Properties

Label 1014.2.e.d
Level $1014$
Weight $2$
Character orbit 1014.e
Analytic conductor $8.097$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1014,2,Mod(529,1014)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1014, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1014.529");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1014.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.09683076496\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{6} - 1) q^{2} + ( - \zeta_{6} + 1) q^{3} - \zeta_{6} q^{4} + q^{5} + \zeta_{6} q^{6} - 2 \zeta_{6} q^{7} + q^{8} - \zeta_{6} q^{9} + (\zeta_{6} - 1) q^{10} + ( - 2 \zeta_{6} + 2) q^{11} - q^{12} + \cdots - 2 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + q^{3} - q^{4} + 2 q^{5} + q^{6} - 2 q^{7} + 2 q^{8} - q^{9} - q^{10} + 2 q^{11} - 2 q^{12} + 4 q^{14} + q^{15} - q^{16} - 5 q^{17} + 2 q^{18} - 2 q^{19} - q^{20} - 4 q^{21} + 2 q^{22}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1014\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
529.1
0.500000 + 0.866025i
0.500000 0.866025i
−0.500000 + 0.866025i 0.500000 0.866025i −0.500000 0.866025i 1.00000 0.500000 + 0.866025i −1.00000 1.73205i 1.00000 −0.500000 0.866025i −0.500000 + 0.866025i
991.1 −0.500000 0.866025i 0.500000 + 0.866025i −0.500000 + 0.866025i 1.00000 0.500000 0.866025i −1.00000 + 1.73205i 1.00000 −0.500000 + 0.866025i −0.500000 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1014.2.e.d 2
13.b even 2 1 78.2.e.b 2
13.c even 3 1 1014.2.a.e 1
13.c even 3 1 inner 1014.2.e.d 2
13.d odd 4 2 1014.2.i.e 4
13.e even 6 1 78.2.e.b 2
13.e even 6 1 1014.2.a.a 1
13.f odd 12 2 1014.2.b.a 2
13.f odd 12 2 1014.2.i.e 4
39.d odd 2 1 234.2.h.b 2
39.h odd 6 1 234.2.h.b 2
39.h odd 6 1 3042.2.a.m 1
39.i odd 6 1 3042.2.a.d 1
39.k even 12 2 3042.2.b.d 2
52.b odd 2 1 624.2.q.b 2
52.i odd 6 1 624.2.q.b 2
52.i odd 6 1 8112.2.a.x 1
52.j odd 6 1 8112.2.a.bb 1
65.d even 2 1 1950.2.i.b 2
65.h odd 4 2 1950.2.z.b 4
65.l even 6 1 1950.2.i.b 2
65.r odd 12 2 1950.2.z.b 4
156.h even 2 1 1872.2.t.i 2
156.r even 6 1 1872.2.t.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.2.e.b 2 13.b even 2 1
78.2.e.b 2 13.e even 6 1
234.2.h.b 2 39.d odd 2 1
234.2.h.b 2 39.h odd 6 1
624.2.q.b 2 52.b odd 2 1
624.2.q.b 2 52.i odd 6 1
1014.2.a.a 1 13.e even 6 1
1014.2.a.e 1 13.c even 3 1
1014.2.b.a 2 13.f odd 12 2
1014.2.e.d 2 1.a even 1 1 trivial
1014.2.e.d 2 13.c even 3 1 inner
1014.2.i.e 4 13.d odd 4 2
1014.2.i.e 4 13.f odd 12 2
1872.2.t.i 2 156.h even 2 1
1872.2.t.i 2 156.r even 6 1
1950.2.i.b 2 65.d even 2 1
1950.2.i.b 2 65.l even 6 1
1950.2.z.b 4 65.h odd 4 2
1950.2.z.b 4 65.r odd 12 2
3042.2.a.d 1 39.i odd 6 1
3042.2.a.m 1 39.h odd 6 1
3042.2.b.d 2 39.k even 12 2
8112.2.a.x 1 52.i odd 6 1
8112.2.a.bb 1 52.j odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1014, [\chi])\):

\( T_{5} - 1 \) Copy content Toggle raw display
\( T_{7}^{2} + 2T_{7} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$11$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
$19$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$23$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$29$ \( T^{2} - 9T + 81 \) Copy content Toggle raw display
$31$ \( (T - 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 11T + 121 \) Copy content Toggle raw display
$41$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$43$ \( T^{2} + 10T + 100 \) Copy content Toggle raw display
$47$ \( (T + 2)^{2} \) Copy content Toggle raw display
$53$ \( (T + 1)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$61$ \( T^{2} - 11T + 121 \) Copy content Toggle raw display
$67$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$71$ \( T^{2} + 14T + 196 \) Copy content Toggle raw display
$73$ \( (T - 13)^{2} \) Copy content Toggle raw display
$79$ \( (T + 4)^{2} \) Copy content Toggle raw display
$83$ \( (T + 6)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$97$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
show more
show less