Properties

Label 1008.6.a.ba.1.1
Level $1008$
Weight $6$
Character 1008.1
Self dual yes
Analytic conductor $161.667$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,6,Mod(1,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1008.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(161.666890371\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1008.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+72.0000 q^{5} -49.0000 q^{7} -414.000 q^{11} -1054.00 q^{13} +1848.00 q^{17} -236.000 q^{19} +2898.00 q^{23} +2059.00 q^{25} +6522.00 q^{29} -6200.00 q^{31} -3528.00 q^{35} +9650.00 q^{37} -8484.00 q^{41} +10804.0 q^{43} +60.0000 q^{47} +2401.00 q^{49} -22506.0 q^{53} -29808.0 q^{55} -28176.0 q^{59} -35194.0 q^{61} -75888.0 q^{65} +28216.0 q^{67} -6642.00 q^{71} -52090.0 q^{73} +20286.0 q^{77} -43340.0 q^{79} +25716.0 q^{83} +133056. q^{85} -98724.0 q^{89} +51646.0 q^{91} -16992.0 q^{95} -148954. q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 72.0000 1.28798 0.643988 0.765036i \(-0.277279\pi\)
0.643988 + 0.765036i \(0.277279\pi\)
\(6\) 0 0
\(7\) −49.0000 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −414.000 −1.03162 −0.515809 0.856704i \(-0.672508\pi\)
−0.515809 + 0.856704i \(0.672508\pi\)
\(12\) 0 0
\(13\) −1054.00 −1.72975 −0.864873 0.501991i \(-0.832601\pi\)
−0.864873 + 0.501991i \(0.832601\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1848.00 1.55089 0.775443 0.631418i \(-0.217527\pi\)
0.775443 + 0.631418i \(0.217527\pi\)
\(18\) 0 0
\(19\) −236.000 −0.149978 −0.0749891 0.997184i \(-0.523892\pi\)
−0.0749891 + 0.997184i \(0.523892\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2898.00 1.14230 0.571148 0.820847i \(-0.306498\pi\)
0.571148 + 0.820847i \(0.306498\pi\)
\(24\) 0 0
\(25\) 2059.00 0.658880
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6522.00 1.44008 0.720039 0.693934i \(-0.244124\pi\)
0.720039 + 0.693934i \(0.244124\pi\)
\(30\) 0 0
\(31\) −6200.00 −1.15874 −0.579372 0.815063i \(-0.696702\pi\)
−0.579372 + 0.815063i \(0.696702\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3528.00 −0.486809
\(36\) 0 0
\(37\) 9650.00 1.15884 0.579419 0.815030i \(-0.303279\pi\)
0.579419 + 0.815030i \(0.303279\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −8484.00 −0.788208 −0.394104 0.919066i \(-0.628945\pi\)
−0.394104 + 0.919066i \(0.628945\pi\)
\(42\) 0 0
\(43\) 10804.0 0.891073 0.445537 0.895264i \(-0.353013\pi\)
0.445537 + 0.895264i \(0.353013\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 60.0000 0.00396193 0.00198096 0.999998i \(-0.499369\pi\)
0.00198096 + 0.999998i \(0.499369\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −22506.0 −1.10055 −0.550274 0.834984i \(-0.685477\pi\)
−0.550274 + 0.834984i \(0.685477\pi\)
\(54\) 0 0
\(55\) −29808.0 −1.32870
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −28176.0 −1.05378 −0.526889 0.849934i \(-0.676642\pi\)
−0.526889 + 0.849934i \(0.676642\pi\)
\(60\) 0 0
\(61\) −35194.0 −1.21100 −0.605500 0.795845i \(-0.707027\pi\)
−0.605500 + 0.795845i \(0.707027\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −75888.0 −2.22787
\(66\) 0 0
\(67\) 28216.0 0.767907 0.383953 0.923352i \(-0.374562\pi\)
0.383953 + 0.923352i \(0.374562\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −6642.00 −0.156370 −0.0781849 0.996939i \(-0.524912\pi\)
−0.0781849 + 0.996939i \(0.524912\pi\)
\(72\) 0 0
\(73\) −52090.0 −1.14406 −0.572028 0.820234i \(-0.693843\pi\)
−0.572028 + 0.820234i \(0.693843\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 20286.0 0.389915
\(78\) 0 0
\(79\) −43340.0 −0.781306 −0.390653 0.920538i \(-0.627751\pi\)
−0.390653 + 0.920538i \(0.627751\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 25716.0 0.409740 0.204870 0.978789i \(-0.434323\pi\)
0.204870 + 0.978789i \(0.434323\pi\)
\(84\) 0 0
\(85\) 133056. 1.99750
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −98724.0 −1.32114 −0.660568 0.750766i \(-0.729685\pi\)
−0.660568 + 0.750766i \(0.729685\pi\)
\(90\) 0 0
\(91\) 51646.0 0.653782
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −16992.0 −0.193168
\(96\) 0 0
\(97\) −148954. −1.60740 −0.803698 0.595038i \(-0.797137\pi\)
−0.803698 + 0.595038i \(0.797137\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −48348.0 −0.471601 −0.235801 0.971801i \(-0.575771\pi\)
−0.235801 + 0.971801i \(0.575771\pi\)
\(102\) 0 0
\(103\) 183592. 1.70514 0.852571 0.522611i \(-0.175042\pi\)
0.852571 + 0.522611i \(0.175042\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2238.00 −0.0188973 −0.00944867 0.999955i \(-0.503008\pi\)
−0.00944867 + 0.999955i \(0.503008\pi\)
\(108\) 0 0
\(109\) 60158.0 0.484984 0.242492 0.970153i \(-0.422035\pi\)
0.242492 + 0.970153i \(0.422035\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7014.00 0.0516737 0.0258369 0.999666i \(-0.491775\pi\)
0.0258369 + 0.999666i \(0.491775\pi\)
\(114\) 0 0
\(115\) 208656. 1.47125
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −90552.0 −0.586180
\(120\) 0 0
\(121\) 10345.0 0.0642343
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −76752.0 −0.439354
\(126\) 0 0
\(127\) 1780.00 0.00979289 0.00489644 0.999988i \(-0.498441\pi\)
0.00489644 + 0.999988i \(0.498441\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −265140. −1.34989 −0.674943 0.737870i \(-0.735832\pi\)
−0.674943 + 0.737870i \(0.735832\pi\)
\(132\) 0 0
\(133\) 11564.0 0.0566864
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 206730. 0.941027 0.470514 0.882393i \(-0.344069\pi\)
0.470514 + 0.882393i \(0.344069\pi\)
\(138\) 0 0
\(139\) 236836. 1.03971 0.519853 0.854256i \(-0.325987\pi\)
0.519853 + 0.854256i \(0.325987\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 436356. 1.78444
\(144\) 0 0
\(145\) 469584. 1.85478
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −473706. −1.74801 −0.874004 0.485919i \(-0.838485\pi\)
−0.874004 + 0.485919i \(0.838485\pi\)
\(150\) 0 0
\(151\) −394952. −1.40962 −0.704810 0.709396i \(-0.748968\pi\)
−0.704810 + 0.709396i \(0.748968\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −446400. −1.49243
\(156\) 0 0
\(157\) −145090. −0.469773 −0.234887 0.972023i \(-0.575472\pi\)
−0.234887 + 0.972023i \(0.575472\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −142002. −0.431747
\(162\) 0 0
\(163\) −530480. −1.56387 −0.781934 0.623361i \(-0.785767\pi\)
−0.781934 + 0.623361i \(0.785767\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −312348. −0.866658 −0.433329 0.901236i \(-0.642661\pi\)
−0.433329 + 0.901236i \(0.642661\pi\)
\(168\) 0 0
\(169\) 739623. 1.99202
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 75108.0 0.190797 0.0953984 0.995439i \(-0.469588\pi\)
0.0953984 + 0.995439i \(0.469588\pi\)
\(174\) 0 0
\(175\) −100891. −0.249033
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 386718. 0.902115 0.451057 0.892495i \(-0.351047\pi\)
0.451057 + 0.892495i \(0.351047\pi\)
\(180\) 0 0
\(181\) −417598. −0.947462 −0.473731 0.880669i \(-0.657093\pi\)
−0.473731 + 0.880669i \(0.657093\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 694800. 1.49256
\(186\) 0 0
\(187\) −765072. −1.59992
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −988050. −1.95973 −0.979863 0.199669i \(-0.936013\pi\)
−0.979863 + 0.199669i \(0.936013\pi\)
\(192\) 0 0
\(193\) −409258. −0.790868 −0.395434 0.918494i \(-0.629406\pi\)
−0.395434 + 0.918494i \(0.629406\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 922230. 1.69307 0.846533 0.532337i \(-0.178686\pi\)
0.846533 + 0.532337i \(0.178686\pi\)
\(198\) 0 0
\(199\) −189488. −0.339195 −0.169597 0.985513i \(-0.554247\pi\)
−0.169597 + 0.985513i \(0.554247\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −319578. −0.544298
\(204\) 0 0
\(205\) −610848. −1.01519
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 97704.0 0.154720
\(210\) 0 0
\(211\) 611380. 0.945377 0.472689 0.881230i \(-0.343284\pi\)
0.472689 + 0.881230i \(0.343284\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 777888. 1.14768
\(216\) 0 0
\(217\) 303800. 0.437964
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.94779e6 −2.68264
\(222\) 0 0
\(223\) 783256. 1.05473 0.527365 0.849639i \(-0.323180\pi\)
0.527365 + 0.849639i \(0.323180\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 80712.0 0.103962 0.0519809 0.998648i \(-0.483447\pi\)
0.0519809 + 0.998648i \(0.483447\pi\)
\(228\) 0 0
\(229\) 152738. 0.192468 0.0962340 0.995359i \(-0.469320\pi\)
0.0962340 + 0.995359i \(0.469320\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 354282. 0.427523 0.213761 0.976886i \(-0.431428\pi\)
0.213761 + 0.976886i \(0.431428\pi\)
\(234\) 0 0
\(235\) 4320.00 0.00510287
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 275370. 0.311833 0.155916 0.987770i \(-0.450167\pi\)
0.155916 + 0.987770i \(0.450167\pi\)
\(240\) 0 0
\(241\) −584698. −0.648469 −0.324234 0.945977i \(-0.605107\pi\)
−0.324234 + 0.945977i \(0.605107\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 172872. 0.183996
\(246\) 0 0
\(247\) 248744. 0.259424
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −184752. −0.185099 −0.0925497 0.995708i \(-0.529502\pi\)
−0.0925497 + 0.995708i \(0.529502\pi\)
\(252\) 0 0
\(253\) −1.19977e6 −1.17841
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −235980. −0.222865 −0.111433 0.993772i \(-0.535544\pi\)
−0.111433 + 0.993772i \(0.535544\pi\)
\(258\) 0 0
\(259\) −472850. −0.438000
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −244494. −0.217961 −0.108981 0.994044i \(-0.534759\pi\)
−0.108981 + 0.994044i \(0.534759\pi\)
\(264\) 0 0
\(265\) −1.62043e6 −1.41748
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.52779e6 −1.28731 −0.643656 0.765315i \(-0.722583\pi\)
−0.643656 + 0.765315i \(0.722583\pi\)
\(270\) 0 0
\(271\) −2.07056e6 −1.71263 −0.856317 0.516450i \(-0.827253\pi\)
−0.856317 + 0.516450i \(0.827253\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −852426. −0.679712
\(276\) 0 0
\(277\) −2.40727e6 −1.88506 −0.942530 0.334120i \(-0.891561\pi\)
−0.942530 + 0.334120i \(0.891561\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −341886. −0.258295 −0.129147 0.991625i \(-0.541224\pi\)
−0.129147 + 0.991625i \(0.541224\pi\)
\(282\) 0 0
\(283\) −578564. −0.429423 −0.214712 0.976678i \(-0.568881\pi\)
−0.214712 + 0.976678i \(0.568881\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 415716. 0.297915
\(288\) 0 0
\(289\) 1.99525e6 1.40525
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −780540. −0.531161 −0.265580 0.964089i \(-0.585564\pi\)
−0.265580 + 0.964089i \(0.585564\pi\)
\(294\) 0 0
\(295\) −2.02867e6 −1.35724
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3.05449e6 −1.97588
\(300\) 0 0
\(301\) −529396. −0.336794
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2.53397e6 −1.55974
\(306\) 0 0
\(307\) 2.24825e6 1.36144 0.680721 0.732543i \(-0.261667\pi\)
0.680721 + 0.732543i \(0.261667\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 581412. 0.340865 0.170433 0.985369i \(-0.445483\pi\)
0.170433 + 0.985369i \(0.445483\pi\)
\(312\) 0 0
\(313\) −2.00407e6 −1.15625 −0.578125 0.815948i \(-0.696216\pi\)
−0.578125 + 0.815948i \(0.696216\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.27832e6 0.714481 0.357241 0.934012i \(-0.383718\pi\)
0.357241 + 0.934012i \(0.383718\pi\)
\(318\) 0 0
\(319\) −2.70011e6 −1.48561
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −436128. −0.232599
\(324\) 0 0
\(325\) −2.17019e6 −1.13969
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2940.00 −0.00149747
\(330\) 0 0
\(331\) −2.59812e6 −1.30343 −0.651716 0.758463i \(-0.725951\pi\)
−0.651716 + 0.758463i \(0.725951\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2.03155e6 0.989045
\(336\) 0 0
\(337\) 3.06190e6 1.46864 0.734321 0.678802i \(-0.237501\pi\)
0.734321 + 0.678802i \(0.237501\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.56680e6 1.19538
\(342\) 0 0
\(343\) −117649. −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.42550e6 −0.635540 −0.317770 0.948168i \(-0.602934\pi\)
−0.317770 + 0.948168i \(0.602934\pi\)
\(348\) 0 0
\(349\) 2.93322e6 1.28908 0.644542 0.764569i \(-0.277048\pi\)
0.644542 + 0.764569i \(0.277048\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.01276e6 0.859716 0.429858 0.902896i \(-0.358564\pi\)
0.429858 + 0.902896i \(0.358564\pi\)
\(354\) 0 0
\(355\) −478224. −0.201400
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4.07710e6 1.66961 0.834806 0.550545i \(-0.185580\pi\)
0.834806 + 0.550545i \(0.185580\pi\)
\(360\) 0 0
\(361\) −2.42040e6 −0.977507
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3.75048e6 −1.47352
\(366\) 0 0
\(367\) −594752. −0.230500 −0.115250 0.993337i \(-0.536767\pi\)
−0.115250 + 0.993337i \(0.536767\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.10279e6 0.415968
\(372\) 0 0
\(373\) 2.04522e6 0.761147 0.380573 0.924751i \(-0.375727\pi\)
0.380573 + 0.924751i \(0.375727\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −6.87419e6 −2.49097
\(378\) 0 0
\(379\) 3.22198e6 1.15219 0.576096 0.817382i \(-0.304575\pi\)
0.576096 + 0.817382i \(0.304575\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −1.72966e6 −0.602508 −0.301254 0.953544i \(-0.597405\pi\)
−0.301254 + 0.953544i \(0.597405\pi\)
\(384\) 0 0
\(385\) 1.46059e6 0.502200
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.74919e6 0.586087 0.293043 0.956099i \(-0.405332\pi\)
0.293043 + 0.956099i \(0.405332\pi\)
\(390\) 0 0
\(391\) 5.35550e6 1.77157
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3.12048e6 −1.00630
\(396\) 0 0
\(397\) 1.88205e6 0.599313 0.299657 0.954047i \(-0.403128\pi\)
0.299657 + 0.954047i \(0.403128\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −4.18124e6 −1.29851 −0.649253 0.760573i \(-0.724918\pi\)
−0.649253 + 0.760573i \(0.724918\pi\)
\(402\) 0 0
\(403\) 6.53480e6 2.00433
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.99510e6 −1.19548
\(408\) 0 0
\(409\) −471682. −0.139425 −0.0697126 0.997567i \(-0.522208\pi\)
−0.0697126 + 0.997567i \(0.522208\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.38062e6 0.398291
\(414\) 0 0
\(415\) 1.85155e6 0.527735
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −3.54094e6 −0.985333 −0.492666 0.870218i \(-0.663978\pi\)
−0.492666 + 0.870218i \(0.663978\pi\)
\(420\) 0 0
\(421\) 2.72763e6 0.750032 0.375016 0.927018i \(-0.377637\pi\)
0.375016 + 0.927018i \(0.377637\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.80503e6 1.02185
\(426\) 0 0
\(427\) 1.72451e6 0.457715
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −4.76517e6 −1.23562 −0.617810 0.786327i \(-0.711980\pi\)
−0.617810 + 0.786327i \(0.711980\pi\)
\(432\) 0 0
\(433\) 6.90300e6 1.76937 0.884684 0.466191i \(-0.154374\pi\)
0.884684 + 0.466191i \(0.154374\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −683928. −0.171319
\(438\) 0 0
\(439\) −5.40126e6 −1.33762 −0.668811 0.743432i \(-0.733197\pi\)
−0.668811 + 0.743432i \(0.733197\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −4.05863e6 −0.982586 −0.491293 0.870994i \(-0.663476\pi\)
−0.491293 + 0.870994i \(0.663476\pi\)
\(444\) 0 0
\(445\) −7.10813e6 −1.70159
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −212994. −0.0498599 −0.0249300 0.999689i \(-0.507936\pi\)
−0.0249300 + 0.999689i \(0.507936\pi\)
\(450\) 0 0
\(451\) 3.51238e6 0.813129
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3.71851e6 0.842055
\(456\) 0 0
\(457\) −916150. −0.205199 −0.102600 0.994723i \(-0.532716\pi\)
−0.102600 + 0.994723i \(0.532716\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 4.15835e6 0.911315 0.455657 0.890155i \(-0.349404\pi\)
0.455657 + 0.890155i \(0.349404\pi\)
\(462\) 0 0
\(463\) −8.40799e6 −1.82280 −0.911401 0.411519i \(-0.864998\pi\)
−0.911401 + 0.411519i \(0.864998\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 72048.0 0.0152873 0.00764363 0.999971i \(-0.497567\pi\)
0.00764363 + 0.999971i \(0.497567\pi\)
\(468\) 0 0
\(469\) −1.38258e6 −0.290241
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −4.47286e6 −0.919247
\(474\) 0 0
\(475\) −485924. −0.0988176
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4.80560e6 0.956994 0.478497 0.878089i \(-0.341182\pi\)
0.478497 + 0.878089i \(0.341182\pi\)
\(480\) 0 0
\(481\) −1.01711e7 −2.00450
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.07247e7 −2.07029
\(486\) 0 0
\(487\) −4.41805e6 −0.844127 −0.422064 0.906566i \(-0.638694\pi\)
−0.422064 + 0.906566i \(0.638694\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −5.64998e6 −1.05765 −0.528826 0.848730i \(-0.677368\pi\)
−0.528826 + 0.848730i \(0.677368\pi\)
\(492\) 0 0
\(493\) 1.20527e7 2.23339
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 325458. 0.0591022
\(498\) 0 0
\(499\) 9.22344e6 1.65822 0.829109 0.559087i \(-0.188848\pi\)
0.829109 + 0.559087i \(0.188848\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1.45562e6 0.256525 0.128262 0.991740i \(-0.459060\pi\)
0.128262 + 0.991740i \(0.459060\pi\)
\(504\) 0 0
\(505\) −3.48106e6 −0.607411
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 367344. 0.0628461 0.0314231 0.999506i \(-0.489996\pi\)
0.0314231 + 0.999506i \(0.489996\pi\)
\(510\) 0 0
\(511\) 2.55241e6 0.432412
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1.32186e7 2.19618
\(516\) 0 0
\(517\) −24840.0 −0.00408719
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −5.76362e6 −0.930254 −0.465127 0.885244i \(-0.653991\pi\)
−0.465127 + 0.885244i \(0.653991\pi\)
\(522\) 0 0
\(523\) −235100. −0.0375836 −0.0187918 0.999823i \(-0.505982\pi\)
−0.0187918 + 0.999823i \(0.505982\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.14576e7 −1.79708
\(528\) 0 0
\(529\) 1.96206e6 0.304841
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 8.94214e6 1.36340
\(534\) 0 0
\(535\) −161136. −0.0243393
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −994014. −0.147374
\(540\) 0 0
\(541\) 109010. 0.0160130 0.00800651 0.999968i \(-0.497451\pi\)
0.00800651 + 0.999968i \(0.497451\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 4.33138e6 0.624647
\(546\) 0 0
\(547\) −1.61953e6 −0.231430 −0.115715 0.993282i \(-0.536916\pi\)
−0.115715 + 0.993282i \(0.536916\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1.53919e6 −0.215980
\(552\) 0 0
\(553\) 2.12366e6 0.295306
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 6.62986e6 0.905454 0.452727 0.891649i \(-0.350451\pi\)
0.452727 + 0.891649i \(0.350451\pi\)
\(558\) 0 0
\(559\) −1.13874e7 −1.54133
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 7.85294e6 1.04415 0.522073 0.852901i \(-0.325159\pi\)
0.522073 + 0.852901i \(0.325159\pi\)
\(564\) 0 0
\(565\) 505008. 0.0665545
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 2.48155e6 0.321323 0.160661 0.987010i \(-0.448637\pi\)
0.160661 + 0.987010i \(0.448637\pi\)
\(570\) 0 0
\(571\) −1.13675e7 −1.45907 −0.729533 0.683945i \(-0.760263\pi\)
−0.729533 + 0.683945i \(0.760263\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5.96698e6 0.752636
\(576\) 0 0
\(577\) −8.20505e6 −1.02599 −0.512993 0.858393i \(-0.671463\pi\)
−0.512993 + 0.858393i \(0.671463\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.26008e6 −0.154867
\(582\) 0 0
\(583\) 9.31748e6 1.13534
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.38400e7 −1.65783 −0.828917 0.559371i \(-0.811043\pi\)
−0.828917 + 0.559371i \(0.811043\pi\)
\(588\) 0 0
\(589\) 1.46320e6 0.173786
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 5.38951e6 0.629380 0.314690 0.949195i \(-0.398099\pi\)
0.314690 + 0.949195i \(0.398099\pi\)
\(594\) 0 0
\(595\) −6.51974e6 −0.754985
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1.14885e7 −1.30827 −0.654134 0.756379i \(-0.726967\pi\)
−0.654134 + 0.756379i \(0.726967\pi\)
\(600\) 0 0
\(601\) −2.79225e6 −0.315333 −0.157666 0.987492i \(-0.550397\pi\)
−0.157666 + 0.987492i \(0.550397\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 744840. 0.0827322
\(606\) 0 0
\(607\) −713888. −0.0786427 −0.0393213 0.999227i \(-0.512520\pi\)
−0.0393213 + 0.999227i \(0.512520\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −63240.0 −0.00685313
\(612\) 0 0
\(613\) 3.10972e6 0.334249 0.167124 0.985936i \(-0.446552\pi\)
0.167124 + 0.985936i \(0.446552\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −3.62384e6 −0.383227 −0.191613 0.981470i \(-0.561372\pi\)
−0.191613 + 0.981470i \(0.561372\pi\)
\(618\) 0 0
\(619\) −4.25196e6 −0.446028 −0.223014 0.974815i \(-0.571590\pi\)
−0.223014 + 0.974815i \(0.571590\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4.83748e6 0.499343
\(624\) 0 0
\(625\) −1.19605e7 −1.22476
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.78332e7 1.79723
\(630\) 0 0
\(631\) 1.70299e7 1.70270 0.851349 0.524600i \(-0.175785\pi\)
0.851349 + 0.524600i \(0.175785\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 128160. 0.0126130
\(636\) 0 0
\(637\) −2.53065e6 −0.247107
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1.80938e6 0.173934 0.0869669 0.996211i \(-0.472283\pi\)
0.0869669 + 0.996211i \(0.472283\pi\)
\(642\) 0 0
\(643\) −1.53012e7 −1.45948 −0.729740 0.683725i \(-0.760359\pi\)
−0.729740 + 0.683725i \(0.760359\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.67546e7 1.57352 0.786762 0.617256i \(-0.211756\pi\)
0.786762 + 0.617256i \(0.211756\pi\)
\(648\) 0 0
\(649\) 1.16649e7 1.08710
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.47859e7 −1.35695 −0.678477 0.734622i \(-0.737360\pi\)
−0.678477 + 0.734622i \(0.737360\pi\)
\(654\) 0 0
\(655\) −1.90901e7 −1.73862
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 933762. 0.0837573 0.0418786 0.999123i \(-0.486666\pi\)
0.0418786 + 0.999123i \(0.486666\pi\)
\(660\) 0 0
\(661\) 6.09724e6 0.542787 0.271394 0.962468i \(-0.412516\pi\)
0.271394 + 0.962468i \(0.412516\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 832608. 0.0730107
\(666\) 0 0
\(667\) 1.89008e7 1.64500
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.45703e7 1.24929
\(672\) 0 0
\(673\) 2.09190e6 0.178034 0.0890171 0.996030i \(-0.471627\pi\)
0.0890171 + 0.996030i \(0.471627\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −1.36453e6 −0.114423 −0.0572113 0.998362i \(-0.518221\pi\)
−0.0572113 + 0.998362i \(0.518221\pi\)
\(678\) 0 0
\(679\) 7.29875e6 0.607539
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.15483e7 0.947254 0.473627 0.880726i \(-0.342945\pi\)
0.473627 + 0.880726i \(0.342945\pi\)
\(684\) 0 0
\(685\) 1.48846e7 1.21202
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2.37213e7 1.90367
\(690\) 0 0
\(691\) −4.17744e6 −0.332824 −0.166412 0.986056i \(-0.553218\pi\)
−0.166412 + 0.986056i \(0.553218\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.70522e7 1.33912
\(696\) 0 0
\(697\) −1.56784e7 −1.22242
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1.70278e7 1.30877 0.654385 0.756161i \(-0.272927\pi\)
0.654385 + 0.756161i \(0.272927\pi\)
\(702\) 0 0
\(703\) −2.27740e6 −0.173800
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.36905e6 0.178249
\(708\) 0 0
\(709\) 2.26932e7 1.69543 0.847715 0.530452i \(-0.177978\pi\)
0.847715 + 0.530452i \(0.177978\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1.79676e7 −1.32363
\(714\) 0 0
\(715\) 3.14176e7 2.29831
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 5.12544e6 0.369751 0.184875 0.982762i \(-0.440812\pi\)
0.184875 + 0.982762i \(0.440812\pi\)
\(720\) 0 0
\(721\) −8.99601e6 −0.644483
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.34288e7 0.948838
\(726\) 0 0
\(727\) 1.54328e7 1.08295 0.541476 0.840716i \(-0.317866\pi\)
0.541476 + 0.840716i \(0.317866\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.99658e7 1.38195
\(732\) 0 0
\(733\) −6.84465e6 −0.470535 −0.235267 0.971931i \(-0.575597\pi\)
−0.235267 + 0.971931i \(0.575597\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.16814e7 −0.792186
\(738\) 0 0
\(739\) −2.99389e6 −0.201662 −0.100831 0.994904i \(-0.532150\pi\)
−0.100831 + 0.994904i \(0.532150\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2.23250e7 1.48361 0.741804 0.670617i \(-0.233971\pi\)
0.741804 + 0.670617i \(0.233971\pi\)
\(744\) 0 0
\(745\) −3.41068e7 −2.25139
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 109662. 0.00714252
\(750\) 0 0
\(751\) 1.41440e7 0.915110 0.457555 0.889181i \(-0.348725\pi\)
0.457555 + 0.889181i \(0.348725\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −2.84365e7 −1.81556
\(756\) 0 0
\(757\) −8.15367e6 −0.517147 −0.258573 0.965992i \(-0.583252\pi\)
−0.258573 + 0.965992i \(0.583252\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 2.25745e6 0.141305 0.0706524 0.997501i \(-0.477492\pi\)
0.0706524 + 0.997501i \(0.477492\pi\)
\(762\) 0 0
\(763\) −2.94774e6 −0.183307
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2.96975e7 1.82277
\(768\) 0 0
\(769\) −748774. −0.0456599 −0.0228299 0.999739i \(-0.507268\pi\)
−0.0228299 + 0.999739i \(0.507268\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 9.46225e6 0.569568 0.284784 0.958592i \(-0.408078\pi\)
0.284784 + 0.958592i \(0.408078\pi\)
\(774\) 0 0
\(775\) −1.27658e7 −0.763473
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.00222e6 0.118214
\(780\) 0 0
\(781\) 2.74979e6 0.161314
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.04465e7 −0.605056
\(786\) 0 0
\(787\) 1.99634e7 1.14894 0.574470 0.818525i \(-0.305208\pi\)
0.574470 + 0.818525i \(0.305208\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −343686. −0.0195308
\(792\) 0 0
\(793\) 3.70945e7 2.09472
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 4.05368e6 0.226050 0.113025 0.993592i \(-0.463946\pi\)
0.113025 + 0.993592i \(0.463946\pi\)
\(798\) 0 0
\(799\) 110880. 0.00614450
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 2.15653e7 1.18023
\(804\) 0 0
\(805\) −1.02241e7 −0.556080
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1.85432e7 −0.996124 −0.498062 0.867141i \(-0.665955\pi\)
−0.498062 + 0.867141i \(0.665955\pi\)
\(810\) 0 0
\(811\) −1.63648e7 −0.873690 −0.436845 0.899537i \(-0.643904\pi\)
−0.436845 + 0.899537i \(0.643904\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −3.81946e7 −2.01422
\(816\) 0 0
\(817\) −2.54974e6 −0.133642
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 5.45014e6 0.282195 0.141098 0.989996i \(-0.454937\pi\)
0.141098 + 0.989996i \(0.454937\pi\)
\(822\) 0 0
\(823\) 2.19153e7 1.12784 0.563921 0.825829i \(-0.309292\pi\)
0.563921 + 0.825829i \(0.309292\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 8.11859e6 0.412778 0.206389 0.978470i \(-0.433829\pi\)
0.206389 + 0.978470i \(0.433829\pi\)
\(828\) 0 0
\(829\) 1.60662e7 0.811943 0.405972 0.913886i \(-0.366933\pi\)
0.405972 + 0.913886i \(0.366933\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 4.43705e6 0.221555
\(834\) 0 0
\(835\) −2.24891e7 −1.11623
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −2.63504e7 −1.29236 −0.646178 0.763186i \(-0.723634\pi\)
−0.646178 + 0.763186i \(0.723634\pi\)
\(840\) 0 0
\(841\) 2.20253e7 1.07382
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 5.32529e7 2.56567
\(846\) 0 0
\(847\) −506905. −0.0242783
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.79657e7 1.32374
\(852\) 0 0
\(853\) 2.78129e7 1.30880 0.654400 0.756148i \(-0.272921\pi\)
0.654400 + 0.756148i \(0.272921\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.69363e6 0.125281 0.0626406 0.998036i \(-0.480048\pi\)
0.0626406 + 0.998036i \(0.480048\pi\)
\(858\) 0 0
\(859\) 1.88389e7 0.871109 0.435555 0.900162i \(-0.356552\pi\)
0.435555 + 0.900162i \(0.356552\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.28630e7 −0.587917 −0.293959 0.955818i \(-0.594973\pi\)
−0.293959 + 0.955818i \(0.594973\pi\)
\(864\) 0 0
\(865\) 5.40778e6 0.245741
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.79428e7 0.806009
\(870\) 0 0
\(871\) −2.97397e7 −1.32828
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 3.76085e6 0.166060
\(876\) 0 0
\(877\) −1.58811e7 −0.697240 −0.348620 0.937264i \(-0.613350\pi\)
−0.348620 + 0.937264i \(0.613350\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1.73681e7 −0.753899 −0.376950 0.926234i \(-0.623027\pi\)
−0.376950 + 0.926234i \(0.623027\pi\)
\(882\) 0 0
\(883\) −2.23513e7 −0.964721 −0.482361 0.875973i \(-0.660220\pi\)
−0.482361 + 0.875973i \(0.660220\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −8.91140e6 −0.380309 −0.190155 0.981754i \(-0.560899\pi\)
−0.190155 + 0.981754i \(0.560899\pi\)
\(888\) 0 0
\(889\) −87220.0 −0.00370136
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −14160.0 −0.000594203 0
\(894\) 0 0
\(895\) 2.78437e7 1.16190
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4.04364e7 −1.66868
\(900\) 0 0
\(901\) −4.15911e7 −1.70682
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −3.00671e7 −1.22031
\(906\) 0 0
\(907\) 4.53327e6 0.182976 0.0914878 0.995806i \(-0.470838\pi\)
0.0914878 + 0.995806i \(0.470838\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −9.83085e6 −0.392460 −0.196230 0.980558i \(-0.562870\pi\)
−0.196230 + 0.980558i \(0.562870\pi\)
\(912\) 0 0
\(913\) −1.06464e7 −0.422695
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.29919e7 0.510209
\(918\) 0 0
\(919\) 4.82049e7 1.88279 0.941396 0.337304i \(-0.109515\pi\)
0.941396 + 0.337304i \(0.109515\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 7.00067e6 0.270480
\(924\) 0 0
\(925\) 1.98694e7 0.763536
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 6.77017e6 0.257371 0.128686 0.991685i \(-0.458924\pi\)
0.128686 + 0.991685i \(0.458924\pi\)
\(930\) 0 0
\(931\) −566636. −0.0214255
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −5.50852e7 −2.06066
\(936\) 0 0
\(937\) 1.25127e7 0.465590 0.232795 0.972526i \(-0.425213\pi\)
0.232795 + 0.972526i \(0.425213\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.38659e7 0.510473 0.255236 0.966879i \(-0.417847\pi\)
0.255236 + 0.966879i \(0.417847\pi\)
\(942\) 0 0
\(943\) −2.45866e7 −0.900367
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 4.89287e6 0.177292 0.0886460 0.996063i \(-0.471746\pi\)
0.0886460 + 0.996063i \(0.471746\pi\)
\(948\) 0 0
\(949\) 5.49029e7 1.97893
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.40055e7 0.499535 0.249768 0.968306i \(-0.419646\pi\)
0.249768 + 0.968306i \(0.419646\pi\)
\(954\) 0 0
\(955\) −7.11396e7 −2.52408
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.01298e7 −0.355675
\(960\) 0 0
\(961\) 9.81085e6 0.342687
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −2.94666e7 −1.01862
\(966\) 0 0
\(967\) 1.02386e7 0.352106 0.176053 0.984381i \(-0.443667\pi\)
0.176053 + 0.984381i \(0.443667\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1.17452e7 0.399773 0.199886 0.979819i \(-0.435943\pi\)
0.199886 + 0.979819i \(0.435943\pi\)
\(972\) 0 0
\(973\) −1.16050e7 −0.392972
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −2.26195e7 −0.758134 −0.379067 0.925369i \(-0.623755\pi\)
−0.379067 + 0.925369i \(0.623755\pi\)
\(978\) 0 0
\(979\) 4.08717e7 1.36291
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 2.79575e7 0.922813 0.461407 0.887189i \(-0.347345\pi\)
0.461407 + 0.887189i \(0.347345\pi\)
\(984\) 0 0
\(985\) 6.64006e7 2.18063
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 3.13100e7 1.01787
\(990\) 0 0
\(991\) 1.66475e7 0.538474 0.269237 0.963074i \(-0.413228\pi\)
0.269237 + 0.963074i \(0.413228\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1.36431e7 −0.436874
\(996\) 0 0
\(997\) −5.17280e7 −1.64812 −0.824058 0.566505i \(-0.808295\pi\)
−0.824058 + 0.566505i \(0.808295\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.6.a.ba.1.1 1
3.2 odd 2 336.6.a.b.1.1 1
4.3 odd 2 126.6.a.l.1.1 1
12.11 even 2 42.6.a.c.1.1 1
28.27 even 2 882.6.a.n.1.1 1
60.23 odd 4 1050.6.g.b.799.2 2
60.47 odd 4 1050.6.g.b.799.1 2
60.59 even 2 1050.6.a.g.1.1 1
84.11 even 6 294.6.e.l.79.1 2
84.23 even 6 294.6.e.l.67.1 2
84.47 odd 6 294.6.e.n.67.1 2
84.59 odd 6 294.6.e.n.79.1 2
84.83 odd 2 294.6.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.a.c.1.1 1 12.11 even 2
126.6.a.l.1.1 1 4.3 odd 2
294.6.a.c.1.1 1 84.83 odd 2
294.6.e.l.67.1 2 84.23 even 6
294.6.e.l.79.1 2 84.11 even 6
294.6.e.n.67.1 2 84.47 odd 6
294.6.e.n.79.1 2 84.59 odd 6
336.6.a.b.1.1 1 3.2 odd 2
882.6.a.n.1.1 1 28.27 even 2
1008.6.a.ba.1.1 1 1.1 even 1 trivial
1050.6.a.g.1.1 1 60.59 even 2
1050.6.g.b.799.1 2 60.47 odd 4
1050.6.g.b.799.2 2 60.23 odd 4