 6 9408.2.a.bm.1.1 1
168.107 even 6 1344.2.q.v.961.1 2
168.149 odd 6 1344.2.q.j.961.1 2
252.23 even 6 1134.2.h.p.541.1 2
252.79 odd 6 1134.2.e.p.919.1 2
252.191 even 6 1134.2.e.a.919.1 2
252.247 odd 6 1134.2.h.a.541.1 2
420.23 odd 12 1050.2.o.b.499.1 4
420.59 odd 6 7350.2.a.cw.1.1 1
420.107 odd 12 1050.2.o.b.499.2 4
420.179 even 6 7350.2.a.ce.1.1 1
420.359 even 6 1050.2.i.e.751.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.2.e.b.25.1 2 12.11 even 2
42.2.e.b.37.1 yes 2 84.23 even 6
126.2.g.b.37.1 2 28.23 odd 6
126.2.g.b.109.1 2 4.3 odd 2
294.2.a.a.1.1 1 84.59 odd 6
294.2.a.d.1.1 1 84.11 even 6
294.2.e.f.67.1 2 84.83 odd 2
294.2.e.f.79.1 2 84.47 odd 6
336.2.q.d.193.1 2 3.2 odd 2
336.2.q.d.289.1 2 21.2 odd 6
882.2.a.g.1.1 1 28.11 odd 6
882.2.a.k.1.1 1 28.3 even 6
882.2.g.b.361.1 2 28.27 even 2
882.2.g.b.667.1 2 28.19 even 6
1008.2.s.n.289.1 2 7.2 even 3 inner
1008.2.s.n.865.1 2 1.1 even 1 trivial
1050.2.i.e.151.1 2 60.59 even 2
1050.2.i.e.751.1 2 420.359 even 6
1050.2.o.b.499.1 4 420.23 odd 12
1050.2.o.b.499.2 4 420.107 odd 12
1050.2.o.b.949.1 4 60.47 odd 4
1050.2.o.b.949.2 4 60.23 odd 4
1134.2.e.a.865.1 2 36.23 even 6
1134.2.e.a.919.1 2 252.191 even 6
1134.2.e.p.865.1 2 36.31 odd 6
1134.2.e.p.919.1 2 252.79 odd 6
1134.2.h.a.109.1 2 36.7 odd 6
1134.2.h.a.541.1 2 252.247 odd 6
1134.2.h.p.109.1 2 36.11 even 6
1134.2.h.p.541.1 2 252.23 even 6
1344.2.q.j.193.1 2 24.5 odd 2
1344.2.q.j.961.1 2 168.149 odd 6
1344.2.q.v.193.1 2 24.11 even 2
1344.2.q.v.961.1 2 168.107 even 6
2352.2.a.m.1.1 1 21.11 odd 6
2352.2.a.n.1.1 1 21.17 even 6
2352.2.q.m.961.1 2 21.5 even 6
2352.2.q.m.1537.1 2 21.20 even 2
7056.2.a.g.1.1 1 7.4 even 3
7056.2.a.bz.1.1 1 7.3 odd 6
7350.2.a.ce.1.1 1 420.179 even 6
7350.2.a.cw.1.1 1 420.59 odd 6
9408.2.a.d.1.1 1 168.11 even 6
9408.2.a.bm.1.1 1 168.101 even 6
9408.2.a.bu.1.1 1 168.53 odd 6
9408.2.a.db.1.1 1 168.59 odd 6