Properties

Label 1008.4.a.ba.1.2
Level $1008$
Weight $4$
Character 1008.1
Self dual yes
Analytic conductor $59.474$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,4,Mod(1,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1008.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.4739252858\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{57}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 21)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-3.27492\) of defining polynomial
Character \(\chi\) \(=\) 1008.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.54983 q^{5} -7.00000 q^{7} -40.7492 q^{11} +53.2990 q^{13} -4.54983 q^{17} -122.598 q^{19} +131.347 q^{23} -104.299 q^{25} +216.598 q^{29} +251.794 q^{31} -31.8488 q^{35} +11.8970 q^{37} +111.752 q^{41} -369.196 q^{43} -262.694 q^{47} +49.0000 q^{49} +567.100 q^{53} -185.402 q^{55} +839.890 q^{59} -485.794 q^{61} +242.502 q^{65} +333.691 q^{67} +590.248 q^{71} +490.701 q^{73} +285.244 q^{77} -121.691 q^{79} +609.608 q^{83} -20.7010 q^{85} -719.038 q^{89} -373.093 q^{91} -557.801 q^{95} -637.877 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{5} - 14 q^{7} - 6 q^{11} + 16 q^{13} + 6 q^{17} - 64 q^{19} + 6 q^{23} - 118 q^{25} + 252 q^{29} - 40 q^{31} + 42 q^{35} - 248 q^{37} + 450 q^{41} - 376 q^{43} - 12 q^{47} + 98 q^{49} + 1104 q^{53}+ \cdots + 808 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 4.54983 0.406950 0.203475 0.979080i \(-0.434777\pi\)
0.203475 + 0.979080i \(0.434777\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −40.7492 −1.11694 −0.558470 0.829525i \(-0.688611\pi\)
−0.558470 + 0.829525i \(0.688611\pi\)
\(12\) 0 0
\(13\) 53.2990 1.13711 0.568557 0.822644i \(-0.307502\pi\)
0.568557 + 0.822644i \(0.307502\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.54983 −0.0649116 −0.0324558 0.999473i \(-0.510333\pi\)
−0.0324558 + 0.999473i \(0.510333\pi\)
\(18\) 0 0
\(19\) −122.598 −1.48031 −0.740156 0.672436i \(-0.765248\pi\)
−0.740156 + 0.672436i \(0.765248\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 131.347 1.19077 0.595387 0.803439i \(-0.296999\pi\)
0.595387 + 0.803439i \(0.296999\pi\)
\(24\) 0 0
\(25\) −104.299 −0.834392
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 216.598 1.38694 0.693470 0.720486i \(-0.256081\pi\)
0.693470 + 0.720486i \(0.256081\pi\)
\(30\) 0 0
\(31\) 251.794 1.45882 0.729412 0.684075i \(-0.239794\pi\)
0.729412 + 0.684075i \(0.239794\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −31.8488 −0.153812
\(36\) 0 0
\(37\) 11.8970 0.0528610 0.0264305 0.999651i \(-0.491586\pi\)
0.0264305 + 0.999651i \(0.491586\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 111.752 0.425678 0.212839 0.977087i \(-0.431729\pi\)
0.212839 + 0.977087i \(0.431729\pi\)
\(42\) 0 0
\(43\) −369.196 −1.30935 −0.654673 0.755912i \(-0.727194\pi\)
−0.654673 + 0.755912i \(0.727194\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −262.694 −0.815275 −0.407637 0.913144i \(-0.633647\pi\)
−0.407637 + 0.913144i \(0.633647\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 567.100 1.46976 0.734879 0.678199i \(-0.237239\pi\)
0.734879 + 0.678199i \(0.237239\pi\)
\(54\) 0 0
\(55\) −185.402 −0.454538
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 839.890 1.85330 0.926648 0.375931i \(-0.122677\pi\)
0.926648 + 0.375931i \(0.122677\pi\)
\(60\) 0 0
\(61\) −485.794 −1.01966 −0.509832 0.860274i \(-0.670293\pi\)
−0.509832 + 0.860274i \(0.670293\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 242.502 0.462748
\(66\) 0 0
\(67\) 333.691 0.608460 0.304230 0.952599i \(-0.401601\pi\)
0.304230 + 0.952599i \(0.401601\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 590.248 0.986613 0.493306 0.869856i \(-0.335788\pi\)
0.493306 + 0.869856i \(0.335788\pi\)
\(72\) 0 0
\(73\) 490.701 0.786743 0.393371 0.919380i \(-0.371309\pi\)
0.393371 + 0.919380i \(0.371309\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 285.244 0.422164
\(78\) 0 0
\(79\) −121.691 −0.173308 −0.0866539 0.996238i \(-0.527617\pi\)
−0.0866539 + 0.996238i \(0.527617\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 609.608 0.806183 0.403091 0.915160i \(-0.367936\pi\)
0.403091 + 0.915160i \(0.367936\pi\)
\(84\) 0 0
\(85\) −20.7010 −0.0264157
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −719.038 −0.856381 −0.428190 0.903689i \(-0.640849\pi\)
−0.428190 + 0.903689i \(0.640849\pi\)
\(90\) 0 0
\(91\) −373.093 −0.429789
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −557.801 −0.602412
\(96\) 0 0
\(97\) −637.877 −0.667697 −0.333849 0.942627i \(-0.608347\pi\)
−0.333849 + 0.942627i \(0.608347\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −671.148 −0.661205 −0.330603 0.943770i \(-0.607252\pi\)
−0.330603 + 0.943770i \(0.607252\pi\)
\(102\) 0 0
\(103\) 912.412 0.872841 0.436420 0.899743i \(-0.356246\pi\)
0.436420 + 0.899743i \(0.356246\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −116.736 −0.105470 −0.0527350 0.998609i \(-0.516794\pi\)
−0.0527350 + 0.998609i \(0.516794\pi\)
\(108\) 0 0
\(109\) 837.176 0.735660 0.367830 0.929893i \(-0.380101\pi\)
0.367830 + 0.929893i \(0.380101\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1086.58 0.904572 0.452286 0.891873i \(-0.350609\pi\)
0.452286 + 0.891873i \(0.350609\pi\)
\(114\) 0 0
\(115\) 597.608 0.484585
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 31.8488 0.0245343
\(120\) 0 0
\(121\) 329.495 0.247554
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1043.27 −0.746505
\(126\) 0 0
\(127\) 537.113 0.375284 0.187642 0.982237i \(-0.439916\pi\)
0.187642 + 0.982237i \(0.439916\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1497.39 0.998683 0.499341 0.866405i \(-0.333575\pi\)
0.499341 + 0.866405i \(0.333575\pi\)
\(132\) 0 0
\(133\) 858.186 0.559505
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1380.09 0.860650 0.430325 0.902674i \(-0.358399\pi\)
0.430325 + 0.902674i \(0.358399\pi\)
\(138\) 0 0
\(139\) 141.980 0.0866374 0.0433187 0.999061i \(-0.486207\pi\)
0.0433187 + 0.999061i \(0.486207\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2171.89 −1.27009
\(144\) 0 0
\(145\) 985.485 0.564414
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1943.87 1.06878 0.534390 0.845238i \(-0.320542\pi\)
0.534390 + 0.845238i \(0.320542\pi\)
\(150\) 0 0
\(151\) 2654.76 1.43074 0.715370 0.698746i \(-0.246258\pi\)
0.715370 + 0.698746i \(0.246258\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1145.62 0.593668
\(156\) 0 0
\(157\) 1665.22 0.846489 0.423244 0.906016i \(-0.360891\pi\)
0.423244 + 0.906016i \(0.360891\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −919.430 −0.450070
\(162\) 0 0
\(163\) 33.0732 0.0158926 0.00794629 0.999968i \(-0.497471\pi\)
0.00794629 + 0.999968i \(0.497471\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1654.48 0.766630 0.383315 0.923618i \(-0.374782\pi\)
0.383315 + 0.923618i \(0.374782\pi\)
\(168\) 0 0
\(169\) 643.784 0.293029
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −64.1909 −0.0282101 −0.0141050 0.999901i \(-0.504490\pi\)
−0.0141050 + 0.999901i \(0.504490\pi\)
\(174\) 0 0
\(175\) 730.093 0.315371
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3914.68 1.63462 0.817309 0.576200i \(-0.195465\pi\)
0.817309 + 0.576200i \(0.195465\pi\)
\(180\) 0 0
\(181\) −2058.04 −0.845156 −0.422578 0.906327i \(-0.638875\pi\)
−0.422578 + 0.906327i \(0.638875\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 54.1295 0.0215118
\(186\) 0 0
\(187\) 185.402 0.0725023
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 428.048 0.162160 0.0810798 0.996708i \(-0.474163\pi\)
0.0810798 + 0.996708i \(0.474163\pi\)
\(192\) 0 0
\(193\) 1604.93 0.598576 0.299288 0.954163i \(-0.403251\pi\)
0.299288 + 0.954163i \(0.403251\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3738.83 −1.35218 −0.676092 0.736817i \(-0.736328\pi\)
−0.676092 + 0.736817i \(0.736328\pi\)
\(198\) 0 0
\(199\) 349.030 0.124332 0.0621660 0.998066i \(-0.480199\pi\)
0.0621660 + 0.998066i \(0.480199\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1516.19 −0.524214
\(204\) 0 0
\(205\) 508.455 0.173230
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4995.77 1.65342
\(210\) 0 0
\(211\) −2588.58 −0.844574 −0.422287 0.906462i \(-0.638773\pi\)
−0.422287 + 0.906462i \(0.638773\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1679.78 −0.532838
\(216\) 0 0
\(217\) −1762.56 −0.551384
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −242.502 −0.0738119
\(222\) 0 0
\(223\) 3236.21 0.971804 0.485902 0.874013i \(-0.338491\pi\)
0.485902 + 0.874013i \(0.338491\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5631.62 −1.64662 −0.823312 0.567589i \(-0.807876\pi\)
−0.823312 + 0.567589i \(0.807876\pi\)
\(228\) 0 0
\(229\) 3770.25 1.08797 0.543985 0.839095i \(-0.316915\pi\)
0.543985 + 0.839095i \(0.316915\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6560.90 1.84472 0.922358 0.386336i \(-0.126259\pi\)
0.922358 + 0.386336i \(0.126259\pi\)
\(234\) 0 0
\(235\) −1195.22 −0.331776
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −771.444 −0.208789 −0.104394 0.994536i \(-0.533290\pi\)
−0.104394 + 0.994536i \(0.533290\pi\)
\(240\) 0 0
\(241\) 1252.10 0.334668 0.167334 0.985900i \(-0.446484\pi\)
0.167334 + 0.985900i \(0.446484\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 222.942 0.0581357
\(246\) 0 0
\(247\) −6534.35 −1.68328
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 5166.27 1.29917 0.649586 0.760288i \(-0.274942\pi\)
0.649586 + 0.760288i \(0.274942\pi\)
\(252\) 0 0
\(253\) −5352.29 −1.33002
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2767.45 −0.671707 −0.335854 0.941914i \(-0.609025\pi\)
−0.335854 + 0.941914i \(0.609025\pi\)
\(258\) 0 0
\(259\) −83.2791 −0.0199796
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −4101.78 −0.961699 −0.480849 0.876803i \(-0.659672\pi\)
−0.480849 + 0.876803i \(0.659672\pi\)
\(264\) 0 0
\(265\) 2580.21 0.598117
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6950.84 1.57546 0.787732 0.616018i \(-0.211255\pi\)
0.787732 + 0.616018i \(0.211255\pi\)
\(270\) 0 0
\(271\) 7140.29 1.60052 0.800262 0.599651i \(-0.204694\pi\)
0.800262 + 0.599651i \(0.204694\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4250.10 0.931966
\(276\) 0 0
\(277\) 1320.51 0.286433 0.143217 0.989691i \(-0.454255\pi\)
0.143217 + 0.989691i \(0.454255\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 204.309 0.0433738 0.0216869 0.999765i \(-0.493096\pi\)
0.0216869 + 0.999765i \(0.493096\pi\)
\(282\) 0 0
\(283\) −975.794 −0.204964 −0.102482 0.994735i \(-0.532678\pi\)
−0.102482 + 0.994735i \(0.532678\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −782.267 −0.160891
\(288\) 0 0
\(289\) −4892.30 −0.995786
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −607.919 −0.121212 −0.0606058 0.998162i \(-0.519303\pi\)
−0.0606058 + 0.998162i \(0.519303\pi\)
\(294\) 0 0
\(295\) 3821.36 0.754198
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 7000.67 1.35405
\(300\) 0 0
\(301\) 2584.37 0.494886
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2210.28 −0.414952
\(306\) 0 0
\(307\) −8037.08 −1.49414 −0.747069 0.664747i \(-0.768539\pi\)
−0.747069 + 0.664747i \(0.768539\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 5311.60 0.968468 0.484234 0.874939i \(-0.339098\pi\)
0.484234 + 0.874939i \(0.339098\pi\)
\(312\) 0 0
\(313\) −1531.61 −0.276587 −0.138293 0.990391i \(-0.544162\pi\)
−0.138293 + 0.990391i \(0.544162\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4219.19 −0.747549 −0.373775 0.927520i \(-0.621937\pi\)
−0.373775 + 0.927520i \(0.621937\pi\)
\(318\) 0 0
\(319\) −8826.19 −1.54913
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 557.801 0.0960893
\(324\) 0 0
\(325\) −5559.03 −0.948799
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1838.86 0.308145
\(330\) 0 0
\(331\) −8298.19 −1.37797 −0.688987 0.724773i \(-0.741944\pi\)
−0.688987 + 0.724773i \(0.741944\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1518.24 0.247613
\(336\) 0 0
\(337\) −4348.44 −0.702892 −0.351446 0.936208i \(-0.614310\pi\)
−0.351446 + 0.936208i \(0.614310\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −10260.4 −1.62942
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8345.54 −1.29110 −0.645550 0.763718i \(-0.723372\pi\)
−0.645550 + 0.763718i \(0.723372\pi\)
\(348\) 0 0
\(349\) −9982.54 −1.53110 −0.765549 0.643378i \(-0.777532\pi\)
−0.765549 + 0.643378i \(0.777532\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −8801.59 −1.32709 −0.663543 0.748138i \(-0.730948\pi\)
−0.663543 + 0.748138i \(0.730948\pi\)
\(354\) 0 0
\(355\) 2685.53 0.401502
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −524.039 −0.0770409 −0.0385205 0.999258i \(-0.512264\pi\)
−0.0385205 + 0.999258i \(0.512264\pi\)
\(360\) 0 0
\(361\) 8171.27 1.19132
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2232.61 0.320165
\(366\) 0 0
\(367\) 6362.72 0.904991 0.452495 0.891767i \(-0.350534\pi\)
0.452495 + 0.891767i \(0.350534\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −3969.70 −0.555516
\(372\) 0 0
\(373\) −11265.8 −1.56387 −0.781935 0.623361i \(-0.785767\pi\)
−0.781935 + 0.623361i \(0.785767\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 11544.5 1.57711
\(378\) 0 0
\(379\) 1151.71 0.156094 0.0780470 0.996950i \(-0.475132\pi\)
0.0780470 + 0.996950i \(0.475132\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −151.554 −0.0202195 −0.0101097 0.999949i \(-0.503218\pi\)
−0.0101097 + 0.999949i \(0.503218\pi\)
\(384\) 0 0
\(385\) 1297.81 0.171799
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −4794.18 −0.624870 −0.312435 0.949939i \(-0.601145\pi\)
−0.312435 + 0.949939i \(0.601145\pi\)
\(390\) 0 0
\(391\) −597.608 −0.0772950
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −553.674 −0.0705275
\(396\) 0 0
\(397\) −4623.94 −0.584556 −0.292278 0.956333i \(-0.594413\pi\)
−0.292278 + 0.956333i \(0.594413\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3610.63 0.449642 0.224821 0.974400i \(-0.427820\pi\)
0.224821 + 0.974400i \(0.427820\pi\)
\(402\) 0 0
\(403\) 13420.4 1.65885
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −484.794 −0.0590426
\(408\) 0 0
\(409\) 8959.57 1.08318 0.541592 0.840641i \(-0.317822\pi\)
0.541592 + 0.840641i \(0.317822\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −5879.23 −0.700480
\(414\) 0 0
\(415\) 2773.62 0.328076
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −7078.28 −0.825290 −0.412645 0.910892i \(-0.635395\pi\)
−0.412645 + 0.910892i \(0.635395\pi\)
\(420\) 0 0
\(421\) 11551.5 1.33725 0.668626 0.743599i \(-0.266883\pi\)
0.668626 + 0.743599i \(0.266883\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 474.543 0.0541617
\(426\) 0 0
\(427\) 3400.56 0.385397
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −4064.38 −0.454232 −0.227116 0.973868i \(-0.572930\pi\)
−0.227116 + 0.973868i \(0.572930\pi\)
\(432\) 0 0
\(433\) 17456.3 1.93740 0.968701 0.248229i \(-0.0798487\pi\)
0.968701 + 0.248229i \(0.0798487\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −16102.9 −1.76271
\(438\) 0 0
\(439\) −4595.39 −0.499604 −0.249802 0.968297i \(-0.580365\pi\)
−0.249802 + 0.968297i \(0.580365\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −306.214 −0.0328412 −0.0164206 0.999865i \(-0.505227\pi\)
−0.0164206 + 0.999865i \(0.505227\pi\)
\(444\) 0 0
\(445\) −3271.50 −0.348504
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −9229.22 −0.970053 −0.485026 0.874500i \(-0.661190\pi\)
−0.485026 + 0.874500i \(0.661190\pi\)
\(450\) 0 0
\(451\) −4553.82 −0.475457
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1697.51 −0.174902
\(456\) 0 0
\(457\) −10992.2 −1.12515 −0.562577 0.826745i \(-0.690190\pi\)
−0.562577 + 0.826745i \(0.690190\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −7387.88 −0.746394 −0.373197 0.927752i \(-0.621739\pi\)
−0.373197 + 0.927752i \(0.621739\pi\)
\(462\) 0 0
\(463\) −10163.8 −1.02020 −0.510101 0.860114i \(-0.670392\pi\)
−0.510101 + 0.860114i \(0.670392\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −15814.6 −1.56705 −0.783524 0.621362i \(-0.786580\pi\)
−0.783524 + 0.621362i \(0.786580\pi\)
\(468\) 0 0
\(469\) −2335.84 −0.229976
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 15044.4 1.46246
\(474\) 0 0
\(475\) 12786.9 1.23516
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −1444.85 −0.137823 −0.0689113 0.997623i \(-0.521953\pi\)
−0.0689113 + 0.997623i \(0.521953\pi\)
\(480\) 0 0
\(481\) 634.099 0.0601090
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2902.24 −0.271719
\(486\) 0 0
\(487\) 489.402 0.0455378 0.0227689 0.999741i \(-0.492752\pi\)
0.0227689 + 0.999741i \(0.492752\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −3941.30 −0.362257 −0.181129 0.983459i \(-0.557975\pi\)
−0.181129 + 0.983459i \(0.557975\pi\)
\(492\) 0 0
\(493\) −985.485 −0.0900284
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −4131.73 −0.372905
\(498\) 0 0
\(499\) −11.0894 −0.000994850 0 −0.000497425 1.00000i \(-0.500158\pi\)
−0.000497425 1.00000i \(0.500158\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 7088.41 0.628343 0.314172 0.949366i \(-0.398273\pi\)
0.314172 + 0.949366i \(0.398273\pi\)
\(504\) 0 0
\(505\) −3053.61 −0.269077
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −17588.4 −1.53162 −0.765810 0.643067i \(-0.777662\pi\)
−0.765810 + 0.643067i \(0.777662\pi\)
\(510\) 0 0
\(511\) −3434.91 −0.297361
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4151.32 0.355202
\(516\) 0 0
\(517\) 10704.6 0.910613
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 11646.6 0.979360 0.489680 0.871902i \(-0.337114\pi\)
0.489680 + 0.871902i \(0.337114\pi\)
\(522\) 0 0
\(523\) −8965.82 −0.749614 −0.374807 0.927103i \(-0.622291\pi\)
−0.374807 + 0.927103i \(0.622291\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1145.62 −0.0946946
\(528\) 0 0
\(529\) 5085.08 0.417941
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 5956.30 0.484045
\(534\) 0 0
\(535\) −531.129 −0.0429210
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1996.71 −0.159563
\(540\) 0 0
\(541\) −195.272 −0.0155183 −0.00775914 0.999970i \(-0.502470\pi\)
−0.00775914 + 0.999970i \(0.502470\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3809.01 0.299376
\(546\) 0 0
\(547\) 1399.26 0.109375 0.0546874 0.998504i \(-0.482584\pi\)
0.0546874 + 0.998504i \(0.482584\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −26554.5 −2.05310
\(552\) 0 0
\(553\) 851.837 0.0655042
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −43.0467 −0.00327459 −0.00163730 0.999999i \(-0.500521\pi\)
−0.00163730 + 0.999999i \(0.500521\pi\)
\(558\) 0 0
\(559\) −19677.8 −1.48888
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −19232.9 −1.43973 −0.719865 0.694114i \(-0.755797\pi\)
−0.719865 + 0.694114i \(0.755797\pi\)
\(564\) 0 0
\(565\) 4943.75 0.368115
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −5163.98 −0.380466 −0.190233 0.981739i \(-0.560924\pi\)
−0.190233 + 0.981739i \(0.560924\pi\)
\(570\) 0 0
\(571\) 10231.9 0.749899 0.374950 0.927045i \(-0.377660\pi\)
0.374950 + 0.927045i \(0.377660\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −13699.4 −0.993572
\(576\) 0 0
\(577\) 16563.7 1.19507 0.597537 0.801842i \(-0.296146\pi\)
0.597537 + 0.801842i \(0.296146\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4267.26 −0.304708
\(582\) 0 0
\(583\) −23108.8 −1.64163
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 16020.6 1.12648 0.563239 0.826294i \(-0.309555\pi\)
0.563239 + 0.826294i \(0.309555\pi\)
\(588\) 0 0
\(589\) −30869.4 −2.15951
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 6771.14 0.468900 0.234450 0.972128i \(-0.424671\pi\)
0.234450 + 0.972128i \(0.424671\pi\)
\(594\) 0 0
\(595\) 144.907 0.00998421
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 11070.2 0.755120 0.377560 0.925985i \(-0.376763\pi\)
0.377560 + 0.925985i \(0.376763\pi\)
\(600\) 0 0
\(601\) −24187.7 −1.64166 −0.820830 0.571173i \(-0.806489\pi\)
−0.820830 + 0.571173i \(0.806489\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1499.15 0.100742
\(606\) 0 0
\(607\) 10074.1 0.673631 0.336816 0.941571i \(-0.390650\pi\)
0.336816 + 0.941571i \(0.390650\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −14001.3 −0.927060
\(612\) 0 0
\(613\) −11114.6 −0.732323 −0.366161 0.930551i \(-0.619328\pi\)
−0.366161 + 0.930551i \(0.619328\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −20496.4 −1.33737 −0.668683 0.743548i \(-0.733142\pi\)
−0.668683 + 0.743548i \(0.733142\pi\)
\(618\) 0 0
\(619\) 16714.4 1.08532 0.542658 0.839954i \(-0.317418\pi\)
0.542658 + 0.839954i \(0.317418\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 5033.27 0.323682
\(624\) 0 0
\(625\) 8290.66 0.530602
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −54.1295 −0.00343129
\(630\) 0 0
\(631\) −9168.53 −0.578437 −0.289218 0.957263i \(-0.593395\pi\)
−0.289218 + 0.957263i \(0.593395\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2443.77 0.152722
\(636\) 0 0
\(637\) 2611.65 0.162445
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 4273.37 0.263319 0.131660 0.991295i \(-0.457969\pi\)
0.131660 + 0.991295i \(0.457969\pi\)
\(642\) 0 0
\(643\) −2955.75 −0.181281 −0.0906404 0.995884i \(-0.528891\pi\)
−0.0906404 + 0.995884i \(0.528891\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 22701.2 1.37941 0.689704 0.724091i \(-0.257741\pi\)
0.689704 + 0.724091i \(0.257741\pi\)
\(648\) 0 0
\(649\) −34224.8 −2.07002
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1537.81 −0.0921582 −0.0460791 0.998938i \(-0.514673\pi\)
−0.0460791 + 0.998938i \(0.514673\pi\)
\(654\) 0 0
\(655\) 6812.87 0.406414
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 12338.1 0.729323 0.364661 0.931140i \(-0.381185\pi\)
0.364661 + 0.931140i \(0.381185\pi\)
\(660\) 0 0
\(661\) 1845.10 0.108572 0.0542859 0.998525i \(-0.482712\pi\)
0.0542859 + 0.998525i \(0.482712\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3904.60 0.227690
\(666\) 0 0
\(667\) 28449.5 1.65153
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 19795.7 1.13890
\(672\) 0 0
\(673\) 23955.4 1.37208 0.686041 0.727563i \(-0.259347\pi\)
0.686041 + 0.727563i \(0.259347\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3678.26 0.208814 0.104407 0.994535i \(-0.466706\pi\)
0.104407 + 0.994535i \(0.466706\pi\)
\(678\) 0 0
\(679\) 4465.14 0.252366
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 4390.87 0.245991 0.122996 0.992407i \(-0.460750\pi\)
0.122996 + 0.992407i \(0.460750\pi\)
\(684\) 0 0
\(685\) 6279.18 0.350241
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 30225.8 1.67128
\(690\) 0 0
\(691\) −10371.7 −0.570994 −0.285497 0.958380i \(-0.592159\pi\)
−0.285497 + 0.958380i \(0.592159\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 645.986 0.0352570
\(696\) 0 0
\(697\) −508.455 −0.0276314
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −109.675 −0.00590922 −0.00295461 0.999996i \(-0.500940\pi\)
−0.00295461 + 0.999996i \(0.500940\pi\)
\(702\) 0 0
\(703\) −1458.55 −0.0782508
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4698.03 0.249912
\(708\) 0 0
\(709\) 26918.8 1.42589 0.712944 0.701221i \(-0.247361\pi\)
0.712944 + 0.701221i \(0.247361\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 33072.4 1.73713
\(714\) 0 0
\(715\) −9881.74 −0.516862
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 15170.8 0.786889 0.393445 0.919348i \(-0.371283\pi\)
0.393445 + 0.919348i \(0.371283\pi\)
\(720\) 0 0
\(721\) −6386.88 −0.329903
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −22591.0 −1.15725
\(726\) 0 0
\(727\) 33286.9 1.69813 0.849066 0.528288i \(-0.177166\pi\)
0.849066 + 0.528288i \(0.177166\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1679.78 0.0849917
\(732\) 0 0
\(733\) 20544.0 1.03521 0.517607 0.855619i \(-0.326823\pi\)
0.517607 + 0.855619i \(0.326823\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −13597.6 −0.679614
\(738\) 0 0
\(739\) −34357.2 −1.71022 −0.855109 0.518449i \(-0.826510\pi\)
−0.855109 + 0.518449i \(0.826510\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 8166.99 0.403254 0.201627 0.979462i \(-0.435377\pi\)
0.201627 + 0.979462i \(0.435377\pi\)
\(744\) 0 0
\(745\) 8844.29 0.434939
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 817.151 0.0398639
\(750\) 0 0
\(751\) −17080.1 −0.829909 −0.414954 0.909842i \(-0.636202\pi\)
−0.414954 + 0.909842i \(0.636202\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 12078.7 0.582239
\(756\) 0 0
\(757\) −16324.0 −0.783758 −0.391879 0.920017i \(-0.628175\pi\)
−0.391879 + 0.920017i \(0.628175\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 32366.2 1.54175 0.770875 0.636986i \(-0.219819\pi\)
0.770875 + 0.636986i \(0.219819\pi\)
\(762\) 0 0
\(763\) −5860.23 −0.278053
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 44765.3 2.10741
\(768\) 0 0
\(769\) −7948.44 −0.372728 −0.186364 0.982481i \(-0.559670\pi\)
−0.186364 + 0.982481i \(0.559670\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −17819.3 −0.829127 −0.414564 0.910020i \(-0.636066\pi\)
−0.414564 + 0.910020i \(0.636066\pi\)
\(774\) 0 0
\(775\) −26261.9 −1.21723
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −13700.6 −0.630136
\(780\) 0 0
\(781\) −24052.1 −1.10199
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 7576.46 0.344478
\(786\) 0 0
\(787\) −2912.38 −0.131912 −0.0659562 0.997823i \(-0.521010\pi\)
−0.0659562 + 0.997823i \(0.521010\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −7606.05 −0.341896
\(792\) 0 0
\(793\) −25892.3 −1.15948
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 33789.1 1.50172 0.750861 0.660460i \(-0.229639\pi\)
0.750861 + 0.660460i \(0.229639\pi\)
\(798\) 0 0
\(799\) 1195.22 0.0529208
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −19995.7 −0.878744
\(804\) 0 0
\(805\) −4183.26 −0.183156
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1252.13 −0.0544159 −0.0272079 0.999630i \(-0.508662\pi\)
−0.0272079 + 0.999630i \(0.508662\pi\)
\(810\) 0 0
\(811\) 31913.1 1.38178 0.690889 0.722961i \(-0.257219\pi\)
0.690889 + 0.722961i \(0.257219\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 150.477 0.00646748
\(816\) 0 0
\(817\) 45262.7 1.93824
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −30742.4 −1.30684 −0.653421 0.756995i \(-0.726667\pi\)
−0.653421 + 0.756995i \(0.726667\pi\)
\(822\) 0 0
\(823\) 13822.6 0.585449 0.292724 0.956197i \(-0.405438\pi\)
0.292724 + 0.956197i \(0.405438\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −42107.1 −1.77051 −0.885253 0.465110i \(-0.846015\pi\)
−0.885253 + 0.465110i \(0.846015\pi\)
\(828\) 0 0
\(829\) −38763.8 −1.62403 −0.812015 0.583636i \(-0.801629\pi\)
−0.812015 + 0.583636i \(0.801629\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −222.942 −0.00927308
\(834\) 0 0
\(835\) 7527.59 0.311980
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 16896.3 0.695262 0.347631 0.937631i \(-0.386986\pi\)
0.347631 + 0.937631i \(0.386986\pi\)
\(840\) 0 0
\(841\) 22525.7 0.923601
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2929.11 0.119248
\(846\) 0 0
\(847\) −2306.47 −0.0935668
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1562.64 0.0629455
\(852\) 0 0
\(853\) 46429.3 1.86367 0.931833 0.362887i \(-0.118209\pi\)
0.931833 + 0.362887i \(0.118209\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −21206.4 −0.845272 −0.422636 0.906300i \(-0.638895\pi\)
−0.422636 + 0.906300i \(0.638895\pi\)
\(858\) 0 0
\(859\) −13876.2 −0.551163 −0.275581 0.961278i \(-0.588870\pi\)
−0.275581 + 0.961278i \(0.588870\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 14337.1 0.565515 0.282757 0.959191i \(-0.408751\pi\)
0.282757 + 0.959191i \(0.408751\pi\)
\(864\) 0 0
\(865\) −292.058 −0.0114801
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4958.81 0.193574
\(870\) 0 0
\(871\) 17785.4 0.691889
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 7302.91 0.282152
\(876\) 0 0
\(877\) −24369.3 −0.938304 −0.469152 0.883118i \(-0.655440\pi\)
−0.469152 + 0.883118i \(0.655440\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 26127.0 0.999140 0.499570 0.866273i \(-0.333491\pi\)
0.499570 + 0.866273i \(0.333491\pi\)
\(882\) 0 0
\(883\) 15713.1 0.598855 0.299428 0.954119i \(-0.403204\pi\)
0.299428 + 0.954119i \(0.403204\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 13139.5 0.497385 0.248692 0.968583i \(-0.419999\pi\)
0.248692 + 0.968583i \(0.419999\pi\)
\(888\) 0 0
\(889\) −3759.79 −0.141844
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 32205.8 1.20686
\(894\) 0 0
\(895\) 17811.1 0.665207
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 54538.1 2.02330
\(900\) 0 0
\(901\) −2580.21 −0.0954043
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −9363.76 −0.343936
\(906\) 0 0
\(907\) 3799.71 0.139104 0.0695519 0.997578i \(-0.477843\pi\)
0.0695519 + 0.997578i \(0.477843\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −51528.4 −1.87400 −0.936998 0.349334i \(-0.886408\pi\)
−0.936998 + 0.349334i \(0.886408\pi\)
\(912\) 0 0
\(913\) −24841.0 −0.900458
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −10481.7 −0.377467
\(918\) 0 0
\(919\) 16984.7 0.609657 0.304828 0.952407i \(-0.401401\pi\)
0.304828 + 0.952407i \(0.401401\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 31459.6 1.12189
\(924\) 0 0
\(925\) −1240.85 −0.0441068
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 5451.85 0.192540 0.0962699 0.995355i \(-0.469309\pi\)
0.0962699 + 0.995355i \(0.469309\pi\)
\(930\) 0 0
\(931\) −6007.30 −0.211473
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 843.548 0.0295048
\(936\) 0 0
\(937\) 42429.4 1.47930 0.739652 0.672989i \(-0.234990\pi\)
0.739652 + 0.672989i \(0.234990\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 32977.9 1.14245 0.571226 0.820793i \(-0.306468\pi\)
0.571226 + 0.820793i \(0.306468\pi\)
\(942\) 0 0
\(943\) 14678.4 0.506886
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −23753.4 −0.815082 −0.407541 0.913187i \(-0.633614\pi\)
−0.407541 + 0.913187i \(0.633614\pi\)
\(948\) 0 0
\(949\) 26153.9 0.894616
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 28074.3 0.954267 0.477134 0.878831i \(-0.341676\pi\)
0.477134 + 0.878831i \(0.341676\pi\)
\(954\) 0 0
\(955\) 1947.55 0.0659908
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −9660.63 −0.325295
\(960\) 0 0
\(961\) 33609.2 1.12817
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 7302.15 0.243590
\(966\) 0 0
\(967\) 11150.3 0.370806 0.185403 0.982663i \(-0.440641\pi\)
0.185403 + 0.982663i \(0.440641\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 6059.04 0.200251 0.100126 0.994975i \(-0.468076\pi\)
0.100126 + 0.994975i \(0.468076\pi\)
\(972\) 0 0
\(973\) −993.861 −0.0327459
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −5700.49 −0.186668 −0.0933341 0.995635i \(-0.529752\pi\)
−0.0933341 + 0.995635i \(0.529752\pi\)
\(978\) 0 0
\(979\) 29300.2 0.956526
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 197.480 0.00640757 0.00320378 0.999995i \(-0.498980\pi\)
0.00320378 + 0.999995i \(0.498980\pi\)
\(984\) 0 0
\(985\) −17011.0 −0.550271
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −48492.9 −1.55913
\(990\) 0 0
\(991\) −20620.8 −0.660990 −0.330495 0.943808i \(-0.607216\pi\)
−0.330495 + 0.943808i \(0.607216\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1588.03 0.0505969
\(996\) 0 0
\(997\) 19326.8 0.613928 0.306964 0.951721i \(-0.400687\pi\)
0.306964 + 0.951721i \(0.400687\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.4.a.ba.1.2 2
3.2 odd 2 336.4.a.m.1.1 2
4.3 odd 2 63.4.a.e.1.1 2
12.11 even 2 21.4.a.c.1.2 2
20.19 odd 2 1575.4.a.p.1.2 2
21.20 even 2 2352.4.a.bz.1.2 2
24.5 odd 2 1344.4.a.bo.1.2 2
24.11 even 2 1344.4.a.bg.1.2 2
28.3 even 6 441.4.e.p.226.2 4
28.11 odd 6 441.4.e.q.226.2 4
28.19 even 6 441.4.e.p.361.2 4
28.23 odd 6 441.4.e.q.361.2 4
28.27 even 2 441.4.a.r.1.1 2
60.23 odd 4 525.4.d.g.274.2 4
60.47 odd 4 525.4.d.g.274.3 4
60.59 even 2 525.4.a.n.1.1 2
84.11 even 6 147.4.e.l.79.1 4
84.23 even 6 147.4.e.l.67.1 4
84.47 odd 6 147.4.e.m.67.1 4
84.59 odd 6 147.4.e.m.79.1 4
84.83 odd 2 147.4.a.i.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
21.4.a.c.1.2 2 12.11 even 2
63.4.a.e.1.1 2 4.3 odd 2
147.4.a.i.1.2 2 84.83 odd 2
147.4.e.l.67.1 4 84.23 even 6
147.4.e.l.79.1 4 84.11 even 6
147.4.e.m.67.1 4 84.47 odd 6
147.4.e.m.79.1 4 84.59 odd 6
336.4.a.m.1.1 2 3.2 odd 2
441.4.a.r.1.1 2 28.27 even 2
441.4.e.p.226.2 4 28.3 even 6
441.4.e.p.361.2 4 28.19 even 6
441.4.e.q.226.2 4 28.11 odd 6
441.4.e.q.361.2 4 28.23 odd 6
525.4.a.n.1.1 2 60.59 even 2
525.4.d.g.274.2 4 60.23 odd 4
525.4.d.g.274.3 4 60.47 odd 4
1008.4.a.ba.1.2 2 1.1 even 1 trivial
1344.4.a.bg.1.2 2 24.11 even 2
1344.4.a.bo.1.2 2 24.5 odd 2
1575.4.a.p.1.2 2 20.19 odd 2
2352.4.a.bz.1.2 2 21.20 even 2