Properties

Label 1014.2.e.d
Level 10141014
Weight 22
Character orbit 1014.e
Analytic conductor 8.0978.097
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1014,2,Mod(529,1014)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1014, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1014.529");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1014=23132 1014 = 2 \cdot 3 \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1014.e (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 8.096830764968.09683076496
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ61)q2+(ζ6+1)q3ζ6q4+q5+ζ6q62ζ6q7+q8ζ6q9+(ζ61)q10+(2ζ6+2)q11q12+2q99+O(q100) q + (\zeta_{6} - 1) q^{2} + ( - \zeta_{6} + 1) q^{3} - \zeta_{6} q^{4} + q^{5} + \zeta_{6} q^{6} - 2 \zeta_{6} q^{7} + q^{8} - \zeta_{6} q^{9} + (\zeta_{6} - 1) q^{10} + ( - 2 \zeta_{6} + 2) q^{11} - q^{12} + \cdots - 2 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq2+q3q4+2q5+q62q7+2q8q9q10+2q112q12+4q14+q15q165q17+2q182q19q204q21+2q22+4q99+O(q100) 2 q - q^{2} + q^{3} - q^{4} + 2 q^{5} + q^{6} - 2 q^{7} + 2 q^{8} - q^{9} - q^{10} + 2 q^{11} - 2 q^{12} + 4 q^{14} + q^{15} - q^{16} - 5 q^{17} + 2 q^{18} - 2 q^{19} - q^{20} - 4 q^{21} + 2 q^{22}+ \cdots - 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1014Z)×\left(\mathbb{Z}/1014\mathbb{Z}\right)^\times.

nn 677677 847847
χ(n)\chi(n) 11 ζ6-\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
529.1
0.500000 + 0.866025i
0.500000 0.866025i
−0.500000 + 0.866025i 0.500000 0.866025i −0.500000 0.866025i 1.00000 0.500000 + 0.866025i −1.00000 1.73205i 1.00000 −0.500000 0.866025i −0.500000 + 0.866025i
991.1 −0.500000 0.866025i 0.500000 + 0.866025i −0.500000 + 0.866025i 1.00000 0.500000 0.866025i −1.00000 + 1.73205i 1.00000 −0.500000 + 0.866025i −0.500000 0.866025i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1014.2.e.d 2
13.b even 2 1 78.2.e.b 2
13.c even 3 1 1014.2.a.e 1
13.c even 3 1 inner 1014.2.e.d 2
13.d odd 4 2 1014.2.i.e 4
13.e even 6 1 78.2.e.b 2
13.e even 6 1 1014.2.a.a 1
13.f odd 12 2 1014.2.b.a 2
13.f odd 12 2 1014.2.i.e 4
39.d odd 2 1 234.2.h.b 2
39.h odd 6 1 234.2.h.b 2
39.h odd 6 1 3042.2.a.m 1
39.i odd 6 1 3042.2.a.d 1
39.k even 12 2 3042.2.b.d 2
52.b odd 2 1 624.2.q.b 2
52.i odd 6 1 624.2.q.b 2
52.i odd 6 1 8112.2.a.x 1
52.j odd 6 1 8112.2.a.bb 1
65.d even 2 1 1950.2.i.b 2
65.h odd 4 2 1950.2.z.b 4
65.l even 6 1 1950.2.i.b 2
65.r odd 12 2 1950.2.z.b 4
156.h even 2 1 1872.2.t.i 2
156.r even 6 1 1872.2.t.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.2.e.b 2 13.b even 2 1
78.2.e.b 2 13.e even 6 1
234.2.h.b 2 39.d odd 2 1
234.2.h.b 2 39.h odd 6 1
624.2.q.b 2 52.b odd 2 1
624.2.q.b 2 52.i odd 6 1
1014.2.a.a 1 13.e even 6 1
1014.2.a.e 1 13.c even 3 1
1014.2.b.a 2 13.f odd 12 2
1014.2.e.d 2 1.a even 1 1 trivial
1014.2.e.d 2 13.c even 3 1 inner
1014.2.i.e 4 13.d odd 4 2
1014.2.i.e 4 13.f odd 12 2
1872.2.t.i 2 156.h even 2 1
1872.2.t.i 2 156.r even 6 1
1950.2.i.b 2 65.d even 2 1
1950.2.i.b 2 65.l even 6 1
1950.2.z.b 4 65.h odd 4 2
1950.2.z.b 4 65.r odd 12 2
3042.2.a.d 1 39.i odd 6 1
3042.2.a.m 1 39.h odd 6 1
3042.2.b.d 2 39.k even 12 2
8112.2.a.x 1 52.i odd 6 1
8112.2.a.bb 1 52.j odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1014,[χ])S_{2}^{\mathrm{new}}(1014, [\chi]):

T51 T_{5} - 1 Copy content Toggle raw display
T72+2T7+4 T_{7}^{2} + 2T_{7} + 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
33 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
55 (T1)2 (T - 1)^{2} Copy content Toggle raw display
77 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
1111 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 T2+5T+25 T^{2} + 5T + 25 Copy content Toggle raw display
1919 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
2323 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
2929 T29T+81 T^{2} - 9T + 81 Copy content Toggle raw display
3131 (T4)2 (T - 4)^{2} Copy content Toggle raw display
3737 T2+11T+121 T^{2} + 11T + 121 Copy content Toggle raw display
4141 T25T+25 T^{2} - 5T + 25 Copy content Toggle raw display
4343 T2+10T+100 T^{2} + 10T + 100 Copy content Toggle raw display
4747 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
5353 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
5959 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
6161 T211T+121 T^{2} - 11T + 121 Copy content Toggle raw display
6767 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
7171 T2+14T+196 T^{2} + 14T + 196 Copy content Toggle raw display
7373 (T13)2 (T - 13)^{2} Copy content Toggle raw display
7979 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
8383 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
8989 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
9797 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
show more
show less