Properties

Label 1008.4.a.bf
Level $1008$
Weight $4$
Character orbit 1008.a
Self dual yes
Analytic conductor $59.474$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,4,Mod(1,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1008.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.4739252858\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{30}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 30 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 504)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{30}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 2) q^{5} - 7 q^{7} + (3 \beta - 18) q^{11} + (4 \beta - 6) q^{13} + (3 \beta + 22) q^{17} + ( - 4 \beta - 4) q^{19} + (5 \beta - 38) q^{23} + (4 \beta - 1) q^{25} + (4 \beta + 80) q^{29} + ( - 4 \beta + 44) q^{31}+ \cdots + ( - 88 \beta + 526) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{5} - 14 q^{7} - 36 q^{11} - 12 q^{13} + 44 q^{17} - 8 q^{19} - 76 q^{23} - 2 q^{25} + 160 q^{29} + 88 q^{31} - 28 q^{35} + 180 q^{37} + 356 q^{41} + 56 q^{43} - 616 q^{47} + 98 q^{49} + 808 q^{53}+ \cdots + 1052 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−5.47723
5.47723
0 0 0 −8.95445 0 −7.00000 0 0 0
1.2 0 0 0 12.9545 0 −7.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1008.4.a.bf 2
3.b odd 2 1 1008.4.a.bb 2
4.b odd 2 1 504.4.a.m yes 2
12.b even 2 1 504.4.a.l 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
504.4.a.l 2 12.b even 2 1
504.4.a.m yes 2 4.b odd 2 1
1008.4.a.bb 2 3.b odd 2 1
1008.4.a.bf 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1008))\):

\( T_{5}^{2} - 4T_{5} - 116 \) Copy content Toggle raw display
\( T_{11}^{2} + 36T_{11} - 756 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 4T - 116 \) Copy content Toggle raw display
$7$ \( (T + 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 36T - 756 \) Copy content Toggle raw display
$13$ \( T^{2} + 12T - 1884 \) Copy content Toggle raw display
$17$ \( T^{2} - 44T - 596 \) Copy content Toggle raw display
$19$ \( T^{2} + 8T - 1904 \) Copy content Toggle raw display
$23$ \( T^{2} + 76T - 1556 \) Copy content Toggle raw display
$29$ \( T^{2} - 160T + 4480 \) Copy content Toggle raw display
$31$ \( T^{2} - 88T + 16 \) Copy content Toggle raw display
$37$ \( T^{2} - 180T - 85980 \) Copy content Toggle raw display
$41$ \( T^{2} - 356T + 21964 \) Copy content Toggle raw display
$43$ \( T^{2} - 56T - 122096 \) Copy content Toggle raw display
$47$ \( T^{2} + 616T + 36784 \) Copy content Toggle raw display
$53$ \( T^{2} - 808T + 124336 \) Copy content Toggle raw display
$59$ \( T^{2} + 504T + 5424 \) Copy content Toggle raw display
$61$ \( T^{2} - 572T + 79876 \) Copy content Toggle raw display
$67$ \( T^{2} - 504T - 128496 \) Copy content Toggle raw display
$71$ \( T^{2} + 1188 T + 352716 \) Copy content Toggle raw display
$73$ \( T^{2} - 572T - 540284 \) Copy content Toggle raw display
$79$ \( T^{2} - 784T - 468416 \) Copy content Toggle raw display
$83$ \( T^{2} + 1344 T + 420864 \) Copy content Toggle raw display
$89$ \( T^{2} - 308T - 422804 \) Copy content Toggle raw display
$97$ \( T^{2} - 1052 T - 652604 \) Copy content Toggle raw display
show more
show less