Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1008,2,Mod(323,1008)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1008, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 3, 2, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1008.323");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1008.v (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(8.04892052375\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Relative dimension: | \(20\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
323.1 | −1.40729 | − | 0.139782i | 0 | 1.96092 | + | 0.393427i | −1.17902 | − | 1.17902i | 0 | 1.00000 | −2.70459 | − | 0.827766i | 0 | 1.49442 | + | 1.82403i | ||||||||
323.2 | −1.39680 | + | 0.221233i | 0 | 1.90211 | − | 0.618037i | −2.51504 | − | 2.51504i | 0 | 1.00000 | −2.52014 | + | 1.28408i | 0 | 4.06942 | + | 2.95660i | ||||||||
323.3 | −1.37088 | − | 0.347400i | 0 | 1.75863 | + | 0.952488i | 0.111394 | + | 0.111394i | 0 | 1.00000 | −2.07997 | − | 1.91669i | 0 | −0.114009 | − | 0.191406i | ||||||||
323.4 | −1.13420 | − | 0.844744i | 0 | 0.572816 | + | 1.91622i | 2.12043 | + | 2.12043i | 0 | 1.00000 | 0.969023 | − | 2.65725i | 0 | −0.613769 | − | 4.19620i | ||||||||
323.5 | −1.11731 | + | 0.866958i | 0 | 0.496766 | − | 1.93732i | 0.925496 | + | 0.925496i | 0 | 1.00000 | 1.12454 | + | 2.59527i | 0 | −1.83643 | − | 0.231700i | ||||||||
323.6 | −0.890883 | − | 1.09833i | 0 | −0.412656 | + | 1.95697i | −1.65702 | − | 1.65702i | 0 | 1.00000 | 2.51702 | − | 1.29019i | 0 | −0.343745 | + | 3.29617i | ||||||||
323.7 | −0.614527 | + | 1.27372i | 0 | −1.24471 | − | 1.56547i | −2.62814 | − | 2.62814i | 0 | 1.00000 | 2.75887 | − | 0.623393i | 0 | 4.96257 | − | 1.73245i | ||||||||
323.8 | −0.579268 | + | 1.29014i | 0 | −1.32890 | − | 1.49467i | −0.667815 | − | 0.667815i | 0 | 1.00000 | 2.69811 | − | 0.848644i | 0 | 1.24842 | − | 0.474728i | ||||||||
323.9 | −0.351970 | − | 1.36971i | 0 | −1.75223 | + | 0.964197i | 2.96859 | + | 2.96859i | 0 | 1.00000 | 1.93741 | + | 2.06069i | 0 | 3.02127 | − | 5.11098i | ||||||||
323.10 | −0.153718 | − | 1.40583i | 0 | −1.95274 | + | 0.432203i | 0.0893433 | + | 0.0893433i | 0 | 1.00000 | 0.907777 | + | 2.67879i | 0 | 0.111868 | − | 0.139335i | ||||||||
323.11 | 0.153718 | + | 1.40583i | 0 | −1.95274 | + | 0.432203i | −0.0893433 | − | 0.0893433i | 0 | 1.00000 | −0.907777 | − | 2.67879i | 0 | 0.111868 | − | 0.139335i | ||||||||
323.12 | 0.351970 | + | 1.36971i | 0 | −1.75223 | + | 0.964197i | −2.96859 | − | 2.96859i | 0 | 1.00000 | −1.93741 | − | 2.06069i | 0 | 3.02127 | − | 5.11098i | ||||||||
323.13 | 0.579268 | − | 1.29014i | 0 | −1.32890 | − | 1.49467i | 0.667815 | + | 0.667815i | 0 | 1.00000 | −2.69811 | + | 0.848644i | 0 | 1.24842 | − | 0.474728i | ||||||||
323.14 | 0.614527 | − | 1.27372i | 0 | −1.24471 | − | 1.56547i | 2.62814 | + | 2.62814i | 0 | 1.00000 | −2.75887 | + | 0.623393i | 0 | 4.96257 | − | 1.73245i | ||||||||
323.15 | 0.890883 | + | 1.09833i | 0 | −0.412656 | + | 1.95697i | 1.65702 | + | 1.65702i | 0 | 1.00000 | −2.51702 | + | 1.29019i | 0 | −0.343745 | + | 3.29617i | ||||||||
323.16 | 1.11731 | − | 0.866958i | 0 | 0.496766 | − | 1.93732i | −0.925496 | − | 0.925496i | 0 | 1.00000 | −1.12454 | − | 2.59527i | 0 | −1.83643 | − | 0.231700i | ||||||||
323.17 | 1.13420 | + | 0.844744i | 0 | 0.572816 | + | 1.91622i | −2.12043 | − | 2.12043i | 0 | 1.00000 | −0.969023 | + | 2.65725i | 0 | −0.613769 | − | 4.19620i | ||||||||
323.18 | 1.37088 | + | 0.347400i | 0 | 1.75863 | + | 0.952488i | −0.111394 | − | 0.111394i | 0 | 1.00000 | 2.07997 | + | 1.91669i | 0 | −0.114009 | − | 0.191406i | ||||||||
323.19 | 1.39680 | − | 0.221233i | 0 | 1.90211 | − | 0.618037i | 2.51504 | + | 2.51504i | 0 | 1.00000 | 2.52014 | − | 1.28408i | 0 | 4.06942 | + | 2.95660i | ||||||||
323.20 | 1.40729 | + | 0.139782i | 0 | 1.96092 | + | 0.393427i | 1.17902 | + | 1.17902i | 0 | 1.00000 | 2.70459 | + | 0.827766i | 0 | 1.49442 | + | 1.82403i | ||||||||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
16.f | odd | 4 | 1 | inner |
48.k | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1008.2.v.e | ✓ | 40 |
3.b | odd | 2 | 1 | inner | 1008.2.v.e | ✓ | 40 |
4.b | odd | 2 | 1 | 4032.2.v.e | 40 | ||
12.b | even | 2 | 1 | 4032.2.v.e | 40 | ||
16.e | even | 4 | 1 | 4032.2.v.e | 40 | ||
16.f | odd | 4 | 1 | inner | 1008.2.v.e | ✓ | 40 |
48.i | odd | 4 | 1 | 4032.2.v.e | 40 | ||
48.k | even | 4 | 1 | inner | 1008.2.v.e | ✓ | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1008.2.v.e | ✓ | 40 | 1.a | even | 1 | 1 | trivial |
1008.2.v.e | ✓ | 40 | 3.b | odd | 2 | 1 | inner |
1008.2.v.e | ✓ | 40 | 16.f | odd | 4 | 1 | inner |
1008.2.v.e | ✓ | 40 | 48.k | even | 4 | 1 | inner |
4032.2.v.e | 40 | 4.b | odd | 2 | 1 | ||
4032.2.v.e | 40 | 12.b | even | 2 | 1 | ||
4032.2.v.e | 40 | 16.e | even | 4 | 1 | ||
4032.2.v.e | 40 | 48.i | odd | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1008, [\chi])\):
\( T_{5}^{40} + 784 T_{5}^{36} + 224304 T_{5}^{32} + 29085120 T_{5}^{28} + 1705059168 T_{5}^{24} + \cdots + 65536 \) |
\( T_{11}^{40} + 3664 T_{11}^{36} + 4437680 T_{11}^{32} + 2045565248 T_{11}^{28} + 297547122016 T_{11}^{24} + \cdots + 426337261060096 \) |