Properties

Label 1344.2.q.v.961.1
Level $1344$
Weight $2$
Character 1344.961
Analytic conductor $10.732$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1344,2,Mod(193,1344)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1344, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1344.193");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1344 = 2^{6} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1344.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.7318940317\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 961.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1344.961
Dual form 1344.2.q.v.193.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{3} +(1.50000 - 2.59808i) q^{5} +(2.50000 + 0.866025i) q^{7} +(-0.500000 + 0.866025i) q^{9} +(1.50000 + 2.59808i) q^{11} +4.00000 q^{13} +3.00000 q^{15} +(-2.00000 + 3.46410i) q^{19} +(0.500000 + 2.59808i) q^{21} +(-2.00000 - 3.46410i) q^{25} -1.00000 q^{27} -9.00000 q^{29} +(0.500000 + 0.866025i) q^{31} +(-1.50000 + 2.59808i) q^{33} +(6.00000 - 5.19615i) q^{35} +(4.00000 - 6.92820i) q^{37} +(2.00000 + 3.46410i) q^{39} +10.0000 q^{43} +(1.50000 + 2.59808i) q^{45} +(3.00000 - 5.19615i) q^{47} +(5.50000 + 4.33013i) q^{49} +(-1.50000 - 2.59808i) q^{53} +9.00000 q^{55} -4.00000 q^{57} +(1.50000 + 2.59808i) q^{59} +(-5.00000 + 8.66025i) q^{61} +(-2.00000 + 1.73205i) q^{63} +(6.00000 - 10.3923i) q^{65} +(-5.00000 - 8.66025i) q^{67} -6.00000 q^{71} +(-1.00000 - 1.73205i) q^{73} +(2.00000 - 3.46410i) q^{75} +(1.50000 + 7.79423i) q^{77} +(0.500000 - 0.866025i) q^{79} +(-0.500000 - 0.866025i) q^{81} +9.00000 q^{83} +(-4.50000 - 7.79423i) q^{87} +(-3.00000 + 5.19615i) q^{89} +(10.0000 + 3.46410i) q^{91} +(-0.500000 + 0.866025i) q^{93} +(6.00000 + 10.3923i) q^{95} -1.00000 q^{97} -3.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} + 3 q^{5} + 5 q^{7} - q^{9} + 3 q^{11} + 8 q^{13} + 6 q^{15} - 4 q^{19} + q^{21} - 4 q^{25} - 2 q^{27} - 18 q^{29} + q^{31} - 3 q^{33} + 12 q^{35} + 8 q^{37} + 4 q^{39} + 20 q^{43} + 3 q^{45}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1344\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(449\) \(577\) \(1093\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) 0 0
\(5\) 1.50000 2.59808i 0.670820 1.16190i −0.306851 0.951757i \(-0.599275\pi\)
0.977672 0.210138i \(-0.0673912\pi\)
\(6\) 0 0
\(7\) 2.50000 + 0.866025i 0.944911 + 0.327327i
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 1.50000 + 2.59808i 0.452267 + 0.783349i 0.998526 0.0542666i \(-0.0172821\pi\)
−0.546259 + 0.837616i \(0.683949\pi\)
\(12\) 0 0
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) 0 0
\(15\) 3.00000 0.774597
\(16\) 0 0
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 0 0
\(19\) −2.00000 + 3.46410i −0.458831 + 0.794719i −0.998899 0.0469020i \(-0.985065\pi\)
0.540068 + 0.841621i \(0.318398\pi\)
\(20\) 0 0
\(21\) 0.500000 + 2.59808i 0.109109 + 0.566947i
\(22\) 0 0
\(23\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) 0 0
\(25\) −2.00000 3.46410i −0.400000 0.692820i
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −9.00000 −1.67126 −0.835629 0.549294i \(-0.814897\pi\)
−0.835629 + 0.549294i \(0.814897\pi\)
\(30\) 0 0
\(31\) 0.500000 + 0.866025i 0.0898027 + 0.155543i 0.907428 0.420208i \(-0.138043\pi\)
−0.817625 + 0.575751i \(0.804710\pi\)
\(32\) 0 0
\(33\) −1.50000 + 2.59808i −0.261116 + 0.452267i
\(34\) 0 0
\(35\) 6.00000 5.19615i 1.01419 0.878310i
\(36\) 0 0
\(37\) 4.00000 6.92820i 0.657596 1.13899i −0.323640 0.946180i \(-0.604907\pi\)
0.981236 0.192809i \(-0.0617599\pi\)
\(38\) 0 0
\(39\) 2.00000 + 3.46410i 0.320256 + 0.554700i
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 10.0000 1.52499 0.762493 0.646997i \(-0.223975\pi\)
0.762493 + 0.646997i \(0.223975\pi\)
\(44\) 0 0
\(45\) 1.50000 + 2.59808i 0.223607 + 0.387298i
\(46\) 0 0
\(47\) 3.00000 5.19615i 0.437595 0.757937i −0.559908 0.828554i \(-0.689164\pi\)
0.997503 + 0.0706177i \(0.0224970\pi\)
\(48\) 0 0
\(49\) 5.50000 + 4.33013i 0.785714 + 0.618590i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.50000 2.59808i −0.206041 0.356873i 0.744423 0.667708i \(-0.232725\pi\)
−0.950464 + 0.310835i \(0.899391\pi\)
\(54\) 0 0
\(55\) 9.00000 1.21356
\(56\) 0 0
\(57\) −4.00000 −0.529813
\(58\) 0 0
\(59\) 1.50000 + 2.59808i 0.195283 + 0.338241i 0.946993 0.321253i \(-0.104104\pi\)
−0.751710 + 0.659494i \(0.770771\pi\)
\(60\) 0 0
\(61\) −5.00000 + 8.66025i −0.640184 + 1.10883i 0.345207 + 0.938527i \(0.387809\pi\)
−0.985391 + 0.170305i \(0.945525\pi\)
\(62\) 0 0
\(63\) −2.00000 + 1.73205i −0.251976 + 0.218218i
\(64\) 0 0
\(65\) 6.00000 10.3923i 0.744208 1.28901i
\(66\) 0 0
\(67\) −5.00000 8.66025i −0.610847 1.05802i −0.991098 0.133135i \(-0.957496\pi\)
0.380251 0.924883i \(-0.375838\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) −1.00000 1.73205i −0.117041 0.202721i 0.801553 0.597924i \(-0.204008\pi\)
−0.918594 + 0.395203i \(0.870674\pi\)
\(74\) 0 0
\(75\) 2.00000 3.46410i 0.230940 0.400000i
\(76\) 0 0
\(77\) 1.50000 + 7.79423i 0.170941 + 0.888235i
\(78\) 0 0
\(79\) 0.500000 0.866025i 0.0562544 0.0974355i −0.836527 0.547926i \(-0.815418\pi\)
0.892781 + 0.450490i \(0.148751\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 9.00000 0.987878 0.493939 0.869496i \(-0.335557\pi\)
0.493939 + 0.869496i \(0.335557\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −4.50000 7.79423i −0.482451 0.835629i
\(88\) 0 0
\(89\) −3.00000 + 5.19615i −0.317999 + 0.550791i −0.980071 0.198650i \(-0.936344\pi\)
0.662071 + 0.749441i \(0.269678\pi\)
\(90\) 0 0
\(91\) 10.0000 + 3.46410i 1.04828 + 0.363137i
\(92\) 0 0
\(93\) −0.500000 + 0.866025i −0.0518476 + 0.0898027i
\(94\) 0 0
\(95\) 6.00000 + 10.3923i 0.615587 + 1.06623i
\(96\) 0 0
\(97\) −1.00000 −0.101535 −0.0507673 0.998711i \(-0.516167\pi\)
−0.0507673 + 0.998711i \(0.516167\pi\)
\(98\) 0 0
\(99\) −3.00000 −0.301511
\(100\) 0 0
\(101\) −9.00000 15.5885i −0.895533 1.55111i −0.833143 0.553058i \(-0.813461\pi\)
−0.0623905 0.998052i \(-0.519872\pi\)
\(102\) 0 0
\(103\) −4.00000 + 6.92820i −0.394132 + 0.682656i −0.992990 0.118199i \(-0.962288\pi\)
0.598858 + 0.800855i \(0.295621\pi\)
\(104\) 0 0
\(105\) 7.50000 + 2.59808i 0.731925 + 0.253546i
\(106\) 0 0
\(107\) −1.50000 + 2.59808i −0.145010 + 0.251166i −0.929377 0.369132i \(-0.879655\pi\)
0.784366 + 0.620298i \(0.212988\pi\)
\(108\) 0 0
\(109\) 7.00000 + 12.1244i 0.670478 + 1.16130i 0.977769 + 0.209687i \(0.0672444\pi\)
−0.307290 + 0.951616i \(0.599422\pi\)
\(110\) 0 0
\(111\) 8.00000 0.759326
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −2.00000 + 3.46410i −0.184900 + 0.320256i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) 5.00000 0.443678 0.221839 0.975083i \(-0.428794\pi\)
0.221839 + 0.975083i \(0.428794\pi\)
\(128\) 0 0
\(129\) 5.00000 + 8.66025i 0.440225 + 0.762493i
\(130\) 0 0
\(131\) −4.50000 + 7.79423i −0.393167 + 0.680985i −0.992865 0.119241i \(-0.961954\pi\)
0.599699 + 0.800226i \(0.295287\pi\)
\(132\) 0 0
\(133\) −8.00000 + 6.92820i −0.693688 + 0.600751i
\(134\) 0 0
\(135\) −1.50000 + 2.59808i −0.129099 + 0.223607i
\(136\) 0 0
\(137\) −9.00000 15.5885i −0.768922 1.33181i −0.938148 0.346235i \(-0.887460\pi\)
0.169226 0.985577i \(-0.445873\pi\)
\(138\) 0 0
\(139\) −2.00000 −0.169638 −0.0848189 0.996396i \(-0.527031\pi\)
−0.0848189 + 0.996396i \(0.527031\pi\)
\(140\) 0 0
\(141\) 6.00000 0.505291
\(142\) 0 0
\(143\) 6.00000 + 10.3923i 0.501745 + 0.869048i
\(144\) 0 0
\(145\) −13.5000 + 23.3827i −1.12111 + 1.94183i
\(146\) 0 0
\(147\) −1.00000 + 6.92820i −0.0824786 + 0.571429i
\(148\) 0 0
\(149\) 9.00000 15.5885i 0.737309 1.27706i −0.216394 0.976306i \(-0.569430\pi\)
0.953703 0.300750i \(-0.0972370\pi\)
\(150\) 0 0
\(151\) 0.500000 + 0.866025i 0.0406894 + 0.0704761i 0.885653 0.464348i \(-0.153711\pi\)
−0.844963 + 0.534824i \(0.820378\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.00000 0.240966
\(156\) 0 0
\(157\) −2.00000 3.46410i −0.159617 0.276465i 0.775113 0.631822i \(-0.217693\pi\)
−0.934731 + 0.355357i \(0.884359\pi\)
\(158\) 0 0
\(159\) 1.50000 2.59808i 0.118958 0.206041i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −8.00000 + 13.8564i −0.626608 + 1.08532i 0.361619 + 0.932326i \(0.382224\pi\)
−0.988227 + 0.152992i \(0.951109\pi\)
\(164\) 0 0
\(165\) 4.50000 + 7.79423i 0.350325 + 0.606780i
\(166\) 0 0
\(167\) 6.00000 0.464294 0.232147 0.972681i \(-0.425425\pi\)
0.232147 + 0.972681i \(0.425425\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) −2.00000 3.46410i −0.152944 0.264906i
\(172\) 0 0
\(173\) 9.00000 15.5885i 0.684257 1.18517i −0.289412 0.957205i \(-0.593460\pi\)
0.973670 0.227964i \(-0.0732068\pi\)
\(174\) 0 0
\(175\) −2.00000 10.3923i −0.151186 0.785584i
\(176\) 0 0
\(177\) −1.50000 + 2.59808i −0.112747 + 0.195283i
\(178\) 0 0
\(179\) 6.00000 + 10.3923i 0.448461 + 0.776757i 0.998286 0.0585225i \(-0.0186389\pi\)
−0.549825 + 0.835280i \(0.685306\pi\)
\(180\) 0 0
\(181\) −8.00000 −0.594635 −0.297318 0.954779i \(-0.596092\pi\)
−0.297318 + 0.954779i \(0.596092\pi\)
\(182\) 0 0
\(183\) −10.0000 −0.739221
\(184\) 0 0
\(185\) −12.0000 20.7846i −0.882258 1.52811i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −2.50000 0.866025i −0.181848 0.0629941i
\(190\) 0 0
\(191\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(192\) 0 0
\(193\) 9.50000 + 16.4545i 0.683825 + 1.18442i 0.973805 + 0.227387i \(0.0730182\pi\)
−0.289980 + 0.957033i \(0.593649\pi\)
\(194\) 0 0
\(195\) 12.0000 0.859338
\(196\) 0 0
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) −10.0000 17.3205i −0.708881 1.22782i −0.965272 0.261245i \(-0.915867\pi\)
0.256391 0.966573i \(-0.417466\pi\)
\(200\) 0 0
\(201\) 5.00000 8.66025i 0.352673 0.610847i
\(202\) 0 0
\(203\) −22.5000 7.79423i −1.57919 0.547048i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −12.0000 −0.830057
\(210\) 0 0
\(211\) −14.0000 −0.963800 −0.481900 0.876226i \(-0.660053\pi\)
−0.481900 + 0.876226i \(0.660053\pi\)
\(212\) 0 0
\(213\) −3.00000 5.19615i −0.205557 0.356034i
\(214\) 0 0
\(215\) 15.0000 25.9808i 1.02299 1.77187i
\(216\) 0 0
\(217\) 0.500000 + 2.59808i 0.0339422 + 0.176369i
\(218\) 0 0
\(219\) 1.00000 1.73205i 0.0675737 0.117041i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −19.0000 −1.27233 −0.636167 0.771551i \(-0.719481\pi\)
−0.636167 + 0.771551i \(0.719481\pi\)
\(224\) 0 0
\(225\) 4.00000 0.266667
\(226\) 0 0
\(227\) −13.5000 23.3827i −0.896026 1.55196i −0.832529 0.553981i \(-0.813108\pi\)
−0.0634974 0.997982i \(-0.520225\pi\)
\(228\) 0 0
\(229\) −2.00000 + 3.46410i −0.132164 + 0.228914i −0.924510 0.381157i \(-0.875526\pi\)
0.792347 + 0.610071i \(0.208859\pi\)
\(230\) 0 0
\(231\) −6.00000 + 5.19615i −0.394771 + 0.341882i
\(232\) 0 0
\(233\) 12.0000 20.7846i 0.786146 1.36165i −0.142166 0.989843i \(-0.545407\pi\)
0.928312 0.371802i \(-0.121260\pi\)
\(234\) 0 0
\(235\) −9.00000 15.5885i −0.587095 1.01688i
\(236\) 0 0
\(237\) 1.00000 0.0649570
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) 0.500000 + 0.866025i 0.0322078 + 0.0557856i 0.881680 0.471848i \(-0.156413\pi\)
−0.849472 + 0.527633i \(0.823079\pi\)
\(242\) 0 0
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 0 0
\(245\) 19.5000 7.79423i 1.24581 0.497955i
\(246\) 0 0
\(247\) −8.00000 + 13.8564i −0.509028 + 0.881662i
\(248\) 0 0
\(249\) 4.50000 + 7.79423i 0.285176 + 0.493939i
\(250\) 0 0
\(251\) −27.0000 −1.70422 −0.852112 0.523359i \(-0.824679\pi\)
−0.852112 + 0.523359i \(0.824679\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3.00000 + 5.19615i −0.187135 + 0.324127i −0.944294 0.329104i \(-0.893253\pi\)
0.757159 + 0.653231i \(0.226587\pi\)
\(258\) 0 0
\(259\) 16.0000 13.8564i 0.994192 0.860995i
\(260\) 0 0
\(261\) 4.50000 7.79423i 0.278543 0.482451i
\(262\) 0 0
\(263\) 3.00000 + 5.19615i 0.184988 + 0.320408i 0.943572 0.331166i \(-0.107442\pi\)
−0.758585 + 0.651575i \(0.774109\pi\)
\(264\) 0 0
\(265\) −9.00000 −0.552866
\(266\) 0 0
\(267\) −6.00000 −0.367194
\(268\) 0 0
\(269\) 10.5000 + 18.1865i 0.640196 + 1.10885i 0.985389 + 0.170321i \(0.0544803\pi\)
−0.345192 + 0.938532i \(0.612186\pi\)
\(270\) 0 0
\(271\) −5.50000 + 9.52628i −0.334101 + 0.578680i −0.983312 0.181928i \(-0.941766\pi\)
0.649211 + 0.760609i \(0.275099\pi\)
\(272\) 0 0
\(273\) 2.00000 + 10.3923i 0.121046 + 0.628971i
\(274\) 0 0
\(275\) 6.00000 10.3923i 0.361814 0.626680i
\(276\) 0 0
\(277\) 4.00000 + 6.92820i 0.240337 + 0.416275i 0.960810 0.277207i \(-0.0894088\pi\)
−0.720473 + 0.693482i \(0.756075\pi\)
\(278\) 0 0
\(279\) −1.00000 −0.0598684
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) 7.00000 + 12.1244i 0.416107 + 0.720718i 0.995544 0.0942988i \(-0.0300609\pi\)
−0.579437 + 0.815017i \(0.696728\pi\)
\(284\) 0 0
\(285\) −6.00000 + 10.3923i −0.355409 + 0.615587i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 0 0
\(291\) −0.500000 0.866025i −0.0293105 0.0507673i
\(292\) 0 0
\(293\) −33.0000 −1.92788 −0.963940 0.266119i \(-0.914259\pi\)
−0.963940 + 0.266119i \(0.914259\pi\)
\(294\) 0 0
\(295\) 9.00000 0.524000
\(296\) 0 0
\(297\) −1.50000 2.59808i −0.0870388 0.150756i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 25.0000 + 8.66025i 1.44098 + 0.499169i
\(302\) 0 0
\(303\) 9.00000 15.5885i 0.517036 0.895533i
\(304\) 0 0
\(305\) 15.0000 + 25.9808i 0.858898 + 1.48765i
\(306\) 0 0
\(307\) −8.00000 −0.456584 −0.228292 0.973593i \(-0.573314\pi\)
−0.228292 + 0.973593i \(0.573314\pi\)
\(308\) 0 0
\(309\) −8.00000 −0.455104
\(310\) 0 0
\(311\) −12.0000 20.7846i −0.680458 1.17859i −0.974841 0.222900i \(-0.928448\pi\)
0.294384 0.955687i \(-0.404886\pi\)
\(312\) 0 0
\(313\) 15.5000 26.8468i 0.876112 1.51747i 0.0205381 0.999789i \(-0.493462\pi\)
0.855574 0.517681i \(-0.173205\pi\)
\(314\) 0 0
\(315\) 1.50000 + 7.79423i 0.0845154 + 0.439155i
\(316\) 0 0
\(317\) 4.50000 7.79423i 0.252745 0.437767i −0.711535 0.702650i \(-0.752000\pi\)
0.964281 + 0.264883i \(0.0853332\pi\)
\(318\) 0 0
\(319\) −13.5000 23.3827i −0.755855 1.30918i
\(320\) 0 0
\(321\) −3.00000 −0.167444
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −8.00000 13.8564i −0.443760 0.768615i
\(326\) 0 0
\(327\) −7.00000 + 12.1244i −0.387101 + 0.670478i
\(328\) 0 0
\(329\) 12.0000 10.3923i 0.661581 0.572946i
\(330\) 0 0
\(331\) 10.0000 17.3205i 0.549650 0.952021i −0.448649 0.893708i \(-0.648095\pi\)
0.998298 0.0583130i \(-0.0185721\pi\)
\(332\) 0 0
\(333\) 4.00000 + 6.92820i 0.219199 + 0.379663i
\(334\) 0 0
\(335\) −30.0000 −1.63908
\(336\) 0 0
\(337\) −7.00000 −0.381314 −0.190657 0.981657i \(-0.561062\pi\)
−0.190657 + 0.981657i \(0.561062\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.50000 + 2.59808i −0.0812296 + 0.140694i
\(342\) 0 0
\(343\) 10.0000 + 15.5885i 0.539949 + 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.00000 + 10.3923i 0.322097 + 0.557888i 0.980921 0.194409i \(-0.0622790\pi\)
−0.658824 + 0.752297i \(0.728946\pi\)
\(348\) 0 0
\(349\) −26.0000 −1.39175 −0.695874 0.718164i \(-0.744983\pi\)
−0.695874 + 0.718164i \(0.744983\pi\)
\(350\) 0 0
\(351\) −4.00000 −0.213504
\(352\) 0 0
\(353\) −12.0000 20.7846i −0.638696 1.10625i −0.985719 0.168397i \(-0.946141\pi\)
0.347024 0.937856i \(-0.387192\pi\)
\(354\) 0 0
\(355\) −9.00000 + 15.5885i −0.477670 + 0.827349i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −15.0000 + 25.9808i −0.791670 + 1.37121i 0.133263 + 0.991081i \(0.457455\pi\)
−0.924932 + 0.380131i \(0.875879\pi\)
\(360\) 0 0
\(361\) 1.50000 + 2.59808i 0.0789474 + 0.136741i
\(362\) 0 0
\(363\) 2.00000 0.104973
\(364\) 0 0
\(365\) −6.00000 −0.314054
\(366\) 0 0
\(367\) 9.50000 + 16.4545i 0.495896 + 0.858917i 0.999989 0.00473247i \(-0.00150640\pi\)
−0.504093 + 0.863649i \(0.668173\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.50000 7.79423i −0.0778761 0.404656i
\(372\) 0 0
\(373\) 4.00000 6.92820i 0.207112 0.358729i −0.743691 0.668523i \(-0.766927\pi\)
0.950804 + 0.309794i \(0.100260\pi\)
\(374\) 0 0
\(375\) 1.50000 + 2.59808i 0.0774597 + 0.134164i
\(376\) 0 0
\(377\) −36.0000 −1.85409
\(378\) 0 0
\(379\) −8.00000 −0.410932 −0.205466 0.978664i \(-0.565871\pi\)
−0.205466 + 0.978664i \(0.565871\pi\)
\(380\) 0 0
\(381\) 2.50000 + 4.33013i 0.128079 + 0.221839i
\(382\) 0 0
\(383\) −9.00000 + 15.5885i −0.459879 + 0.796533i −0.998954 0.0457244i \(-0.985440\pi\)
0.539076 + 0.842257i \(0.318774\pi\)
\(384\) 0 0
\(385\) 22.5000 + 7.79423i 1.14671 + 0.397231i
\(386\) 0 0
\(387\) −5.00000 + 8.66025i −0.254164 + 0.440225i
\(388\) 0 0
\(389\) −3.00000 5.19615i −0.152106 0.263455i 0.779895 0.625910i \(-0.215272\pi\)
−0.932002 + 0.362454i \(0.881939\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −9.00000 −0.453990
\(394\) 0 0
\(395\) −1.50000 2.59808i −0.0754732 0.130723i
\(396\) 0 0
\(397\) −2.00000 + 3.46410i −0.100377 + 0.173858i −0.911840 0.410546i \(-0.865338\pi\)
0.811463 + 0.584404i \(0.198672\pi\)
\(398\) 0 0
\(399\) −10.0000 3.46410i −0.500626 0.173422i
\(400\) 0 0
\(401\) −12.0000 + 20.7846i −0.599251 + 1.03793i 0.393680 + 0.919247i \(0.371202\pi\)
−0.992932 + 0.118686i \(0.962132\pi\)
\(402\) 0 0
\(403\) 2.00000 + 3.46410i 0.0996271 + 0.172559i
\(404\) 0 0
\(405\) −3.00000 −0.149071
\(406\) 0 0
\(407\) 24.0000 1.18964
\(408\) 0 0
\(409\) 12.5000 + 21.6506i 0.618085 + 1.07056i 0.989835 + 0.142222i \(0.0454247\pi\)
−0.371750 + 0.928333i \(0.621242\pi\)
\(410\) 0 0
\(411\) 9.00000 15.5885i 0.443937 0.768922i
\(412\) 0 0
\(413\) 1.50000 + 7.79423i 0.0738102 + 0.383529i
\(414\) 0 0
\(415\) 13.5000 23.3827i 0.662689 1.14781i
\(416\) 0 0
\(417\) −1.00000 1.73205i −0.0489702 0.0848189i
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) 0 0
\(423\) 3.00000 + 5.19615i 0.145865 + 0.252646i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −20.0000 + 17.3205i −0.967868 + 0.838198i
\(428\) 0 0
\(429\) −6.00000 + 10.3923i −0.289683 + 0.501745i
\(430\) 0 0
\(431\) −6.00000 10.3923i −0.289010 0.500580i 0.684564 0.728953i \(-0.259993\pi\)
−0.973574 + 0.228373i \(0.926659\pi\)
\(432\) 0 0
\(433\) −34.0000 −1.63394 −0.816968 0.576683i \(-0.804347\pi\)
−0.816968 + 0.576683i \(0.804347\pi\)
\(434\) 0 0
\(435\) −27.0000 −1.29455
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −17.5000 + 30.3109i −0.835229 + 1.44666i 0.0586141 + 0.998281i \(0.481332\pi\)
−0.893843 + 0.448379i \(0.852001\pi\)
\(440\) 0 0
\(441\) −6.50000 + 2.59808i −0.309524 + 0.123718i
\(442\) 0 0
\(443\) −16.5000 + 28.5788i −0.783939 + 1.35782i 0.145692 + 0.989330i \(0.453459\pi\)
−0.929631 + 0.368492i \(0.879874\pi\)
\(444\) 0 0
\(445\) 9.00000 + 15.5885i 0.426641 + 0.738964i
\(446\) 0 0
\(447\) 18.0000 0.851371
\(448\) 0 0
\(449\) 12.0000 0.566315 0.283158 0.959073i \(-0.408618\pi\)
0.283158 + 0.959073i \(0.408618\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −0.500000 + 0.866025i −0.0234920 + 0.0406894i
\(454\) 0 0
\(455\) 24.0000 20.7846i 1.12514 0.974398i
\(456\) 0 0
\(457\) 0.500000 0.866025i 0.0233890 0.0405110i −0.854094 0.520119i \(-0.825888\pi\)
0.877483 + 0.479608i \(0.159221\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −30.0000 −1.39724 −0.698620 0.715493i \(-0.746202\pi\)
−0.698620 + 0.715493i \(0.746202\pi\)
\(462\) 0 0
\(463\) 8.00000 0.371792 0.185896 0.982569i \(-0.440481\pi\)
0.185896 + 0.982569i \(0.440481\pi\)
\(464\) 0 0
\(465\) 1.50000 + 2.59808i 0.0695608 + 0.120483i
\(466\) 0 0
\(467\) 18.0000 31.1769i 0.832941 1.44270i −0.0627555 0.998029i \(-0.519989\pi\)
0.895696 0.444667i \(-0.146678\pi\)
\(468\) 0 0
\(469\) −5.00000 25.9808i −0.230879 1.19968i
\(470\) 0 0
\(471\) 2.00000 3.46410i 0.0921551 0.159617i
\(472\) 0 0
\(473\) 15.0000 + 25.9808i 0.689701 + 1.19460i
\(474\) 0 0
\(475\) 16.0000 0.734130
\(476\) 0 0
\(477\) 3.00000 0.137361
\(478\) 0 0
\(479\) 9.00000 + 15.5885i 0.411220 + 0.712255i 0.995023 0.0996406i \(-0.0317693\pi\)
−0.583803 + 0.811895i \(0.698436\pi\)
\(480\) 0 0
\(481\) 16.0000 27.7128i 0.729537 1.26360i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.50000 + 2.59808i −0.0681115 + 0.117973i
\(486\) 0 0
\(487\) −20.5000 35.5070i −0.928944 1.60898i −0.785093 0.619378i \(-0.787385\pi\)
−0.143851 0.989599i \(-0.545949\pi\)
\(488\) 0 0
\(489\) −16.0000 −0.723545
\(490\) 0 0
\(491\) 33.0000 1.48927 0.744635 0.667472i \(-0.232624\pi\)
0.744635 + 0.667472i \(0.232624\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −4.50000 + 7.79423i −0.202260 + 0.350325i
\(496\) 0 0
\(497\) −15.0000 5.19615i −0.672842 0.233079i
\(498\) 0 0
\(499\) 1.00000 1.73205i 0.0447661 0.0775372i −0.842774 0.538267i \(-0.819079\pi\)
0.887540 + 0.460730i \(0.152412\pi\)
\(500\) 0 0
\(501\) 3.00000 + 5.19615i 0.134030 + 0.232147i
\(502\) 0 0
\(503\) −12.0000 −0.535054 −0.267527 0.963550i \(-0.586206\pi\)
−0.267527 + 0.963550i \(0.586206\pi\)
\(504\) 0 0
\(505\) −54.0000 −2.40297
\(506\) 0 0
\(507\) 1.50000 + 2.59808i 0.0666173 + 0.115385i
\(508\) 0 0
\(509\) −1.50000 + 2.59808i −0.0664863 + 0.115158i −0.897352 0.441315i \(-0.854512\pi\)
0.830866 + 0.556473i \(0.187846\pi\)
\(510\) 0 0
\(511\) −1.00000 5.19615i −0.0442374 0.229864i
\(512\) 0 0
\(513\) 2.00000 3.46410i 0.0883022 0.152944i
\(514\) 0 0
\(515\) 12.0000 + 20.7846i 0.528783 + 0.915879i
\(516\) 0 0
\(517\) 18.0000 0.791639
\(518\) 0 0
\(519\) 18.0000 0.790112
\(520\) 0 0
\(521\) 9.00000 + 15.5885i 0.394297 + 0.682943i 0.993011 0.118020i \(-0.0376547\pi\)
−0.598714 + 0.800963i \(0.704321\pi\)
\(522\) 0 0
\(523\) −2.00000 + 3.46410i −0.0874539 + 0.151475i −0.906434 0.422347i \(-0.861206\pi\)
0.818980 + 0.573822i \(0.194540\pi\)
\(524\) 0 0
\(525\) 8.00000 6.92820i 0.349149 0.302372i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 11.5000 + 19.9186i 0.500000 + 0.866025i
\(530\) 0 0
\(531\) −3.00000 −0.130189
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 4.50000 + 7.79423i 0.194552 + 0.336974i
\(536\) 0 0
\(537\) −6.00000 + 10.3923i −0.258919 + 0.448461i
\(538\) 0 0
\(539\) −3.00000 + 20.7846i −0.129219 + 0.895257i
\(540\) 0 0
\(541\) 13.0000 22.5167i 0.558914 0.968067i −0.438674 0.898646i \(-0.644552\pi\)
0.997587 0.0694205i \(-0.0221150\pi\)
\(542\) 0 0
\(543\) −4.00000 6.92820i −0.171656 0.297318i
\(544\) 0 0
\(545\) 42.0000 1.79908
\(546\) 0 0
\(547\) −8.00000 −0.342055 −0.171028 0.985266i \(-0.554709\pi\)
−0.171028 + 0.985266i \(0.554709\pi\)
\(548\) 0 0
\(549\) −5.00000 8.66025i −0.213395 0.369611i
\(550\) 0 0
\(551\) 18.0000 31.1769i 0.766826 1.32818i
\(552\) 0 0
\(553\) 2.00000 1.73205i 0.0850487 0.0736543i
\(554\) 0 0
\(555\) 12.0000 20.7846i 0.509372 0.882258i
\(556\) 0 0
\(557\) 1.50000 + 2.59808i 0.0635570 + 0.110084i 0.896053 0.443947i \(-0.146422\pi\)
−0.832496 + 0.554031i \(0.813089\pi\)
\(558\) 0 0
\(559\) 40.0000 1.69182
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 19.5000 + 33.7750i 0.821827 + 1.42345i 0.904320 + 0.426855i \(0.140378\pi\)
−0.0824933 + 0.996592i \(0.526288\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −0.500000 2.59808i −0.0209980 0.109109i
\(568\) 0 0
\(569\) 18.0000 31.1769i 0.754599 1.30700i −0.190974 0.981595i \(-0.561165\pi\)
0.945573 0.325409i \(-0.105502\pi\)
\(570\) 0 0
\(571\) −17.0000 29.4449i −0.711428 1.23223i −0.964321 0.264735i \(-0.914716\pi\)
0.252893 0.967494i \(-0.418618\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −11.5000 19.9186i −0.478751 0.829222i 0.520952 0.853586i \(-0.325577\pi\)
−0.999703 + 0.0243645i \(0.992244\pi\)
\(578\) 0 0
\(579\) −9.50000 + 16.4545i −0.394807 + 0.683825i
\(580\) 0 0
\(581\) 22.5000 + 7.79423i 0.933457 + 0.323359i
\(582\) 0 0
\(583\) 4.50000 7.79423i 0.186371 0.322804i
\(584\) 0 0
\(585\) 6.00000 + 10.3923i 0.248069 + 0.429669i
\(586\) 0 0
\(587\) −21.0000 −0.866763 −0.433381 0.901211i \(-0.642680\pi\)
−0.433381 + 0.901211i \(0.642680\pi\)
\(588\) 0 0
\(589\) −4.00000 −0.164817
\(590\) 0 0
\(591\) −3.00000 5.19615i −0.123404 0.213741i
\(592\) 0 0
\(593\) −12.0000 + 20.7846i −0.492781 + 0.853522i −0.999965 0.00831589i \(-0.997353\pi\)
0.507184 + 0.861838i \(0.330686\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 10.0000 17.3205i 0.409273 0.708881i
\(598\) 0 0
\(599\) 9.00000 + 15.5885i 0.367730 + 0.636927i 0.989210 0.146503i \(-0.0468017\pi\)
−0.621480 + 0.783430i \(0.713468\pi\)
\(600\) 0 0
\(601\) 11.0000 0.448699 0.224350 0.974509i \(-0.427974\pi\)
0.224350 + 0.974509i \(0.427974\pi\)
\(602\) 0 0
\(603\) 10.0000 0.407231
\(604\) 0 0
\(605\) −3.00000 5.19615i −0.121967 0.211254i
\(606\) 0 0
\(607\) 3.50000 6.06218i 0.142061 0.246056i −0.786212 0.617957i \(-0.787961\pi\)
0.928272 + 0.371901i \(0.121294\pi\)
\(608\) 0 0
\(609\) −4.50000 23.3827i −0.182349 0.947514i
\(610\) 0 0
\(611\) 12.0000 20.7846i 0.485468 0.840855i
\(612\) 0 0
\(613\) −8.00000 13.8564i −0.323117 0.559655i 0.658012 0.753007i \(-0.271397\pi\)
−0.981129 + 0.193352i \(0.938064\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6.00000 −0.241551 −0.120775 0.992680i \(-0.538538\pi\)
−0.120775 + 0.992680i \(0.538538\pi\)
\(618\) 0 0
\(619\) −17.0000 29.4449i −0.683288 1.18349i −0.973972 0.226670i \(-0.927216\pi\)
0.290684 0.956819i \(-0.406117\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −12.0000 + 10.3923i −0.480770 + 0.416359i
\(624\) 0 0
\(625\) 14.5000 25.1147i 0.580000 1.00459i
\(626\) 0 0
\(627\) −6.00000 10.3923i −0.239617 0.415029i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −7.00000 −0.278666 −0.139333 0.990246i \(-0.544496\pi\)
−0.139333 + 0.990246i \(0.544496\pi\)
\(632\) 0 0
\(633\) −7.00000 12.1244i −0.278225 0.481900i
\(634\) 0 0
\(635\) 7.50000 12.9904i 0.297628 0.515508i
\(636\) 0 0
\(637\) 22.0000 + 17.3205i 0.871672 + 0.686264i
\(638\) 0 0
\(639\) 3.00000 5.19615i 0.118678 0.205557i
\(640\) 0 0
\(641\) 15.0000 + 25.9808i 0.592464 + 1.02618i 0.993899 + 0.110291i \(0.0351782\pi\)
−0.401435 + 0.915888i \(0.631488\pi\)
\(642\) 0 0
\(643\) 34.0000 1.34083 0.670415 0.741987i \(-0.266116\pi\)
0.670415 + 0.741987i \(0.266116\pi\)
\(644\) 0 0
\(645\) 30.0000 1.18125
\(646\) 0 0
\(647\) 9.00000 + 15.5885i 0.353827 + 0.612845i 0.986916 0.161233i \(-0.0515470\pi\)
−0.633090 + 0.774078i \(0.718214\pi\)
\(648\) 0 0
\(649\) −4.50000 + 7.79423i −0.176640 + 0.305950i
\(650\) 0 0
\(651\) −2.00000 + 1.73205i −0.0783862 + 0.0678844i
\(652\) 0 0
\(653\) 1.50000 2.59808i 0.0586995 0.101671i −0.835182 0.549973i \(-0.814638\pi\)
0.893882 + 0.448303i \(0.147971\pi\)
\(654\) 0 0
\(655\) 13.5000 + 23.3827i 0.527489 + 0.913637i
\(656\) 0 0
\(657\) 2.00000 0.0780274
\(658\) 0 0
\(659\) 24.0000 0.934907 0.467454 0.884018i \(-0.345171\pi\)
0.467454 + 0.884018i \(0.345171\pi\)
\(660\) 0 0
\(661\) 7.00000 + 12.1244i 0.272268 + 0.471583i 0.969442 0.245319i \(-0.0788928\pi\)
−0.697174 + 0.716902i \(0.745559\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 6.00000 + 31.1769i 0.232670 + 1.20899i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −9.50000 16.4545i −0.367291 0.636167i
\(670\) 0 0
\(671\) −30.0000 −1.15814
\(672\) 0 0
\(673\) 29.0000 1.11787 0.558934 0.829212i \(-0.311211\pi\)
0.558934 + 0.829212i \(0.311211\pi\)
\(674\) 0 0
\(675\) 2.00000 + 3.46410i 0.0769800 + 0.133333i
\(676\) 0 0
\(677\) −16.5000 + 28.5788i −0.634147 + 1.09837i 0.352549 + 0.935793i \(0.385315\pi\)
−0.986695 + 0.162581i \(0.948018\pi\)
\(678\) 0 0
\(679\) −2.50000 0.866025i −0.0959412 0.0332350i
\(680\) 0 0
\(681\) 13.5000 23.3827i 0.517321 0.896026i
\(682\) 0 0
\(683\) 16.5000 + 28.5788i 0.631355 + 1.09354i 0.987275 + 0.159022i \(0.0508342\pi\)
−0.355920 + 0.934516i \(0.615832\pi\)
\(684\) 0 0
\(685\) −54.0000 −2.06323
\(686\) 0 0
\(687\) −4.00000 −0.152610
\(688\) 0 0
\(689\) −6.00000 10.3923i −0.228582 0.395915i
\(690\) 0 0
\(691\) 4.00000 6.92820i 0.152167 0.263561i −0.779857 0.625958i \(-0.784708\pi\)
0.932024 + 0.362397i \(0.118041\pi\)
\(692\) 0 0
\(693\) −7.50000 2.59808i −0.284901 0.0986928i
\(694\) 0 0
\(695\) −3.00000 + 5.19615i −0.113796 + 0.197101i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 24.0000 0.907763
\(700\) 0 0
\(701\) 15.0000 0.566542 0.283271 0.959040i \(-0.408580\pi\)
0.283271 + 0.959040i \(0.408580\pi\)
\(702\) 0 0
\(703\) 16.0000 + 27.7128i 0.603451 + 1.04521i
\(704\) 0 0
\(705\) 9.00000 15.5885i 0.338960 0.587095i
\(706\) 0 0
\(707\) −9.00000 46.7654i −0.338480 1.75879i
\(708\) 0 0
\(709\) −5.00000 + 8.66025i −0.187779 + 0.325243i −0.944509 0.328484i \(-0.893462\pi\)
0.756730 + 0.653727i \(0.226796\pi\)
\(710\) 0 0
\(711\) 0.500000 + 0.866025i 0.0187515 + 0.0324785i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 36.0000 1.34632
\(716\) 0 0
\(717\) −12.0000 20.7846i −0.448148 0.776215i
\(718\) 0 0
\(719\) 9.00000 15.5885i 0.335643 0.581351i −0.647965 0.761670i \(-0.724380\pi\)
0.983608 + 0.180319i \(0.0577130\pi\)
\(720\) 0 0
\(721\) −16.0000 + 13.8564i −0.595871 + 0.516040i
\(722\) 0 0
\(723\) −0.500000 + 0.866025i −0.0185952 + 0.0322078i
\(724\) 0 0
\(725\) 18.0000 + 31.1769i 0.668503 + 1.15788i
\(726\) 0 0
\(727\) −13.0000 −0.482143 −0.241072 0.970507i \(-0.577499\pi\)
−0.241072 + 0.970507i \(0.577499\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −5.00000 + 8.66025i −0.184679 + 0.319874i −0.943468 0.331463i \(-0.892458\pi\)
0.758789 + 0.651336i \(0.225791\pi\)
\(734\) 0 0
\(735\) 16.5000 + 12.9904i 0.608612 + 0.479157i
\(736\) 0 0
\(737\) 15.0000 25.9808i 0.552532 0.957014i
\(738\) 0 0
\(739\) 25.0000 + 43.3013i 0.919640 + 1.59286i 0.799962 + 0.600050i \(0.204853\pi\)
0.119677 + 0.992813i \(0.461814\pi\)
\(740\) 0 0
\(741\) −16.0000 −0.587775
\(742\) 0 0
\(743\) 42.0000 1.54083 0.770415 0.637542i \(-0.220049\pi\)
0.770415 + 0.637542i \(0.220049\pi\)
\(744\) 0 0
\(745\) −27.0000 46.7654i −0.989203 1.71335i
\(746\) 0 0
\(747\) −4.50000 + 7.79423i −0.164646 + 0.285176i
\(748\) 0 0
\(749\) −6.00000 + 5.19615i −0.219235 + 0.189863i
\(750\) 0 0
\(751\) 3.50000 6.06218i 0.127717 0.221212i −0.795075 0.606511i \(-0.792568\pi\)
0.922792 + 0.385299i \(0.125902\pi\)
\(752\) 0 0
\(753\) −13.5000 23.3827i −0.491967 0.852112i
\(754\) 0 0
\(755\) 3.00000 0.109181
\(756\) 0 0
\(757\) −38.0000 −1.38113 −0.690567 0.723269i \(-0.742639\pi\)
−0.690567 + 0.723269i \(0.742639\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −6.00000 + 10.3923i −0.217500 + 0.376721i −0.954043 0.299670i \(-0.903123\pi\)
0.736543 + 0.676391i \(0.236457\pi\)
\(762\) 0 0
\(763\) 7.00000 + 36.3731i 0.253417 + 1.31679i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 6.00000 + 10.3923i 0.216647 + 0.375244i
\(768\) 0 0
\(769\) −19.0000 −0.685158 −0.342579 0.939489i \(-0.611300\pi\)
−0.342579 + 0.939489i \(0.611300\pi\)
\(770\) 0 0
\(771\) −6.00000 −0.216085
\(772\) 0 0
\(773\) 3.00000 + 5.19615i 0.107903 + 0.186893i 0.914920 0.403634i \(-0.132253\pi\)
−0.807018 + 0.590527i \(0.798920\pi\)
\(774\) 0 0
\(775\) 2.00000 3.46410i 0.0718421 0.124434i
\(776\) 0 0
\(777\) 20.0000 + 6.92820i 0.717496 + 0.248548i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −9.00000 15.5885i −0.322045 0.557799i
\(782\) 0 0
\(783\) 9.00000 0.321634
\(784\) 0 0
\(785\) −12.0000 −0.428298
\(786\) 0 0
\(787\) 25.0000 + 43.3013i 0.891154 + 1.54352i 0.838494 + 0.544911i \(0.183437\pi\)
0.0526599 + 0.998613i \(0.483230\pi\)
\(788\) 0 0
\(789\) −3.00000 + 5.19615i −0.106803 + 0.184988i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −20.0000 + 34.6410i −0.710221 + 1.23014i
\(794\) 0 0
\(795\) −4.50000 7.79423i −0.159599 0.276433i
\(796\) 0 0
\(797\) 33.0000 1.16892 0.584460 0.811423i \(-0.301306\pi\)
0.584460 + 0.811423i \(0.301306\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −3.00000 5.19615i −0.106000 0.183597i
\(802\) 0 0
\(803\) 3.00000 5.19615i 0.105868 0.183368i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −10.5000 + 18.1865i −0.369618 + 0.640196i
\(808\) 0 0
\(809\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(810\) 0 0
\(811\) −2.00000 −0.0702295 −0.0351147 0.999383i \(-0.511180\pi\)
−0.0351147 + 0.999383i \(0.511180\pi\)
\(812\) 0 0
\(813\) −11.0000 −0.385787
\(814\) 0 0
\(815\) 24.0000 + 41.5692i 0.840683 + 1.45611i
\(816\) 0 0
\(817\) −20.0000 + 34.6410i −0.699711 + 1.21194i
\(818\) 0 0
\(819\) −8.00000 + 6.92820i −0.279543 + 0.242091i
\(820\) 0 0
\(821\) −1.50000 + 2.59808i −0.0523504 + 0.0906735i −0.891013 0.453978i \(-0.850005\pi\)
0.838663 + 0.544651i \(0.183338\pi\)
\(822\) 0 0
\(823\) 20.0000 + 34.6410i 0.697156 + 1.20751i 0.969448 + 0.245295i \(0.0788849\pi\)
−0.272292 + 0.962215i \(0.587782\pi\)
\(824\) 0 0
\(825\) 12.0000 0.417786
\(826\) 0 0
\(827\) −15.0000 −0.521601 −0.260801 0.965393i \(-0.583986\pi\)
−0.260801 + 0.965393i \(0.583986\pi\)
\(828\) 0 0
\(829\) −2.00000 3.46410i −0.0694629 0.120313i 0.829202 0.558949i \(-0.188795\pi\)
−0.898665 + 0.438636i \(0.855462\pi\)
\(830\) 0 0
\(831\) −4.00000 + 6.92820i −0.138758 + 0.240337i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 9.00000 15.5885i 0.311458 0.539461i
\(836\) 0 0
\(837\) −0.500000 0.866025i −0.0172825 0.0299342i
\(838\) 0 0
\(839\) −24.0000 −0.828572 −0.414286 0.910147i \(-0.635969\pi\)
−0.414286 + 0.910147i \(0.635969\pi\)
\(840\) 0 0
\(841\) 52.0000 1.79310
\(842\) 0 0
\(843\) 3.00000 + 5.19615i 0.103325 + 0.178965i
\(844\) 0 0
\(845\) 4.50000 7.79423i 0.154805 0.268130i
\(846\) 0 0
\(847\) 4.00000 3.46410i 0.137442 0.119028i
\(848\) 0 0
\(849\) −7.00000 + 12.1244i −0.240239 + 0.416107i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 10.0000 0.342393 0.171197 0.985237i \(-0.445237\pi\)
0.171197 + 0.985237i \(0.445237\pi\)
\(854\) 0 0
\(855\) −12.0000 −0.410391
\(856\) 0 0
\(857\) 21.0000 + 36.3731i 0.717346 + 1.24248i 0.962048 + 0.272882i \(0.0879768\pi\)
−0.244701 + 0.969599i \(0.578690\pi\)
\(858\) 0 0
\(859\) 25.0000 43.3013i 0.852989 1.47742i −0.0255092 0.999675i \(-0.508121\pi\)
0.878498 0.477746i \(-0.158546\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −3.00000 + 5.19615i −0.102121 + 0.176879i −0.912558 0.408946i \(-0.865896\pi\)
0.810437 + 0.585826i \(0.199230\pi\)
\(864\) 0 0
\(865\) −27.0000 46.7654i −0.918028 1.59007i
\(866\) 0 0
\(867\) 17.0000 0.577350
\(868\) 0 0
\(869\) 3.00000 0.101768
\(870\) 0 0
\(871\) −20.0000 34.6410i −0.677674 1.17377i
\(872\) 0 0
\(873\) 0.500000 0.866025i 0.0169224 0.0293105i
\(874\) 0 0
\(875\) 7.50000 + 2.59808i 0.253546 + 0.0878310i
\(876\) 0 0
\(877\) 16.0000 27.7128i 0.540282 0.935795i −0.458606 0.888640i \(-0.651651\pi\)
0.998888 0.0471555i \(-0.0150156\pi\)
\(878\) 0 0
\(879\) −16.5000 28.5788i −0.556531 0.963940i
\(880\) 0 0
\(881\) −6.00000 −0.202145 −0.101073 0.994879i \(-0.532227\pi\)
−0.101073 + 0.994879i \(0.532227\pi\)
\(882\) 0 0
\(883\) −32.0000 −1.07689 −0.538443 0.842662i \(-0.680987\pi\)
−0.538443 + 0.842662i \(0.680987\pi\)
\(884\) 0 0
\(885\) 4.50000 + 7.79423i 0.151266 + 0.262000i
\(886\) 0 0
\(887\) 12.0000 20.7846i 0.402921 0.697879i −0.591156 0.806557i \(-0.701328\pi\)
0.994077 + 0.108678i \(0.0346618\pi\)
\(888\) 0 0
\(889\) 12.5000 + 4.33013i 0.419237 + 0.145228i
\(890\) 0 0
\(891\) 1.50000 2.59808i 0.0502519 0.0870388i
\(892\) 0 0
\(893\) 12.0000 + 20.7846i 0.401565 + 0.695530i
\(894\) 0 0
\(895\) 36.0000 1.20335
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4.50000 7.79423i −0.150083 0.259952i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 5.00000 + 25.9808i 0.166390 + 0.864586i
\(904\) 0 0
\(905\) −12.0000 + 20.7846i −0.398893 + 0.690904i
\(906\) 0 0
\(907\) 4.00000 + 6.92820i 0.132818 + 0.230047i 0.924762 0.380547i \(-0.124264\pi\)
−0.791944 + 0.610594i \(0.790931\pi\)
\(908\) 0 0
\(909\) 18.0000 0.597022
\(910\) 0 0
\(911\) 6.00000 0.198789 0.0993944 0.995048i \(-0.468309\pi\)
0.0993944 + 0.995048i \(0.468309\pi\)
\(912\) 0 0
\(913\) 13.5000 + 23.3827i 0.446785 + 0.773854i
\(914\) 0 0
\(915\) −15.0000 + 25.9808i −0.495885 + 0.858898i
\(916\) 0 0
\(917\) −18.0000 + 15.5885i −0.594412 + 0.514776i
\(918\) 0 0
\(919\) −4.00000 + 6.92820i −0.131948 + 0.228540i −0.924427 0.381358i \(-0.875456\pi\)
0.792480 + 0.609898i \(0.208790\pi\)
\(920\) 0 0
\(921\) −4.00000 6.92820i −0.131804 0.228292i
\(922\) 0 0
\(923\) −24.0000 −0.789970
\(924\) 0 0
\(925\) −32.0000 −1.05215
\(926\) 0 0
\(927\) −4.00000 6.92820i −0.131377 0.227552i
\(928\) 0 0
\(929\) 3.00000 5.19615i 0.0984268 0.170480i −0.812607 0.582812i \(-0.801952\pi\)
0.911034 + 0.412332i \(0.135286\pi\)
\(930\) 0 0
\(931\) −26.0000 + 10.3923i −0.852116 + 0.340594i
\(932\) 0 0
\(933\) 12.0000 20.7846i 0.392862 0.680458i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 35.0000 1.14340 0.571700 0.820463i \(-0.306284\pi\)
0.571700 + 0.820463i \(0.306284\pi\)
\(938\) 0 0
\(939\) 31.0000 1.01165
\(940\) 0 0
\(941\) −4.50000 7.79423i −0.146696 0.254085i 0.783309 0.621633i \(-0.213531\pi\)
−0.930004 + 0.367549i \(0.880197\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −6.00000 + 5.19615i −0.195180 + 0.169031i
\(946\) 0 0
\(947\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(948\) 0 0
\(949\) −4.00000 6.92820i −0.129845 0.224899i
\(950\) 0 0
\(951\) 9.00000 0.291845
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 13.5000 23.3827i 0.436393 0.755855i
\(958\) 0 0
\(959\) −9.00000 46.7654i −0.290625 1.51013i
\(960\) 0 0
\(961\) 15.0000 25.9808i 0.483871 0.838089i
\(962\) 0 0
\(963\) −1.50000 2.59808i −0.0483368 0.0837218i
\(964\) 0 0
\(965\) 57.0000 1.83489
\(966\) 0 0
\(967\) −1.00000 −0.0321578 −0.0160789 0.999871i \(-0.505118\pi\)
−0.0160789 + 0.999871i \(0.505118\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −19.5000 + 33.7750i −0.625785 + 1.08389i 0.362604 + 0.931943i \(0.381888\pi\)
−0.988389 + 0.151948i \(0.951445\pi\)
\(972\) 0 0
\(973\) −5.00000 1.73205i −0.160293 0.0555270i
\(974\) 0 0
\(975\) 8.00000 13.8564i 0.256205 0.443760i
\(976\) 0 0
\(977\) −21.0000 36.3731i −0.671850 1.16368i −0.977379 0.211495i \(-0.932167\pi\)
0.305530 0.952183i \(-0.401167\pi\)
\(978\) 0 0
\(979\) −18.0000 −0.575282
\(980\) 0 0
\(981\) −14.0000 −0.446986
\(982\) 0 0
\(983\) −18.0000 31.1769i −0.574111 0.994389i −0.996138 0.0878058i \(-0.972015\pi\)
0.422027 0.906583i \(-0.361319\pi\)
\(984\) 0 0
\(985\) −9.00000 + 15.5885i −0.286764 + 0.496690i
\(986\) 0 0
\(987\) 15.0000 + 5.19615i 0.477455 + 0.165395i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 6.50000 + 11.2583i 0.206479 + 0.357633i 0.950603 0.310409i \(-0.100466\pi\)
−0.744124 + 0.668042i \(0.767133\pi\)
\(992\) 0 0
\(993\) 20.0000 0.634681
\(994\) 0 0
\(995\) −60.0000 −1.90213
\(996\) 0 0
\(997\) 7.00000 + 12.1244i 0.221692 + 0.383982i 0.955322 0.295567i \(-0.0955086\pi\)
−0.733630 + 0.679549i \(0.762175\pi\)
\(998\) 0 0
\(999\) −4.00000 + 6.92820i −0.126554 + 0.219199i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1344.2.q.v.961.1 2
4.3 odd 2 1344.2.q.j.961.1 2
7.2 even 3 9408.2.a.d.1.1 1
7.4 even 3 inner 1344.2.q.v.193.1 2
7.5 odd 6 9408.2.a.db.1.1 1
8.3 odd 2 336.2.q.d.289.1 2
8.5 even 2 42.2.e.b.37.1 yes 2
24.5 odd 2 126.2.g.b.37.1 2
24.11 even 2 1008.2.s.n.289.1 2
28.11 odd 6 1344.2.q.j.193.1 2
28.19 even 6 9408.2.a.bm.1.1 1
28.23 odd 6 9408.2.a.bu.1.1 1
40.13 odd 4 1050.2.o.b.499.1 4
40.29 even 2 1050.2.i.e.751.1 2
40.37 odd 4 1050.2.o.b.499.2 4
56.3 even 6 2352.2.q.m.1537.1 2
56.5 odd 6 294.2.a.a.1.1 1
56.11 odd 6 336.2.q.d.193.1 2
56.13 odd 2 294.2.e.f.79.1 2
56.19 even 6 2352.2.a.n.1.1 1
56.27 even 2 2352.2.q.m.961.1 2
56.37 even 6 294.2.a.d.1.1 1
56.45 odd 6 294.2.e.f.67.1 2
56.51 odd 6 2352.2.a.m.1.1 1
56.53 even 6 42.2.e.b.25.1 2
72.5 odd 6 1134.2.h.a.541.1 2
72.13 even 6 1134.2.h.p.541.1 2
72.29 odd 6 1134.2.e.p.919.1 2
72.61 even 6 1134.2.e.a.919.1 2
168.5 even 6 882.2.a.k.1.1 1
168.11 even 6 1008.2.s.n.865.1 2
168.53 odd 6 126.2.g.b.109.1 2
168.101 even 6 882.2.g.b.361.1 2
168.107 even 6 7056.2.a.g.1.1 1
168.125 even 2 882.2.g.b.667.1 2
168.131 odd 6 7056.2.a.bz.1.1 1
168.149 odd 6 882.2.a.g.1.1 1
280.53 odd 12 1050.2.o.b.949.2 4
280.109 even 6 1050.2.i.e.151.1 2
280.149 even 6 7350.2.a.ce.1.1 1
280.229 odd 6 7350.2.a.cw.1.1 1
280.277 odd 12 1050.2.o.b.949.1 4
504.221 odd 6 1134.2.e.p.865.1 2
504.277 even 6 1134.2.h.p.109.1 2
504.389 odd 6 1134.2.h.a.109.1 2
504.445 even 6 1134.2.e.a.865.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.2.e.b.25.1 2 56.53 even 6
42.2.e.b.37.1 yes 2 8.5 even 2
126.2.g.b.37.1 2 24.5 odd 2
126.2.g.b.109.1 2 168.53 odd 6
294.2.a.a.1.1 1 56.5 odd 6
294.2.a.d.1.1 1 56.37 even 6
294.2.e.f.67.1 2 56.45 odd 6
294.2.e.f.79.1 2 56.13 odd 2
336.2.q.d.193.1 2 56.11 odd 6
336.2.q.d.289.1 2 8.3 odd 2
882.2.a.g.1.1 1 168.149 odd 6
882.2.a.k.1.1 1 168.5 even 6
882.2.g.b.361.1 2 168.101 even 6
882.2.g.b.667.1 2 168.125 even 2
1008.2.s.n.289.1 2 24.11 even 2
1008.2.s.n.865.1 2 168.11 even 6
1050.2.i.e.151.1 2 280.109 even 6
1050.2.i.e.751.1 2 40.29 even 2
1050.2.o.b.499.1 4 40.13 odd 4
1050.2.o.b.499.2 4 40.37 odd 4
1050.2.o.b.949.1 4 280.277 odd 12
1050.2.o.b.949.2 4 280.53 odd 12
1134.2.e.a.865.1 2 504.445 even 6
1134.2.e.a.919.1 2 72.61 even 6
1134.2.e.p.865.1 2 504.221 odd 6
1134.2.e.p.919.1 2 72.29 odd 6
1134.2.h.a.109.1 2 504.389 odd 6
1134.2.h.a.541.1 2 72.5 odd 6
1134.2.h.p.109.1 2 504.277 even 6
1134.2.h.p.541.1 2 72.13 even 6
1344.2.q.j.193.1 2 28.11 odd 6
1344.2.q.j.961.1 2 4.3 odd 2
1344.2.q.v.193.1 2 7.4 even 3 inner
1344.2.q.v.961.1 2 1.1 even 1 trivial
2352.2.a.m.1.1 1 56.51 odd 6
2352.2.a.n.1.1 1 56.19 even 6
2352.2.q.m.961.1 2 56.27 even 2
2352.2.q.m.1537.1 2 56.3 even 6
7056.2.a.g.1.1 1 168.107 even 6
7056.2.a.bz.1.1 1 168.131 odd 6
7350.2.a.ce.1.1 1 280.149 even 6
7350.2.a.cw.1.1 1 280.229 odd 6
9408.2.a.d.1.1 1 7.2 even 3
9408.2.a.bm.1.1 1 28.19 even 6
9408.2.a.bu.1.1 1 28.23 odd 6
9408.2.a.db.1.1 1 7.5 odd 6