Properties

Label 1008.2.v.e.323.2
Level $1008$
Weight $2$
Character 1008.323
Analytic conductor $8.049$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,2,Mod(323,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.323");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.v (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 323.2
Character \(\chi\) \(=\) 1008.323
Dual form 1008.2.v.e.827.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.39680 + 0.221233i) q^{2} +(1.90211 - 0.618037i) q^{4} +(-2.51504 - 2.51504i) q^{5} +1.00000 q^{7} +(-2.52014 + 1.28408i) q^{8} +(4.06942 + 2.95660i) q^{10} +(-0.984548 + 0.984548i) q^{11} +(-3.26086 - 3.26086i) q^{13} +(-1.39680 + 0.221233i) q^{14} +(3.23606 - 2.35115i) q^{16} +5.50927i q^{17} +(-1.21444 + 1.21444i) q^{19} +(-6.33826 - 3.22950i) q^{20} +(1.15740 - 1.59303i) q^{22} -8.62021i q^{23} +7.65081i q^{25} +(5.27618 + 3.83336i) q^{26} +(1.90211 - 0.618037i) q^{28} +(-2.04663 + 2.04663i) q^{29} +0.164437i q^{31} +(-3.99999 + 4.00001i) q^{32} +(-1.21883 - 7.69536i) q^{34} +(-2.51504 - 2.51504i) q^{35} +(-8.31105 + 8.31105i) q^{37} +(1.42766 - 1.96501i) q^{38} +(9.56777 + 3.10874i) q^{40} +9.56578 q^{41} +(5.01867 + 5.01867i) q^{43} +(-1.26423 + 2.48121i) q^{44} +(1.90707 + 12.0407i) q^{46} +3.37837 q^{47} +1.00000 q^{49} +(-1.69261 - 10.6867i) q^{50} +(-8.21784 - 4.18719i) q^{52} +(3.72717 + 3.72717i) q^{53} +4.95235 q^{55} +(-2.52014 + 1.28408i) q^{56} +(2.40596 - 3.31153i) q^{58} +(-10.0781 + 10.0781i) q^{59} +(-1.07042 - 1.07042i) q^{61} +(-0.0363788 - 0.229686i) q^{62} +(4.70226 - 6.47216i) q^{64} +16.4023i q^{65} +(-3.12073 + 3.12073i) q^{67} +(3.40493 + 10.4793i) q^{68} +(4.06942 + 2.95660i) q^{70} +7.66257i q^{71} -8.40588i q^{73} +(9.77021 - 13.4476i) q^{74} +(-1.55944 + 3.06058i) q^{76} +(-0.984548 + 0.984548i) q^{77} +13.8712i q^{79} +(-14.0520 - 2.22559i) q^{80} +(-13.3615 + 2.11626i) q^{82} +(-7.31214 - 7.31214i) q^{83} +(13.8560 - 13.8560i) q^{85} +(-8.12038 - 5.89979i) q^{86} +(1.21696 - 3.74545i) q^{88} +7.49158 q^{89} +(-3.26086 - 3.26086i) q^{91} +(-5.32760 - 16.3966i) q^{92} +(-4.71891 + 0.747406i) q^{94} +6.10874 q^{95} -7.84085 q^{97} +(-1.39680 + 0.221233i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 40 q^{7} + 48 q^{10} - 24 q^{13} + 12 q^{16} - 32 q^{19} - 8 q^{22} - 56 q^{34} - 8 q^{37} + 32 q^{43} - 52 q^{46} + 40 q^{49} - 8 q^{52} + 48 q^{55} + 56 q^{58} - 24 q^{61} + 48 q^{64} + 48 q^{70}+ \cdots + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.39680 + 0.221233i −0.987688 + 0.156435i
\(3\) 0 0
\(4\) 1.90211 0.618037i 0.951056 0.309018i
\(5\) −2.51504 2.51504i −1.12476 1.12476i −0.991016 0.133742i \(-0.957301\pi\)
−0.133742 0.991016i \(-0.542699\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) −2.52014 + 1.28408i −0.891006 + 0.453992i
\(9\) 0 0
\(10\) 4.06942 + 2.95660i 1.28686 + 0.934959i
\(11\) −0.984548 + 0.984548i −0.296852 + 0.296852i −0.839780 0.542927i \(-0.817316\pi\)
0.542927 + 0.839780i \(0.317316\pi\)
\(12\) 0 0
\(13\) −3.26086 3.26086i −0.904399 0.904399i 0.0914142 0.995813i \(-0.470861\pi\)
−0.995813 + 0.0914142i \(0.970861\pi\)
\(14\) −1.39680 + 0.221233i −0.373311 + 0.0591269i
\(15\) 0 0
\(16\) 3.23606 2.35115i 0.809015 0.587787i
\(17\) 5.50927i 1.33619i 0.744074 + 0.668097i \(0.232891\pi\)
−0.744074 + 0.668097i \(0.767109\pi\)
\(18\) 0 0
\(19\) −1.21444 + 1.21444i −0.278613 + 0.278613i −0.832555 0.553942i \(-0.813123\pi\)
0.553942 + 0.832555i \(0.313123\pi\)
\(20\) −6.33826 3.22950i −1.41728 0.722137i
\(21\) 0 0
\(22\) 1.15740 1.59303i 0.246759 0.339636i
\(23\) 8.62021i 1.79744i −0.438526 0.898719i \(-0.644499\pi\)
0.438526 0.898719i \(-0.355501\pi\)
\(24\) 0 0
\(25\) 7.65081i 1.53016i
\(26\) 5.27618 + 3.83336i 1.03474 + 0.751784i
\(27\) 0 0
\(28\) 1.90211 0.618037i 0.359465 0.116798i
\(29\) −2.04663 + 2.04663i −0.380050 + 0.380050i −0.871120 0.491070i \(-0.836606\pi\)
0.491070 + 0.871120i \(0.336606\pi\)
\(30\) 0 0
\(31\) 0.164437i 0.0295337i 0.999891 + 0.0147669i \(0.00470061\pi\)
−0.999891 + 0.0147669i \(0.995299\pi\)
\(32\) −3.99999 + 4.00001i −0.707104 + 0.707109i
\(33\) 0 0
\(34\) −1.21883 7.69536i −0.209028 1.31974i
\(35\) −2.51504 2.51504i −0.425119 0.425119i
\(36\) 0 0
\(37\) −8.31105 + 8.31105i −1.36633 + 1.36633i −0.500717 + 0.865611i \(0.666930\pi\)
−0.865611 + 0.500717i \(0.833070\pi\)
\(38\) 1.42766 1.96501i 0.231598 0.318767i
\(39\) 0 0
\(40\) 9.56777 + 3.10874i 1.51280 + 0.491534i
\(41\) 9.56578 1.49392 0.746962 0.664867i \(-0.231512\pi\)
0.746962 + 0.664867i \(0.231512\pi\)
\(42\) 0 0
\(43\) 5.01867 + 5.01867i 0.765340 + 0.765340i 0.977282 0.211942i \(-0.0679789\pi\)
−0.211942 + 0.977282i \(0.567979\pi\)
\(44\) −1.26423 + 2.48121i −0.190590 + 0.374056i
\(45\) 0 0
\(46\) 1.90707 + 12.0407i 0.281182 + 1.77531i
\(47\) 3.37837 0.492786 0.246393 0.969170i \(-0.420755\pi\)
0.246393 + 0.969170i \(0.420755\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) −1.69261 10.6867i −0.239371 1.51132i
\(51\) 0 0
\(52\) −8.21784 4.18719i −1.13961 0.580658i
\(53\) 3.72717 + 3.72717i 0.511966 + 0.511966i 0.915129 0.403162i \(-0.132089\pi\)
−0.403162 + 0.915129i \(0.632089\pi\)
\(54\) 0 0
\(55\) 4.95235 0.667774
\(56\) −2.52014 + 1.28408i −0.336768 + 0.171593i
\(57\) 0 0
\(58\) 2.40596 3.31153i 0.315918 0.434825i
\(59\) −10.0781 + 10.0781i −1.31206 + 1.31206i −0.392162 + 0.919896i \(0.628273\pi\)
−0.919896 + 0.392162i \(0.871727\pi\)
\(60\) 0 0
\(61\) −1.07042 1.07042i −0.137054 0.137054i 0.635252 0.772305i \(-0.280896\pi\)
−0.772305 + 0.635252i \(0.780896\pi\)
\(62\) −0.0363788 0.229686i −0.00462011 0.0291701i
\(63\) 0 0
\(64\) 4.70226 6.47216i 0.587782 0.809019i
\(65\) 16.4023i 2.03446i
\(66\) 0 0
\(67\) −3.12073 + 3.12073i −0.381258 + 0.381258i −0.871555 0.490297i \(-0.836888\pi\)
0.490297 + 0.871555i \(0.336888\pi\)
\(68\) 3.40493 + 10.4793i 0.412909 + 1.27080i
\(69\) 0 0
\(70\) 4.06942 + 2.95660i 0.486388 + 0.353381i
\(71\) 7.66257i 0.909380i 0.890650 + 0.454690i \(0.150250\pi\)
−0.890650 + 0.454690i \(0.849750\pi\)
\(72\) 0 0
\(73\) 8.40588i 0.983834i −0.870642 0.491917i \(-0.836296\pi\)
0.870642 0.491917i \(-0.163704\pi\)
\(74\) 9.77021 13.4476i 1.13576 1.56325i
\(75\) 0 0
\(76\) −1.55944 + 3.06058i −0.178880 + 0.351073i
\(77\) −0.984548 + 0.984548i −0.112200 + 0.112200i
\(78\) 0 0
\(79\) 13.8712i 1.56063i 0.625387 + 0.780315i \(0.284941\pi\)
−0.625387 + 0.780315i \(0.715059\pi\)
\(80\) −14.0520 2.22559i −1.57107 0.248828i
\(81\) 0 0
\(82\) −13.3615 + 2.11626i −1.47553 + 0.233702i
\(83\) −7.31214 7.31214i −0.802611 0.802611i 0.180892 0.983503i \(-0.442102\pi\)
−0.983503 + 0.180892i \(0.942102\pi\)
\(84\) 0 0
\(85\) 13.8560 13.8560i 1.50290 1.50290i
\(86\) −8.12038 5.89979i −0.875643 0.636191i
\(87\) 0 0
\(88\) 1.21696 3.74545i 0.129728 0.399266i
\(89\) 7.49158 0.794106 0.397053 0.917796i \(-0.370033\pi\)
0.397053 + 0.917796i \(0.370033\pi\)
\(90\) 0 0
\(91\) −3.26086 3.26086i −0.341831 0.341831i
\(92\) −5.32760 16.3966i −0.555441 1.70946i
\(93\) 0 0
\(94\) −4.71891 + 0.747406i −0.486719 + 0.0770890i
\(95\) 6.10874 0.626744
\(96\) 0 0
\(97\) −7.84085 −0.796118 −0.398059 0.917360i \(-0.630316\pi\)
−0.398059 + 0.917360i \(0.630316\pi\)
\(98\) −1.39680 + 0.221233i −0.141098 + 0.0223479i
\(99\) 0 0
\(100\) 4.72848 + 14.5527i 0.472848 + 1.45527i
\(101\) 0.748257 + 0.748257i 0.0744543 + 0.0744543i 0.743353 0.668899i \(-0.233234\pi\)
−0.668899 + 0.743353i \(0.733234\pi\)
\(102\) 0 0
\(103\) −11.8161 −1.16428 −0.582140 0.813089i \(-0.697784\pi\)
−0.582140 + 0.813089i \(0.697784\pi\)
\(104\) 12.4050 + 4.03061i 1.21641 + 0.395234i
\(105\) 0 0
\(106\) −6.03069 4.38155i −0.585753 0.425574i
\(107\) −4.41189 + 4.41189i −0.426514 + 0.426514i −0.887439 0.460925i \(-0.847518\pi\)
0.460925 + 0.887439i \(0.347518\pi\)
\(108\) 0 0
\(109\) −0.128743 0.128743i −0.0123314 0.0123314i 0.700914 0.713246i \(-0.252776\pi\)
−0.713246 + 0.700914i \(0.752776\pi\)
\(110\) −6.91745 + 1.09562i −0.659553 + 0.104463i
\(111\) 0 0
\(112\) 3.23606 2.35115i 0.305779 0.222163i
\(113\) 14.3042i 1.34563i 0.739811 + 0.672815i \(0.234915\pi\)
−0.739811 + 0.672815i \(0.765085\pi\)
\(114\) 0 0
\(115\) −21.6801 + 21.6801i −2.02168 + 2.02168i
\(116\) −2.62803 + 5.15782i −0.244007 + 0.478892i
\(117\) 0 0
\(118\) 11.8475 16.3067i 1.09065 1.50116i
\(119\) 5.50927i 0.505034i
\(120\) 0 0
\(121\) 9.06133i 0.823757i
\(122\) 1.73198 + 1.25836i 0.156806 + 0.113926i
\(123\) 0 0
\(124\) 0.101628 + 0.312777i 0.00912646 + 0.0280882i
\(125\) 6.66689 6.66689i 0.596304 0.596304i
\(126\) 0 0
\(127\) 1.31914i 0.117055i 0.998286 + 0.0585274i \(0.0186405\pi\)
−0.998286 + 0.0585274i \(0.981359\pi\)
\(128\) −5.13627 + 10.0806i −0.453986 + 0.891009i
\(129\) 0 0
\(130\) −3.62873 22.9108i −0.318261 2.00941i
\(131\) −3.84141 3.84141i −0.335626 0.335626i 0.519093 0.854718i \(-0.326270\pi\)
−0.854718 + 0.519093i \(0.826270\pi\)
\(132\) 0 0
\(133\) −1.21444 + 1.21444i −0.105306 + 0.105306i
\(134\) 3.66863 5.04945i 0.316922 0.436206i
\(135\) 0 0
\(136\) −7.07437 13.8842i −0.606622 1.19056i
\(137\) −11.8262 −1.01038 −0.505191 0.863008i \(-0.668578\pi\)
−0.505191 + 0.863008i \(0.668578\pi\)
\(138\) 0 0
\(139\) −10.6322 10.6322i −0.901814 0.901814i 0.0937788 0.995593i \(-0.470105\pi\)
−0.995593 + 0.0937788i \(0.970105\pi\)
\(140\) −6.33826 3.22950i −0.535681 0.272942i
\(141\) 0 0
\(142\) −1.69521 10.7031i −0.142259 0.898184i
\(143\) 6.42094 0.536946
\(144\) 0 0
\(145\) 10.2947 0.854930
\(146\) 1.85966 + 11.7413i 0.153906 + 0.971721i
\(147\) 0 0
\(148\) −10.6720 + 20.9451i −0.877234 + 1.72167i
\(149\) 9.66703 + 9.66703i 0.791954 + 0.791954i 0.981812 0.189858i \(-0.0608027\pi\)
−0.189858 + 0.981812i \(0.560803\pi\)
\(150\) 0 0
\(151\) −5.05132 −0.411070 −0.205535 0.978650i \(-0.565893\pi\)
−0.205535 + 0.978650i \(0.565893\pi\)
\(152\) 1.50113 4.62002i 0.121757 0.374733i
\(153\) 0 0
\(154\) 1.15740 1.59303i 0.0932663 0.128370i
\(155\) 0.413565 0.413565i 0.0332183 0.0332183i
\(156\) 0 0
\(157\) 11.1102 + 11.1102i 0.886692 + 0.886692i 0.994204 0.107512i \(-0.0342884\pi\)
−0.107512 + 0.994204i \(0.534288\pi\)
\(158\) −3.06876 19.3753i −0.244137 1.54142i
\(159\) 0 0
\(160\) 20.1203 6.79865e-5i 1.59065 5.37480e-6i
\(161\) 8.62021i 0.679367i
\(162\) 0 0
\(163\) 0.936756 0.936756i 0.0733724 0.0733724i −0.669468 0.742841i \(-0.733478\pi\)
0.742841 + 0.669468i \(0.233478\pi\)
\(164\) 18.1952 5.91200i 1.42080 0.461650i
\(165\) 0 0
\(166\) 11.8313 + 8.59592i 0.918286 + 0.667173i
\(167\) 17.9147i 1.38628i −0.720804 0.693139i \(-0.756227\pi\)
0.720804 0.693139i \(-0.243773\pi\)
\(168\) 0 0
\(169\) 8.26636i 0.635874i
\(170\) −16.2887 + 22.4195i −1.24929 + 1.71950i
\(171\) 0 0
\(172\) 12.6478 + 6.44435i 0.964385 + 0.491377i
\(173\) −1.95689 + 1.95689i −0.148780 + 0.148780i −0.777573 0.628793i \(-0.783549\pi\)
0.628793 + 0.777573i \(0.283549\pi\)
\(174\) 0 0
\(175\) 7.65081i 0.578347i
\(176\) −0.871238 + 5.50088i −0.0656720 + 0.414644i
\(177\) 0 0
\(178\) −10.4643 + 1.65738i −0.784329 + 0.124226i
\(179\) 16.4536 + 16.4536i 1.22980 + 1.22980i 0.964039 + 0.265760i \(0.0856230\pi\)
0.265760 + 0.964039i \(0.414377\pi\)
\(180\) 0 0
\(181\) 2.01639 2.01639i 0.149877 0.149877i −0.628186 0.778063i \(-0.716202\pi\)
0.778063 + 0.628186i \(0.216202\pi\)
\(182\) 5.27618 + 3.83336i 0.391096 + 0.284148i
\(183\) 0 0
\(184\) 11.0691 + 21.7242i 0.816023 + 1.60153i
\(185\) 41.8052 3.07358
\(186\) 0 0
\(187\) −5.42414 5.42414i −0.396653 0.396653i
\(188\) 6.42604 2.08796i 0.468667 0.152280i
\(189\) 0 0
\(190\) −8.53270 + 1.35145i −0.619027 + 0.0980447i
\(191\) −6.72330 −0.486481 −0.243240 0.969966i \(-0.578210\pi\)
−0.243240 + 0.969966i \(0.578210\pi\)
\(192\) 0 0
\(193\) 1.37543 0.0990058 0.0495029 0.998774i \(-0.484236\pi\)
0.0495029 + 0.998774i \(0.484236\pi\)
\(194\) 10.9521 1.73465i 0.786316 0.124541i
\(195\) 0 0
\(196\) 1.90211 0.618037i 0.135865 0.0441455i
\(197\) −10.2035 10.2035i −0.726967 0.726967i 0.243048 0.970014i \(-0.421853\pi\)
−0.970014 + 0.243048i \(0.921853\pi\)
\(198\) 0 0
\(199\) −14.9391 −1.05900 −0.529501 0.848309i \(-0.677621\pi\)
−0.529501 + 0.848309i \(0.677621\pi\)
\(200\) −9.82429 19.2811i −0.694682 1.36338i
\(201\) 0 0
\(202\) −1.21071 0.879628i −0.0851849 0.0618904i
\(203\) −2.04663 + 2.04663i −0.143646 + 0.143646i
\(204\) 0 0
\(205\) −24.0583 24.0583i −1.68030 1.68030i
\(206\) 16.5048 2.61412i 1.14994 0.182134i
\(207\) 0 0
\(208\) −18.2191 2.88557i −1.26327 0.200078i
\(209\) 2.39136i 0.165414i
\(210\) 0 0
\(211\) 4.93531 4.93531i 0.339761 0.339761i −0.516516 0.856277i \(-0.672772\pi\)
0.856277 + 0.516516i \(0.172772\pi\)
\(212\) 9.39303 + 4.78597i 0.645116 + 0.328702i
\(213\) 0 0
\(214\) 5.18648 7.13859i 0.354541 0.487984i
\(215\) 25.2443i 1.72164i
\(216\) 0 0
\(217\) 0.164437i 0.0111627i
\(218\) 0.208311 + 0.151347i 0.0141086 + 0.0102505i
\(219\) 0 0
\(220\) 9.41992 3.06073i 0.635091 0.206354i
\(221\) 17.9649 17.9649i 1.20845 1.20845i
\(222\) 0 0
\(223\) 5.25747i 0.352066i −0.984384 0.176033i \(-0.943673\pi\)
0.984384 0.176033i \(-0.0563266\pi\)
\(224\) −3.99999 + 4.00001i −0.267260 + 0.267262i
\(225\) 0 0
\(226\) −3.16456 19.9802i −0.210504 1.32906i
\(227\) −6.30931 6.30931i −0.418763 0.418763i 0.466014 0.884777i \(-0.345690\pi\)
−0.884777 + 0.466014i \(0.845690\pi\)
\(228\) 0 0
\(229\) 19.1785 19.1785i 1.26735 1.26735i 0.319899 0.947452i \(-0.396351\pi\)
0.947452 0.319899i \(-0.103649\pi\)
\(230\) 25.4865 35.0792i 1.68053 2.31305i
\(231\) 0 0
\(232\) 2.52976 7.78586i 0.166087 0.511167i
\(233\) −0.555029 −0.0363611 −0.0181806 0.999835i \(-0.505787\pi\)
−0.0181806 + 0.999835i \(0.505787\pi\)
\(234\) 0 0
\(235\) −8.49672 8.49672i −0.554265 0.554265i
\(236\) −12.9411 + 25.3983i −0.842391 + 1.65329i
\(237\) 0 0
\(238\) −1.21883 7.69536i −0.0790051 0.498816i
\(239\) −23.0408 −1.49039 −0.745194 0.666848i \(-0.767643\pi\)
−0.745194 + 0.666848i \(0.767643\pi\)
\(240\) 0 0
\(241\) −7.47827 −0.481718 −0.240859 0.970560i \(-0.577429\pi\)
−0.240859 + 0.970560i \(0.577429\pi\)
\(242\) −2.00466 12.6569i −0.128865 0.813615i
\(243\) 0 0
\(244\) −2.69762 1.37450i −0.172698 0.0879936i
\(245\) −2.51504 2.51504i −0.160680 0.160680i
\(246\) 0 0
\(247\) 7.92026 0.503954
\(248\) −0.211151 0.414405i −0.0134081 0.0263147i
\(249\) 0 0
\(250\) −7.83739 + 10.7873i −0.495680 + 0.682246i
\(251\) 18.7049 18.7049i 1.18064 1.18064i 0.201066 0.979578i \(-0.435559\pi\)
0.979578 0.201066i \(-0.0644407\pi\)
\(252\) 0 0
\(253\) 8.48701 + 8.48701i 0.533574 + 0.533574i
\(254\) −0.291837 1.84258i −0.0183115 0.115614i
\(255\) 0 0
\(256\) 4.94419 15.2169i 0.309012 0.951058i
\(257\) 18.3076i 1.14200i −0.820951 0.570998i \(-0.806556\pi\)
0.820951 0.570998i \(-0.193444\pi\)
\(258\) 0 0
\(259\) −8.31105 + 8.31105i −0.516423 + 0.516423i
\(260\) 10.1372 + 31.1991i 0.628685 + 1.93489i
\(261\) 0 0
\(262\) 6.21554 + 4.51584i 0.383997 + 0.278990i
\(263\) 20.1306i 1.24130i −0.784086 0.620652i \(-0.786868\pi\)
0.784086 0.620652i \(-0.213132\pi\)
\(264\) 0 0
\(265\) 18.7479i 1.15168i
\(266\) 1.42766 1.96501i 0.0875357 0.120483i
\(267\) 0 0
\(268\) −4.00725 + 7.86470i −0.244782 + 0.480413i
\(269\) −8.69779 + 8.69779i −0.530313 + 0.530313i −0.920666 0.390352i \(-0.872353\pi\)
0.390352 + 0.920666i \(0.372353\pi\)
\(270\) 0 0
\(271\) 11.6299i 0.706466i 0.935535 + 0.353233i \(0.114918\pi\)
−0.935535 + 0.353233i \(0.885082\pi\)
\(272\) 12.9531 + 17.8283i 0.785399 + 1.08100i
\(273\) 0 0
\(274\) 16.5189 2.61635i 0.997942 0.158059i
\(275\) −7.53259 7.53259i −0.454232 0.454232i
\(276\) 0 0
\(277\) 22.9876 22.9876i 1.38119 1.38119i 0.538679 0.842511i \(-0.318923\pi\)
0.842511 0.538679i \(-0.181077\pi\)
\(278\) 17.2033 + 12.4989i 1.03179 + 0.749636i
\(279\) 0 0
\(280\) 9.56777 + 3.10874i 0.571784 + 0.185783i
\(281\) 11.5187 0.687148 0.343574 0.939126i \(-0.388362\pi\)
0.343574 + 0.939126i \(0.388362\pi\)
\(282\) 0 0
\(283\) −15.6255 15.6255i −0.928839 0.928839i 0.0687924 0.997631i \(-0.478085\pi\)
−0.997631 + 0.0687924i \(0.978085\pi\)
\(284\) 4.73575 + 14.5751i 0.281015 + 0.864872i
\(285\) 0 0
\(286\) −8.96878 + 1.42052i −0.530335 + 0.0839972i
\(287\) 9.56578 0.564650
\(288\) 0 0
\(289\) −13.3521 −0.785417
\(290\) −14.3797 + 2.27753i −0.844404 + 0.133741i
\(291\) 0 0
\(292\) −5.19514 15.9889i −0.304023 0.935681i
\(293\) −3.77816 3.77816i −0.220722 0.220722i 0.588080 0.808803i \(-0.299884\pi\)
−0.808803 + 0.588080i \(0.799884\pi\)
\(294\) 0 0
\(295\) 50.6936 2.95150
\(296\) 10.2730 31.6171i 0.597104 1.83771i
\(297\) 0 0
\(298\) −15.6416 11.3643i −0.906093 0.658314i
\(299\) −28.1093 + 28.1093i −1.62560 + 1.62560i
\(300\) 0 0
\(301\) 5.01867 + 5.01867i 0.289271 + 0.289271i
\(302\) 7.05569 1.11752i 0.406009 0.0643058i
\(303\) 0 0
\(304\) −1.07468 + 6.78536i −0.0616369 + 0.389167i
\(305\) 5.38430i 0.308304i
\(306\) 0 0
\(307\) 0.708546 0.708546i 0.0404389 0.0404389i −0.686598 0.727037i \(-0.740897\pi\)
0.727037 + 0.686598i \(0.240897\pi\)
\(308\) −1.26423 + 2.48121i −0.0720364 + 0.141380i
\(309\) 0 0
\(310\) −0.486174 + 0.669162i −0.0276128 + 0.0380058i
\(311\) 21.6074i 1.22525i 0.790376 + 0.612623i \(0.209885\pi\)
−0.790376 + 0.612623i \(0.790115\pi\)
\(312\) 0 0
\(313\) 5.11637i 0.289194i 0.989491 + 0.144597i \(0.0461886\pi\)
−0.989491 + 0.144597i \(0.953811\pi\)
\(314\) −17.9767 13.0608i −1.01448 0.737065i
\(315\) 0 0
\(316\) 8.57290 + 26.3845i 0.482263 + 1.48425i
\(317\) −7.88622 + 7.88622i −0.442934 + 0.442934i −0.892997 0.450063i \(-0.851402\pi\)
0.450063 + 0.892997i \(0.351402\pi\)
\(318\) 0 0
\(319\) 4.03002i 0.225638i
\(320\) −28.1040 + 4.45136i −1.57106 + 0.248839i
\(321\) 0 0
\(322\) 1.90707 + 12.0407i 0.106277 + 0.671003i
\(323\) −6.69070 6.69070i −0.372281 0.372281i
\(324\) 0 0
\(325\) 24.9482 24.9482i 1.38388 1.38388i
\(326\) −1.10122 + 1.51570i −0.0609911 + 0.0839471i
\(327\) 0 0
\(328\) −24.1071 + 12.2833i −1.33109 + 0.678230i
\(329\) 3.37837 0.186256
\(330\) 0 0
\(331\) 0.144453 + 0.144453i 0.00793985 + 0.00793985i 0.711066 0.703126i \(-0.248213\pi\)
−0.703126 + 0.711066i \(0.748213\pi\)
\(332\) −18.4277 9.38934i −1.01135 0.515307i
\(333\) 0 0
\(334\) 3.96331 + 25.0232i 0.216862 + 1.36921i
\(335\) 15.6975 0.857646
\(336\) 0 0
\(337\) −18.3255 −0.998256 −0.499128 0.866528i \(-0.666346\pi\)
−0.499128 + 0.866528i \(0.666346\pi\)
\(338\) −1.82879 11.5465i −0.0994731 0.628045i
\(339\) 0 0
\(340\) 17.7922 34.9192i 0.964916 1.89376i
\(341\) −0.161896 0.161896i −0.00876716 0.00876716i
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) −19.0922 6.20338i −1.02938 0.334464i
\(345\) 0 0
\(346\) 2.30046 3.16632i 0.123674 0.170222i
\(347\) −7.70010 + 7.70010i −0.413363 + 0.413363i −0.882908 0.469545i \(-0.844418\pi\)
0.469545 + 0.882908i \(0.344418\pi\)
\(348\) 0 0
\(349\) 9.23902 + 9.23902i 0.494553 + 0.494553i 0.909737 0.415184i \(-0.136283\pi\)
−0.415184 + 0.909737i \(0.636283\pi\)
\(350\) −1.69261 10.6867i −0.0904738 0.571226i
\(351\) 0 0
\(352\) −2.66143e−5 7.87638i −1.41855e−6 0.419813i
\(353\) 13.9051i 0.740092i 0.929013 + 0.370046i \(0.120658\pi\)
−0.929013 + 0.370046i \(0.879342\pi\)
\(354\) 0 0
\(355\) 19.2716 19.2716i 1.02283 1.02283i
\(356\) 14.2498 4.63007i 0.755239 0.245393i
\(357\) 0 0
\(358\) −26.6225 19.3423i −1.40704 1.02227i
\(359\) 20.3979i 1.07656i −0.842766 0.538281i \(-0.819074\pi\)
0.842766 0.538281i \(-0.180926\pi\)
\(360\) 0 0
\(361\) 16.0503i 0.844750i
\(362\) −2.37041 + 3.26259i −0.124586 + 0.171478i
\(363\) 0 0
\(364\) −8.21784 4.18719i −0.430732 0.219468i
\(365\) −21.1411 + 21.1411i −1.10658 + 1.10658i
\(366\) 0 0
\(367\) 21.2755i 1.11057i 0.831660 + 0.555285i \(0.187391\pi\)
−0.831660 + 0.555285i \(0.812609\pi\)
\(368\) −20.2674 27.8955i −1.05651 1.45415i
\(369\) 0 0
\(370\) −58.3936 + 9.24867i −3.03574 + 0.480815i
\(371\) 3.72717 + 3.72717i 0.193505 + 0.193505i
\(372\) 0 0
\(373\) 14.6527 14.6527i 0.758688 0.758688i −0.217396 0.976084i \(-0.569756\pi\)
0.976084 + 0.217396i \(0.0697562\pi\)
\(374\) 8.77645 + 6.37646i 0.453820 + 0.329719i
\(375\) 0 0
\(376\) −8.51398 + 4.33811i −0.439075 + 0.223721i
\(377\) 13.3476 0.687434
\(378\) 0 0
\(379\) −8.85565 8.85565i −0.454884 0.454884i 0.442088 0.896972i \(-0.354238\pi\)
−0.896972 + 0.442088i \(0.854238\pi\)
\(380\) 11.6195 3.77543i 0.596068 0.193675i
\(381\) 0 0
\(382\) 9.39111 1.48741i 0.480491 0.0761027i
\(383\) −33.3573 −1.70448 −0.852238 0.523154i \(-0.824755\pi\)
−0.852238 + 0.523154i \(0.824755\pi\)
\(384\) 0 0
\(385\) 4.95235 0.252395
\(386\) −1.92121 + 0.304291i −0.0977869 + 0.0154880i
\(387\) 0 0
\(388\) −14.9142 + 4.84593i −0.757153 + 0.246015i
\(389\) 2.00738 + 2.00738i 0.101778 + 0.101778i 0.756162 0.654384i \(-0.227072\pi\)
−0.654384 + 0.756162i \(0.727072\pi\)
\(390\) 0 0
\(391\) 47.4911 2.40173
\(392\) −2.52014 + 1.28408i −0.127287 + 0.0648560i
\(393\) 0 0
\(394\) 16.5096 + 11.9949i 0.831739 + 0.604293i
\(395\) 34.8865 34.8865i 1.75533 1.75533i
\(396\) 0 0
\(397\) −2.43985 2.43985i −0.122453 0.122453i 0.643225 0.765677i \(-0.277596\pi\)
−0.765677 + 0.643225i \(0.777596\pi\)
\(398\) 20.8669 3.30501i 1.04596 0.165665i
\(399\) 0 0
\(400\) 17.9882 + 24.7585i 0.899410 + 1.23792i
\(401\) 11.6798i 0.583263i 0.956531 + 0.291632i \(0.0941981\pi\)
−0.956531 + 0.291632i \(0.905802\pi\)
\(402\) 0 0
\(403\) 0.536205 0.536205i 0.0267103 0.0267103i
\(404\) 1.88572 + 0.960818i 0.0938180 + 0.0478025i
\(405\) 0 0
\(406\) 2.40596 3.31153i 0.119406 0.164348i
\(407\) 16.3653i 0.811195i
\(408\) 0 0
\(409\) 15.2951i 0.756292i 0.925746 + 0.378146i \(0.123438\pi\)
−0.925746 + 0.378146i \(0.876562\pi\)
\(410\) 38.9271 + 28.2822i 1.92247 + 1.39676i
\(411\) 0 0
\(412\) −22.4756 + 7.30281i −1.10729 + 0.359784i
\(413\) −10.0781 + 10.0781i −0.495911 + 0.495911i
\(414\) 0 0
\(415\) 36.7806i 1.80549i
\(416\) 26.0868 8.81475e-5i 1.27901 4.32179e-6i
\(417\) 0 0
\(418\) 0.529046 + 3.34025i 0.0258765 + 0.163377i
\(419\) 13.1833 + 13.1833i 0.644045 + 0.644045i 0.951547 0.307502i \(-0.0994932\pi\)
−0.307502 + 0.951547i \(0.599493\pi\)
\(420\) 0 0
\(421\) −22.2574 + 22.2574i −1.08476 + 1.08476i −0.0887017 + 0.996058i \(0.528272\pi\)
−0.996058 + 0.0887017i \(0.971728\pi\)
\(422\) −5.80180 + 7.98550i −0.282427 + 0.388728i
\(423\) 0 0
\(424\) −14.1790 4.60701i −0.688594 0.223736i
\(425\) −42.1504 −2.04459
\(426\) 0 0
\(427\) −1.07042 1.07042i −0.0518014 0.0518014i
\(428\) −5.66520 + 11.1186i −0.273838 + 0.537439i
\(429\) 0 0
\(430\) 5.58486 + 35.2612i 0.269326 + 1.70045i
\(431\) −19.0326 −0.916769 −0.458385 0.888754i \(-0.651572\pi\)
−0.458385 + 0.888754i \(0.651572\pi\)
\(432\) 0 0
\(433\) −31.7120 −1.52398 −0.761992 0.647587i \(-0.775778\pi\)
−0.761992 + 0.647587i \(0.775778\pi\)
\(434\) −0.0363788 0.229686i −0.00174624 0.0110253i
\(435\) 0 0
\(436\) −0.324452 0.165316i −0.0155384 0.00791720i
\(437\) 10.4688 + 10.4688i 0.500789 + 0.500789i
\(438\) 0 0
\(439\) 32.9521 1.57272 0.786359 0.617770i \(-0.211964\pi\)
0.786359 + 0.617770i \(0.211964\pi\)
\(440\) −12.4806 + 6.35923i −0.594991 + 0.303164i
\(441\) 0 0
\(442\) −21.1190 + 29.0679i −1.00453 + 1.38262i
\(443\) −4.94776 + 4.94776i −0.235075 + 0.235075i −0.814807 0.579732i \(-0.803157\pi\)
0.579732 + 0.814807i \(0.303157\pi\)
\(444\) 0 0
\(445\) −18.8416 18.8416i −0.893177 0.893177i
\(446\) 1.16312 + 7.34365i 0.0550755 + 0.347732i
\(447\) 0 0
\(448\) 4.70226 6.47216i 0.222161 0.305781i
\(449\) 31.5258i 1.48779i −0.668294 0.743897i \(-0.732975\pi\)
0.668294 0.743897i \(-0.267025\pi\)
\(450\) 0 0
\(451\) −9.41796 + 9.41796i −0.443475 + 0.443475i
\(452\) 8.84054 + 27.2083i 0.415824 + 1.27977i
\(453\) 0 0
\(454\) 10.2087 + 7.41703i 0.479117 + 0.348098i
\(455\) 16.4023i 0.768954i
\(456\) 0 0
\(457\) 35.2517i 1.64901i 0.565857 + 0.824503i \(0.308545\pi\)
−0.565857 + 0.824503i \(0.691455\pi\)
\(458\) −22.5456 + 31.0315i −1.05349 + 1.45001i
\(459\) 0 0
\(460\) −27.8389 + 54.6372i −1.29800 + 2.54747i
\(461\) −15.8769 + 15.8769i −0.739462 + 0.739462i −0.972474 0.233012i \(-0.925142\pi\)
0.233012 + 0.972474i \(0.425142\pi\)
\(462\) 0 0
\(463\) 15.9217i 0.739946i −0.929043 0.369973i \(-0.879367\pi\)
0.929043 0.369973i \(-0.120633\pi\)
\(464\) −1.81109 + 11.4350i −0.0840778 + 0.530855i
\(465\) 0 0
\(466\) 0.775265 0.122790i 0.0359135 0.00568816i
\(467\) −6.52420 6.52420i −0.301904 0.301904i 0.539854 0.841758i \(-0.318479\pi\)
−0.841758 + 0.539854i \(0.818479\pi\)
\(468\) 0 0
\(469\) −3.12073 + 3.12073i −0.144102 + 0.144102i
\(470\) 13.7480 + 9.98848i 0.634147 + 0.460734i
\(471\) 0 0
\(472\) 12.4572 38.3394i 0.573387 1.76472i
\(473\) −9.88224 −0.454386
\(474\) 0 0
\(475\) −9.29148 9.29148i −0.426323 0.426323i
\(476\) 3.40493 + 10.4793i 0.156065 + 0.480316i
\(477\) 0 0
\(478\) 32.1835 5.09738i 1.47204 0.233149i
\(479\) −31.5891 −1.44334 −0.721671 0.692237i \(-0.756625\pi\)
−0.721671 + 0.692237i \(0.756625\pi\)
\(480\) 0 0
\(481\) 54.2023 2.47141
\(482\) 10.4457 1.65444i 0.475787 0.0753576i
\(483\) 0 0
\(484\) 5.60023 + 17.2357i 0.254556 + 0.783439i
\(485\) 19.7200 + 19.7200i 0.895440 + 0.895440i
\(486\) 0 0
\(487\) −29.4810 −1.33591 −0.667955 0.744202i \(-0.732830\pi\)
−0.667955 + 0.744202i \(0.732830\pi\)
\(488\) 4.07213 + 1.32311i 0.184337 + 0.0598942i
\(489\) 0 0
\(490\) 4.06942 + 2.95660i 0.183837 + 0.133566i
\(491\) −6.06862 + 6.06862i −0.273873 + 0.273873i −0.830657 0.556784i \(-0.812035\pi\)
0.556784 + 0.830657i \(0.312035\pi\)
\(492\) 0 0
\(493\) −11.2755 11.2755i −0.507821 0.507821i
\(494\) −11.0630 + 1.75222i −0.497749 + 0.0788361i
\(495\) 0 0
\(496\) 0.386616 + 0.532128i 0.0173596 + 0.0238932i
\(497\) 7.66257i 0.343713i
\(498\) 0 0
\(499\) 15.8968 15.8968i 0.711638 0.711638i −0.255240 0.966878i \(-0.582154\pi\)
0.966878 + 0.255240i \(0.0821544\pi\)
\(500\) 8.56079 16.8015i 0.382850 0.751388i
\(501\) 0 0
\(502\) −21.9889 + 30.2652i −0.981414 + 1.35080i
\(503\) 17.1978i 0.766813i 0.923580 + 0.383406i \(0.125249\pi\)
−0.923580 + 0.383406i \(0.874751\pi\)
\(504\) 0 0
\(505\) 3.76379i 0.167486i
\(506\) −13.7323 9.97707i −0.610474 0.443535i
\(507\) 0 0
\(508\) 0.815278 + 2.50916i 0.0361721 + 0.111326i
\(509\) 0.959431 0.959431i 0.0425260 0.0425260i −0.685524 0.728050i \(-0.740427\pi\)
0.728050 + 0.685524i \(0.240427\pi\)
\(510\) 0 0
\(511\) 8.40588i 0.371854i
\(512\) −3.53957 + 22.3489i −0.156428 + 0.987689i
\(513\) 0 0
\(514\) 4.05024 + 25.5721i 0.178648 + 1.12794i
\(515\) 29.7180 + 29.7180i 1.30953 + 1.30953i
\(516\) 0 0
\(517\) −3.32617 + 3.32617i −0.146285 + 0.146285i
\(518\) 9.77021 13.4476i 0.429279 0.590852i
\(519\) 0 0
\(520\) −21.0620 41.3363i −0.923629 1.81272i
\(521\) −9.04026 −0.396061 −0.198030 0.980196i \(-0.563454\pi\)
−0.198030 + 0.980196i \(0.563454\pi\)
\(522\) 0 0
\(523\) −5.32615 5.32615i −0.232896 0.232896i 0.581004 0.813901i \(-0.302660\pi\)
−0.813901 + 0.581004i \(0.802660\pi\)
\(524\) −9.68093 4.93266i −0.422913 0.215484i
\(525\) 0 0
\(526\) 4.45354 + 28.1184i 0.194184 + 1.22602i
\(527\) −0.905927 −0.0394628
\(528\) 0 0
\(529\) −51.3080 −2.23078
\(530\) 4.14766 + 26.1872i 0.180163 + 1.13750i
\(531\) 0 0
\(532\) −1.55944 + 3.06058i −0.0676102 + 0.132693i
\(533\) −31.1926 31.1926i −1.35110 1.35110i
\(534\) 0 0
\(535\) 22.1921 0.959449
\(536\) 3.85741 11.8720i 0.166615 0.512791i
\(537\) 0 0
\(538\) 10.2249 14.0733i 0.440825 0.606744i
\(539\) −0.984548 + 0.984548i −0.0424075 + 0.0424075i
\(540\) 0 0
\(541\) 12.7082 + 12.7082i 0.546367 + 0.546367i 0.925388 0.379021i \(-0.123739\pi\)
−0.379021 + 0.925388i \(0.623739\pi\)
\(542\) −2.57291 16.2447i −0.110516 0.697768i
\(543\) 0 0
\(544\) −22.0372 22.0370i −0.944836 0.944829i
\(545\) 0.647588i 0.0277396i
\(546\) 0 0
\(547\) 19.7217 19.7217i 0.843239 0.843239i −0.146040 0.989279i \(-0.546653\pi\)
0.989279 + 0.146040i \(0.0466527\pi\)
\(548\) −22.4948 + 7.30904i −0.960930 + 0.312227i
\(549\) 0 0
\(550\) 12.1880 + 8.85508i 0.519698 + 0.377582i
\(551\) 4.97105i 0.211774i
\(552\) 0 0
\(553\) 13.8712i 0.589863i
\(554\) −27.0235 + 37.1947i −1.14812 + 1.58025i
\(555\) 0 0
\(556\) −26.7948 13.6526i −1.13635 0.578999i
\(557\) 32.2571 32.2571i 1.36678 1.36678i 0.501789 0.864990i \(-0.332675\pi\)
0.864990 0.501789i \(-0.167325\pi\)
\(558\) 0 0
\(559\) 32.7303i 1.38434i
\(560\) −14.0520 2.22559i −0.593807 0.0940481i
\(561\) 0 0
\(562\) −16.0893 + 2.54831i −0.678688 + 0.107494i
\(563\) −27.0814 27.0814i −1.14134 1.14134i −0.988205 0.153138i \(-0.951062\pi\)
−0.153138 0.988205i \(-0.548938\pi\)
\(564\) 0 0
\(565\) 35.9757 35.9757i 1.51351 1.51351i
\(566\) 25.2826 + 18.3688i 1.06271 + 0.772100i
\(567\) 0 0
\(568\) −9.83939 19.3108i −0.412852 0.810263i
\(569\) 28.4823 1.19404 0.597020 0.802226i \(-0.296351\pi\)
0.597020 + 0.802226i \(0.296351\pi\)
\(570\) 0 0
\(571\) 15.8844 + 15.8844i 0.664743 + 0.664743i 0.956494 0.291751i \(-0.0942380\pi\)
−0.291751 + 0.956494i \(0.594238\pi\)
\(572\) 12.2133 3.96837i 0.510666 0.165926i
\(573\) 0 0
\(574\) −13.3615 + 2.11626i −0.557698 + 0.0883311i
\(575\) 65.9516 2.75037
\(576\) 0 0
\(577\) 4.65713 0.193879 0.0969395 0.995290i \(-0.469095\pi\)
0.0969395 + 0.995290i \(0.469095\pi\)
\(578\) 18.6502 2.95392i 0.775747 0.122867i
\(579\) 0 0
\(580\) 19.5817 6.36251i 0.813086 0.264189i
\(581\) −7.31214 7.31214i −0.303359 0.303359i
\(582\) 0 0
\(583\) −7.33916 −0.303957
\(584\) 10.7939 + 21.1840i 0.446653 + 0.876601i
\(585\) 0 0
\(586\) 6.11319 + 4.44149i 0.252534 + 0.183476i
\(587\) −13.2034 + 13.2034i −0.544963 + 0.544963i −0.924980 0.380017i \(-0.875918\pi\)
0.380017 + 0.924980i \(0.375918\pi\)
\(588\) 0 0
\(589\) −0.199699 0.199699i −0.00822847 0.00822847i
\(590\) −70.8090 + 11.2151i −2.91516 + 0.461718i
\(591\) 0 0
\(592\) −7.35455 + 46.4356i −0.302270 + 1.90849i
\(593\) 8.00745i 0.328827i 0.986392 + 0.164413i \(0.0525731\pi\)
−0.986392 + 0.164413i \(0.947427\pi\)
\(594\) 0 0
\(595\) 13.8560 13.8560i 0.568041 0.568041i
\(596\) 24.3624 + 12.4132i 0.997921 + 0.508464i
\(597\) 0 0
\(598\) 33.0444 45.4817i 1.35129 1.85989i
\(599\) 29.8782i 1.22079i −0.792096 0.610396i \(-0.791010\pi\)
0.792096 0.610396i \(-0.208990\pi\)
\(600\) 0 0
\(601\) 28.4594i 1.16088i −0.814302 0.580441i \(-0.802880\pi\)
0.814302 0.580441i \(-0.197120\pi\)
\(602\) −8.12038 5.89979i −0.330962 0.240458i
\(603\) 0 0
\(604\) −9.60817 + 3.12190i −0.390951 + 0.127028i
\(605\) 22.7896 22.7896i 0.926528 0.926528i
\(606\) 0 0
\(607\) 27.1606i 1.10242i 0.834368 + 0.551208i \(0.185833\pi\)
−0.834368 + 0.551208i \(0.814167\pi\)
\(608\) −3.28289e−5 9.71555i −1.33139e−6 0.394018i
\(609\) 0 0
\(610\) −1.19118 7.52080i −0.0482296 0.304508i
\(611\) −11.0164 11.0164i −0.445675 0.445675i
\(612\) 0 0
\(613\) −25.1239 + 25.1239i −1.01474 + 1.01474i −0.0148539 + 0.999890i \(0.504728\pi\)
−0.999890 + 0.0148539i \(0.995272\pi\)
\(614\) −0.832946 + 1.14645i −0.0336149 + 0.0462671i
\(615\) 0 0
\(616\) 1.21696 3.74545i 0.0490327 0.150908i
\(617\) −20.2712 −0.816089 −0.408044 0.912962i \(-0.633789\pi\)
−0.408044 + 0.912962i \(0.633789\pi\)
\(618\) 0 0
\(619\) −13.2344 13.2344i −0.531937 0.531937i 0.389211 0.921148i \(-0.372748\pi\)
−0.921148 + 0.389211i \(0.872748\pi\)
\(620\) 0.531048 1.04224i 0.0213274 0.0418575i
\(621\) 0 0
\(622\) −4.78027 30.1813i −0.191671 1.21016i
\(623\) 7.49158 0.300144
\(624\) 0 0
\(625\) 4.71914 0.188766
\(626\) −1.13191 7.14655i −0.0452401 0.285634i
\(627\) 0 0
\(628\) 27.9994 + 14.2664i 1.11730 + 0.569290i
\(629\) −45.7878 45.7878i −1.82568 1.82568i
\(630\) 0 0
\(631\) −47.8911 −1.90651 −0.953257 0.302161i \(-0.902292\pi\)
−0.953257 + 0.302161i \(0.902292\pi\)
\(632\) −17.8118 34.9574i −0.708514 1.39053i
\(633\) 0 0
\(634\) 9.27080 12.7602i 0.368191 0.506771i
\(635\) 3.31769 3.31769i 0.131658 0.131658i
\(636\) 0 0
\(637\) −3.26086 3.26086i −0.129200 0.129200i
\(638\) 0.891572 + 5.62914i 0.0352977 + 0.222860i
\(639\) 0 0
\(640\) 38.2710 12.4352i 1.51279 0.491545i
\(641\) 23.5861i 0.931595i 0.884891 + 0.465797i \(0.154232\pi\)
−0.884891 + 0.465797i \(0.845768\pi\)
\(642\) 0 0
\(643\) −29.9073 + 29.9073i −1.17943 + 1.17943i −0.199537 + 0.979890i \(0.563944\pi\)
−0.979890 + 0.199537i \(0.936056\pi\)
\(644\) −5.32760 16.3966i −0.209937 0.646117i
\(645\) 0 0
\(646\) 10.8258 + 7.86539i 0.425935 + 0.309460i
\(647\) 35.8559i 1.40964i −0.709385 0.704821i \(-0.751027\pi\)
0.709385 0.704821i \(-0.248973\pi\)
\(648\) 0 0
\(649\) 19.8448i 0.778975i
\(650\) −29.3283 + 40.3670i −1.15035 + 1.58333i
\(651\) 0 0
\(652\) 1.20287 2.36077i 0.0471079 0.0924547i
\(653\) −26.7966 + 26.7966i −1.04863 + 1.04863i −0.0498765 + 0.998755i \(0.515883\pi\)
−0.998755 + 0.0498765i \(0.984117\pi\)
\(654\) 0 0
\(655\) 19.3226i 0.754995i
\(656\) 30.9554 22.4906i 1.20861 0.878109i
\(657\) 0 0
\(658\) −4.71891 + 0.747406i −0.183962 + 0.0291369i
\(659\) −19.9220 19.9220i −0.776050 0.776050i 0.203107 0.979157i \(-0.434896\pi\)
−0.979157 + 0.203107i \(0.934896\pi\)
\(660\) 0 0
\(661\) 3.02969 3.02969i 0.117841 0.117841i −0.645727 0.763568i \(-0.723446\pi\)
0.763568 + 0.645727i \(0.223446\pi\)
\(662\) −0.233730 0.169814i −0.00908417 0.00660003i
\(663\) 0 0
\(664\) 27.8170 + 9.03824i 1.07951 + 0.350752i
\(665\) 6.10874 0.236887
\(666\) 0 0
\(667\) 17.6424 + 17.6424i 0.683117 + 0.683117i
\(668\) −11.0719 34.0757i −0.428385 1.31843i
\(669\) 0 0
\(670\) −21.9263 + 3.47280i −0.847087 + 0.134166i
\(671\) 2.10776 0.0813693
\(672\) 0 0
\(673\) 41.8102 1.61166 0.805832 0.592144i \(-0.201718\pi\)
0.805832 + 0.592144i \(0.201718\pi\)
\(674\) 25.5972 4.05421i 0.985965 0.156162i
\(675\) 0 0
\(676\) 5.10892 + 15.7236i 0.196497 + 0.604752i
\(677\) −11.0622 11.0622i −0.425154 0.425154i 0.461820 0.886974i \(-0.347197\pi\)
−0.886974 + 0.461820i \(0.847197\pi\)
\(678\) 0 0
\(679\) −7.84085 −0.300904
\(680\) −17.1269 + 52.7115i −0.656786 + 2.02139i
\(681\) 0 0
\(682\) 0.261953 + 0.190320i 0.0100307 + 0.00728773i
\(683\) −25.6844 + 25.6844i −0.982786 + 0.982786i −0.999854 0.0170687i \(-0.994567\pi\)
0.0170687 + 0.999854i \(0.494567\pi\)
\(684\) 0 0
\(685\) 29.7434 + 29.7434i 1.13644 + 1.13644i
\(686\) −1.39680 + 0.221233i −0.0533302 + 0.00844670i
\(687\) 0 0
\(688\) 28.0404 + 4.44108i 1.06903 + 0.169315i
\(689\) 24.3075i 0.926044i
\(690\) 0 0
\(691\) 15.7276 15.7276i 0.598306 0.598306i −0.341556 0.939862i \(-0.610954\pi\)
0.939862 + 0.341556i \(0.110954\pi\)
\(692\) −2.51280 + 4.93166i −0.0955222 + 0.187474i
\(693\) 0 0
\(694\) 9.05200 12.4590i 0.343609 0.472938i
\(695\) 53.4809i 2.02865i
\(696\) 0 0
\(697\) 52.7005i 1.99617i
\(698\) −14.9490 10.8611i −0.565830 0.411099i
\(699\) 0 0
\(700\) 4.72848 + 14.5527i 0.178720 + 0.550040i
\(701\) −4.35804 + 4.35804i −0.164601 + 0.164601i −0.784601 0.620000i \(-0.787132\pi\)
0.620000 + 0.784601i \(0.287132\pi\)
\(702\) 0 0
\(703\) 20.1866i 0.761352i
\(704\) 1.74255 + 11.0017i 0.0656748 + 0.414644i
\(705\) 0 0
\(706\) −3.07626 19.4226i −0.115776 0.730981i
\(707\) 0.748257 + 0.748257i 0.0281411 + 0.0281411i
\(708\) 0 0
\(709\) −2.68056 + 2.68056i −0.100670 + 0.100670i −0.755648 0.654978i \(-0.772678\pi\)
0.654978 + 0.755648i \(0.272678\pi\)
\(710\) −22.6552 + 31.1822i −0.850233 + 1.17025i
\(711\) 0 0
\(712\) −18.8799 + 9.61982i −0.707553 + 0.360518i
\(713\) 1.41748 0.0530850
\(714\) 0 0
\(715\) −16.1489 16.1489i −0.603934 0.603934i
\(716\) 41.4655 + 21.1277i 1.54964 + 0.789578i
\(717\) 0 0
\(718\) 4.51269 + 28.4919i 0.168412 + 1.06331i
\(719\) 19.9117 0.742581 0.371290 0.928517i \(-0.378915\pi\)
0.371290 + 0.928517i \(0.378915\pi\)
\(720\) 0 0
\(721\) −11.8161 −0.440056
\(722\) −3.55084 22.4190i −0.132149 0.834350i
\(723\) 0 0
\(724\) 2.58920 5.08160i 0.0962268 0.188856i
\(725\) −15.6584 15.6584i −0.581539 0.581539i
\(726\) 0 0
\(727\) 24.0642 0.892491 0.446246 0.894911i \(-0.352761\pi\)
0.446246 + 0.894911i \(0.352761\pi\)
\(728\) 12.4050 + 4.03061i 0.459761 + 0.149385i
\(729\) 0 0
\(730\) 24.8528 34.2070i 0.919844 1.26606i
\(731\) −27.6492 + 27.6492i −1.02264 + 1.02264i
\(732\) 0 0
\(733\) −3.18890 3.18890i −0.117785 0.117785i 0.645758 0.763542i \(-0.276542\pi\)
−0.763542 + 0.645758i \(0.776542\pi\)
\(734\) −4.70683 29.7176i −0.173732 1.09690i
\(735\) 0 0
\(736\) 34.4809 + 34.4807i 1.27098 + 1.27098i
\(737\) 6.14502i 0.226355i
\(738\) 0 0
\(739\) 20.8311 20.8311i 0.766285 0.766285i −0.211165 0.977450i \(-0.567726\pi\)
0.977450 + 0.211165i \(0.0677258\pi\)
\(740\) 79.5181 25.8371i 2.92314 0.949792i
\(741\) 0 0
\(742\) −6.03069 4.38155i −0.221394 0.160852i
\(743\) 28.6291i 1.05030i 0.851010 + 0.525150i \(0.175991\pi\)
−0.851010 + 0.525150i \(0.824009\pi\)
\(744\) 0 0
\(745\) 48.6258i 1.78151i
\(746\) −17.2253 + 23.7086i −0.630662 + 0.868032i
\(747\) 0 0
\(748\) −13.6696 6.96501i −0.499812 0.254666i
\(749\) −4.41189 + 4.41189i −0.161207 + 0.161207i
\(750\) 0 0
\(751\) 28.1706i 1.02796i −0.857802 0.513980i \(-0.828170\pi\)
0.857802 0.513980i \(-0.171830\pi\)
\(752\) 10.9326 7.94305i 0.398671 0.289653i
\(753\) 0 0
\(754\) −18.6439 + 2.95292i −0.678971 + 0.107539i
\(755\) 12.7042 + 12.7042i 0.462355 + 0.462355i
\(756\) 0 0
\(757\) −4.64056 + 4.64056i −0.168664 + 0.168664i −0.786392 0.617728i \(-0.788053\pi\)
0.617728 + 0.786392i \(0.288053\pi\)
\(758\) 14.3287 + 10.4104i 0.520444 + 0.378124i
\(759\) 0 0
\(760\) −15.3949 + 7.84414i −0.558432 + 0.284537i
\(761\) 6.29768 0.228291 0.114145 0.993464i \(-0.463587\pi\)
0.114145 + 0.993464i \(0.463587\pi\)
\(762\) 0 0
\(763\) −0.128743 0.128743i −0.00466082 0.00466082i
\(764\) −12.7885 + 4.15524i −0.462670 + 0.150331i
\(765\) 0 0
\(766\) 46.5935 7.37972i 1.68349 0.266640i
\(767\) 65.7265 2.37325
\(768\) 0 0
\(769\) 4.73382 0.170706 0.0853529 0.996351i \(-0.472798\pi\)
0.0853529 + 0.996351i \(0.472798\pi\)
\(770\) −6.91745 + 1.09562i −0.249288 + 0.0394834i
\(771\) 0 0
\(772\) 2.61623 0.850068i 0.0941601 0.0305946i
\(773\) −5.44275 5.44275i −0.195762 0.195762i 0.602418 0.798180i \(-0.294204\pi\)
−0.798180 + 0.602418i \(0.794204\pi\)
\(774\) 0 0
\(775\) −1.25808 −0.0451914
\(776\) 19.7601 10.0683i 0.709346 0.361431i
\(777\) 0 0
\(778\) −3.24801 2.35982i −0.116447 0.0846035i
\(779\) −11.6171 + 11.6171i −0.416226 + 0.416226i
\(780\) 0 0
\(781\) −7.54417 7.54417i −0.269952 0.269952i
\(782\) −66.3356 + 10.5066i −2.37216 + 0.375714i
\(783\) 0 0
\(784\) 3.23606 2.35115i 0.115574 0.0839696i
\(785\) 55.8852i 1.99463i
\(786\) 0 0
\(787\) −27.1082 + 27.1082i −0.966302 + 0.966302i −0.999450 0.0331485i \(-0.989447\pi\)
0.0331485 + 0.999450i \(0.489447\pi\)
\(788\) −25.7142 13.1020i −0.916032 0.466740i
\(789\) 0 0
\(790\) −41.0115 + 56.4476i −1.45912 + 2.00832i
\(791\) 14.3042i 0.508600i
\(792\) 0 0
\(793\) 6.98099i 0.247902i
\(794\) 3.94777 + 2.86822i 0.140101 + 0.101789i
\(795\) 0 0
\(796\) −28.4158 + 9.23289i −1.00717 + 0.327251i
\(797\) 11.7301 11.7301i 0.415501 0.415501i −0.468149 0.883650i \(-0.655079\pi\)
0.883650 + 0.468149i \(0.155079\pi\)
\(798\) 0 0
\(799\) 18.6124i 0.658458i
\(800\) −30.6033 30.6031i −1.08199 1.08198i
\(801\) 0 0
\(802\) −2.58396 16.3144i −0.0912429 0.576082i
\(803\) 8.27599 + 8.27599i 0.292053 + 0.292053i
\(804\) 0 0
\(805\) −21.6801 + 21.6801i −0.764124 + 0.764124i
\(806\) −0.630346 + 0.867598i −0.0222030 + 0.0305598i
\(807\) 0 0
\(808\) −2.84654 0.924890i −0.100141 0.0325375i
\(809\) −13.7126 −0.482111 −0.241055 0.970511i \(-0.577494\pi\)
−0.241055 + 0.970511i \(0.577494\pi\)
\(810\) 0 0
\(811\) 22.2730 + 22.2730i 0.782111 + 0.782111i 0.980187 0.198076i \(-0.0634692\pi\)
−0.198076 + 0.980187i \(0.563469\pi\)
\(812\) −2.62803 + 5.15782i −0.0922259 + 0.181004i
\(813\) 0 0
\(814\) 3.62053 + 22.8590i 0.126899 + 0.801208i
\(815\) −4.71195 −0.165052
\(816\) 0 0
\(817\) −12.1898 −0.426467
\(818\) −3.38377 21.3642i −0.118311 0.746981i
\(819\) 0 0
\(820\) −60.6304 30.8926i −2.11731 1.07882i
\(821\) −0.690329 0.690329i −0.0240926 0.0240926i 0.694958 0.719050i \(-0.255423\pi\)
−0.719050 + 0.694958i \(0.755423\pi\)
\(822\) 0 0
\(823\) −1.43063 −0.0498688 −0.0249344 0.999689i \(-0.507938\pi\)
−0.0249344 + 0.999689i \(0.507938\pi\)
\(824\) 29.7784 15.1729i 1.03738 0.528574i
\(825\) 0 0
\(826\) 11.8475 16.3067i 0.412228 0.567384i
\(827\) −9.59770 + 9.59770i −0.333745 + 0.333745i −0.854007 0.520262i \(-0.825834\pi\)
0.520262 + 0.854007i \(0.325834\pi\)
\(828\) 0 0
\(829\) 17.0260 + 17.0260i 0.591337 + 0.591337i 0.937992 0.346656i \(-0.112683\pi\)
−0.346656 + 0.937992i \(0.612683\pi\)
\(830\) −8.13706 51.3752i −0.282442 1.78326i
\(831\) 0 0
\(832\) −36.4381 + 5.77139i −1.26327 + 0.200087i
\(833\) 5.50927i 0.190885i
\(834\) 0 0
\(835\) −45.0560 + 45.0560i −1.55923 + 1.55923i
\(836\) −1.47795 4.54863i −0.0511158 0.157318i
\(837\) 0 0
\(838\) −21.3310 15.4979i −0.736867 0.535364i
\(839\) 29.0214i 1.00193i 0.865467 + 0.500965i \(0.167022\pi\)
−0.865467 + 0.500965i \(0.832978\pi\)
\(840\) 0 0
\(841\) 20.6226i 0.711123i
\(842\) 26.1651 36.0133i 0.901710 1.24110i
\(843\) 0 0
\(844\) 6.33731 12.4377i 0.218139 0.428124i
\(845\) 20.7902 20.7902i 0.715205 0.715205i
\(846\) 0 0
\(847\) 9.06133i 0.311351i
\(848\) 20.8245 + 3.29822i 0.715116 + 0.113261i
\(849\) 0 0
\(850\) 58.8758 9.32505i 2.01942 0.319846i
\(851\) 71.6430 + 71.6430i 2.45589 + 2.45589i
\(852\) 0 0
\(853\) 17.4096 17.4096i 0.596092 0.596092i −0.343178 0.939270i \(-0.611503\pi\)
0.939270 + 0.343178i \(0.111503\pi\)
\(854\) 1.73198 + 1.25836i 0.0592672 + 0.0430600i
\(855\) 0 0
\(856\) 5.45336 16.7838i 0.186392 0.573660i
\(857\) 17.6637 0.603379 0.301690 0.953406i \(-0.402449\pi\)
0.301690 + 0.953406i \(0.402449\pi\)
\(858\) 0 0
\(859\) 5.79823 + 5.79823i 0.197833 + 0.197833i 0.799070 0.601237i \(-0.205325\pi\)
−0.601237 + 0.799070i \(0.705325\pi\)
\(860\) −15.6019 48.0174i −0.532020 1.63738i
\(861\) 0 0
\(862\) 26.5848 4.21064i 0.905482 0.143415i
\(863\) 39.0789 1.33026 0.665131 0.746727i \(-0.268376\pi\)
0.665131 + 0.746727i \(0.268376\pi\)
\(864\) 0 0
\(865\) 9.84331 0.334683
\(866\) 44.2954 7.01574i 1.50522 0.238405i
\(867\) 0 0
\(868\) 0.101628 + 0.312777i 0.00344948 + 0.0106164i
\(869\) −13.6568 13.6568i −0.463277 0.463277i
\(870\) 0 0
\(871\) 20.3525 0.689618
\(872\) 0.489769 + 0.159134i 0.0165857 + 0.00538897i
\(873\) 0 0
\(874\) −16.9388 12.3068i −0.572964 0.416282i
\(875\) 6.66689 6.66689i 0.225382 0.225382i
\(876\) 0 0
\(877\) 6.28950 + 6.28950i 0.212381 + 0.212381i 0.805278 0.592897i \(-0.202016\pi\)
−0.592897 + 0.805278i \(0.702016\pi\)
\(878\) −46.0276 + 7.29008i −1.55336 + 0.246028i
\(879\) 0 0
\(880\) 16.0261 11.6437i 0.540240 0.392509i
\(881\) 21.5545i 0.726190i 0.931752 + 0.363095i \(0.118280\pi\)
−0.931752 + 0.363095i \(0.881720\pi\)
\(882\) 0 0
\(883\) 5.85864 5.85864i 0.197159 0.197159i −0.601622 0.798781i \(-0.705479\pi\)
0.798781 + 0.601622i \(0.205479\pi\)
\(884\) 23.0683 45.2743i 0.775872 1.52274i
\(885\) 0 0
\(886\) 5.81643 8.00565i 0.195407 0.268955i
\(887\) 28.0138i 0.940613i −0.882503 0.470306i \(-0.844143\pi\)
0.882503 0.470306i \(-0.155857\pi\)
\(888\) 0 0
\(889\) 1.31914i 0.0442426i
\(890\) 30.4863 + 22.1496i 1.02190 + 0.742456i
\(891\) 0 0
\(892\) −3.24931 10.0003i −0.108795 0.334835i
\(893\) −4.10284 + 4.10284i −0.137296 + 0.137296i
\(894\) 0 0
\(895\) 82.7628i 2.76645i
\(896\) −5.13627 + 10.0806i −0.171591 + 0.336770i
\(897\) 0 0
\(898\) 6.97454 + 44.0353i 0.232743 + 1.46948i
\(899\) −0.336542 0.336542i −0.0112243 0.0112243i
\(900\) 0 0
\(901\) −20.5340 + 20.5340i −0.684087 + 0.684087i
\(902\) 11.0715 15.2386i 0.368640 0.507390i
\(903\) 0 0
\(904\) −18.3678 36.0487i −0.610905 1.19896i
\(905\) −10.1426 −0.337151
\(906\) 0 0
\(907\) 3.74119 + 3.74119i 0.124224 + 0.124224i 0.766486 0.642262i \(-0.222004\pi\)
−0.642262 + 0.766486i \(0.722004\pi\)
\(908\) −15.9004 8.10163i −0.527673 0.268862i
\(909\) 0 0
\(910\) −3.62873 22.9108i −0.120291 0.759486i
\(911\) 46.9910 1.55688 0.778441 0.627718i \(-0.216011\pi\)
0.778441 + 0.627718i \(0.216011\pi\)
\(912\) 0 0
\(913\) 14.3983 0.476514
\(914\) −7.79883 49.2397i −0.257963 1.62870i
\(915\) 0 0
\(916\) 24.6266 48.3327i 0.813687 1.59696i
\(917\) −3.84141 3.84141i −0.126855 0.126855i
\(918\) 0 0
\(919\) −28.7166 −0.947272 −0.473636 0.880721i \(-0.657059\pi\)
−0.473636 + 0.880721i \(0.657059\pi\)
\(920\) 26.7979 82.4762i 0.883502 2.71916i
\(921\) 0 0
\(922\) 18.6644 25.6894i 0.614680 0.846035i
\(923\) 24.9866 24.9866i 0.822442 0.822442i
\(924\) 0 0
\(925\) −63.5863 63.5863i −2.09070 2.09070i
\(926\) 3.52241 + 22.2395i 0.115754 + 0.730836i
\(927\) 0 0
\(928\) −5.53246e−5 16.3731i −1.81612e−6 0.537472i
\(929\) 39.0905i 1.28252i 0.767325 + 0.641259i \(0.221587\pi\)
−0.767325 + 0.641259i \(0.778413\pi\)
\(930\) 0 0
\(931\) −1.21444 + 1.21444i −0.0398018 + 0.0398018i
\(932\) −1.05573 + 0.343028i −0.0345815 + 0.0112363i
\(933\) 0 0
\(934\) 10.5564 + 7.66965i 0.345416 + 0.250959i
\(935\) 27.2838i 0.892277i
\(936\) 0 0
\(937\) 22.0325i 0.719770i 0.932997 + 0.359885i \(0.117184\pi\)
−0.932997 + 0.359885i \(0.882816\pi\)
\(938\) 3.66863 5.04945i 0.119785 0.164870i
\(939\) 0 0
\(940\) −21.4130 10.9104i −0.698415 0.355859i
\(941\) −28.7845 + 28.7845i −0.938349 + 0.938349i −0.998207 0.0598579i \(-0.980935\pi\)
0.0598579 + 0.998207i \(0.480935\pi\)
\(942\) 0 0
\(943\) 82.4590i 2.68523i
\(944\) −8.91824 + 56.3085i −0.290264 + 1.83269i
\(945\) 0 0
\(946\) 13.8035 2.18627i 0.448792 0.0710819i
\(947\) −8.81984 8.81984i −0.286606 0.286606i 0.549130 0.835737i \(-0.314959\pi\)
−0.835737 + 0.549130i \(0.814959\pi\)
\(948\) 0 0
\(949\) −27.4104 + 27.4104i −0.889778 + 0.889778i
\(950\) 15.0339 + 10.9228i 0.487766 + 0.354382i
\(951\) 0 0
\(952\) −7.07437 13.8842i −0.229282 0.449988i
\(953\) 1.32312 0.0428599 0.0214300 0.999770i \(-0.493178\pi\)
0.0214300 + 0.999770i \(0.493178\pi\)
\(954\) 0 0
\(955\) 16.9093 + 16.9093i 0.547173 + 0.547173i
\(956\) −43.8262 + 14.2401i −1.41744 + 0.460557i
\(957\) 0 0
\(958\) 44.1237 6.98853i 1.42557 0.225789i
\(959\) −11.8262 −0.381889
\(960\) 0 0
\(961\) 30.9730 0.999128
\(962\) −75.7098 + 11.9913i −2.44098 + 0.386615i
\(963\) 0 0
\(964\) −14.2245 + 4.62184i −0.458141 + 0.148860i
\(965\) −3.45926 3.45926i −0.111358 0.111358i
\(966\) 0 0
\(967\) 16.3028 0.524263 0.262132 0.965032i \(-0.415575\pi\)
0.262132 + 0.965032i \(0.415575\pi\)
\(968\) −11.6355 22.8359i −0.373979 0.733972i
\(969\) 0 0
\(970\) −31.9077 23.1823i −1.02449 0.744338i
\(971\) 16.8788 16.8788i 0.541666 0.541666i −0.382351 0.924017i \(-0.624886\pi\)
0.924017 + 0.382351i \(0.124886\pi\)
\(972\) 0 0
\(973\) −10.6322 10.6322i −0.340854 0.340854i
\(974\) 41.1791 6.52215i 1.31946 0.208983i
\(975\) 0 0
\(976\) −5.98068 0.947229i −0.191437 0.0303201i
\(977\) 1.46807i 0.0469676i 0.999724 + 0.0234838i \(0.00747581\pi\)
−0.999724 + 0.0234838i \(0.992524\pi\)
\(978\) 0 0
\(979\) −7.37582 + 7.37582i −0.235732 + 0.235732i
\(980\) −6.33826 3.22950i −0.202468 0.103162i
\(981\) 0 0
\(982\) 7.13408 9.81923i 0.227658 0.313344i
\(983\) 34.4565i 1.09899i −0.835496 0.549496i \(-0.814820\pi\)
0.835496 0.549496i \(-0.185180\pi\)
\(984\) 0 0
\(985\) 51.3241i 1.63532i
\(986\) 18.2441 + 13.2551i 0.581010 + 0.422128i
\(987\) 0 0
\(988\) 15.0652 4.89501i 0.479288 0.155731i
\(989\) 43.2620 43.2620i 1.37565 1.37565i
\(990\) 0 0
\(991\) 14.4789i 0.459937i −0.973198 0.229969i \(-0.926138\pi\)
0.973198 0.229969i \(-0.0738624\pi\)
\(992\) −0.657749 0.657745i −0.0208836 0.0208834i
\(993\) 0 0
\(994\) −1.69521 10.7031i −0.0537689 0.339482i
\(995\) 37.5723 + 37.5723i 1.19112 + 1.19112i
\(996\) 0 0
\(997\) −32.5498 + 32.5498i −1.03086 + 1.03086i −0.0313557 + 0.999508i \(0.509982\pi\)
−0.999508 + 0.0313557i \(0.990018\pi\)
\(998\) −18.6878 + 25.7216i −0.591551 + 0.814202i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.v.e.323.2 40
3.2 odd 2 inner 1008.2.v.e.323.19 yes 40
4.3 odd 2 4032.2.v.e.1583.3 40
12.11 even 2 4032.2.v.e.1583.18 40
16.5 even 4 4032.2.v.e.3599.18 40
16.11 odd 4 inner 1008.2.v.e.827.19 yes 40
48.5 odd 4 4032.2.v.e.3599.3 40
48.11 even 4 inner 1008.2.v.e.827.2 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.v.e.323.2 40 1.1 even 1 trivial
1008.2.v.e.323.19 yes 40 3.2 odd 2 inner
1008.2.v.e.827.2 yes 40 48.11 even 4 inner
1008.2.v.e.827.19 yes 40 16.11 odd 4 inner
4032.2.v.e.1583.3 40 4.3 odd 2
4032.2.v.e.1583.18 40 12.11 even 2
4032.2.v.e.3599.3 40 48.5 odd 4
4032.2.v.e.3599.18 40 16.5 even 4