Properties

Label 234.2.h.b
Level 234234
Weight 22
Character orbit 234.h
Analytic conductor 1.8681.868
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [234,2,Mod(55,234)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(234, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("234.55"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 234=23213 234 = 2 \cdot 3^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 234.h (of order 33, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,0,-1,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.868499407301.86849940730
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ61)q2ζ6q4+q5+2ζ6q7+q8+(ζ61)q10+(2ζ6+2)q11+(3ζ6+1)q132q14+(ζ61)q16+5ζ6q17++3ζ6q98+O(q100) q + (\zeta_{6} - 1) q^{2} - \zeta_{6} q^{4} + q^{5} + 2 \zeta_{6} q^{7} + q^{8} + (\zeta_{6} - 1) q^{10} + ( - 2 \zeta_{6} + 2) q^{11} + (3 \zeta_{6} + 1) q^{13} - 2 q^{14} + (\zeta_{6} - 1) q^{16} + 5 \zeta_{6} q^{17} + \cdots + 3 \zeta_{6} q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq2q4+2q5+2q7+2q8q10+2q11+5q134q14q16+5q17+2q19q20+2q22+6q238q257q26+2q289q29++3q98+O(q100) 2 q - q^{2} - q^{4} + 2 q^{5} + 2 q^{7} + 2 q^{8} - q^{10} + 2 q^{11} + 5 q^{13} - 4 q^{14} - q^{16} + 5 q^{17} + 2 q^{19} - q^{20} + 2 q^{22} + 6 q^{23} - 8 q^{25} - 7 q^{26} + 2 q^{28} - 9 q^{29}+ \cdots + 3 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/234Z)×\left(\mathbb{Z}/234\mathbb{Z}\right)^\times.

nn 145145 209209
χ(n)\chi(n) ζ6-\zeta_{6} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
55.1
0.500000 0.866025i
0.500000 + 0.866025i
−0.500000 0.866025i 0 −0.500000 + 0.866025i 1.00000 0 1.00000 1.73205i 1.00000 0 −0.500000 0.866025i
217.1 −0.500000 + 0.866025i 0 −0.500000 0.866025i 1.00000 0 1.00000 + 1.73205i 1.00000 0 −0.500000 + 0.866025i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 234.2.h.b 2
3.b odd 2 1 78.2.e.b 2
4.b odd 2 1 1872.2.t.i 2
12.b even 2 1 624.2.q.b 2
13.c even 3 1 inner 234.2.h.b 2
13.c even 3 1 3042.2.a.m 1
13.e even 6 1 3042.2.a.d 1
13.f odd 12 2 3042.2.b.d 2
15.d odd 2 1 1950.2.i.b 2
15.e even 4 2 1950.2.z.b 4
39.d odd 2 1 1014.2.e.d 2
39.f even 4 2 1014.2.i.e 4
39.h odd 6 1 1014.2.a.e 1
39.h odd 6 1 1014.2.e.d 2
39.i odd 6 1 78.2.e.b 2
39.i odd 6 1 1014.2.a.a 1
39.k even 12 2 1014.2.b.a 2
39.k even 12 2 1014.2.i.e 4
52.j odd 6 1 1872.2.t.i 2
156.p even 6 1 624.2.q.b 2
156.p even 6 1 8112.2.a.x 1
156.r even 6 1 8112.2.a.bb 1
195.x odd 6 1 1950.2.i.b 2
195.bl even 12 2 1950.2.z.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.2.e.b 2 3.b odd 2 1
78.2.e.b 2 39.i odd 6 1
234.2.h.b 2 1.a even 1 1 trivial
234.2.h.b 2 13.c even 3 1 inner
624.2.q.b 2 12.b even 2 1
624.2.q.b 2 156.p even 6 1
1014.2.a.a 1 39.i odd 6 1
1014.2.a.e 1 39.h odd 6 1
1014.2.b.a 2 39.k even 12 2
1014.2.e.d 2 39.d odd 2 1
1014.2.e.d 2 39.h odd 6 1
1014.2.i.e 4 39.f even 4 2
1014.2.i.e 4 39.k even 12 2
1872.2.t.i 2 4.b odd 2 1
1872.2.t.i 2 52.j odd 6 1
1950.2.i.b 2 15.d odd 2 1
1950.2.i.b 2 195.x odd 6 1
1950.2.z.b 4 15.e even 4 2
1950.2.z.b 4 195.bl even 12 2
3042.2.a.d 1 13.e even 6 1
3042.2.a.m 1 13.c even 3 1
3042.2.b.d 2 13.f odd 12 2
8112.2.a.x 1 156.p even 6 1
8112.2.a.bb 1 156.r even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(234,[χ])S_{2}^{\mathrm{new}}(234, [\chi]):

T51 T_{5} - 1 Copy content Toggle raw display
T722T7+4 T_{7}^{2} - 2T_{7} + 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 (T1)2 (T - 1)^{2} Copy content Toggle raw display
77 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
1111 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
1313 T25T+13 T^{2} - 5T + 13 Copy content Toggle raw display
1717 T25T+25 T^{2} - 5T + 25 Copy content Toggle raw display
1919 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
2323 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
2929 T2+9T+81 T^{2} + 9T + 81 Copy content Toggle raw display
3131 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
3737 T211T+121 T^{2} - 11T + 121 Copy content Toggle raw display
4141 T25T+25 T^{2} - 5T + 25 Copy content Toggle raw display
4343 T2+10T+100 T^{2} + 10T + 100 Copy content Toggle raw display
4747 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
5353 (T1)2 (T - 1)^{2} Copy content Toggle raw display
5959 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
6161 T211T+121 T^{2} - 11T + 121 Copy content Toggle raw display
6767 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
7171 T2+14T+196 T^{2} + 14T + 196 Copy content Toggle raw display
7373 (T+13)2 (T + 13)^{2} Copy content Toggle raw display
7979 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
8383 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
8989 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
9797 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
show more
show less