gp: [N,k,chi] = [234,2,Mod(55,234)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(234, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 2]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("234.55");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [2,-1,0,-1,2]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 6 \zeta_{6} ζ 6 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 234 Z ) × \left(\mathbb{Z}/234\mathbb{Z}\right)^\times ( Z / 2 3 4 Z ) × .
n n n
145 145 1 4 5
209 209 2 0 9
χ ( n ) \chi(n) χ ( n )
− ζ 6 -\zeta_{6} − ζ 6
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 234 , [ χ ] ) S_{2}^{\mathrm{new}}(234, [\chi]) S 2 n e w ( 2 3 4 , [ χ ] ) :
T 5 − 1 T_{5} - 1 T 5 − 1
T5 - 1
T 7 2 − 2 T 7 + 4 T_{7}^{2} - 2T_{7} + 4 T 7 2 − 2 T 7 + 4
T7^2 - 2*T7 + 4
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 + T + 1 T^{2} + T + 1 T 2 + T + 1
T^2 + T + 1
3 3 3
T 2 T^{2} T 2
T^2
5 5 5
( T − 1 ) 2 (T - 1)^{2} ( T − 1 ) 2
(T - 1)^2
7 7 7
T 2 − 2 T + 4 T^{2} - 2T + 4 T 2 − 2 T + 4
T^2 - 2*T + 4
11 11 1 1
T 2 − 2 T + 4 T^{2} - 2T + 4 T 2 − 2 T + 4
T^2 - 2*T + 4
13 13 1 3
T 2 − 5 T + 13 T^{2} - 5T + 13 T 2 − 5 T + 1 3
T^2 - 5*T + 13
17 17 1 7
T 2 − 5 T + 25 T^{2} - 5T + 25 T 2 − 5 T + 2 5
T^2 - 5*T + 25
19 19 1 9
T 2 − 2 T + 4 T^{2} - 2T + 4 T 2 − 2 T + 4
T^2 - 2*T + 4
23 23 2 3
T 2 − 6 T + 36 T^{2} - 6T + 36 T 2 − 6 T + 3 6
T^2 - 6*T + 36
29 29 2 9
T 2 + 9 T + 81 T^{2} + 9T + 81 T 2 + 9 T + 8 1
T^2 + 9*T + 81
31 31 3 1
( T + 4 ) 2 (T + 4)^{2} ( T + 4 ) 2
(T + 4)^2
37 37 3 7
T 2 − 11 T + 121 T^{2} - 11T + 121 T 2 − 1 1 T + 1 2 1
T^2 - 11*T + 121
41 41 4 1
T 2 − 5 T + 25 T^{2} - 5T + 25 T 2 − 5 T + 2 5
T^2 - 5*T + 25
43 43 4 3
T 2 + 10 T + 100 T^{2} + 10T + 100 T 2 + 1 0 T + 1 0 0
T^2 + 10*T + 100
47 47 4 7
( T + 2 ) 2 (T + 2)^{2} ( T + 2 ) 2
(T + 2)^2
53 53 5 3
( T − 1 ) 2 (T - 1)^{2} ( T − 1 ) 2
(T - 1)^2
59 59 5 9
T 2 + 8 T + 64 T^{2} + 8T + 64 T 2 + 8 T + 6 4
T^2 + 8*T + 64
61 61 6 1
T 2 − 11 T + 121 T^{2} - 11T + 121 T 2 − 1 1 T + 1 2 1
T^2 - 11*T + 121
67 67 6 7
T 2 + 2 T + 4 T^{2} + 2T + 4 T 2 + 2 T + 4
T^2 + 2*T + 4
71 71 7 1
T 2 + 14 T + 196 T^{2} + 14T + 196 T 2 + 1 4 T + 1 9 6
T^2 + 14*T + 196
73 73 7 3
( T + 13 ) 2 (T + 13)^{2} ( T + 1 3 ) 2
(T + 13)^2
79 79 7 9
( T + 4 ) 2 (T + 4)^{2} ( T + 4 ) 2
(T + 4)^2
83 83 8 3
( T + 6 ) 2 (T + 6)^{2} ( T + 6 ) 2
(T + 6)^2
89 89 8 9
T 2 − 2 T + 4 T^{2} - 2T + 4 T 2 − 2 T + 4
T^2 - 2*T + 4
97 97 9 7
T 2 − 2 T + 4 T^{2} - 2T + 4 T 2 − 2 T + 4
T^2 - 2*T + 4
show more
show less