Properties

Label 1008.2.v.e.323.16
Level $1008$
Weight $2$
Character 1008.323
Analytic conductor $8.049$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,2,Mod(323,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.323");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.v (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 323.16
Character \(\chi\) \(=\) 1008.323
Dual form 1008.2.v.e.827.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.11731 - 0.866958i) q^{2} +(0.496766 - 1.93732i) q^{4} +(-0.925496 - 0.925496i) q^{5} +1.00000 q^{7} +(-1.12454 - 2.59527i) q^{8} +(-1.83643 - 0.231700i) q^{10} +(1.72403 - 1.72403i) q^{11} +(0.328273 + 0.328273i) q^{13} +(1.11731 - 0.866958i) q^{14} +(-3.50645 - 1.92479i) q^{16} -2.34181i q^{17} +(-1.77976 + 1.77976i) q^{19} +(-2.25274 + 1.33323i) q^{20} +(0.431615 - 3.42094i) q^{22} -6.17143i q^{23} -3.28691i q^{25} +(0.651381 + 0.0821838i) q^{26} +(0.496766 - 1.93732i) q^{28} +(0.122671 - 0.122671i) q^{29} +1.74700i q^{31} +(-5.58651 + 0.889349i) q^{32} +(-2.03025 - 2.61653i) q^{34} +(-0.925496 - 0.925496i) q^{35} +(-1.68105 + 1.68105i) q^{37} +(-0.445568 + 3.53153i) q^{38} +(-1.36116 + 3.44266i) q^{40} -2.88812 q^{41} +(2.77330 + 2.77330i) q^{43} +(-2.48356 - 4.19644i) q^{44} +(-5.35037 - 6.89540i) q^{46} -5.92184 q^{47} +1.00000 q^{49} +(-2.84962 - 3.67251i) q^{50} +(0.799045 - 0.472895i) q^{52} +(0.973689 + 0.973689i) q^{53} -3.19117 q^{55} +(-1.12454 - 2.59527i) q^{56} +(0.0307109 - 0.243412i) q^{58} +(8.33124 - 8.33124i) q^{59} +(4.28808 + 4.28808i) q^{61} +(1.51457 + 1.95194i) q^{62} +(-5.47084 + 5.83695i) q^{64} -0.607630i q^{65} +(1.78259 - 1.78259i) q^{67} +(-4.53685 - 1.16333i) q^{68} +(-1.83643 - 0.231700i) q^{70} -8.57053i q^{71} +6.41750i q^{73} +(-0.420854 + 3.33565i) q^{74} +(2.56385 + 4.33210i) q^{76} +(1.72403 - 1.72403i) q^{77} +5.38299i q^{79} +(1.46381 + 5.02659i) q^{80} +(-3.22693 + 2.50388i) q^{82} +(3.46360 + 3.46360i) q^{83} +(-2.16734 + 2.16734i) q^{85} +(5.50297 + 0.694301i) q^{86} +(-6.41306 - 2.53559i) q^{88} +1.51391 q^{89} +(0.328273 + 0.328273i) q^{91} +(-11.9561 - 3.06576i) q^{92} +(-6.61653 + 5.13398i) q^{94} +3.29433 q^{95} +15.7177 q^{97} +(1.11731 - 0.866958i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 40 q^{7} + 48 q^{10} - 24 q^{13} + 12 q^{16} - 32 q^{19} - 8 q^{22} - 56 q^{34} - 8 q^{37} + 32 q^{43} - 52 q^{46} + 40 q^{49} - 8 q^{52} + 48 q^{55} + 56 q^{58} - 24 q^{61} + 48 q^{64} + 48 q^{70}+ \cdots + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.11731 0.866958i 0.790058 0.613032i
\(3\) 0 0
\(4\) 0.496766 1.93732i 0.248383 0.968662i
\(5\) −0.925496 0.925496i −0.413894 0.413894i 0.469198 0.883093i \(-0.344543\pi\)
−0.883093 + 0.469198i \(0.844543\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) −1.12454 2.59527i −0.397584 0.917566i
\(9\) 0 0
\(10\) −1.83643 0.231700i −0.580731 0.0732700i
\(11\) 1.72403 1.72403i 0.519815 0.519815i −0.397701 0.917515i \(-0.630192\pi\)
0.917515 + 0.397701i \(0.130192\pi\)
\(12\) 0 0
\(13\) 0.328273 + 0.328273i 0.0910464 + 0.0910464i 0.751163 0.660117i \(-0.229493\pi\)
−0.660117 + 0.751163i \(0.729493\pi\)
\(14\) 1.11731 0.866958i 0.298614 0.231704i
\(15\) 0 0
\(16\) −3.50645 1.92479i −0.876612 0.481199i
\(17\) 2.34181i 0.567973i −0.958828 0.283986i \(-0.908343\pi\)
0.958828 0.283986i \(-0.0916570\pi\)
\(18\) 0 0
\(19\) −1.77976 + 1.77976i −0.408306 + 0.408306i −0.881147 0.472842i \(-0.843228\pi\)
0.472842 + 0.881147i \(0.343228\pi\)
\(20\) −2.25274 + 1.33323i −0.503728 + 0.298119i
\(21\) 0 0
\(22\) 0.431615 3.42094i 0.0920206 0.729347i
\(23\) 6.17143i 1.28683i −0.765517 0.643416i \(-0.777517\pi\)
0.765517 0.643416i \(-0.222483\pi\)
\(24\) 0 0
\(25\) 3.28691i 0.657383i
\(26\) 0.651381 + 0.0821838i 0.127746 + 0.0161176i
\(27\) 0 0
\(28\) 0.496766 1.93732i 0.0938800 0.366120i
\(29\) 0.122671 0.122671i 0.0227794 0.0227794i −0.695625 0.718405i \(-0.744873\pi\)
0.718405 + 0.695625i \(0.244873\pi\)
\(30\) 0 0
\(31\) 1.74700i 0.313770i 0.987617 + 0.156885i \(0.0501452\pi\)
−0.987617 + 0.156885i \(0.949855\pi\)
\(32\) −5.58651 + 0.889349i −0.987564 + 0.157216i
\(33\) 0 0
\(34\) −2.03025 2.61653i −0.348185 0.448731i
\(35\) −0.925496 0.925496i −0.156437 0.156437i
\(36\) 0 0
\(37\) −1.68105 + 1.68105i −0.276363 + 0.276363i −0.831655 0.555292i \(-0.812606\pi\)
0.555292 + 0.831655i \(0.312606\pi\)
\(38\) −0.445568 + 3.53153i −0.0722807 + 0.572890i
\(39\) 0 0
\(40\) −1.36116 + 3.44266i −0.215218 + 0.544333i
\(41\) −2.88812 −0.451048 −0.225524 0.974238i \(-0.572409\pi\)
−0.225524 + 0.974238i \(0.572409\pi\)
\(42\) 0 0
\(43\) 2.77330 + 2.77330i 0.422924 + 0.422924i 0.886209 0.463285i \(-0.153330\pi\)
−0.463285 + 0.886209i \(0.653330\pi\)
\(44\) −2.48356 4.19644i −0.374411 0.632638i
\(45\) 0 0
\(46\) −5.35037 6.89540i −0.788869 1.01667i
\(47\) −5.92184 −0.863789 −0.431894 0.901924i \(-0.642155\pi\)
−0.431894 + 0.901924i \(0.642155\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) −2.84962 3.67251i −0.402997 0.519371i
\(51\) 0 0
\(52\) 0.799045 0.472895i 0.110808 0.0655788i
\(53\) 0.973689 + 0.973689i 0.133746 + 0.133746i 0.770811 0.637064i \(-0.219851\pi\)
−0.637064 + 0.770811i \(0.719851\pi\)
\(54\) 0 0
\(55\) −3.19117 −0.430297
\(56\) −1.12454 2.59527i −0.150273 0.346807i
\(57\) 0 0
\(58\) 0.0307109 0.243412i 0.00403254 0.0319615i
\(59\) 8.33124 8.33124i 1.08464 1.08464i 0.0885647 0.996070i \(-0.471772\pi\)
0.996070 0.0885647i \(-0.0282280\pi\)
\(60\) 0 0
\(61\) 4.28808 + 4.28808i 0.549033 + 0.549033i 0.926161 0.377128i \(-0.123088\pi\)
−0.377128 + 0.926161i \(0.623088\pi\)
\(62\) 1.51457 + 1.95194i 0.192351 + 0.247896i
\(63\) 0 0
\(64\) −5.47084 + 5.83695i −0.683854 + 0.729618i
\(65\) 0.607630i 0.0753672i
\(66\) 0 0
\(67\) 1.78259 1.78259i 0.217778 0.217778i −0.589783 0.807561i \(-0.700787\pi\)
0.807561 + 0.589783i \(0.200787\pi\)
\(68\) −4.53685 1.16333i −0.550173 0.141075i
\(69\) 0 0
\(70\) −1.83643 0.231700i −0.219496 0.0276935i
\(71\) 8.57053i 1.01713i −0.861022 0.508567i \(-0.830175\pi\)
0.861022 0.508567i \(-0.169825\pi\)
\(72\) 0 0
\(73\) 6.41750i 0.751112i 0.926800 + 0.375556i \(0.122548\pi\)
−0.926800 + 0.375556i \(0.877452\pi\)
\(74\) −0.420854 + 3.33565i −0.0489233 + 0.387762i
\(75\) 0 0
\(76\) 2.56385 + 4.33210i 0.294094 + 0.496927i
\(77\) 1.72403 1.72403i 0.196471 0.196471i
\(78\) 0 0
\(79\) 5.38299i 0.605633i 0.953049 + 0.302817i \(0.0979270\pi\)
−0.953049 + 0.302817i \(0.902073\pi\)
\(80\) 1.46381 + 5.02659i 0.163659 + 0.561990i
\(81\) 0 0
\(82\) −3.22693 + 2.50388i −0.356354 + 0.276507i
\(83\) 3.46360 + 3.46360i 0.380179 + 0.380179i 0.871167 0.490987i \(-0.163364\pi\)
−0.490987 + 0.871167i \(0.663364\pi\)
\(84\) 0 0
\(85\) −2.16734 + 2.16734i −0.235081 + 0.235081i
\(86\) 5.50297 + 0.694301i 0.593400 + 0.0748684i
\(87\) 0 0
\(88\) −6.41306 2.53559i −0.683634 0.270294i
\(89\) 1.51391 0.160474 0.0802368 0.996776i \(-0.474432\pi\)
0.0802368 + 0.996776i \(0.474432\pi\)
\(90\) 0 0
\(91\) 0.328273 + 0.328273i 0.0344123 + 0.0344123i
\(92\) −11.9561 3.06576i −1.24650 0.319627i
\(93\) 0 0
\(94\) −6.61653 + 5.13398i −0.682443 + 0.529530i
\(95\) 3.29433 0.337991
\(96\) 0 0
\(97\) 15.7177 1.59589 0.797943 0.602732i \(-0.205921\pi\)
0.797943 + 0.602732i \(0.205921\pi\)
\(98\) 1.11731 0.866958i 0.112865 0.0875760i
\(99\) 0 0
\(100\) −6.36782 1.63283i −0.636782 0.163283i
\(101\) 13.6438 + 13.6438i 1.35760 + 1.35760i 0.876861 + 0.480744i \(0.159633\pi\)
0.480744 + 0.876861i \(0.340367\pi\)
\(102\) 0 0
\(103\) −11.9238 −1.17489 −0.587445 0.809264i \(-0.699866\pi\)
−0.587445 + 0.809264i \(0.699866\pi\)
\(104\) 0.482801 1.22111i 0.0473425 0.119740i
\(105\) 0 0
\(106\) 1.93206 + 0.243765i 0.187658 + 0.0236766i
\(107\) 13.6108 13.6108i 1.31580 1.31580i 0.398740 0.917064i \(-0.369447\pi\)
0.917064 0.398740i \(-0.130553\pi\)
\(108\) 0 0
\(109\) 4.97865 + 4.97865i 0.476868 + 0.476868i 0.904129 0.427260i \(-0.140521\pi\)
−0.427260 + 0.904129i \(0.640521\pi\)
\(110\) −3.56552 + 2.76661i −0.339959 + 0.263786i
\(111\) 0 0
\(112\) −3.50645 1.92479i −0.331328 0.181876i
\(113\) 0.0768901i 0.00723322i 0.999993 + 0.00361661i \(0.00115120\pi\)
−0.999993 + 0.00361661i \(0.998849\pi\)
\(114\) 0 0
\(115\) −5.71163 + 5.71163i −0.532612 + 0.532612i
\(116\) −0.176714 0.298592i −0.0164075 0.0277235i
\(117\) 0 0
\(118\) 2.08575 16.5314i 0.192008 1.52184i
\(119\) 2.34181i 0.214673i
\(120\) 0 0
\(121\) 5.05544i 0.459585i
\(122\) 8.50871 + 1.07353i 0.770343 + 0.0971930i
\(123\) 0 0
\(124\) 3.38450 + 0.867849i 0.303937 + 0.0779351i
\(125\) −7.66951 + 7.66951i −0.685981 + 0.685981i
\(126\) 0 0
\(127\) 15.0611i 1.33646i −0.743956 0.668229i \(-0.767053\pi\)
0.743956 0.668229i \(-0.232947\pi\)
\(128\) −1.05223 + 11.2647i −0.0930051 + 0.995666i
\(129\) 0 0
\(130\) −0.526790 0.678911i −0.0462025 0.0595445i
\(131\) −3.87027 3.87027i −0.338147 0.338147i 0.517522 0.855670i \(-0.326854\pi\)
−0.855670 + 0.517522i \(0.826854\pi\)
\(132\) 0 0
\(133\) −1.77976 + 1.77976i −0.154325 + 0.154325i
\(134\) 0.446276 3.53714i 0.0385523 0.305562i
\(135\) 0 0
\(136\) −6.07763 + 2.63345i −0.521152 + 0.225817i
\(137\) 5.47491 0.467753 0.233877 0.972266i \(-0.424859\pi\)
0.233877 + 0.972266i \(0.424859\pi\)
\(138\) 0 0
\(139\) 11.1117 + 11.1117i 0.942478 + 0.942478i 0.998433 0.0559554i \(-0.0178205\pi\)
−0.0559554 + 0.998433i \(0.517820\pi\)
\(140\) −2.25274 + 1.33323i −0.190391 + 0.112678i
\(141\) 0 0
\(142\) −7.43029 9.57595i −0.623536 0.803596i
\(143\) 1.13190 0.0946545
\(144\) 0 0
\(145\) −0.227063 −0.0188565
\(146\) 5.56371 + 7.17035i 0.460456 + 0.593422i
\(147\) 0 0
\(148\) 2.42165 + 4.09182i 0.199058 + 0.336346i
\(149\) 10.2234 + 10.2234i 0.837535 + 0.837535i 0.988534 0.150999i \(-0.0482490\pi\)
−0.150999 + 0.988534i \(0.548249\pi\)
\(150\) 0 0
\(151\) 5.98993 0.487454 0.243727 0.969844i \(-0.421630\pi\)
0.243727 + 0.969844i \(0.421630\pi\)
\(152\) 6.62037 + 2.61755i 0.536983 + 0.212312i
\(153\) 0 0
\(154\) 0.431615 3.42094i 0.0347805 0.275667i
\(155\) 1.61684 1.61684i 0.129868 0.129868i
\(156\) 0 0
\(157\) 9.57922 + 9.57922i 0.764505 + 0.764505i 0.977133 0.212628i \(-0.0682023\pi\)
−0.212628 + 0.977133i \(0.568202\pi\)
\(158\) 4.66683 + 6.01447i 0.371273 + 0.478486i
\(159\) 0 0
\(160\) 5.99338 + 4.34720i 0.473818 + 0.343676i
\(161\) 6.17143i 0.486377i
\(162\) 0 0
\(163\) −7.81085 + 7.81085i −0.611793 + 0.611793i −0.943413 0.331620i \(-0.892405\pi\)
0.331620 + 0.943413i \(0.392405\pi\)
\(164\) −1.43472 + 5.59522i −0.112033 + 0.436913i
\(165\) 0 0
\(166\) 6.87271 + 0.867120i 0.533426 + 0.0673016i
\(167\) 5.28108i 0.408662i 0.978902 + 0.204331i \(0.0655019\pi\)
−0.978902 + 0.204331i \(0.934498\pi\)
\(168\) 0 0
\(169\) 12.7845i 0.983421i
\(170\) −0.542598 + 4.30058i −0.0416154 + 0.329839i
\(171\) 0 0
\(172\) 6.75045 3.99509i 0.514717 0.304623i
\(173\) −11.8893 + 11.8893i −0.903929 + 0.903929i −0.995773 0.0918444i \(-0.970724\pi\)
0.0918444 + 0.995773i \(0.470724\pi\)
\(174\) 0 0
\(175\) 3.28691i 0.248467i
\(176\) −9.36362 + 2.72681i −0.705810 + 0.205541i
\(177\) 0 0
\(178\) 1.69150 1.31249i 0.126783 0.0983755i
\(179\) −6.38837 6.38837i −0.477489 0.477489i 0.426839 0.904328i \(-0.359627\pi\)
−0.904328 + 0.426839i \(0.859627\pi\)
\(180\) 0 0
\(181\) 5.56367 5.56367i 0.413545 0.413545i −0.469427 0.882971i \(-0.655539\pi\)
0.882971 + 0.469427i \(0.155539\pi\)
\(182\) 0.651381 + 0.0821838i 0.0482836 + 0.00609187i
\(183\) 0 0
\(184\) −16.0165 + 6.94000i −1.18075 + 0.511623i
\(185\) 3.11161 0.228770
\(186\) 0 0
\(187\) −4.03735 4.03735i −0.295240 0.295240i
\(188\) −2.94177 + 11.4725i −0.214551 + 0.836719i
\(189\) 0 0
\(190\) 3.68079 2.85604i 0.267032 0.207199i
\(191\) −2.43241 −0.176003 −0.0880014 0.996120i \(-0.528048\pi\)
−0.0880014 + 0.996120i \(0.528048\pi\)
\(192\) 0 0
\(193\) 24.8507 1.78879 0.894397 0.447273i \(-0.147605\pi\)
0.894397 + 0.447273i \(0.147605\pi\)
\(194\) 17.5615 13.6266i 1.26084 0.978330i
\(195\) 0 0
\(196\) 0.496766 1.93732i 0.0354833 0.138380i
\(197\) −1.77151 1.77151i −0.126215 0.126215i 0.641178 0.767393i \(-0.278446\pi\)
−0.767393 + 0.641178i \(0.778446\pi\)
\(198\) 0 0
\(199\) −13.8970 −0.985130 −0.492565 0.870276i \(-0.663941\pi\)
−0.492565 + 0.870276i \(0.663941\pi\)
\(200\) −8.53043 + 3.69626i −0.603192 + 0.261365i
\(201\) 0 0
\(202\) 27.0729 + 3.41575i 1.90484 + 0.240331i
\(203\) 0.122671 0.122671i 0.00860980 0.00860980i
\(204\) 0 0
\(205\) 2.67294 + 2.67294i 0.186686 + 0.186686i
\(206\) −13.3226 + 10.3375i −0.928231 + 0.720245i
\(207\) 0 0
\(208\) −0.519213 1.78293i −0.0360009 0.123624i
\(209\) 6.13673i 0.424487i
\(210\) 0 0
\(211\) −0.243974 + 0.243974i −0.0167959 + 0.0167959i −0.715455 0.698659i \(-0.753780\pi\)
0.698659 + 0.715455i \(0.253780\pi\)
\(212\) 2.37005 1.40265i 0.162775 0.0963347i
\(213\) 0 0
\(214\) 3.40749 27.0075i 0.232931 1.84619i
\(215\) 5.13335i 0.350091i
\(216\) 0 0
\(217\) 1.74700i 0.118594i
\(218\) 9.87898 + 1.24642i 0.669089 + 0.0844180i
\(219\) 0 0
\(220\) −1.58526 + 6.18232i −0.106878 + 0.416812i
\(221\) 0.768752 0.768752i 0.0517119 0.0517119i
\(222\) 0 0
\(223\) 7.07187i 0.473568i −0.971562 0.236784i \(-0.923907\pi\)
0.971562 0.236784i \(-0.0760933\pi\)
\(224\) −5.58651 + 0.889349i −0.373264 + 0.0594221i
\(225\) 0 0
\(226\) 0.0666605 + 0.0859102i 0.00443419 + 0.00571466i
\(227\) 2.15348 + 2.15348i 0.142932 + 0.142932i 0.774952 0.632020i \(-0.217774\pi\)
−0.632020 + 0.774952i \(0.717774\pi\)
\(228\) 0 0
\(229\) −14.4509 + 14.4509i −0.954943 + 0.954943i −0.999028 0.0440845i \(-0.985963\pi\)
0.0440845 + 0.999028i \(0.485963\pi\)
\(230\) −1.42992 + 11.3334i −0.0942862 + 0.747303i
\(231\) 0 0
\(232\) −0.456311 0.180416i −0.0299583 0.0118449i
\(233\) −17.7969 −1.16591 −0.582955 0.812504i \(-0.698104\pi\)
−0.582955 + 0.812504i \(0.698104\pi\)
\(234\) 0 0
\(235\) 5.48063 + 5.48063i 0.357517 + 0.357517i
\(236\) −12.0016 20.2790i −0.781239 1.32005i
\(237\) 0 0
\(238\) −2.03025 2.61653i −0.131602 0.169604i
\(239\) −9.62147 −0.622361 −0.311180 0.950351i \(-0.600724\pi\)
−0.311180 + 0.950351i \(0.600724\pi\)
\(240\) 0 0
\(241\) 27.3786 1.76361 0.881805 0.471614i \(-0.156329\pi\)
0.881805 + 0.471614i \(0.156329\pi\)
\(242\) 4.38286 + 5.64850i 0.281741 + 0.363099i
\(243\) 0 0
\(244\) 10.4376 6.17723i 0.668198 0.395457i
\(245\) −0.925496 0.925496i −0.0591278 0.0591278i
\(246\) 0 0
\(247\) −1.16849 −0.0743495
\(248\) 4.53392 1.96456i 0.287904 0.124750i
\(249\) 0 0
\(250\) −1.92008 + 15.2184i −0.121436 + 0.962494i
\(251\) −6.56293 + 6.56293i −0.414249 + 0.414249i −0.883216 0.468967i \(-0.844626\pi\)
0.468967 + 0.883216i \(0.344626\pi\)
\(252\) 0 0
\(253\) −10.6397 10.6397i −0.668914 0.668914i
\(254\) −13.0574 16.8279i −0.819292 1.05588i
\(255\) 0 0
\(256\) 8.59033 + 13.4984i 0.536896 + 0.843649i
\(257\) 13.6808i 0.853383i 0.904397 + 0.426691i \(0.140321\pi\)
−0.904397 + 0.426691i \(0.859679\pi\)
\(258\) 0 0
\(259\) −1.68105 + 1.68105i −0.104455 + 0.104455i
\(260\) −1.17718 0.301850i −0.0730053 0.0187199i
\(261\) 0 0
\(262\) −7.67966 0.968932i −0.474451 0.0598608i
\(263\) 26.5064i 1.63445i 0.576317 + 0.817226i \(0.304489\pi\)
−0.576317 + 0.817226i \(0.695511\pi\)
\(264\) 0 0
\(265\) 1.80229i 0.110714i
\(266\) −0.445568 + 3.53153i −0.0273195 + 0.216532i
\(267\) 0 0
\(268\) −2.56792 4.33899i −0.156861 0.265046i
\(269\) −11.7053 + 11.7053i −0.713684 + 0.713684i −0.967304 0.253620i \(-0.918379\pi\)
0.253620 + 0.967304i \(0.418379\pi\)
\(270\) 0 0
\(271\) 26.7904i 1.62740i −0.581286 0.813700i \(-0.697450\pi\)
0.581286 0.813700i \(-0.302550\pi\)
\(272\) −4.50751 + 8.21143i −0.273308 + 0.497891i
\(273\) 0 0
\(274\) 6.11718 4.74652i 0.369552 0.286748i
\(275\) −5.66674 5.66674i −0.341717 0.341717i
\(276\) 0 0
\(277\) −0.376534 + 0.376534i −0.0226237 + 0.0226237i −0.718328 0.695704i \(-0.755092\pi\)
0.695704 + 0.718328i \(0.255092\pi\)
\(278\) 22.0485 + 2.78183i 1.32238 + 0.166843i
\(279\) 0 0
\(280\) −1.36116 + 3.44266i −0.0813446 + 0.205739i
\(281\) −10.8174 −0.645314 −0.322657 0.946516i \(-0.604576\pi\)
−0.322657 + 0.946516i \(0.604576\pi\)
\(282\) 0 0
\(283\) 0.954650 + 0.954650i 0.0567481 + 0.0567481i 0.734911 0.678163i \(-0.237224\pi\)
−0.678163 + 0.734911i \(0.737224\pi\)
\(284\) −16.6039 4.25755i −0.985260 0.252639i
\(285\) 0 0
\(286\) 1.26469 0.981313i 0.0747826 0.0580263i
\(287\) −2.88812 −0.170480
\(288\) 0 0
\(289\) 11.5159 0.677407
\(290\) −0.253699 + 0.196854i −0.0148977 + 0.0115597i
\(291\) 0 0
\(292\) 12.4328 + 3.18800i 0.727574 + 0.186564i
\(293\) 14.4106 + 14.4106i 0.841877 + 0.841877i 0.989103 0.147226i \(-0.0470346\pi\)
−0.147226 + 0.989103i \(0.547035\pi\)
\(294\) 0 0
\(295\) −15.4211 −0.897849
\(296\) 6.25317 + 2.47237i 0.363458 + 0.143704i
\(297\) 0 0
\(298\) 20.2860 + 2.55946i 1.17514 + 0.148265i
\(299\) 2.02591 2.02591i 0.117161 0.117161i
\(300\) 0 0
\(301\) 2.77330 + 2.77330i 0.159850 + 0.159850i
\(302\) 6.69261 5.19302i 0.385117 0.298825i
\(303\) 0 0
\(304\) 9.66632 2.81497i 0.554402 0.161449i
\(305\) 7.93721i 0.454483i
\(306\) 0 0
\(307\) 15.9801 15.9801i 0.912034 0.912034i −0.0843977 0.996432i \(-0.526897\pi\)
0.996432 + 0.0843977i \(0.0268966\pi\)
\(308\) −2.48356 4.19644i −0.141514 0.239115i
\(309\) 0 0
\(310\) 0.404779 3.20824i 0.0229899 0.182216i
\(311\) 7.61653i 0.431894i −0.976405 0.215947i \(-0.930716\pi\)
0.976405 0.215947i \(-0.0692838\pi\)
\(312\) 0 0
\(313\) 30.7549i 1.73837i −0.494490 0.869184i \(-0.664645\pi\)
0.494490 0.869184i \(-0.335355\pi\)
\(314\) 19.0078 + 2.39818i 1.07267 + 0.135337i
\(315\) 0 0
\(316\) 10.4286 + 2.67409i 0.586654 + 0.150429i
\(317\) 4.52751 4.52751i 0.254291 0.254291i −0.568437 0.822727i \(-0.692452\pi\)
0.822727 + 0.568437i \(0.192452\pi\)
\(318\) 0 0
\(319\) 0.422976i 0.0236821i
\(320\) 10.4653 0.338835i 0.585028 0.0189415i
\(321\) 0 0
\(322\) −5.35037 6.89540i −0.298165 0.384266i
\(323\) 4.16787 + 4.16787i 0.231906 + 0.231906i
\(324\) 0 0
\(325\) 1.07900 1.07900i 0.0598524 0.0598524i
\(326\) −1.95546 + 15.4988i −0.108303 + 0.858400i
\(327\) 0 0
\(328\) 3.24780 + 7.49544i 0.179329 + 0.413867i
\(329\) −5.92184 −0.326481
\(330\) 0 0
\(331\) 11.4312 + 11.4312i 0.628318 + 0.628318i 0.947645 0.319326i \(-0.103457\pi\)
−0.319326 + 0.947645i \(0.603457\pi\)
\(332\) 8.43071 4.98951i 0.462695 0.273835i
\(333\) 0 0
\(334\) 4.57847 + 5.90060i 0.250523 + 0.322867i
\(335\) −3.29956 −0.180274
\(336\) 0 0
\(337\) −10.7569 −0.585964 −0.292982 0.956118i \(-0.594648\pi\)
−0.292982 + 0.956118i \(0.594648\pi\)
\(338\) −11.0836 14.2842i −0.602869 0.776960i
\(339\) 0 0
\(340\) 3.12217 + 5.27549i 0.169324 + 0.286104i
\(341\) 3.01187 + 3.01187i 0.163102 + 0.163102i
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 4.07878 10.3161i 0.219913 0.556208i
\(345\) 0 0
\(346\) −2.97652 + 23.5916i −0.160019 + 1.26829i
\(347\) 16.3589 16.3589i 0.878193 0.878193i −0.115154 0.993348i \(-0.536736\pi\)
0.993348 + 0.115154i \(0.0367362\pi\)
\(348\) 0 0
\(349\) −25.8389 25.8389i −1.38312 1.38312i −0.839013 0.544112i \(-0.816867\pi\)
−0.544112 0.839013i \(-0.683133\pi\)
\(350\) −2.84962 3.67251i −0.152318 0.196304i
\(351\) 0 0
\(352\) −8.09804 + 11.1646i −0.431627 + 0.595074i
\(353\) 24.5770i 1.30810i 0.756451 + 0.654051i \(0.226932\pi\)
−0.756451 + 0.654051i \(0.773068\pi\)
\(354\) 0 0
\(355\) −7.93199 + 7.93199i −0.420986 + 0.420986i
\(356\) 0.752057 2.93292i 0.0398590 0.155445i
\(357\) 0 0
\(358\) −12.6762 1.59934i −0.669960 0.0845279i
\(359\) 17.5485i 0.926176i −0.886312 0.463088i \(-0.846741\pi\)
0.886312 0.463088i \(-0.153259\pi\)
\(360\) 0 0
\(361\) 12.6649i 0.666573i
\(362\) 1.39288 11.0398i 0.0732081 0.580240i
\(363\) 0 0
\(364\) 0.799045 0.472895i 0.0418813 0.0247865i
\(365\) 5.93937 5.93937i 0.310881 0.310881i
\(366\) 0 0
\(367\) 15.7849i 0.823964i −0.911192 0.411982i \(-0.864837\pi\)
0.911192 0.411982i \(-0.135163\pi\)
\(368\) −11.8787 + 21.6398i −0.619222 + 1.12805i
\(369\) 0 0
\(370\) 3.47663 2.69763i 0.180741 0.140243i
\(371\) 0.973689 + 0.973689i 0.0505514 + 0.0505514i
\(372\) 0 0
\(373\) −11.5837 + 11.5837i −0.599781 + 0.599781i −0.940254 0.340473i \(-0.889413\pi\)
0.340473 + 0.940254i \(0.389413\pi\)
\(374\) −8.01119 1.01076i −0.414249 0.0522652i
\(375\) 0 0
\(376\) 6.65932 + 15.3688i 0.343428 + 0.792583i
\(377\) 0.0805389 0.00414796
\(378\) 0 0
\(379\) −1.84371 1.84371i −0.0947049 0.0947049i 0.658167 0.752872i \(-0.271332\pi\)
−0.752872 + 0.658167i \(0.771332\pi\)
\(380\) 1.63651 6.38218i 0.0839513 0.327399i
\(381\) 0 0
\(382\) −2.71775 + 2.10880i −0.139052 + 0.107895i
\(383\) −4.04073 −0.206472 −0.103236 0.994657i \(-0.532920\pi\)
−0.103236 + 0.994657i \(0.532920\pi\)
\(384\) 0 0
\(385\) −3.19117 −0.162637
\(386\) 27.7660 21.5445i 1.41325 1.09659i
\(387\) 0 0
\(388\) 7.80801 30.4502i 0.396391 1.54587i
\(389\) −2.92444 2.92444i −0.148275 0.148275i 0.629072 0.777347i \(-0.283435\pi\)
−0.777347 + 0.629072i \(0.783435\pi\)
\(390\) 0 0
\(391\) −14.4523 −0.730885
\(392\) −1.12454 2.59527i −0.0567977 0.131081i
\(393\) 0 0
\(394\) −3.51516 0.443502i −0.177091 0.0223433i
\(395\) 4.98193 4.98193i 0.250668 0.250668i
\(396\) 0 0
\(397\) −21.9555 21.9555i −1.10191 1.10191i −0.994180 0.107735i \(-0.965640\pi\)
−0.107735 0.994180i \(-0.534360\pi\)
\(398\) −15.5272 + 12.0481i −0.778310 + 0.603916i
\(399\) 0 0
\(400\) −6.32664 + 11.5254i −0.316332 + 0.576269i
\(401\) 3.18398i 0.159000i 0.996835 + 0.0795001i \(0.0253324\pi\)
−0.996835 + 0.0795001i \(0.974668\pi\)
\(402\) 0 0
\(403\) −0.573491 + 0.573491i −0.0285676 + 0.0285676i
\(404\) 33.2101 19.6546i 1.65227 0.977854i
\(405\) 0 0
\(406\) 0.0307109 0.243412i 0.00152416 0.0120803i
\(407\) 5.79636i 0.287315i
\(408\) 0 0
\(409\) 15.1001i 0.746650i 0.927701 + 0.373325i \(0.121782\pi\)
−0.927701 + 0.373325i \(0.878218\pi\)
\(410\) 5.30384 + 0.669177i 0.261938 + 0.0330483i
\(411\) 0 0
\(412\) −5.92336 + 23.1003i −0.291823 + 1.13807i
\(413\) 8.33124 8.33124i 0.409954 0.409954i
\(414\) 0 0
\(415\) 6.41109i 0.314708i
\(416\) −2.12585 1.54195i −0.104228 0.0756002i
\(417\) 0 0
\(418\) 5.32029 + 6.85664i 0.260224 + 0.335369i
\(419\) 2.19389 + 2.19389i 0.107178 + 0.107178i 0.758662 0.651484i \(-0.225853\pi\)
−0.651484 + 0.758662i \(0.725853\pi\)
\(420\) 0 0
\(421\) −16.8539 + 16.8539i −0.821410 + 0.821410i −0.986310 0.164900i \(-0.947270\pi\)
0.164900 + 0.986310i \(0.447270\pi\)
\(422\) −0.0610794 + 0.484110i −0.00297330 + 0.0235661i
\(423\) 0 0
\(424\) 1.43204 3.62193i 0.0695458 0.175897i
\(425\) −7.69733 −0.373376
\(426\) 0 0
\(427\) 4.28808 + 4.28808i 0.207515 + 0.207515i
\(428\) −19.6071 33.1299i −0.947746 1.60139i
\(429\) 0 0
\(430\) −4.45040 5.73555i −0.214617 0.276593i
\(431\) −19.9661 −0.961735 −0.480868 0.876793i \(-0.659678\pi\)
−0.480868 + 0.876793i \(0.659678\pi\)
\(432\) 0 0
\(433\) −3.83212 −0.184160 −0.0920800 0.995752i \(-0.529352\pi\)
−0.0920800 + 0.995752i \(0.529352\pi\)
\(434\) 1.51457 + 1.95194i 0.0727018 + 0.0936960i
\(435\) 0 0
\(436\) 12.1185 7.17203i 0.580370 0.343478i
\(437\) 10.9837 + 10.9837i 0.525421 + 0.525421i
\(438\) 0 0
\(439\) −23.0120 −1.09830 −0.549151 0.835723i \(-0.685049\pi\)
−0.549151 + 0.835723i \(0.685049\pi\)
\(440\) 3.58858 + 8.28193i 0.171079 + 0.394826i
\(441\) 0 0
\(442\) 0.192459 1.52541i 0.00915434 0.0725564i
\(443\) 13.6982 13.6982i 0.650821 0.650821i −0.302370 0.953191i \(-0.597778\pi\)
0.953191 + 0.302370i \(0.0977778\pi\)
\(444\) 0 0
\(445\) −1.40111 1.40111i −0.0664191 0.0664191i
\(446\) −6.13102 7.90148i −0.290312 0.374146i
\(447\) 0 0
\(448\) −5.47084 + 5.83695i −0.258473 + 0.275770i
\(449\) 27.3194i 1.28928i −0.764486 0.644640i \(-0.777007\pi\)
0.764486 0.644640i \(-0.222993\pi\)
\(450\) 0 0
\(451\) −4.97920 + 4.97920i −0.234462 + 0.234462i
\(452\) 0.148961 + 0.0381964i 0.00700654 + 0.00179661i
\(453\) 0 0
\(454\) 4.27309 + 0.539129i 0.200546 + 0.0253026i
\(455\) 0.607630i 0.0284861i
\(456\) 0 0
\(457\) 30.4516i 1.42447i −0.701942 0.712234i \(-0.747684\pi\)
0.701942 0.712234i \(-0.252316\pi\)
\(458\) −3.61782 + 28.6745i −0.169050 + 1.33987i
\(459\) 0 0
\(460\) 8.22793 + 13.9026i 0.383629 + 0.648213i
\(461\) −17.8016 + 17.8016i −0.829101 + 0.829101i −0.987392 0.158291i \(-0.949402\pi\)
0.158291 + 0.987392i \(0.449402\pi\)
\(462\) 0 0
\(463\) 8.43314i 0.391921i −0.980612 0.195961i \(-0.937218\pi\)
0.980612 0.195961i \(-0.0627825\pi\)
\(464\) −0.666255 + 0.194022i −0.0309301 + 0.00900726i
\(465\) 0 0
\(466\) −19.8846 + 15.4291i −0.921137 + 0.714741i
\(467\) 3.17711 + 3.17711i 0.147019 + 0.147019i 0.776785 0.629766i \(-0.216849\pi\)
−0.629766 + 0.776785i \(0.716849\pi\)
\(468\) 0 0
\(469\) 1.78259 1.78259i 0.0823124 0.0823124i
\(470\) 10.8751 + 1.37209i 0.501629 + 0.0632898i
\(471\) 0 0
\(472\) −30.9906 12.2530i −1.42646 0.563991i
\(473\) 9.56249 0.439684
\(474\) 0 0
\(475\) 5.84993 + 5.84993i 0.268413 + 0.268413i
\(476\) −4.53685 1.16333i −0.207946 0.0533213i
\(477\) 0 0
\(478\) −10.7502 + 8.34141i −0.491701 + 0.381527i
\(479\) 0.550076 0.0251336 0.0125668 0.999921i \(-0.496000\pi\)
0.0125668 + 0.999921i \(0.496000\pi\)
\(480\) 0 0
\(481\) −1.10368 −0.0503237
\(482\) 30.5904 23.7361i 1.39335 1.08115i
\(483\) 0 0
\(484\) 9.79402 + 2.51137i 0.445183 + 0.114153i
\(485\) −14.5466 14.5466i −0.660528 0.660528i
\(486\) 0 0
\(487\) 18.1678 0.823262 0.411631 0.911351i \(-0.364959\pi\)
0.411631 + 0.911351i \(0.364959\pi\)
\(488\) 6.30662 15.9508i 0.285487 0.722060i
\(489\) 0 0
\(490\) −1.83643 0.231700i −0.0829616 0.0104671i
\(491\) −12.4565 + 12.4565i −0.562156 + 0.562156i −0.929919 0.367764i \(-0.880124\pi\)
0.367764 + 0.929919i \(0.380124\pi\)
\(492\) 0 0
\(493\) −0.287272 0.287272i −0.0129381 0.0129381i
\(494\) −1.30557 + 1.01304i −0.0587405 + 0.0455787i
\(495\) 0 0
\(496\) 3.36261 6.12575i 0.150986 0.275054i
\(497\) 8.57053i 0.384441i
\(498\) 0 0
\(499\) −23.1835 + 23.1835i −1.03784 + 1.03784i −0.0385798 + 0.999256i \(0.512283\pi\)
−0.999256 + 0.0385798i \(0.987717\pi\)
\(500\) 11.0484 + 18.6683i 0.494098 + 0.834870i
\(501\) 0 0
\(502\) −1.64305 + 13.0226i −0.0733327 + 0.581228i
\(503\) 39.4375i 1.75843i 0.476426 + 0.879215i \(0.341932\pi\)
−0.476426 + 0.879215i \(0.658068\pi\)
\(504\) 0 0
\(505\) 25.2545i 1.12381i
\(506\) −21.1121 2.66368i −0.938547 0.118415i
\(507\) 0 0
\(508\) −29.1783 7.48186i −1.29458 0.331954i
\(509\) 1.26193 1.26193i 0.0559340 0.0559340i −0.678587 0.734520i \(-0.737407\pi\)
0.734520 + 0.678587i \(0.237407\pi\)
\(510\) 0 0
\(511\) 6.41750i 0.283894i
\(512\) 21.3006 + 7.63443i 0.941362 + 0.337397i
\(513\) 0 0
\(514\) 11.8607 + 15.2857i 0.523151 + 0.674222i
\(515\) 11.0355 + 11.0355i 0.486280 + 0.486280i
\(516\) 0 0
\(517\) −10.2094 + 10.2094i −0.449010 + 0.449010i
\(518\) −0.420854 + 3.33565i −0.0184913 + 0.146560i
\(519\) 0 0
\(520\) −1.57696 + 0.683302i −0.0691544 + 0.0299648i
\(521\) −27.2672 −1.19460 −0.597300 0.802018i \(-0.703760\pi\)
−0.597300 + 0.802018i \(0.703760\pi\)
\(522\) 0 0
\(523\) −31.1608 31.1608i −1.36257 1.36257i −0.870633 0.491933i \(-0.836291\pi\)
−0.491933 0.870633i \(-0.663709\pi\)
\(524\) −9.42059 + 5.57535i −0.411541 + 0.243560i
\(525\) 0 0
\(526\) 22.9799 + 29.6158i 1.00197 + 1.29131i
\(527\) 4.09113 0.178213
\(528\) 0 0
\(529\) −15.0865 −0.655936
\(530\) −1.56251 2.01372i −0.0678711 0.0874703i
\(531\) 0 0
\(532\) 2.56385 + 4.33210i 0.111157 + 0.187821i
\(533\) −0.948090 0.948090i −0.0410663 0.0410663i
\(534\) 0 0
\(535\) −25.1935 −1.08921
\(536\) −6.63089 2.62171i −0.286411 0.113241i
\(537\) 0 0
\(538\) −2.93045 + 23.2265i −0.126341 + 1.00136i
\(539\) 1.72403 1.72403i 0.0742592 0.0742592i
\(540\) 0 0
\(541\) 12.9117 + 12.9117i 0.555119 + 0.555119i 0.927914 0.372795i \(-0.121600\pi\)
−0.372795 + 0.927914i \(0.621600\pi\)
\(542\) −23.2261 29.9332i −0.997648 1.28574i
\(543\) 0 0
\(544\) 2.08269 + 13.0825i 0.0892945 + 0.560909i
\(545\) 9.21544i 0.394746i
\(546\) 0 0
\(547\) −17.6998 + 17.6998i −0.756790 + 0.756790i −0.975737 0.218947i \(-0.929738\pi\)
0.218947 + 0.975737i \(0.429738\pi\)
\(548\) 2.71975 10.6067i 0.116182 0.453095i
\(549\) 0 0
\(550\) −11.2443 1.41868i −0.479460 0.0604928i
\(551\) 0.436650i 0.0186019i
\(552\) 0 0
\(553\) 5.38299i 0.228908i
\(554\) −0.0942661 + 0.747144i −0.00400498 + 0.0317431i
\(555\) 0 0
\(556\) 27.0468 16.0070i 1.14704 0.678847i
\(557\) −3.90087 + 3.90087i −0.165285 + 0.165285i −0.784903 0.619618i \(-0.787287\pi\)
0.619618 + 0.784903i \(0.287287\pi\)
\(558\) 0 0
\(559\) 1.82079i 0.0770114i
\(560\) 1.46381 + 5.02659i 0.0618573 + 0.212412i
\(561\) 0 0
\(562\) −12.0864 + 9.37827i −0.509836 + 0.395598i
\(563\) −27.4905 27.4905i −1.15859 1.15859i −0.984780 0.173807i \(-0.944393\pi\)
−0.173807 0.984780i \(-0.555607\pi\)
\(564\) 0 0
\(565\) 0.0711615 0.0711615i 0.00299379 0.00299379i
\(566\) 1.89428 + 0.238999i 0.0796226 + 0.0100459i
\(567\) 0 0
\(568\) −22.2428 + 9.63787i −0.933288 + 0.404396i
\(569\) 19.2030 0.805031 0.402516 0.915413i \(-0.368136\pi\)
0.402516 + 0.915413i \(0.368136\pi\)
\(570\) 0 0
\(571\) 23.2363 + 23.2363i 0.972408 + 0.972408i 0.999629 0.0272217i \(-0.00866600\pi\)
−0.0272217 + 0.999629i \(0.508666\pi\)
\(572\) 0.562292 2.19286i 0.0235106 0.0916882i
\(573\) 0 0
\(574\) −3.22693 + 2.50388i −0.134689 + 0.104510i
\(575\) −20.2850 −0.845941
\(576\) 0 0
\(577\) 25.0676 1.04358 0.521789 0.853074i \(-0.325265\pi\)
0.521789 + 0.853074i \(0.325265\pi\)
\(578\) 12.8669 9.98382i 0.535191 0.415272i
\(579\) 0 0
\(580\) −0.112797 + 0.439894i −0.00468364 + 0.0182656i
\(581\) 3.46360 + 3.46360i 0.143694 + 0.143694i
\(582\) 0 0
\(583\) 3.35734 0.139047
\(584\) 16.6551 7.21672i 0.689195 0.298630i
\(585\) 0 0
\(586\) 28.5945 + 3.60773i 1.18123 + 0.149034i
\(587\) −6.53626 + 6.53626i −0.269780 + 0.269780i −0.829012 0.559231i \(-0.811096\pi\)
0.559231 + 0.829012i \(0.311096\pi\)
\(588\) 0 0
\(589\) −3.10924 3.10924i −0.128114 0.128114i
\(590\) −17.2301 + 13.3694i −0.709353 + 0.550410i
\(591\) 0 0
\(592\) 9.13018 2.65883i 0.375248 0.109277i
\(593\) 15.1162i 0.620749i −0.950614 0.310375i \(-0.899545\pi\)
0.950614 0.310375i \(-0.100455\pi\)
\(594\) 0 0
\(595\) −2.16734 + 2.16734i −0.0888521 + 0.0888521i
\(596\) 24.8847 14.7274i 1.01932 0.603259i
\(597\) 0 0
\(598\) 0.507191 4.01995i 0.0207406 0.164388i
\(599\) 29.1264i 1.19007i 0.803700 + 0.595035i \(0.202862\pi\)
−0.803700 + 0.595035i \(0.797138\pi\)
\(600\) 0 0
\(601\) 14.2202i 0.580053i 0.957019 + 0.290026i \(0.0936641\pi\)
−0.957019 + 0.290026i \(0.906336\pi\)
\(602\) 5.50297 + 0.694301i 0.224284 + 0.0282976i
\(603\) 0 0
\(604\) 2.97560 11.6044i 0.121075 0.472178i
\(605\) 4.67879 4.67879i 0.190220 0.190220i
\(606\) 0 0
\(607\) 26.8584i 1.09015i −0.838387 0.545075i \(-0.816501\pi\)
0.838387 0.545075i \(-0.183499\pi\)
\(608\) 8.35983 11.5255i 0.339036 0.467420i
\(609\) 0 0
\(610\) −6.88123 8.86833i −0.278613 0.359068i
\(611\) −1.94398 1.94398i −0.0786448 0.0786448i
\(612\) 0 0
\(613\) −28.2483 + 28.2483i −1.14094 + 1.14094i −0.152659 + 0.988279i \(0.548784\pi\)
−0.988279 + 0.152659i \(0.951216\pi\)
\(614\) 4.00066 31.7089i 0.161454 1.27967i
\(615\) 0 0
\(616\) −6.41306 2.53559i −0.258389 0.102162i
\(617\) −31.4617 −1.26660 −0.633300 0.773906i \(-0.718300\pi\)
−0.633300 + 0.773906i \(0.718300\pi\)
\(618\) 0 0
\(619\) 13.3846 + 13.3846i 0.537973 + 0.537973i 0.922933 0.384961i \(-0.125785\pi\)
−0.384961 + 0.922933i \(0.625785\pi\)
\(620\) −2.32915 3.93553i −0.0935408 0.158055i
\(621\) 0 0
\(622\) −6.60322 8.51003i −0.264765 0.341221i
\(623\) 1.51391 0.0606533
\(624\) 0 0
\(625\) −2.23838 −0.0895353
\(626\) −26.6632 34.3627i −1.06567 1.37341i
\(627\) 0 0
\(628\) 23.3167 13.7994i 0.930437 0.550657i
\(629\) 3.93670 + 3.93670i 0.156966 + 0.156966i
\(630\) 0 0
\(631\) 15.5279 0.618154 0.309077 0.951037i \(-0.399980\pi\)
0.309077 + 0.951037i \(0.399980\pi\)
\(632\) 13.9703 6.05337i 0.555709 0.240790i
\(633\) 0 0
\(634\) 1.13347 8.98381i 0.0450160 0.356793i
\(635\) −13.9390 + 13.9390i −0.553152 + 0.553152i
\(636\) 0 0
\(637\) 0.328273 + 0.328273i 0.0130066 + 0.0130066i
\(638\) −0.366703 0.472596i −0.0145179 0.0187103i
\(639\) 0 0
\(640\) 11.3992 9.45157i 0.450595 0.373606i
\(641\) 33.1261i 1.30840i −0.756320 0.654201i \(-0.773005\pi\)
0.756320 0.654201i \(-0.226995\pi\)
\(642\) 0 0
\(643\) 28.5683 28.5683i 1.12662 1.12662i 0.135902 0.990722i \(-0.456607\pi\)
0.990722 0.135902i \(-0.0433933\pi\)
\(644\) −11.9561 3.06576i −0.471135 0.120808i
\(645\) 0 0
\(646\) 8.27018 + 1.04344i 0.325386 + 0.0410534i
\(647\) 48.7052i 1.91480i −0.288765 0.957400i \(-0.593245\pi\)
0.288765 0.957400i \(-0.406755\pi\)
\(648\) 0 0
\(649\) 28.7266i 1.12762i
\(650\) 0.270131 2.14103i 0.0105954 0.0839783i
\(651\) 0 0
\(652\) 11.2520 + 19.0123i 0.440661 + 0.744579i
\(653\) −2.67453 + 2.67453i −0.104662 + 0.104662i −0.757499 0.652836i \(-0.773579\pi\)
0.652836 + 0.757499i \(0.273579\pi\)
\(654\) 0 0
\(655\) 7.16384i 0.279915i
\(656\) 10.1270 + 5.55904i 0.395394 + 0.217044i
\(657\) 0 0
\(658\) −6.61653 + 5.13398i −0.257939 + 0.200144i
\(659\) 20.0589 + 20.0589i 0.781384 + 0.781384i 0.980064 0.198680i \(-0.0636655\pi\)
−0.198680 + 0.980064i \(0.563666\pi\)
\(660\) 0 0
\(661\) 3.44403 3.44403i 0.133957 0.133957i −0.636949 0.770906i \(-0.719804\pi\)
0.770906 + 0.636949i \(0.219804\pi\)
\(662\) 22.6827 + 2.86184i 0.881587 + 0.111229i
\(663\) 0 0
\(664\) 5.09402 12.8839i 0.197687 0.499993i
\(665\) 3.29433 0.127749
\(666\) 0 0
\(667\) −0.757054 0.757054i −0.0293132 0.0293132i
\(668\) 10.2312 + 2.62346i 0.395855 + 0.101505i
\(669\) 0 0
\(670\) −3.68663 + 2.86058i −0.142427 + 0.110514i
\(671\) 14.7856 0.570791
\(672\) 0 0
\(673\) −32.1701 −1.24007 −0.620033 0.784576i \(-0.712881\pi\)
−0.620033 + 0.784576i \(0.712881\pi\)
\(674\) −12.0188 + 9.32576i −0.462946 + 0.359215i
\(675\) 0 0
\(676\) −24.7677 6.35090i −0.952602 0.244265i
\(677\) −3.59090 3.59090i −0.138009 0.138009i 0.634727 0.772736i \(-0.281113\pi\)
−0.772736 + 0.634727i \(0.781113\pi\)
\(678\) 0 0
\(679\) 15.7177 0.603188
\(680\) 8.06207 + 3.18757i 0.309166 + 0.122238i
\(681\) 0 0
\(682\) 5.97637 + 0.754030i 0.228847 + 0.0288733i
\(683\) −4.35732 + 4.35732i −0.166728 + 0.166728i −0.785540 0.618811i \(-0.787615\pi\)
0.618811 + 0.785540i \(0.287615\pi\)
\(684\) 0 0
\(685\) −5.06701 5.06701i −0.193600 0.193600i
\(686\) 1.11731 0.866958i 0.0426591 0.0331006i
\(687\) 0 0
\(688\) −4.38639 15.0624i −0.167229 0.574250i
\(689\) 0.639271i 0.0243543i
\(690\) 0 0
\(691\) −9.12084 + 9.12084i −0.346973 + 0.346973i −0.858981 0.512008i \(-0.828902\pi\)
0.512008 + 0.858981i \(0.328902\pi\)
\(692\) 17.1273 + 28.9397i 0.651081 + 1.10012i
\(693\) 0 0
\(694\) 4.09550 32.4605i 0.155463 1.23218i
\(695\) 20.5676i 0.780173i
\(696\) 0 0
\(697\) 6.76343i 0.256183i
\(698\) −51.2713 6.46883i −1.94065 0.244849i
\(699\) 0 0
\(700\) −6.36782 1.63283i −0.240681 0.0617151i
\(701\) 13.1832 13.1832i 0.497923 0.497923i −0.412868 0.910791i \(-0.635473\pi\)
0.910791 + 0.412868i \(0.135473\pi\)
\(702\) 0 0
\(703\) 5.98374i 0.225681i
\(704\) 0.631189 + 19.4950i 0.0237888 + 0.734744i
\(705\) 0 0
\(706\) 21.3072 + 27.4601i 0.801908 + 1.03348i
\(707\) 13.6438 + 13.6438i 0.513126 + 0.513126i
\(708\) 0 0
\(709\) 5.95604 5.95604i 0.223684 0.223684i −0.586364 0.810048i \(-0.699441\pi\)
0.810048 + 0.586364i \(0.199441\pi\)
\(710\) −1.98579 + 15.7392i −0.0745255 + 0.590682i
\(711\) 0 0
\(712\) −1.70244 3.92899i −0.0638017 0.147245i
\(713\) 10.7815 0.403769
\(714\) 0 0
\(715\) −1.04757 1.04757i −0.0391770 0.0391770i
\(716\) −15.5499 + 9.20281i −0.581126 + 0.343925i
\(717\) 0 0
\(718\) −15.2139 19.6072i −0.567776 0.731733i
\(719\) −38.3917 −1.43177 −0.715884 0.698220i \(-0.753976\pi\)
−0.715884 + 0.698220i \(0.753976\pi\)
\(720\) 0 0
\(721\) −11.9238 −0.444067
\(722\) 10.9799 + 14.1506i 0.408631 + 0.526631i
\(723\) 0 0
\(724\) −8.01479 13.5425i −0.297867 0.503302i
\(725\) −0.403208 0.403208i −0.0149748 0.0149748i
\(726\) 0 0
\(727\) −5.05200 −0.187368 −0.0936842 0.995602i \(-0.529864\pi\)
−0.0936842 + 0.995602i \(0.529864\pi\)
\(728\) 0.482801 1.22111i 0.0178938 0.0452573i
\(729\) 0 0
\(730\) 1.48694 11.7853i 0.0550340 0.436194i
\(731\) 6.49454 6.49454i 0.240209 0.240209i
\(732\) 0 0
\(733\) 2.73691 + 2.73691i 0.101090 + 0.101090i 0.755843 0.654753i \(-0.227227\pi\)
−0.654753 + 0.755843i \(0.727227\pi\)
\(734\) −13.6848 17.6366i −0.505116 0.650979i
\(735\) 0 0
\(736\) 5.48855 + 34.4767i 0.202311 + 1.27083i
\(737\) 6.14648i 0.226408i
\(738\) 0 0
\(739\) 18.5031 18.5031i 0.680648 0.680648i −0.279498 0.960146i \(-0.590168\pi\)
0.960146 + 0.279498i \(0.0901682\pi\)
\(740\) 1.54574 6.02819i 0.0568226 0.221601i
\(741\) 0 0
\(742\) 1.93206 + 0.243765i 0.0709282 + 0.00894891i
\(743\) 41.1110i 1.50822i 0.656751 + 0.754108i \(0.271930\pi\)
−0.656751 + 0.754108i \(0.728070\pi\)
\(744\) 0 0
\(745\) 18.9235i 0.693302i
\(746\) −2.90001 + 22.9852i −0.106177 + 0.841547i
\(747\) 0 0
\(748\) −9.82728 + 5.81604i −0.359321 + 0.212655i
\(749\) 13.6108 13.6108i 0.497327 0.497327i
\(750\) 0 0
\(751\) 27.5241i 1.00437i −0.864760 0.502185i \(-0.832530\pi\)
0.864760 0.502185i \(-0.167470\pi\)
\(752\) 20.7646 + 11.3983i 0.757207 + 0.415654i
\(753\) 0 0
\(754\) 0.0899870 0.0698239i 0.00327713 0.00254284i
\(755\) −5.54366 5.54366i −0.201754 0.201754i
\(756\) 0 0
\(757\) 6.27349 6.27349i 0.228014 0.228014i −0.583849 0.811863i \(-0.698454\pi\)
0.811863 + 0.583849i \(0.198454\pi\)
\(758\) −3.65841 0.461576i −0.132879 0.0167652i
\(759\) 0 0
\(760\) −3.70459 8.54966i −0.134380 0.310129i
\(761\) −23.6884 −0.858704 −0.429352 0.903137i \(-0.641258\pi\)
−0.429352 + 0.903137i \(0.641258\pi\)
\(762\) 0 0
\(763\) 4.97865 + 4.97865i 0.180239 + 0.180239i
\(764\) −1.20834 + 4.71236i −0.0437161 + 0.170487i
\(765\) 0 0
\(766\) −4.51475 + 3.50315i −0.163125 + 0.126574i
\(767\) 5.46983 0.197504
\(768\) 0 0
\(769\) −4.74756 −0.171201 −0.0856006 0.996330i \(-0.527281\pi\)
−0.0856006 + 0.996330i \(0.527281\pi\)
\(770\) −3.56552 + 2.76661i −0.128493 + 0.0997016i
\(771\) 0 0
\(772\) 12.3450 48.1439i 0.444307 1.73274i
\(773\) −18.2666 18.2666i −0.657005 0.657005i 0.297666 0.954670i \(-0.403792\pi\)
−0.954670 + 0.297666i \(0.903792\pi\)
\(774\) 0 0
\(775\) 5.74223 0.206267
\(776\) −17.6751 40.7915i −0.634498 1.46433i
\(777\) 0 0
\(778\) −5.80287 0.732139i −0.208043 0.0262485i
\(779\) 5.14017 5.14017i 0.184166 0.184166i
\(780\) 0 0
\(781\) −14.7759 14.7759i −0.528722 0.528722i
\(782\) −16.1477 + 12.5296i −0.577442 + 0.448056i
\(783\) 0 0
\(784\) −3.50645 1.92479i −0.125230 0.0687427i
\(785\) 17.7311i 0.632849i
\(786\) 0 0
\(787\) 28.1972 28.1972i 1.00512 1.00512i 0.00513510 0.999987i \(-0.498365\pi\)
0.999987 0.00513510i \(-0.00163456\pi\)
\(788\) −4.31202 + 2.55196i −0.153609 + 0.0909099i
\(789\) 0 0
\(790\) 1.24724 9.88550i 0.0443748 0.351710i
\(791\) 0.0768901i 0.00273390i
\(792\) 0 0
\(793\) 2.81532i 0.0999749i
\(794\) −43.5656 5.49661i −1.54609 0.195067i
\(795\) 0 0
\(796\) −6.90355 + 26.9229i −0.244690 + 0.954258i
\(797\) 24.8697 24.8697i 0.880930 0.880930i −0.112699 0.993629i \(-0.535950\pi\)
0.993629 + 0.112699i \(0.0359496\pi\)
\(798\) 0 0
\(799\) 13.8678i 0.490608i
\(800\) 2.92321 + 18.3624i 0.103351 + 0.649208i
\(801\) 0 0
\(802\) 2.76038 + 3.55749i 0.0974723 + 0.125619i
\(803\) 11.0640 + 11.0640i 0.390439 + 0.390439i
\(804\) 0 0
\(805\) −5.71163 + 5.71163i −0.201309 + 0.201309i
\(806\) −0.143575 + 1.13796i −0.00505720 + 0.0400829i
\(807\) 0 0
\(808\) 20.0663 50.7521i 0.705930 1.78545i
\(809\) 44.9141 1.57910 0.789548 0.613688i \(-0.210315\pi\)
0.789548 + 0.613688i \(0.210315\pi\)
\(810\) 0 0
\(811\) 13.1446 + 13.1446i 0.461570 + 0.461570i 0.899170 0.437600i \(-0.144171\pi\)
−0.437600 + 0.899170i \(0.644171\pi\)
\(812\) −0.176714 0.298592i −0.00620146 0.0104785i
\(813\) 0 0
\(814\) 5.02520 + 6.47633i 0.176133 + 0.226995i
\(815\) 14.4578 0.506435
\(816\) 0 0
\(817\) −9.87162 −0.345364
\(818\) 13.0911 + 16.8715i 0.457720 + 0.589896i
\(819\) 0 0
\(820\) 6.50618 3.85053i 0.227206 0.134466i
\(821\) 15.0363 + 15.0363i 0.524772 + 0.524772i 0.919009 0.394237i \(-0.128991\pi\)
−0.394237 + 0.919009i \(0.628991\pi\)
\(822\) 0 0
\(823\) 12.3186 0.429399 0.214699 0.976680i \(-0.431123\pi\)
0.214699 + 0.976680i \(0.431123\pi\)
\(824\) 13.4088 + 30.9455i 0.467117 + 1.07804i
\(825\) 0 0
\(826\) 2.08575 16.5314i 0.0725724 0.575202i
\(827\) −29.2509 + 29.2509i −1.01715 + 1.01715i −0.0173016 + 0.999850i \(0.505508\pi\)
−0.999850 + 0.0173016i \(0.994492\pi\)
\(828\) 0 0
\(829\) 3.68627 + 3.68627i 0.128029 + 0.128029i 0.768218 0.640189i \(-0.221144\pi\)
−0.640189 + 0.768218i \(0.721144\pi\)
\(830\) −5.55815 7.16318i −0.192926 0.248638i
\(831\) 0 0
\(832\) −3.71203 + 0.120185i −0.128692 + 0.00416665i
\(833\) 2.34181i 0.0811389i
\(834\) 0 0
\(835\) 4.88761 4.88761i 0.169143 0.169143i
\(836\) 11.8888 + 3.04852i 0.411184 + 0.105435i
\(837\) 0 0
\(838\) 4.35327 + 0.549245i 0.150381 + 0.0189734i
\(839\) 26.5841i 0.917786i 0.888492 + 0.458893i \(0.151754\pi\)
−0.888492 + 0.458893i \(0.848246\pi\)
\(840\) 0 0
\(841\) 28.9699i 0.998962i
\(842\) −4.21942 + 33.4427i −0.145411 + 1.15251i
\(843\) 0 0
\(844\) 0.351458 + 0.593854i 0.0120977 + 0.0204413i
\(845\) −11.8320 + 11.8320i −0.407032 + 0.407032i
\(846\) 0 0
\(847\) 5.05544i 0.173707i
\(848\) −1.54004 5.28834i −0.0528851 0.181602i
\(849\) 0 0
\(850\) −8.60031 + 6.67327i −0.294988 + 0.228891i
\(851\) 10.3745 + 10.3745i 0.355632 + 0.355632i
\(852\) 0 0
\(853\) 8.95460 8.95460i 0.306600 0.306600i −0.536989 0.843589i \(-0.680438\pi\)
0.843589 + 0.536989i \(0.180438\pi\)
\(854\) 8.50871 + 1.07353i 0.291162 + 0.0367355i
\(855\) 0 0
\(856\) −50.6295 20.0178i −1.73048 0.684195i
\(857\) 36.9763 1.26309 0.631543 0.775341i \(-0.282422\pi\)
0.631543 + 0.775341i \(0.282422\pi\)
\(858\) 0 0
\(859\) 1.95338 + 1.95338i 0.0666483 + 0.0666483i 0.739645 0.672997i \(-0.234993\pi\)
−0.672997 + 0.739645i \(0.734993\pi\)
\(860\) −9.94496 2.55008i −0.339120 0.0869569i
\(861\) 0 0
\(862\) −22.3084 + 17.3098i −0.759827 + 0.589575i
\(863\) −11.1583 −0.379835 −0.189917 0.981800i \(-0.560822\pi\)
−0.189917 + 0.981800i \(0.560822\pi\)
\(864\) 0 0
\(865\) 22.0071 0.748262
\(866\) −4.28167 + 3.32229i −0.145497 + 0.112896i
\(867\) 0 0
\(868\) 3.38450 + 0.867849i 0.114877 + 0.0294567i
\(869\) 9.28043 + 9.28043i 0.314817 + 0.314817i
\(870\) 0 0
\(871\) 1.17035 0.0396558
\(872\) 7.32226 18.5196i 0.247963 0.627153i
\(873\) 0 0
\(874\) 21.7946 + 2.74979i 0.737213 + 0.0930131i
\(875\) −7.66951 + 7.66951i −0.259277 + 0.259277i
\(876\) 0 0
\(877\) 34.5959 + 34.5959i 1.16822 + 1.16822i 0.982626 + 0.185595i \(0.0594213\pi\)
0.185595 + 0.982626i \(0.440579\pi\)
\(878\) −25.7115 + 19.9504i −0.867722 + 0.673294i
\(879\) 0 0
\(880\) 11.1897 + 6.14234i 0.377203 + 0.207058i
\(881\) 51.6167i 1.73901i −0.493924 0.869505i \(-0.664438\pi\)
0.493924 0.869505i \(-0.335562\pi\)
\(882\) 0 0
\(883\) 6.62392 6.62392i 0.222913 0.222913i −0.586811 0.809724i \(-0.699617\pi\)
0.809724 + 0.586811i \(0.199617\pi\)
\(884\) −1.10743 1.87121i −0.0372470 0.0629357i
\(885\) 0 0
\(886\) 3.42938 27.1809i 0.115212 0.913160i
\(887\) 41.8546i 1.40534i 0.711515 + 0.702671i \(0.248009\pi\)
−0.711515 + 0.702671i \(0.751991\pi\)
\(888\) 0 0
\(889\) 15.0611i 0.505134i
\(890\) −2.78019 0.350772i −0.0931920 0.0117579i
\(891\) 0 0
\(892\) −13.7005 3.51307i −0.458727 0.117626i
\(893\) 10.5395 10.5395i 0.352690 0.352690i
\(894\) 0 0
\(895\) 11.8248i 0.395260i
\(896\) −1.05223 + 11.2647i −0.0351526 + 0.376326i
\(897\) 0 0
\(898\) −23.6847 30.5242i −0.790370 1.01861i
\(899\) 0.214305 + 0.214305i 0.00714748 + 0.00714748i
\(900\) 0 0
\(901\) 2.28020 2.28020i 0.0759643 0.0759643i
\(902\) −1.24656 + 9.88008i −0.0415058 + 0.328971i
\(903\) 0 0
\(904\) 0.199551 0.0864658i 0.00663695 0.00287581i
\(905\) −10.2983 −0.342328
\(906\) 0 0
\(907\) 20.3030 + 20.3030i 0.674150 + 0.674150i 0.958670 0.284520i \(-0.0918343\pi\)
−0.284520 + 0.958670i \(0.591834\pi\)
\(908\) 5.24177 3.10221i 0.173954 0.102951i
\(909\) 0 0
\(910\) −0.526790 0.678911i −0.0174629 0.0225057i
\(911\) −0.0607824 −0.00201381 −0.00100691 0.999999i \(-0.500321\pi\)
−0.00100691 + 0.999999i \(0.500321\pi\)
\(912\) 0 0
\(913\) 11.9427 0.395246
\(914\) −26.4003 34.0239i −0.873244 1.12541i
\(915\) 0 0
\(916\) 20.8174 + 35.1748i 0.687825 + 1.16221i
\(917\) −3.87027 3.87027i −0.127808 0.127808i
\(918\) 0 0
\(919\) 41.3187 1.36298 0.681489 0.731828i \(-0.261333\pi\)
0.681489 + 0.731828i \(0.261333\pi\)
\(920\) 21.2462 + 8.40028i 0.700465 + 0.276949i
\(921\) 0 0
\(922\) −4.45666 + 35.3231i −0.146772 + 1.16330i
\(923\) 2.81347 2.81347i 0.0926065 0.0926065i
\(924\) 0 0
\(925\) 5.52546 + 5.52546i 0.181676 + 0.181676i
\(926\) −7.31118 9.42244i −0.240260 0.309641i
\(927\) 0 0
\(928\) −0.576204 + 0.794398i −0.0189148 + 0.0260774i
\(929\) 41.2586i 1.35365i 0.736143 + 0.676826i \(0.236645\pi\)
−0.736143 + 0.676826i \(0.763355\pi\)
\(930\) 0 0
\(931\) −1.77976 + 1.77976i −0.0583294 + 0.0583294i
\(932\) −8.84088 + 34.4783i −0.289593 + 1.12937i
\(933\) 0 0
\(934\) 6.30423 + 0.795396i 0.206281 + 0.0260261i
\(935\) 7.47311i 0.244397i
\(936\) 0 0
\(937\) 53.0095i 1.73175i 0.500264 + 0.865873i \(0.333236\pi\)
−0.500264 + 0.865873i \(0.666764\pi\)
\(938\) 0.446276 3.53714i 0.0145714 0.115492i
\(939\) 0 0
\(940\) 13.3404 7.89517i 0.435115 0.257512i
\(941\) −24.3743 + 24.3743i −0.794580 + 0.794580i −0.982235 0.187655i \(-0.939911\pi\)
0.187655 + 0.982235i \(0.439911\pi\)
\(942\) 0 0
\(943\) 17.8238i 0.580423i
\(944\) −45.2490 + 13.1771i −1.47273 + 0.428879i
\(945\) 0 0
\(946\) 10.6843 8.29028i 0.347376 0.269540i
\(947\) 22.4434 + 22.4434i 0.729314 + 0.729314i 0.970483 0.241169i \(-0.0775309\pi\)
−0.241169 + 0.970483i \(0.577531\pi\)
\(948\) 0 0
\(949\) −2.10669 + 2.10669i −0.0683861 + 0.0683861i
\(950\) 11.6078 + 1.46454i 0.376608 + 0.0475161i
\(951\) 0 0
\(952\) −6.07763 + 2.63345i −0.196977 + 0.0853507i
\(953\) 11.7067 0.379218 0.189609 0.981860i \(-0.439278\pi\)
0.189609 + 0.981860i \(0.439278\pi\)
\(954\) 0 0
\(955\) 2.25118 + 2.25118i 0.0728466 + 0.0728466i
\(956\) −4.77962 + 18.6399i −0.154584 + 0.602857i
\(957\) 0 0
\(958\) 0.614606 0.476893i 0.0198570 0.0154077i
\(959\) 5.47491 0.176794
\(960\) 0 0
\(961\) 27.9480 0.901549
\(962\) −1.23316 + 0.956848i −0.0397586 + 0.0308500i
\(963\) 0 0
\(964\) 13.6008 53.0412i 0.438051 1.70834i
\(965\) −22.9992 22.9992i −0.740372 0.740372i
\(966\) 0 0
\(967\) 53.7319 1.72790 0.863951 0.503576i \(-0.167983\pi\)
0.863951 + 0.503576i \(0.167983\pi\)
\(968\) 13.1202 5.68503i 0.421700 0.182724i
\(969\) 0 0
\(970\) −28.8644 3.64178i −0.926781 0.116931i
\(971\) 1.49392 1.49392i 0.0479423 0.0479423i −0.682729 0.730671i \(-0.739207\pi\)
0.730671 + 0.682729i \(0.239207\pi\)
\(972\) 0 0
\(973\) 11.1117 + 11.1117i 0.356223 + 0.356223i
\(974\) 20.2991 15.7507i 0.650425 0.504686i
\(975\) 0 0
\(976\) −6.78225 23.2896i −0.217095 0.745482i
\(977\) 35.4073i 1.13278i −0.824138 0.566390i \(-0.808340\pi\)
0.824138 0.566390i \(-0.191660\pi\)
\(978\) 0 0
\(979\) 2.61002 2.61002i 0.0834166 0.0834166i
\(980\) −2.25274 + 1.33323i −0.0719612 + 0.0425885i
\(981\) 0 0
\(982\) −3.11852 + 24.7171i −0.0995161 + 0.788755i
\(983\) 17.8771i 0.570191i −0.958499 0.285096i \(-0.907975\pi\)
0.958499 0.285096i \(-0.0920254\pi\)
\(984\) 0 0
\(985\) 3.27905i 0.104479i
\(986\) −0.570025 0.0719192i −0.0181533 0.00229037i
\(987\) 0 0
\(988\) −0.580469 + 2.26375i −0.0184672 + 0.0720196i
\(989\) 17.1152 17.1152i 0.544232 0.544232i
\(990\) 0 0
\(991\) 54.7193i 1.73822i 0.494623 + 0.869108i \(0.335306\pi\)
−0.494623 + 0.869108i \(0.664694\pi\)
\(992\) −1.55369 9.75960i −0.0493297 0.309868i
\(993\) 0 0
\(994\) −7.43029 9.57595i −0.235675 0.303731i
\(995\) 12.8616 + 12.8616i 0.407740 + 0.407740i
\(996\) 0 0
\(997\) 38.1277 38.1277i 1.20751 1.20751i 0.235686 0.971829i \(-0.424266\pi\)
0.971829 0.235686i \(-0.0757336\pi\)
\(998\) −5.80404 + 46.0023i −0.183724 + 1.45618i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.v.e.323.16 yes 40
3.2 odd 2 inner 1008.2.v.e.323.5 40
4.3 odd 2 4032.2.v.e.1583.7 40
12.11 even 2 4032.2.v.e.1583.14 40
16.5 even 4 4032.2.v.e.3599.14 40
16.11 odd 4 inner 1008.2.v.e.827.5 yes 40
48.5 odd 4 4032.2.v.e.3599.7 40
48.11 even 4 inner 1008.2.v.e.827.16 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.v.e.323.5 40 3.2 odd 2 inner
1008.2.v.e.323.16 yes 40 1.1 even 1 trivial
1008.2.v.e.827.5 yes 40 16.11 odd 4 inner
1008.2.v.e.827.16 yes 40 48.11 even 4 inner
4032.2.v.e.1583.7 40 4.3 odd 2
4032.2.v.e.1583.14 40 12.11 even 2
4032.2.v.e.3599.7 40 48.5 odd 4
4032.2.v.e.3599.14 40 16.5 even 4