Properties

Label 1014.2.g.b.437.4
Level $1014$
Weight $2$
Character 1014.437
Analytic conductor $8.097$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1014,2,Mod(239,1014)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1014, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1014.239");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1014.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.09683076496\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.58498535041007616.52
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 12x^{9} + 72x^{6} - 324x^{3} + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 437.4
Root \(1.54662 + 0.779723i\) of defining polynomial
Character \(\chi\) \(=\) 1014.437
Dual form 1014.2.g.b.239.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} +(-1.64497 + 0.542278i) q^{3} -1.00000i q^{4} +(2.32634 - 2.32634i) q^{5} +(-0.779723 + 1.54662i) q^{6} +(1.76690 - 1.76690i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(2.41187 - 1.78406i) q^{9} -3.28995i q^{10} +(1.08456 + 1.08456i) q^{11} +(0.542278 + 1.64497i) q^{12} -2.49877i q^{14} +(-2.56525 + 5.08829i) q^{15} -1.00000 q^{16} +5.73724 q^{17} +(0.443925 - 2.96697i) q^{18} +(-2.28995 - 2.28995i) q^{19} +(-2.32634 - 2.32634i) q^{20} +(-1.94835 + 3.86465i) q^{21} +1.53379 q^{22} -4.65268 q^{23} +(1.54662 + 0.779723i) q^{24} -5.82374i q^{25} +(-3.00000 + 4.24264i) q^{27} +(-1.76690 - 1.76690i) q^{28} +4.65268i q^{29} +(1.78406 + 5.41187i) q^{30} +(3.82374 + 3.82374i) q^{31} +(-0.707107 + 0.707107i) q^{32} +(-2.37220 - 1.19593i) q^{33} +(4.05684 - 4.05684i) q^{34} -8.22081i q^{35} +(-1.78406 - 2.41187i) q^{36} +(3.05684 - 3.05684i) q^{37} -3.23847 q^{38} -3.28995 q^{40} +(-0.410044 + 0.410044i) q^{41} +(1.35503 + 4.11041i) q^{42} -0.222358i q^{43} +(1.08456 - 1.08456i) q^{44} +(1.46049 - 9.76118i) q^{45} +(-3.28995 + 3.28995i) q^{46} +(-7.65354 - 7.65354i) q^{47} +(1.64497 - 0.542278i) q^{48} +0.756152i q^{49} +(-4.11801 - 4.11801i) q^{50} +(-9.43760 + 3.11118i) q^{51} -10.9689i q^{53} +(0.878680 + 5.12132i) q^{54} +5.04610 q^{55} -2.49877 q^{56} +(5.00868 + 2.52511i) q^{57} +(3.28995 + 3.28995i) q^{58} +(-4.65268 - 4.65268i) q^{59} +(5.08829 + 2.56525i) q^{60} +3.06759 q^{61} +5.40758 q^{62} +(1.10927 - 7.41378i) q^{63} +1.00000i q^{64} +(-2.52305 + 0.831742i) q^{66} +(-0.533794 - 0.533794i) q^{67} -5.73724i q^{68} +(7.65354 - 2.52305i) q^{69} +(-5.81299 - 5.81299i) q^{70} +(-5.48443 + 5.48443i) q^{71} +(-2.96697 - 0.443925i) q^{72} +(-2.28995 + 2.28995i) q^{73} -4.32303i q^{74} +(3.15808 + 9.57989i) q^{75} +(-2.28995 + 2.28995i) q^{76} +3.83260 q^{77} +14.1137 q^{79} +(-2.32634 + 2.32634i) q^{80} +(2.63423 - 8.60586i) q^{81} +0.579890i q^{82} +(1.39902 - 1.39902i) q^{83} +(3.86465 + 1.94835i) q^{84} +(13.3468 - 13.3468i) q^{85} +(-0.157231 - 0.157231i) q^{86} +(-2.52305 - 7.65354i) q^{87} -1.53379i q^{88} +(-6.41175 - 6.41175i) q^{89} +(-5.86947 - 7.93492i) q^{90} +4.65268i q^{92} +(-8.36347 - 4.21642i) q^{93} -10.8237 q^{94} -10.6544 q^{95} +(0.779723 - 1.54662i) q^{96} +(11.5799 + 11.5799i) q^{97} +(0.534680 + 0.534680i) q^{98} +(4.55072 + 0.680889i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{7} - 12 q^{16} + 12 q^{19} - 36 q^{27} - 12 q^{28} - 12 q^{31} - 36 q^{33} - 12 q^{37} + 36 q^{42} - 36 q^{45} + 36 q^{54} + 36 q^{57} + 36 q^{63} + 12 q^{67} + 12 q^{73} + 12 q^{76} + 72 q^{79}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1014\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) −1.64497 + 0.542278i −0.949725 + 0.313084i
\(4\) 1.00000i 0.500000i
\(5\) 2.32634 2.32634i 1.04037 1.04037i 0.0412220 0.999150i \(-0.486875\pi\)
0.999150 0.0412220i \(-0.0131251\pi\)
\(6\) −0.779723 + 1.54662i −0.318321 + 0.631405i
\(7\) 1.76690 1.76690i 0.667824 0.667824i −0.289388 0.957212i \(-0.593452\pi\)
0.957212 + 0.289388i \(0.0934517\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 2.41187 1.78406i 0.803956 0.594688i
\(10\) 3.28995i 1.04037i
\(11\) 1.08456 + 1.08456i 0.327006 + 0.327006i 0.851447 0.524441i \(-0.175726\pi\)
−0.524441 + 0.851447i \(0.675726\pi\)
\(12\) 0.542278 + 1.64497i 0.156542 + 0.474863i
\(13\) 0 0
\(14\) 2.49877i 0.667824i
\(15\) −2.56525 + 5.08829i −0.662344 + 1.31379i
\(16\) −1.00000 −0.250000
\(17\) 5.73724 1.39149 0.695743 0.718291i \(-0.255075\pi\)
0.695743 + 0.718291i \(0.255075\pi\)
\(18\) 0.443925 2.96697i 0.104634 0.699322i
\(19\) −2.28995 2.28995i −0.525349 0.525349i 0.393833 0.919182i \(-0.371149\pi\)
−0.919182 + 0.393833i \(0.871149\pi\)
\(20\) −2.32634 2.32634i −0.520186 0.520186i
\(21\) −1.94835 + 3.86465i −0.425164 + 0.843335i
\(22\) 1.53379 0.327006
\(23\) −4.65268 −0.970152 −0.485076 0.874472i \(-0.661208\pi\)
−0.485076 + 0.874472i \(0.661208\pi\)
\(24\) 1.54662 + 0.779723i 0.315702 + 0.159160i
\(25\) 5.82374i 1.16475i
\(26\) 0 0
\(27\) −3.00000 + 4.24264i −0.577350 + 0.816497i
\(28\) −1.76690 1.76690i −0.333912 0.333912i
\(29\) 4.65268i 0.863982i 0.901878 + 0.431991i \(0.142189\pi\)
−0.901878 + 0.431991i \(0.857811\pi\)
\(30\) 1.78406 + 5.41187i 0.325724 + 0.988068i
\(31\) 3.82374 + 3.82374i 0.686764 + 0.686764i 0.961515 0.274752i \(-0.0885956\pi\)
−0.274752 + 0.961515i \(0.588596\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) −2.37220 1.19593i −0.412946 0.208185i
\(34\) 4.05684 4.05684i 0.695743 0.695743i
\(35\) 8.22081i 1.38957i
\(36\) −1.78406 2.41187i −0.297344 0.401978i
\(37\) 3.05684 3.05684i 0.502542 0.502542i −0.409685 0.912227i \(-0.634361\pi\)
0.912227 + 0.409685i \(0.134361\pi\)
\(38\) −3.23847 −0.525349
\(39\) 0 0
\(40\) −3.28995 −0.520186
\(41\) −0.410044 + 0.410044i −0.0640382 + 0.0640382i −0.738401 0.674362i \(-0.764419\pi\)
0.674362 + 0.738401i \(0.264419\pi\)
\(42\) 1.35503 + 4.11041i 0.209085 + 0.634250i
\(43\) 0.222358i 0.0339093i −0.999856 0.0169546i \(-0.994603\pi\)
0.999856 0.0169546i \(-0.00539709\pi\)
\(44\) 1.08456 1.08456i 0.163503 0.163503i
\(45\) 1.46049 9.76118i 0.217717 1.45511i
\(46\) −3.28995 + 3.28995i −0.485076 + 0.485076i
\(47\) −7.65354 7.65354i −1.11638 1.11638i −0.992268 0.124116i \(-0.960391\pi\)
−0.124116 0.992268i \(-0.539609\pi\)
\(48\) 1.64497 0.542278i 0.237431 0.0782711i
\(49\) 0.756152i 0.108022i
\(50\) −4.11801 4.11801i −0.582374 0.582374i
\(51\) −9.43760 + 3.11118i −1.32153 + 0.435652i
\(52\) 0 0
\(53\) 10.9689i 1.50669i −0.657627 0.753344i \(-0.728440\pi\)
0.657627 0.753344i \(-0.271560\pi\)
\(54\) 0.878680 + 5.12132i 0.119573 + 0.696923i
\(55\) 5.04610 0.680416
\(56\) −2.49877 −0.333912
\(57\) 5.00868 + 2.52511i 0.663416 + 0.334459i
\(58\) 3.28995 + 3.28995i 0.431991 + 0.431991i
\(59\) −4.65268 4.65268i −0.605728 0.605728i 0.336099 0.941827i \(-0.390892\pi\)
−0.941827 + 0.336099i \(0.890892\pi\)
\(60\) 5.08829 + 2.56525i 0.656896 + 0.331172i
\(61\) 3.06759 0.392764 0.196382 0.980527i \(-0.437081\pi\)
0.196382 + 0.980527i \(0.437081\pi\)
\(62\) 5.40758 0.686764
\(63\) 1.10927 7.41378i 0.139754 0.934049i
\(64\) 1.00000i 0.125000i
\(65\) 0 0
\(66\) −2.52305 + 0.831742i −0.310566 + 0.102380i
\(67\) −0.533794 0.533794i −0.0652133 0.0652133i 0.673748 0.738961i \(-0.264683\pi\)
−0.738961 + 0.673748i \(0.764683\pi\)
\(68\) 5.73724i 0.695743i
\(69\) 7.65354 2.52305i 0.921378 0.303739i
\(70\) −5.81299 5.81299i −0.694786 0.694786i
\(71\) −5.48443 + 5.48443i −0.650882 + 0.650882i −0.953205 0.302324i \(-0.902238\pi\)
0.302324 + 0.953205i \(0.402238\pi\)
\(72\) −2.96697 0.443925i −0.349661 0.0523171i
\(73\) −2.28995 + 2.28995i −0.268018 + 0.268018i −0.828301 0.560283i \(-0.810692\pi\)
0.560283 + 0.828301i \(0.310692\pi\)
\(74\) 4.32303i 0.502542i
\(75\) 3.15808 + 9.57989i 0.364664 + 1.10619i
\(76\) −2.28995 + 2.28995i −0.262675 + 0.262675i
\(77\) 3.83260 0.436765
\(78\) 0 0
\(79\) 14.1137 1.58791 0.793957 0.607974i \(-0.208018\pi\)
0.793957 + 0.607974i \(0.208018\pi\)
\(80\) −2.32634 + 2.32634i −0.260093 + 0.260093i
\(81\) 2.63423 8.60586i 0.292692 0.956207i
\(82\) 0.579890i 0.0640382i
\(83\) 1.39902 1.39902i 0.153562 0.153562i −0.626145 0.779707i \(-0.715368\pi\)
0.779707 + 0.626145i \(0.215368\pi\)
\(84\) 3.86465 + 1.94835i 0.421667 + 0.212582i
\(85\) 13.3468 13.3468i 1.44766 1.44766i
\(86\) −0.157231 0.157231i −0.0169546 0.0169546i
\(87\) −2.52305 7.65354i −0.270499 0.820546i
\(88\) 1.53379i 0.163503i
\(89\) −6.41175 6.41175i −0.679644 0.679644i 0.280275 0.959920i \(-0.409574\pi\)
−0.959920 + 0.280275i \(0.909574\pi\)
\(90\) −5.86947 7.93492i −0.618697 0.836414i
\(91\) 0 0
\(92\) 4.65268i 0.485076i
\(93\) −8.36347 4.21642i −0.867252 0.437222i
\(94\) −10.8237 −1.11638
\(95\) −10.6544 −1.09312
\(96\) 0.779723 1.54662i 0.0795801 0.157851i
\(97\) 11.5799 + 11.5799i 1.17576 + 1.17576i 0.980814 + 0.194946i \(0.0624531\pi\)
0.194946 + 0.980814i \(0.437547\pi\)
\(98\) 0.534680 + 0.534680i 0.0540108 + 0.0540108i
\(99\) 4.55072 + 0.680889i 0.457365 + 0.0684320i
\(100\) −5.82374 −0.582374
\(101\) −12.8235 −1.27599 −0.637993 0.770042i \(-0.720235\pi\)
−0.637993 + 0.770042i \(0.720235\pi\)
\(102\) −4.47346 + 8.87333i −0.442938 + 0.878591i
\(103\) 2.11368i 0.208267i 0.994563 + 0.104134i \(0.0332070\pi\)
−0.994563 + 0.104134i \(0.966793\pi\)
\(104\) 0 0
\(105\) 4.45797 + 13.5230i 0.435053 + 1.31971i
\(106\) −7.75615 7.75615i −0.753344 0.753344i
\(107\) 2.16911i 0.209696i 0.994488 + 0.104848i \(0.0334356\pi\)
−0.994488 + 0.104848i \(0.966564\pi\)
\(108\) 4.24264 + 3.00000i 0.408248 + 0.288675i
\(109\) −2.47695 2.47695i −0.237249 0.237249i 0.578461 0.815710i \(-0.303653\pi\)
−0.815710 + 0.578461i \(0.803653\pi\)
\(110\) 3.56813 3.56813i 0.340208 0.340208i
\(111\) −3.37076 + 6.68608i −0.319939 + 0.634615i
\(112\) −1.76690 + 1.76690i −0.166956 + 0.166956i
\(113\) 15.6215i 1.46955i 0.678310 + 0.734775i \(0.262712\pi\)
−0.678310 + 0.734775i \(0.737288\pi\)
\(114\) 5.32720 1.75615i 0.498938 0.164479i
\(115\) −10.8237 + 10.8237i −1.00932 + 1.00932i
\(116\) 4.65268 0.431991
\(117\) 0 0
\(118\) −6.57989 −0.605728
\(119\) 10.1371 10.1371i 0.929268 0.929268i
\(120\) 5.41187 1.78406i 0.494034 0.162862i
\(121\) 8.64748i 0.786134i
\(122\) 2.16911 2.16911i 0.196382 0.196382i
\(123\) 0.452154 0.896870i 0.0407693 0.0808680i
\(124\) 3.82374 3.82374i 0.343382 0.343382i
\(125\) −1.91630 1.91630i −0.171399 0.171399i
\(126\) −4.45797 6.02671i −0.397147 0.536902i
\(127\) 10.6936i 0.948901i 0.880282 + 0.474451i \(0.157353\pi\)
−0.880282 + 0.474451i \(0.842647\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) 0.120580 + 0.365773i 0.0106165 + 0.0322045i
\(130\) 0 0
\(131\) 0.264467i 0.0231066i −0.999933 0.0115533i \(-0.996322\pi\)
0.999933 0.0115533i \(-0.00367761\pi\)
\(132\) −1.19593 + 2.37220i −0.104093 + 0.206473i
\(133\) −8.09219 −0.701682
\(134\) −0.754898 −0.0652133
\(135\) 2.89081 + 16.8489i 0.248801 + 1.45012i
\(136\) −4.05684 4.05684i −0.347871 0.347871i
\(137\) 3.66371 + 3.66371i 0.313012 + 0.313012i 0.846075 0.533063i \(-0.178959\pi\)
−0.533063 + 0.846075i \(0.678959\pi\)
\(138\) 3.62780 7.19593i 0.308819 0.612559i
\(139\) 2.22236 0.188498 0.0942490 0.995549i \(-0.469955\pi\)
0.0942490 + 0.995549i \(0.469955\pi\)
\(140\) −8.22081 −0.694786
\(141\) 16.7402 + 8.43952i 1.40978 + 0.710735i
\(142\) 7.75615i 0.650882i
\(143\) 0 0
\(144\) −2.41187 + 1.78406i −0.200989 + 0.148672i
\(145\) 10.8237 + 10.8237i 0.898863 + 0.898863i
\(146\) 3.23847i 0.268018i
\(147\) −0.410044 1.24385i −0.0338199 0.102591i
\(148\) −3.05684 3.05684i −0.251271 0.251271i
\(149\) −6.41175 + 6.41175i −0.525271 + 0.525271i −0.919159 0.393887i \(-0.871130\pi\)
0.393887 + 0.919159i \(0.371130\pi\)
\(150\) 9.00711 + 4.54090i 0.735427 + 0.370763i
\(151\) −0.812993 + 0.812993i −0.0661605 + 0.0661605i −0.739413 0.673252i \(-0.764897\pi\)
0.673252 + 0.739413i \(0.264897\pi\)
\(152\) 3.23847i 0.262675i
\(153\) 13.8375 10.2356i 1.11869 0.827500i
\(154\) 2.71005 2.71005i 0.218382 0.218382i
\(155\) 17.7907 1.42898
\(156\) 0 0
\(157\) 8.09219 0.645827 0.322914 0.946428i \(-0.395338\pi\)
0.322914 + 0.946428i \(0.395338\pi\)
\(158\) 9.97988 9.97988i 0.793957 0.793957i
\(159\) 5.94817 + 18.0435i 0.471720 + 1.43094i
\(160\) 3.28995i 0.260093i
\(161\) −8.22081 + 8.22081i −0.647891 + 0.647891i
\(162\) −4.22258 7.94794i −0.331757 0.624449i
\(163\) −17.2274 + 17.2274i −1.34935 + 1.34935i −0.462986 + 0.886366i \(0.653222\pi\)
−0.886366 + 0.462986i \(0.846778\pi\)
\(164\) 0.410044 + 0.410044i 0.0320191 + 0.0320191i
\(165\) −8.30069 + 2.73639i −0.646208 + 0.213027i
\(166\) 1.97851i 0.153562i
\(167\) 6.82180 + 6.82180i 0.527886 + 0.527886i 0.919942 0.392055i \(-0.128236\pi\)
−0.392055 + 0.919942i \(0.628236\pi\)
\(168\) 4.11041 1.35503i 0.317125 0.104543i
\(169\) 0 0
\(170\) 18.8752i 1.44766i
\(171\) −9.60846 1.43764i −0.734777 0.109939i
\(172\) −0.222358 −0.0169546
\(173\) 1.85465 0.141006 0.0705032 0.997512i \(-0.477539\pi\)
0.0705032 + 0.997512i \(0.477539\pi\)
\(174\) −7.19593 3.62780i −0.545522 0.275023i
\(175\) −10.2899 10.2899i −0.777847 0.777847i
\(176\) −1.08456 1.08456i −0.0817515 0.0817515i
\(177\) 10.1766 + 5.13049i 0.764919 + 0.385631i
\(178\) −9.06759 −0.679644
\(179\) −0.264467 −0.0197672 −0.00988361 0.999951i \(-0.503146\pi\)
−0.00988361 + 0.999951i \(0.503146\pi\)
\(180\) −9.76118 1.46049i −0.727555 0.108858i
\(181\) 8.11368i 0.603085i 0.953453 + 0.301543i \(0.0975016\pi\)
−0.953453 + 0.301543i \(0.902498\pi\)
\(182\) 0 0
\(183\) −5.04610 + 1.66348i −0.373018 + 0.122968i
\(184\) 3.28995 + 3.28995i 0.242538 + 0.242538i
\(185\) 14.2225i 1.04566i
\(186\) −8.89533 + 2.93241i −0.652237 + 0.215015i
\(187\) 6.22236 + 6.22236i 0.455024 + 0.455024i
\(188\) −7.65354 + 7.65354i −0.558192 + 0.558192i
\(189\) 2.19562 + 12.7970i 0.159708 + 0.930845i
\(190\) −7.53379 + 7.53379i −0.546559 + 0.546559i
\(191\) 16.1272i 1.16692i 0.812142 + 0.583460i \(0.198302\pi\)
−0.812142 + 0.583460i \(0.801698\pi\)
\(192\) −0.542278 1.64497i −0.0391355 0.118716i
\(193\) 2.53379 2.53379i 0.182386 0.182386i −0.610008 0.792395i \(-0.708834\pi\)
0.792395 + 0.610008i \(0.208834\pi\)
\(194\) 16.3764 1.17576
\(195\) 0 0
\(196\) 0.756152 0.0540108
\(197\) 4.49545 4.49545i 0.320288 0.320288i −0.528590 0.848877i \(-0.677279\pi\)
0.848877 + 0.528590i \(0.177279\pi\)
\(198\) 3.69931 2.73639i 0.262898 0.194467i
\(199\) 23.1383i 1.64023i 0.572199 + 0.820115i \(0.306091\pi\)
−0.572199 + 0.820115i \(0.693909\pi\)
\(200\) −4.11801 + 4.11801i −0.291187 + 0.291187i
\(201\) 1.16754 + 0.588611i 0.0823519 + 0.0415174i
\(202\) −9.06759 + 9.06759i −0.637993 + 0.637993i
\(203\) 8.22081 + 8.22081i 0.576988 + 0.576988i
\(204\) 3.11118 + 9.43760i 0.217826 + 0.660764i
\(205\) 1.90781i 0.133247i
\(206\) 1.49460 + 1.49460i 0.104134 + 0.104134i
\(207\) −11.2217 + 8.30069i −0.779960 + 0.576938i
\(208\) 0 0
\(209\) 4.96715i 0.343585i
\(210\) 12.7145 + 6.40996i 0.877382 + 0.442329i
\(211\) 15.2899 1.05260 0.526302 0.850298i \(-0.323578\pi\)
0.526302 + 0.850298i \(0.323578\pi\)
\(212\) −10.9689 −0.753344
\(213\) 6.04765 11.9958i 0.414378 0.821940i
\(214\) 1.53379 + 1.53379i 0.104848 + 0.104848i
\(215\) −0.517281 0.517281i −0.0352783 0.0352783i
\(216\) 5.12132 0.878680i 0.348462 0.0597866i
\(217\) 13.5123 0.917275
\(218\) −3.50294 −0.237249
\(219\) 2.52511 5.00868i 0.170631 0.338455i
\(220\) 5.04610i 0.340208i
\(221\) 0 0
\(222\) 2.34428 + 7.11126i 0.157338 + 0.477277i
\(223\) 3.30069 + 3.30069i 0.221031 + 0.221031i 0.808932 0.587902i \(-0.200046\pi\)
−0.587902 + 0.808932i \(0.700046\pi\)
\(224\) 2.49877i 0.166956i
\(225\) −10.3899 14.0461i −0.692662 0.936406i
\(226\) 11.0461 + 11.0461i 0.734775 + 0.734775i
\(227\) 4.33822 4.33822i 0.287938 0.287938i −0.548326 0.836264i \(-0.684735\pi\)
0.836264 + 0.548326i \(0.184735\pi\)
\(228\) 2.52511 5.00868i 0.167230 0.331708i
\(229\) −2.47695 + 2.47695i −0.163682 + 0.163682i −0.784195 0.620514i \(-0.786924\pi\)
0.620514 + 0.784195i \(0.286924\pi\)
\(230\) 15.3071i 1.00932i
\(231\) −6.30452 + 2.07833i −0.414807 + 0.136744i
\(232\) 3.28995 3.28995i 0.215995 0.215995i
\(233\) −12.0534 −0.789645 −0.394823 0.918757i \(-0.629194\pi\)
−0.394823 + 0.918757i \(0.629194\pi\)
\(234\) 0 0
\(235\) −35.6095 −2.32291
\(236\) −4.65268 + 4.65268i −0.302864 + 0.302864i
\(237\) −23.2166 + 7.65354i −1.50808 + 0.497151i
\(238\) 14.3360i 0.929268i
\(239\) −14.7898 + 14.7898i −0.956672 + 0.956672i −0.999100 0.0424271i \(-0.986491\pi\)
0.0424271 + 0.999100i \(0.486491\pi\)
\(240\) 2.56525 5.08829i 0.165586 0.328448i
\(241\) 12.3821 12.3821i 0.797604 0.797604i −0.185114 0.982717i \(-0.559265\pi\)
0.982717 + 0.185114i \(0.0592653\pi\)
\(242\) −6.11469 6.11469i −0.393067 0.393067i
\(243\) 0.333537 + 15.5849i 0.0213964 + 0.999771i
\(244\) 3.06759i 0.196382i
\(245\) 1.75907 + 1.75907i 0.112383 + 0.112383i
\(246\) −0.314462 0.953903i −0.0200493 0.0608187i
\(247\) 0 0
\(248\) 5.40758i 0.343382i
\(249\) −1.54269 + 3.06000i −0.0977639 + 0.193920i
\(250\) −2.71005 −0.171399
\(251\) −12.2946 −0.776026 −0.388013 0.921654i \(-0.626839\pi\)
−0.388013 + 0.921654i \(0.626839\pi\)
\(252\) −7.41378 1.10927i −0.467024 0.0698772i
\(253\) −5.04610 5.04610i −0.317245 0.317245i
\(254\) 7.56150 + 7.56150i 0.474451 + 0.474451i
\(255\) −14.7174 + 29.1928i −0.921641 + 1.82812i
\(256\) 1.00000 0.0625000
\(257\) 30.0352 1.87355 0.936773 0.349938i \(-0.113797\pi\)
0.936773 + 0.349938i \(0.113797\pi\)
\(258\) 0.343903 + 0.173378i 0.0214105 + 0.0107940i
\(259\) 10.8022i 0.671219i
\(260\) 0 0
\(261\) 8.30069 + 11.2217i 0.513800 + 0.694604i
\(262\) −0.187007 0.187007i −0.0115533 0.0115533i
\(263\) 18.6107i 1.14759i −0.819000 0.573794i \(-0.805471\pi\)
0.819000 0.573794i \(-0.194529\pi\)
\(264\) 0.831742 + 2.52305i 0.0511902 + 0.155283i
\(265\) −25.5173 25.5173i −1.56752 1.56752i
\(266\) −5.72204 + 5.72204i −0.350841 + 0.350841i
\(267\) 14.0241 + 7.07020i 0.858261 + 0.432690i
\(268\) −0.533794 + 0.533794i −0.0326066 + 0.0326066i
\(269\) 0.820089i 0.0500017i 0.999687 + 0.0250008i \(0.00795884\pi\)
−0.999687 + 0.0250008i \(0.992041\pi\)
\(270\) 13.9581 + 9.86984i 0.849460 + 0.600659i
\(271\) 9.85909 9.85909i 0.598897 0.598897i −0.341122 0.940019i \(-0.610807\pi\)
0.940019 + 0.341122i \(0.110807\pi\)
\(272\) −5.73724 −0.347871
\(273\) 0 0
\(274\) 5.18127 0.313012
\(275\) 6.31617 6.31617i 0.380879 0.380879i
\(276\) −2.52305 7.65354i −0.151870 0.460689i
\(277\) 17.3871i 1.04469i −0.852733 0.522346i \(-0.825057\pi\)
0.852733 0.522346i \(-0.174943\pi\)
\(278\) 1.57144 1.57144i 0.0942490 0.0942490i
\(279\) 16.0442 + 2.40056i 0.960538 + 0.143718i
\(280\) −5.81299 + 5.81299i −0.347393 + 0.347393i
\(281\) −13.5480 13.5480i −0.808207 0.808207i 0.176156 0.984362i \(-0.443634\pi\)
−0.984362 + 0.176156i \(0.943634\pi\)
\(282\) 17.8048 5.86947i 1.06026 0.349522i
\(283\) 17.6475i 1.04903i −0.851400 0.524517i \(-0.824246\pi\)
0.851400 0.524517i \(-0.175754\pi\)
\(284\) 5.48443 + 5.48443i 0.325441 + 0.325441i
\(285\) 17.5262 5.77764i 1.03816 0.342238i
\(286\) 0 0
\(287\) 1.44901i 0.0855325i
\(288\) −0.443925 + 2.96697i −0.0261585 + 0.174831i
\(289\) 15.9159 0.936231
\(290\) 15.3071 0.898863
\(291\) −25.3281 12.7691i −1.48476 0.748537i
\(292\) 2.28995 + 2.28995i 0.134009 + 0.134009i
\(293\) 15.4643 + 15.4643i 0.903435 + 0.903435i 0.995732 0.0922970i \(-0.0294209\pi\)
−0.0922970 + 0.995732i \(0.529421\pi\)
\(294\) −1.16948 0.589589i −0.0682054 0.0343855i
\(295\) −21.6475 −1.26036
\(296\) −4.32303 −0.251271
\(297\) −7.85505 + 1.34771i −0.455796 + 0.0782023i
\(298\) 9.06759i 0.525271i
\(299\) 0 0
\(300\) 9.57989 3.15808i 0.553095 0.182332i
\(301\) −0.392884 0.392884i −0.0226454 0.0226454i
\(302\) 1.14975i 0.0661605i
\(303\) 21.0943 6.95390i 1.21184 0.399491i
\(304\) 2.28995 + 2.28995i 0.131337 + 0.131337i
\(305\) 7.13626 7.13626i 0.408621 0.408621i
\(306\) 2.54690 17.0222i 0.145597 0.973097i
\(307\) 20.8698 20.8698i 1.19110 1.19110i 0.214347 0.976758i \(-0.431238\pi\)
0.976758 0.214347i \(-0.0687623\pi\)
\(308\) 3.83260i 0.218382i
\(309\) −1.14620 3.47695i −0.0652053 0.197797i
\(310\) 12.5799 12.5799i 0.714490 0.714490i
\(311\) 15.6215 0.885816 0.442908 0.896567i \(-0.353947\pi\)
0.442908 + 0.896567i \(0.353947\pi\)
\(312\) 0 0
\(313\) 17.4036 0.983711 0.491856 0.870677i \(-0.336319\pi\)
0.491856 + 0.870677i \(0.336319\pi\)
\(314\) 5.72204 5.72204i 0.322914 0.322914i
\(315\) −14.6665 19.8275i −0.826362 1.11715i
\(316\) 14.1137i 0.793957i
\(317\) −2.89362 + 2.89362i −0.162522 + 0.162522i −0.783683 0.621161i \(-0.786661\pi\)
0.621161 + 0.783683i \(0.286661\pi\)
\(318\) 16.9646 + 8.55267i 0.951330 + 0.479610i
\(319\) −5.04610 + 5.04610i −0.282527 + 0.282527i
\(320\) 2.32634 + 2.32634i 0.130046 + 0.130046i
\(321\) −1.17626 3.56813i −0.0656525 0.199154i
\(322\) 11.6260i 0.647891i
\(323\) −13.1380 13.1380i −0.731016 0.731016i
\(324\) −8.60586 2.63423i −0.478103 0.146346i
\(325\) 0 0
\(326\) 24.3632i 1.34935i
\(327\) 5.41771 + 2.73132i 0.299600 + 0.151042i
\(328\) 0.579890 0.0320191
\(329\) −27.0460 −1.49110
\(330\) −3.93456 + 7.80439i −0.216590 + 0.429618i
\(331\) −2.06759 2.06759i −0.113645 0.113645i 0.647998 0.761642i \(-0.275607\pi\)
−0.761642 + 0.647998i \(0.775607\pi\)
\(332\) −1.39902 1.39902i −0.0767811 0.0767811i
\(333\) 1.91910 12.8263i 0.105166 0.702877i
\(334\) 9.64748 0.527886
\(335\) −2.48357 −0.135692
\(336\) 1.94835 3.86465i 0.106291 0.210834i
\(337\) 20.5634i 1.12016i −0.828438 0.560080i \(-0.810770\pi\)
0.828438 0.560080i \(-0.189230\pi\)
\(338\) 0 0
\(339\) −8.47122 25.6970i −0.460093 1.39567i
\(340\) −13.3468 13.3468i −0.723831 0.723831i
\(341\) 8.29412i 0.449152i
\(342\) −7.81077 + 5.77764i −0.422358 + 0.312419i
\(343\) 13.7043 + 13.7043i 0.739964 + 0.739964i
\(344\) −0.157231 + 0.157231i −0.00847732 + 0.00847732i
\(345\) 11.9353 23.6742i 0.642574 1.27458i
\(346\) 1.31144 1.31144i 0.0705032 0.0705032i
\(347\) 2.72473i 0.146271i −0.997322 0.0731357i \(-0.976699\pi\)
0.997322 0.0731357i \(-0.0233006\pi\)
\(348\) −7.65354 + 2.52305i −0.410273 + 0.135250i
\(349\) −21.6367 + 21.6367i −1.15819 + 1.15819i −0.173323 + 0.984865i \(0.555450\pi\)
−0.984865 + 0.173323i \(0.944550\pi\)
\(350\) −14.5522 −0.777847
\(351\) 0 0
\(352\) −1.53379 −0.0817515
\(353\) 1.49460 1.49460i 0.0795495 0.0795495i −0.666212 0.745762i \(-0.732086\pi\)
0.745762 + 0.666212i \(0.232086\pi\)
\(354\) 10.8237 3.56813i 0.575275 0.189644i
\(355\) 25.5173i 1.35432i
\(356\) −6.41175 + 6.41175i −0.339822 + 0.339822i
\(357\) −11.1781 + 22.1724i −0.591610 + 1.17349i
\(358\) −0.187007 + 0.187007i −0.00988361 + 0.00988361i
\(359\) −0.314462 0.314462i −0.0165967 0.0165967i 0.698760 0.715356i \(-0.253736\pi\)
−0.715356 + 0.698760i \(0.753736\pi\)
\(360\) −7.93492 + 5.86947i −0.418207 + 0.309348i
\(361\) 8.51230i 0.448016i
\(362\) 5.73724 + 5.73724i 0.301543 + 0.301543i
\(363\) 4.68934 + 14.2249i 0.246126 + 0.746612i
\(364\) 0 0
\(365\) 10.6544i 0.557676i
\(366\) −2.39187 + 4.74439i −0.125025 + 0.247993i
\(367\) 21.0461 1.09860 0.549299 0.835626i \(-0.314895\pi\)
0.549299 + 0.835626i \(0.314895\pi\)
\(368\) 4.65268 0.242538
\(369\) −0.257428 + 1.72052i −0.0134012 + 0.0895666i
\(370\) −10.0568 10.0568i −0.522830 0.522830i
\(371\) −19.3808 19.3808i −1.00620 1.00620i
\(372\) −4.21642 + 8.36347i −0.218611 + 0.433626i
\(373\) −4.22737 −0.218885 −0.109442 0.993993i \(-0.534907\pi\)
−0.109442 + 0.993993i \(0.534907\pi\)
\(374\) 8.79974 0.455024
\(375\) 4.19142 + 2.11309i 0.216444 + 0.109120i
\(376\) 10.8237i 0.558192i
\(377\) 0 0
\(378\) 10.6014 + 7.49631i 0.545276 + 0.385568i
\(379\) 18.1598 + 18.1598i 0.932805 + 0.932805i 0.997880 0.0650751i \(-0.0207287\pi\)
−0.0650751 + 0.997880i \(0.520729\pi\)
\(380\) 10.6544i 0.546559i
\(381\) −5.79889 17.5906i −0.297086 0.901196i
\(382\) 11.4036 + 11.4036i 0.583460 + 0.583460i
\(383\) 19.4425 19.4425i 0.993464 0.993464i −0.00651435 0.999979i \(-0.502074\pi\)
0.999979 + 0.00651435i \(0.00207360\pi\)
\(384\) −1.54662 0.779723i −0.0789256 0.0397901i
\(385\) 8.91593 8.91593i 0.454398 0.454398i
\(386\) 3.58333i 0.182386i
\(387\) −0.396701 0.536298i −0.0201654 0.0272616i
\(388\) 11.5799 11.5799i 0.587880 0.587880i
\(389\) 2.16911 0.109978 0.0549892 0.998487i \(-0.482488\pi\)
0.0549892 + 0.998487i \(0.482488\pi\)
\(390\) 0 0
\(391\) −26.6936 −1.34995
\(392\) 0.534680 0.534680i 0.0270054 0.0270054i
\(393\) 0.143415 + 0.435041i 0.00723432 + 0.0219449i
\(394\) 6.35753i 0.320288i
\(395\) 32.8333 32.8333i 1.65202 1.65202i
\(396\) 0.680889 4.55072i 0.0342160 0.228683i
\(397\) −10.2685 + 10.2685i −0.515359 + 0.515359i −0.916164 0.400805i \(-0.868731\pi\)
0.400805 + 0.916164i \(0.368731\pi\)
\(398\) 16.3612 + 16.3612i 0.820115 + 0.820115i
\(399\) 13.3114 4.38822i 0.666405 0.219686i
\(400\) 5.82374i 0.291187i
\(401\) −5.83282 5.83282i −0.291277 0.291277i 0.546307 0.837585i \(-0.316033\pi\)
−0.837585 + 0.546307i \(0.816033\pi\)
\(402\) 1.24179 0.409365i 0.0619347 0.0204172i
\(403\) 0 0
\(404\) 12.8235i 0.637993i
\(405\) −13.8921 26.1483i −0.690302 1.29932i
\(406\) 11.6260 0.576988
\(407\) 6.63063 0.328668
\(408\) 8.87333 + 4.47346i 0.439295 + 0.221469i
\(409\) 6.62599 + 6.62599i 0.327634 + 0.327634i 0.851686 0.524052i \(-0.175580\pi\)
−0.524052 + 0.851686i \(0.675580\pi\)
\(410\) 1.34902 + 1.34902i 0.0666235 + 0.0666235i
\(411\) −8.01346 4.03996i −0.395275 0.199276i
\(412\) 2.11368 0.104134
\(413\) −16.4416 −0.809040
\(414\) −2.06544 + 13.8044i −0.101511 + 0.678449i
\(415\) 6.50919i 0.319523i
\(416\) 0 0
\(417\) −3.65572 + 1.20514i −0.179021 + 0.0590157i
\(418\) −3.51230 3.51230i −0.171792 0.171792i
\(419\) 8.41198i 0.410952i 0.978662 + 0.205476i \(0.0658743\pi\)
−0.978662 + 0.205476i \(0.934126\pi\)
\(420\) 13.5230 4.45797i 0.659855 0.217526i
\(421\) 0.964649 + 0.964649i 0.0470141 + 0.0470141i 0.730223 0.683209i \(-0.239416\pi\)
−0.683209 + 0.730223i \(0.739416\pi\)
\(422\) 10.8116 10.8116i 0.526302 0.526302i
\(423\) −32.1137 4.80493i −1.56142 0.233624i
\(424\) −7.75615 + 7.75615i −0.376672 + 0.376672i
\(425\) 33.4122i 1.62073i
\(426\) −4.20599 12.7587i −0.203781 0.618159i
\(427\) 5.42011 5.42011i 0.262297 0.262297i
\(428\) 2.16911 0.104848
\(429\) 0 0
\(430\) −0.731545 −0.0352783
\(431\) −25.4442 + 25.4442i −1.22560 + 1.22560i −0.259993 + 0.965610i \(0.583720\pi\)
−0.965610 + 0.259993i \(0.916280\pi\)
\(432\) 3.00000 4.24264i 0.144338 0.204124i
\(433\) 39.6740i 1.90661i 0.302010 + 0.953305i \(0.402342\pi\)
−0.302010 + 0.953305i \(0.597658\pi\)
\(434\) 9.55464 9.55464i 0.458637 0.458637i
\(435\) −23.6742 11.9353i −1.13509 0.572253i
\(436\) −2.47695 + 2.47695i −0.118624 + 0.118624i
\(437\) 10.6544 + 10.6544i 0.509669 + 0.509669i
\(438\) −1.75615 5.32720i −0.0839122 0.254543i
\(439\) 18.0000i 0.859093i 0.903045 + 0.429547i \(0.141327\pi\)
−0.903045 + 0.429547i \(0.858673\pi\)
\(440\) −3.56813 3.56813i −0.170104 0.170104i
\(441\) 1.34902 + 1.82374i 0.0642392 + 0.0868447i
\(442\) 0 0
\(443\) 31.9899i 1.51988i −0.649991 0.759942i \(-0.725227\pi\)
0.649991 0.759942i \(-0.274773\pi\)
\(444\) 6.68608 + 3.37076i 0.317307 + 0.159969i
\(445\) −29.8319 −1.41417
\(446\) 4.66788 0.221031
\(447\) 7.07020 14.0241i 0.334409 0.663318i
\(448\) 1.76690 + 1.76690i 0.0834780 + 0.0834780i
\(449\) −5.95612 5.95612i −0.281087 0.281087i 0.552456 0.833542i \(-0.313691\pi\)
−0.833542 + 0.552456i \(0.813691\pi\)
\(450\) −17.2789 2.58530i −0.814534 0.121872i
\(451\) −0.889432 −0.0418817
\(452\) 15.6215 0.734775
\(453\) 0.896483 1.77822i 0.0421205 0.0835481i
\(454\) 6.13517i 0.287938i
\(455\) 0 0
\(456\) −1.75615 5.32720i −0.0822393 0.249469i
\(457\) −10.4251 10.4251i −0.487667 0.487667i 0.419903 0.907569i \(-0.362064\pi\)
−0.907569 + 0.419903i \(0.862064\pi\)
\(458\) 3.50294i 0.163682i
\(459\) −17.2117 + 24.3411i −0.803374 + 1.13614i
\(460\) 10.8237 + 10.8237i 0.504659 + 0.504659i
\(461\) −27.4444 + 27.4444i −1.27821 + 1.27821i −0.336547 + 0.941667i \(0.609259\pi\)
−0.941667 + 0.336547i \(0.890741\pi\)
\(462\) −2.98836 + 5.92757i −0.139031 + 0.275775i
\(463\) −8.89133 + 8.89133i −0.413215 + 0.413215i −0.882857 0.469642i \(-0.844383\pi\)
0.469642 + 0.882857i \(0.344383\pi\)
\(464\) 4.65268i 0.215995i
\(465\) −29.2651 + 9.64748i −1.35714 + 0.447391i
\(466\) −8.52305 + 8.52305i −0.394823 + 0.394823i
\(467\) −36.9303 −1.70893 −0.854466 0.519508i \(-0.826115\pi\)
−0.854466 + 0.519508i \(0.826115\pi\)
\(468\) 0 0
\(469\) −1.88632 −0.0871020
\(470\) −25.1797 + 25.1797i −1.16145 + 1.16145i
\(471\) −13.3114 + 4.38822i −0.613359 + 0.202198i
\(472\) 6.57989i 0.302864i
\(473\) 0.241160 0.241160i 0.0110885 0.0110885i
\(474\) −11.0048 + 21.8285i −0.505465 + 1.00262i
\(475\) −13.3360 + 13.3360i −0.611900 + 0.611900i
\(476\) −10.1371 10.1371i −0.464634 0.464634i
\(477\) −19.5691 26.4554i −0.896010 1.21131i
\(478\) 20.9159i 0.956672i
\(479\) 3.62978 + 3.62978i 0.165849 + 0.165849i 0.785152 0.619303i \(-0.212585\pi\)
−0.619303 + 0.785152i \(0.712585\pi\)
\(480\) −1.78406 5.41187i −0.0814310 0.247017i
\(481\) 0 0
\(482\) 17.5110i 0.797604i
\(483\) 9.06505 17.9810i 0.412474 0.818163i
\(484\) −8.64748 −0.393067
\(485\) 53.8776 2.44645
\(486\) 11.2560 + 10.7843i 0.510584 + 0.489187i
\(487\) −9.33604 9.33604i −0.423056 0.423056i 0.463198 0.886255i \(-0.346702\pi\)
−0.886255 + 0.463198i \(0.846702\pi\)
\(488\) −2.16911 2.16911i −0.0981911 0.0981911i
\(489\) 18.9965 37.6806i 0.859053 1.70397i
\(490\) 2.48770 0.112383
\(491\) 9.37867 0.423254 0.211627 0.977351i \(-0.432124\pi\)
0.211627 + 0.977351i \(0.432124\pi\)
\(492\) −0.896870 0.452154i −0.0404340 0.0203847i
\(493\) 26.6936i 1.20222i
\(494\) 0 0
\(495\) 12.1705 9.00256i 0.547024 0.404635i
\(496\) −3.82374 3.82374i −0.171691 0.171691i
\(497\) 19.3808i 0.869349i
\(498\) 1.07290 + 3.25459i 0.0480779 + 0.145842i
\(499\) 0.176261 + 0.176261i 0.00789054 + 0.00789054i 0.711041 0.703151i \(-0.248224\pi\)
−0.703151 + 0.711041i \(0.748224\pi\)
\(500\) −1.91630 + 1.91630i −0.0856995 + 0.0856995i
\(501\) −14.9210 7.52236i −0.666620 0.336074i
\(502\) −8.69357 + 8.69357i −0.388013 + 0.388013i
\(503\) 14.1725i 0.631922i −0.948772 0.315961i \(-0.897673\pi\)
0.948772 0.315961i \(-0.102327\pi\)
\(504\) −6.02671 + 4.45797i −0.268451 + 0.198574i
\(505\) −29.8319 + 29.8319i −1.32750 + 1.32750i
\(506\) −7.13626 −0.317245
\(507\) 0 0
\(508\) 10.6936 0.474451
\(509\) −0.724506 + 0.724506i −0.0321132 + 0.0321132i −0.722981 0.690868i \(-0.757229\pi\)
0.690868 + 0.722981i \(0.257229\pi\)
\(510\) 10.2356 + 31.0492i 0.453240 + 1.37488i
\(511\) 8.09219i 0.357978i
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 16.5852 2.84558i 0.732257 0.125635i
\(514\) 21.2381 21.2381i 0.936773 0.936773i
\(515\) 4.91715 + 4.91715i 0.216676 + 0.216676i
\(516\) 0.365773 0.120580i 0.0161022 0.00530823i
\(517\) 16.6014i 0.730128i
\(518\) −7.63834 7.63834i −0.335610 0.335610i
\(519\) −3.05085 + 1.00574i −0.133917 + 0.0441469i
\(520\) 0 0
\(521\) 23.5279i 1.03078i 0.856957 + 0.515388i \(0.172352\pi\)
−0.856957 + 0.515388i \(0.827648\pi\)
\(522\) 13.8044 + 2.06544i 0.604202 + 0.0904020i
\(523\) −6.09219 −0.266393 −0.133197 0.991090i \(-0.542524\pi\)
−0.133197 + 0.991090i \(0.542524\pi\)
\(524\) −0.264467 −0.0115533
\(525\) 22.5067 + 11.3467i 0.982272 + 0.495209i
\(526\) −13.1598 13.1598i −0.573794 0.573794i
\(527\) 21.9377 + 21.9377i 0.955622 + 0.955622i
\(528\) 2.37220 + 1.19593i 0.103237 + 0.0520463i
\(529\) −1.35252 −0.0588053
\(530\) −36.0869 −1.56752
\(531\) −19.5224 2.92098i −0.847198 0.126760i
\(532\) 8.09219i 0.350841i
\(533\) 0 0
\(534\) 14.9159 4.91715i 0.645475 0.212786i
\(535\) 5.04610 + 5.04610i 0.218162 + 0.218162i
\(536\) 0.754898i 0.0326066i
\(537\) 0.435041 0.143415i 0.0187734 0.00618880i
\(538\) 0.579890 + 0.579890i 0.0250008 + 0.0250008i
\(539\) −0.820089 + 0.820089i −0.0353237 + 0.0353237i
\(540\) 16.8489 2.89081i 0.725060 0.124401i
\(541\) −14.5477 + 14.5477i −0.625453 + 0.625453i −0.946920 0.321468i \(-0.895824\pi\)
0.321468 + 0.946920i \(0.395824\pi\)
\(542\) 13.9429i 0.598897i
\(543\) −4.39987 13.3468i −0.188817 0.572765i
\(544\) −4.05684 + 4.05684i −0.173936 + 0.173936i
\(545\) −11.5245 −0.493654
\(546\) 0 0
\(547\) 16.1302 0.689676 0.344838 0.938662i \(-0.387934\pi\)
0.344838 + 0.938662i \(0.387934\pi\)
\(548\) 3.66371 3.66371i 0.156506 0.156506i
\(549\) 7.39862 5.47277i 0.315765 0.233572i
\(550\) 8.93241i 0.380879i
\(551\) 10.6544 10.6544i 0.453892 0.453892i
\(552\) −7.19593 3.62780i −0.306279 0.154410i
\(553\) 24.9374 24.9374i 1.06045 1.06045i
\(554\) −12.2946 12.2946i −0.522346 0.522346i
\(555\) 7.71256 + 23.3957i 0.327380 + 0.993090i
\(556\) 2.22236i 0.0942490i
\(557\) 6.66457 + 6.66457i 0.282387 + 0.282387i 0.834060 0.551673i \(-0.186011\pi\)
−0.551673 + 0.834060i \(0.686011\pi\)
\(558\) 13.0424 9.64748i 0.552128 0.408410i
\(559\) 0 0
\(560\) 8.22081i 0.347393i
\(561\) −13.6099 6.86136i −0.574609 0.289687i
\(562\) −19.1598 −0.808207
\(563\) 41.2952 1.74039 0.870193 0.492710i \(-0.163994\pi\)
0.870193 + 0.492710i \(0.163994\pi\)
\(564\) 8.43952 16.7402i 0.355368 0.704890i
\(565\) 36.3411 + 36.3411i 1.52888 + 1.52888i
\(566\) −12.4787 12.4787i −0.524517 0.524517i
\(567\) −10.5513 19.8601i −0.443111 0.834045i
\(568\) 7.75615 0.325441
\(569\) −9.35536 −0.392197 −0.196099 0.980584i \(-0.562827\pi\)
−0.196099 + 0.980584i \(0.562827\pi\)
\(570\) 8.30747 16.4783i 0.347962 0.690200i
\(571\) 9.96203i 0.416898i 0.978033 + 0.208449i \(0.0668415\pi\)
−0.978033 + 0.208449i \(0.933158\pi\)
\(572\) 0 0
\(573\) −8.74541 26.5287i −0.365345 1.10825i
\(574\) 1.02461 + 1.02461i 0.0427662 + 0.0427662i
\(575\) 27.0960i 1.12998i
\(576\) 1.78406 + 2.41187i 0.0743360 + 0.100495i
\(577\) −25.8022 25.8022i −1.07416 1.07416i −0.997020 0.0771415i \(-0.975421\pi\)
−0.0771415 0.997020i \(-0.524579\pi\)
\(578\) 11.2543 11.2543i 0.468116 0.468116i
\(579\) −2.79400 + 5.54204i −0.116115 + 0.230319i
\(580\) 10.8237 10.8237i 0.449431 0.449431i
\(581\) 4.94384i 0.205105i
\(582\) −26.9388 + 8.88058i −1.11665 + 0.368112i
\(583\) 11.8963 11.8963i 0.492696 0.492696i
\(584\) 3.23847 0.134009
\(585\) 0 0
\(586\) 21.8698 0.903435
\(587\) −20.5387 + 20.5387i −0.847723 + 0.847723i −0.989849 0.142126i \(-0.954606\pi\)
0.142126 + 0.989849i \(0.454606\pi\)
\(588\) −1.24385 + 0.410044i −0.0512954 + 0.0169099i
\(589\) 17.5123i 0.721582i
\(590\) −15.3071 + 15.3071i −0.630182 + 0.630182i
\(591\) −4.95711 + 9.83268i −0.203908 + 0.404463i
\(592\) −3.05684 + 3.05684i −0.125635 + 0.125635i
\(593\) 23.9379 + 23.9379i 0.983013 + 0.983013i 0.999858 0.0168449i \(-0.00536215\pi\)
−0.0168449 + 0.999858i \(0.505362\pi\)
\(594\) −4.60138 + 6.50733i −0.188797 + 0.266999i
\(595\) 47.1648i 1.93357i
\(596\) 6.41175 + 6.41175i 0.262636 + 0.262636i
\(597\) −12.5474 38.0619i −0.513530 1.55777i
\(598\) 0 0
\(599\) 41.0774i 1.67838i 0.543841 + 0.839188i \(0.316969\pi\)
−0.543841 + 0.839188i \(0.683031\pi\)
\(600\) 4.54090 9.00711i 0.185382 0.367714i
\(601\) −32.0265 −1.30639 −0.653194 0.757191i \(-0.726571\pi\)
−0.653194 + 0.757191i \(0.726571\pi\)
\(602\) −0.555621 −0.0226454
\(603\) −2.23976 0.335118i −0.0912102 0.0136471i
\(604\) 0.812993 + 0.812993i 0.0330802 + 0.0330802i
\(605\) −20.1170 20.1170i −0.817872 0.817872i
\(606\) 9.99878 19.8331i 0.406173 0.805664i
\(607\) 32.9424 1.33709 0.668546 0.743671i \(-0.266917\pi\)
0.668546 + 0.743671i \(0.266917\pi\)
\(608\) 3.23847 0.131337
\(609\) −17.9810 9.06505i −0.728626 0.367334i
\(610\) 10.0922i 0.408621i
\(611\) 0 0
\(612\) −10.2356 13.8375i −0.413750 0.559347i
\(613\) −18.0296 18.0296i −0.728209 0.728209i 0.242054 0.970263i \(-0.422179\pi\)
−0.970263 + 0.242054i \(0.922179\pi\)
\(614\) 29.5144i 1.19110i
\(615\) −1.03456 3.13829i −0.0417175 0.126548i
\(616\) −2.71005 2.71005i −0.109191 0.109191i
\(617\) 3.10809 3.10809i 0.125127 0.125127i −0.641770 0.766897i \(-0.721800\pi\)
0.766897 + 0.641770i \(0.221800\pi\)
\(618\) −3.26906 1.64809i −0.131501 0.0662958i
\(619\) 14.3114 14.3114i 0.575225 0.575225i −0.358359 0.933584i \(-0.616664\pi\)
0.933584 + 0.358359i \(0.116664\pi\)
\(620\) 17.7907i 0.714490i
\(621\) 13.9581 19.7397i 0.560117 0.792126i
\(622\) 11.0461 11.0461i 0.442908 0.442908i
\(623\) −22.6578 −0.907766
\(624\) 0 0
\(625\) 20.2028 0.808110
\(626\) 12.3062 12.3062i 0.491856 0.491856i
\(627\) 2.69357 + 8.17082i 0.107571 + 0.326311i
\(628\) 8.09219i 0.322914i
\(629\) 17.5378 17.5378i 0.699279 0.699279i
\(630\) −24.3909 3.64942i −0.971758 0.145397i
\(631\) 12.8130 12.8130i 0.510077 0.510077i −0.404473 0.914550i \(-0.632545\pi\)
0.914550 + 0.404473i \(0.132545\pi\)
\(632\) −9.97988 9.97988i −0.396978 0.396978i
\(633\) −25.1515 + 8.29140i −0.999684 + 0.329554i
\(634\) 4.09219i 0.162522i
\(635\) 24.8769 + 24.8769i 0.987210 + 0.987210i
\(636\) 18.0435 5.94817i 0.715470 0.235860i
\(637\) 0 0
\(638\) 7.13626i 0.282527i
\(639\) −3.44315 + 23.0123i −0.136209 + 0.910352i
\(640\) 3.28995 0.130046
\(641\) −13.1147 −0.517998 −0.258999 0.965878i \(-0.583393\pi\)
−0.258999 + 0.965878i \(0.583393\pi\)
\(642\) −3.35479 1.69131i −0.132403 0.0667505i
\(643\) 5.60138 + 5.60138i 0.220897 + 0.220897i 0.808876 0.587979i \(-0.200076\pi\)
−0.587979 + 0.808876i \(0.700076\pi\)
\(644\) 8.22081 + 8.22081i 0.323945 + 0.323945i
\(645\) 1.13142 + 0.570403i 0.0445497 + 0.0224596i
\(646\) −18.5799 −0.731016
\(647\) 11.4745 0.451108 0.225554 0.974231i \(-0.427581\pi\)
0.225554 + 0.974231i \(0.427581\pi\)
\(648\) −7.94794 + 4.22258i −0.312225 + 0.165879i
\(649\) 10.0922i 0.396153i
\(650\) 0 0
\(651\) −22.2274 + 7.32742i −0.871159 + 0.287184i
\(652\) 17.2274 + 17.2274i 0.674676 + 0.674676i
\(653\) 12.1946i 0.477211i −0.971117 0.238605i \(-0.923310\pi\)
0.971117 0.238605i \(-0.0766903\pi\)
\(654\) 5.76224 1.89957i 0.225321 0.0742789i
\(655\) −0.615242 0.615242i −0.0240395 0.0240395i
\(656\) 0.410044 0.410044i 0.0160095 0.0160095i
\(657\) −1.43764 + 9.60846i −0.0560876 + 0.374862i
\(658\) −19.1244 + 19.1244i −0.745548 + 0.745548i
\(659\) 31.9632i 1.24511i −0.782577 0.622554i \(-0.786095\pi\)
0.782577 0.622554i \(-0.213905\pi\)
\(660\) 2.73639 + 8.30069i 0.106514 + 0.323104i
\(661\) 12.2470 12.2470i 0.476352 0.476352i −0.427611 0.903963i \(-0.640645\pi\)
0.903963 + 0.427611i \(0.140645\pi\)
\(662\) −2.92401 −0.113645
\(663\) 0 0
\(664\) −1.97851 −0.0767811
\(665\) −18.8252 + 18.8252i −0.730010 + 0.730010i
\(666\) −7.71256 10.4266i −0.298856 0.404022i
\(667\) 21.6475i 0.838194i
\(668\) 6.82180 6.82180i 0.263943 0.263943i
\(669\) −7.21944 3.63965i −0.279120 0.140717i
\(670\) −1.75615 + 1.75615i −0.0678461 + 0.0678461i
\(671\) 3.32697 + 3.32697i 0.128436 + 0.128436i
\(672\) −1.35503 4.11041i −0.0522713 0.158562i
\(673\) 41.8483i 1.61314i 0.591142 + 0.806568i \(0.298677\pi\)
−0.591142 + 0.806568i \(0.701323\pi\)
\(674\) −14.5405 14.5405i −0.560080 0.560080i
\(675\) 24.7080 + 17.4712i 0.951013 + 0.672467i
\(676\) 0 0
\(677\) 15.9360i 0.612470i 0.951956 + 0.306235i \(0.0990694\pi\)
−0.951956 + 0.306235i \(0.900931\pi\)
\(678\) −24.1606 12.1805i −0.927881 0.467788i
\(679\) 40.9209 1.57040
\(680\) −18.8752 −0.723831
\(681\) −4.78374 + 9.48878i −0.183313 + 0.363611i
\(682\) 5.86483 + 5.86483i 0.224576 + 0.224576i
\(683\) −23.5279 23.5279i −0.900270 0.900270i 0.0951894 0.995459i \(-0.469654\pi\)
−0.995459 + 0.0951894i \(0.969654\pi\)
\(684\) −1.43764 + 9.60846i −0.0549695 + 0.367389i
\(685\) 17.0461 0.651298
\(686\) 19.3808 0.739964
\(687\) 2.73132 5.41771i 0.104206 0.206699i
\(688\) 0.222358i 0.00847732i
\(689\) 0 0
\(690\) −8.30069 25.1797i −0.316002 0.958576i
\(691\) −14.1763 14.1763i −0.539290 0.539290i 0.384030 0.923321i \(-0.374536\pi\)
−0.923321 + 0.384030i \(0.874536\pi\)
\(692\) 1.85465i 0.0705032i
\(693\) 9.24372 6.83760i 0.351140 0.259739i
\(694\) −1.92668 1.92668i −0.0731357 0.0731357i
\(695\) 5.16997 5.16997i 0.196108 0.196108i
\(696\) −3.62780 + 7.19593i −0.137512 + 0.272761i
\(697\) −2.35252 + 2.35252i −0.0891082 + 0.0891082i
\(698\) 30.5990i 1.15819i
\(699\) 19.8275 6.53630i 0.749946 0.247226i
\(700\) −10.2899 + 10.2899i −0.388923 + 0.388923i
\(701\) −22.9723 −0.867651 −0.433825 0.900997i \(-0.642837\pi\)
−0.433825 + 0.900997i \(0.642837\pi\)
\(702\) 0 0
\(703\) −14.0000 −0.528020
\(704\) −1.08456 + 1.08456i −0.0408757 + 0.0408757i
\(705\) 58.5767 19.3102i 2.20612 0.727266i
\(706\) 2.11368i 0.0795495i
\(707\) −22.6578 + 22.6578i −0.852135 + 0.852135i
\(708\) 5.13049 10.1766i 0.192816 0.382460i
\(709\) 3.10867 3.10867i 0.116749 0.116749i −0.646319 0.763068i \(-0.723692\pi\)
0.763068 + 0.646319i \(0.223692\pi\)
\(710\) 18.0435 + 18.0435i 0.677159 + 0.677159i
\(711\) 34.0404 25.1797i 1.27661 0.944313i
\(712\) 9.06759i 0.339822i
\(713\) −17.7907 17.7907i −0.666265 0.666265i
\(714\) 7.77412 + 23.5824i 0.290939 + 0.882549i
\(715\) 0 0
\(716\) 0.264467i 0.00988361i
\(717\) 16.3086 32.3490i 0.609057 1.20810i
\(718\) −0.444716 −0.0165967
\(719\) −8.46197 −0.315578 −0.157789 0.987473i \(-0.550437\pi\)
−0.157789 + 0.987473i \(0.550437\pi\)
\(720\) −1.46049 + 9.76118i −0.0544292 + 0.363778i
\(721\) 3.73466 + 3.73466i 0.139086 + 0.139086i
\(722\) −6.01911 6.01911i −0.224008 0.224008i
\(723\) −13.6537 + 27.0828i −0.507787 + 1.00722i
\(724\) 8.11368 0.301543
\(725\) 27.0960 1.00632
\(726\) 13.3744 + 6.74264i 0.496369 + 0.250243i
\(727\) 13.0461i 0.483853i −0.970295 0.241926i \(-0.922221\pi\)
0.970295 0.241926i \(-0.0777793\pi\)
\(728\) 0 0
\(729\) −9.00000 25.4558i −0.333333 0.942809i
\(730\) 7.53379 + 7.53379i 0.278838 + 0.278838i
\(731\) 1.27572i 0.0471842i
\(732\) 1.66348 + 5.04610i 0.0614842 + 0.186509i
\(733\) 14.8180 + 14.8180i 0.547315 + 0.547315i 0.925663 0.378348i \(-0.123508\pi\)
−0.378348 + 0.925663i \(0.623508\pi\)
\(734\) 14.8818 14.8818i 0.549299 0.549299i
\(735\) −3.84752 1.93971i −0.141918 0.0715474i
\(736\) 3.28995 3.28995i 0.121269 0.121269i
\(737\) 1.15786i 0.0426502i
\(738\) 1.03456 + 1.39862i 0.0380827 + 0.0514839i
\(739\) 15.9159 15.9159i 0.585477 0.585477i −0.350926 0.936403i \(-0.614133\pi\)
0.936403 + 0.350926i \(0.114133\pi\)
\(740\) −14.2225 −0.522830
\(741\) 0 0
\(742\) −27.4086 −1.00620
\(743\) 12.3062 12.3062i 0.451472 0.451472i −0.444371 0.895843i \(-0.646573\pi\)
0.895843 + 0.444371i \(0.146573\pi\)
\(744\) 2.93241 + 8.89533i 0.107507 + 0.326118i
\(745\) 29.8319i 1.09295i
\(746\) −2.98920 + 2.98920i −0.109442 + 0.109442i
\(747\) 0.878310 5.87018i 0.0321357 0.214779i
\(748\) 6.22236 6.22236i 0.227512 0.227512i
\(749\) 3.83260 + 3.83260i 0.140040 + 0.140040i
\(750\) 4.45797 1.46960i 0.162782 0.0536623i
\(751\) 6.71506i 0.245036i 0.992466 + 0.122518i \(0.0390970\pi\)
−0.992466 + 0.122518i \(0.960903\pi\)
\(752\) 7.65354 + 7.65354i 0.279096 + 0.279096i
\(753\) 20.2242 6.66707i 0.737012 0.242962i
\(754\) 0 0
\(755\) 3.78260i 0.137663i
\(756\) 12.7970 2.19562i 0.465422 0.0798538i
\(757\) −35.1813 −1.27869 −0.639343 0.768922i \(-0.720793\pi\)
−0.639343 + 0.768922i \(0.720793\pi\)
\(758\) 25.6818 0.932805
\(759\) 11.0371 + 5.56430i 0.400621 + 0.201971i
\(760\) 7.53379 + 7.53379i 0.273279 + 0.273279i
\(761\) 25.5514 + 25.5514i 0.926238 + 0.926238i 0.997460 0.0712220i \(-0.0226899\pi\)
−0.0712220 + 0.997460i \(0.522690\pi\)
\(762\) −16.5389 8.33802i −0.599141 0.302055i
\(763\) −8.75304 −0.316881
\(764\) 16.1272 0.583460
\(765\) 8.37918 56.0022i 0.302950 2.02477i
\(766\) 27.4958i 0.993464i
\(767\) 0 0
\(768\) −1.64497 + 0.542278i −0.0593578 + 0.0195678i
\(769\) 36.1433 + 36.1433i 1.30336 + 1.30336i 0.926112 + 0.377249i \(0.123130\pi\)
0.377249 + 0.926112i \(0.376870\pi\)
\(770\) 12.6090i 0.454398i
\(771\) −49.4071 + 16.2874i −1.77935 + 0.586578i
\(772\) −2.53379 2.53379i −0.0911932 0.0911932i
\(773\) 32.0971 32.0971i 1.15445 1.15445i 0.168803 0.985650i \(-0.446010\pi\)
0.985650 0.168803i \(-0.0539901\pi\)
\(774\) −0.659730 0.0987103i −0.0237135 0.00354807i
\(775\) 22.2685 22.2685i 0.799907 0.799907i
\(776\) 16.3764i 0.587880i
\(777\) 5.85782 + 17.7694i 0.210148 + 0.637474i
\(778\) 1.53379 1.53379i 0.0549892 0.0549892i
\(779\) 1.87796 0.0672848
\(780\) 0 0
\(781\) −11.8963 −0.425684
\(782\) −18.8752 + 18.8752i −0.674976 + 0.674976i
\(783\) −19.7397 13.9581i −0.705438 0.498820i
\(784\) 0.756152i 0.0270054i
\(785\) 18.8252 18.8252i 0.671901 0.671901i
\(786\) 0.409030 + 0.206211i 0.0145896 + 0.00735531i
\(787\) −14.7562 + 14.7562i −0.526000 + 0.526000i −0.919377 0.393377i \(-0.871307\pi\)
0.393377 + 0.919377i \(0.371307\pi\)
\(788\) −4.49545 4.49545i −0.160144 0.160144i
\(789\) 10.0922 + 30.6142i 0.359292 + 1.08989i
\(790\) 46.4332i 1.65202i
\(791\) 27.6016 + 27.6016i 0.981402 + 0.981402i
\(792\) −2.73639 3.69931i −0.0972333 0.131449i
\(793\) 0 0
\(794\) 14.5218i 0.515359i
\(795\) 55.8128 + 28.1378i 1.97947 + 0.997945i
\(796\) 23.1383 0.820115
\(797\) −34.0411 −1.20580 −0.602899 0.797817i \(-0.705988\pi\)
−0.602899 + 0.797817i \(0.705988\pi\)
\(798\) 6.30967 12.5155i 0.223360 0.443045i
\(799\) −43.9102 43.9102i −1.55343 1.55343i
\(800\) 4.11801 + 4.11801i 0.145593 + 0.145593i
\(801\) −26.9033 4.02533i −0.950581 0.142228i
\(802\) −8.24886 −0.291277
\(803\) −4.96715 −0.175287
\(804\) 0.588611 1.16754i 0.0207587 0.0411760i
\(805\) 38.2489i 1.34810i
\(806\) 0 0
\(807\) −0.444716 1.34902i −0.0156547 0.0474879i
\(808\) 9.06759 + 9.06759i 0.318997 + 0.318997i
\(809\) 19.8186i 0.696785i −0.937349 0.348392i \(-0.886728\pi\)
0.937349 0.348392i \(-0.113272\pi\)
\(810\) −28.3128 8.66646i −0.994811 0.304508i
\(811\) −25.0265 25.0265i −0.878799 0.878799i 0.114611 0.993410i \(-0.463438\pi\)
−0.993410 + 0.114611i \(0.963438\pi\)
\(812\) 8.22081 8.22081i 0.288494 0.288494i
\(813\) −10.8716 + 21.5643i −0.381282 + 0.756293i
\(814\) 4.68856 4.68856i 0.164334 0.164334i
\(815\) 80.1535i 2.80766i
\(816\) 9.43760 3.11118i 0.330382 0.108913i
\(817\) −0.509187 + 0.509187i −0.0178142 + 0.0178142i
\(818\) 9.37056 0.327634
\(819\) 0 0
\(820\) 1.90781 0.0666235
\(821\) 5.31554 5.31554i 0.185514 0.185514i −0.608240 0.793753i \(-0.708124\pi\)
0.793753 + 0.608240i \(0.208124\pi\)
\(822\) −8.52305 + 2.80969i −0.297275 + 0.0979991i
\(823\) 54.4118i 1.89667i −0.317264 0.948337i \(-0.602764\pi\)
0.317264 0.948337i \(-0.397236\pi\)
\(824\) 1.49460 1.49460i 0.0520669 0.0520669i
\(825\) −6.96481 + 13.8150i −0.242483 + 0.480978i
\(826\) −11.6260 + 11.6260i −0.404520 + 0.404520i
\(827\) −19.6453 19.6453i −0.683134 0.683134i 0.277571 0.960705i \(-0.410471\pi\)
−0.960705 + 0.277571i \(0.910471\pi\)
\(828\) 8.30069 + 11.2217i 0.288469 + 0.389980i
\(829\) 0.248858i 0.00864320i 0.999991 + 0.00432160i \(0.00137561\pi\)
−0.999991 + 0.00432160i \(0.998624\pi\)
\(830\) −4.60269 4.60269i −0.159762 0.159762i
\(831\) 9.42867 + 28.6014i 0.327077 + 0.992171i
\(832\) 0 0
\(833\) 4.33822i 0.150311i
\(834\) −1.73282 + 3.43714i −0.0600028 + 0.119019i
\(835\) 31.7397 1.09840
\(836\) −4.96715 −0.171792
\(837\) −27.6940 + 4.75153i −0.957243 + 0.164237i
\(838\) 5.94817 + 5.94817i 0.205476 + 0.205476i
\(839\) 6.29286 + 6.29286i 0.217254 + 0.217254i 0.807340 0.590086i \(-0.200906\pi\)
−0.590086 + 0.807340i \(0.700906\pi\)
\(840\) 6.40996 12.7145i 0.221165 0.438691i
\(841\) 7.35252 0.253535
\(842\) 1.36422 0.0470141
\(843\) 29.6329 + 14.9393i 1.02061 + 0.514537i
\(844\) 15.2899i 0.526302i
\(845\) 0 0
\(846\) −26.1054 + 19.3102i −0.897524 + 0.663900i
\(847\) −15.2792 15.2792i −0.525000 0.525000i
\(848\) 10.9689i 0.376672i
\(849\) 9.56984 + 29.0296i 0.328436 + 0.996294i
\(850\) −23.6260 23.6260i −0.810365 0.810365i
\(851\) −14.2225 + 14.2225i −0.487542 + 0.487542i
\(852\) −11.9958 6.04765i −0.410970 0.207189i
\(853\) −26.2596 + 26.2596i −0.899112 + 0.899112i −0.995358 0.0962459i \(-0.969316\pi\)
0.0962459 + 0.995358i \(0.469316\pi\)
\(854\) 7.66519i 0.262297i
\(855\) −25.6970 + 19.0081i −0.878819 + 0.650064i
\(856\) 1.53379 1.53379i 0.0524240 0.0524240i
\(857\) 48.8871 1.66995 0.834976 0.550286i \(-0.185481\pi\)
0.834976 + 0.550286i \(0.185481\pi\)
\(858\) 0 0
\(859\) −11.6905 −0.398873 −0.199437 0.979911i \(-0.563911\pi\)
−0.199437 + 0.979911i \(0.563911\pi\)
\(860\) −0.517281 + 0.517281i −0.0176391 + 0.0176391i
\(861\) −0.785767 2.38358i −0.0267789 0.0812323i
\(862\) 35.9835i 1.22560i
\(863\) −41.0424 + 41.0424i −1.39710 + 1.39710i −0.588879 + 0.808221i \(0.700431\pi\)
−0.808221 + 0.588879i \(0.799569\pi\)
\(864\) −0.878680 5.12132i −0.0298933 0.174231i
\(865\) 4.31455 4.31455i 0.146699 0.146699i
\(866\) 28.0537 + 28.0537i 0.953305 + 0.953305i
\(867\) −26.1813 + 8.63086i −0.889163 + 0.293119i
\(868\) 13.5123i 0.458637i
\(869\) 15.3071 + 15.3071i 0.519257 + 0.519257i
\(870\) −25.1797 + 8.30069i −0.853673 + 0.281420i
\(871\) 0 0
\(872\) 3.50294i 0.118624i
\(873\) 48.5885 + 7.26991i 1.64447 + 0.246049i
\(874\) 15.0676 0.509669
\(875\) −6.77180 −0.228929
\(876\) −5.00868 2.52511i −0.169228 0.0853156i
\(877\) −12.3518 12.3518i −0.417091 0.417091i 0.467109 0.884200i \(-0.345296\pi\)
−0.884200 + 0.467109i \(0.845296\pi\)
\(878\) 12.7279 + 12.7279i 0.429547 + 0.429547i
\(879\) −33.8243 17.0524i −1.14087 0.575164i
\(880\) −5.04610 −0.170104
\(881\) −26.2259 −0.883574 −0.441787 0.897120i \(-0.645655\pi\)
−0.441787 + 0.897120i \(0.645655\pi\)
\(882\) 2.24348 + 0.335675i 0.0755419 + 0.0113028i
\(883\) 39.6095i 1.33297i −0.745520 0.666483i \(-0.767799\pi\)
0.745520 0.666483i \(-0.232201\pi\)
\(884\) 0 0
\(885\) 35.6095 11.7389i 1.19700 0.394600i
\(886\) −22.6203 22.6203i −0.759942 0.759942i
\(887\) 9.11420i 0.306025i −0.988224 0.153013i \(-0.951103\pi\)
0.988224 0.153013i \(-0.0488975\pi\)
\(888\) 7.11126 2.34428i 0.238638 0.0786690i
\(889\) 18.8944 + 18.8944i 0.633699 + 0.633699i
\(890\) −21.0943 + 21.0943i −0.707083 + 0.707083i
\(891\) 12.1905 6.47657i 0.408397 0.216973i
\(892\) 3.30069 3.30069i 0.110515 0.110515i
\(893\) 35.0524i 1.17298i
\(894\) −4.91715 14.9159i −0.164454 0.498863i
\(895\) −0.615242 + 0.615242i −0.0205653 + 0.0205653i
\(896\) 2.49877 0.0834780
\(897\) 0 0
\(898\) −8.42323 −0.281087
\(899\) −17.7907 + 17.7907i −0.593351 + 0.593351i
\(900\) −14.0461 + 10.3899i −0.468203 + 0.346331i
\(901\) 62.9310i 2.09653i
\(902\) −0.628923 + 0.628923i −0.0209409 + 0.0209409i
\(903\) 0.859335 + 0.433231i 0.0285969 + 0.0144170i
\(904\) 11.0461 11.0461i 0.367388 0.367388i
\(905\) 18.8752 + 18.8752i 0.627433 + 0.627433i
\(906\) −0.623482 1.89130i −0.0207138 0.0628343i
\(907\) 11.4251i 0.379365i 0.981845 + 0.189682i \(0.0607458\pi\)
−0.981845 + 0.189682i \(0.939254\pi\)
\(908\) −4.33822 4.33822i −0.143969 0.143969i
\(909\) −30.9286 + 22.8780i −1.02584 + 0.758814i
\(910\) 0 0
\(911\) 19.4541i 0.644544i −0.946647 0.322272i \(-0.895553\pi\)
0.946647 0.322272i \(-0.104447\pi\)
\(912\) −5.00868 2.52511i −0.165854 0.0836148i
\(913\) 3.03463 0.100431
\(914\) −14.7433 −0.487667
\(915\) −7.86911 + 15.6088i −0.260145 + 0.516010i
\(916\) 2.47695 + 2.47695i 0.0818408 + 0.0818408i
\(917\) −0.467286 0.467286i −0.0154312 0.0154312i
\(918\) 5.04120 + 29.3822i 0.166384 + 0.969759i
\(919\) −48.8502 −1.61142 −0.805710 0.592310i \(-0.798216\pi\)
−0.805710 + 0.592310i \(0.798216\pi\)
\(920\) 15.3071 0.504659
\(921\) −23.0131 + 45.6476i −0.758306 + 1.50414i
\(922\) 38.8123i 1.27821i
\(923\) 0 0
\(924\) 2.07833 + 6.30452i 0.0683721 + 0.207403i
\(925\) −17.8022 17.8022i −0.585334 0.585334i
\(926\) 12.5742i 0.413215i
\(927\) 3.77095 + 5.09793i 0.123854 + 0.167438i
\(928\) −3.28995 3.28995i −0.107998 0.107998i
\(929\) 2.38799 2.38799i 0.0783474 0.0783474i −0.666847 0.745195i \(-0.732357\pi\)
0.745195 + 0.666847i \(0.232357\pi\)
\(930\) −13.8718 + 27.5154i −0.454873 + 0.902265i
\(931\) 1.73155 1.73155i 0.0567491 0.0567491i
\(932\) 12.0534i 0.394823i
\(933\) −25.6970 + 8.47122i −0.841282 + 0.277335i
\(934\) −26.1137 + 26.1137i −0.854466 + 0.854466i
\(935\) 28.9507 0.946788
\(936\) 0 0
\(937\) 43.7067 1.42784 0.713918 0.700229i \(-0.246919\pi\)
0.713918 + 0.700229i \(0.246919\pi\)
\(938\) −1.33383 + 1.33383i −0.0435510 + 0.0435510i
\(939\) −28.6285 + 9.43760i −0.934256 + 0.307985i
\(940\) 35.6095i 1.16145i
\(941\) −36.7731 + 36.7731i −1.19877 + 1.19877i −0.224233 + 0.974536i \(0.571988\pi\)
−0.974536 + 0.224233i \(0.928012\pi\)
\(942\) −6.30967 + 12.5155i −0.205580 + 0.407778i
\(943\) 1.90781 1.90781i 0.0621267 0.0621267i
\(944\) 4.65268 + 4.65268i 0.151432 + 0.151432i
\(945\) 34.8780 + 24.6624i 1.13458 + 0.802269i
\(946\) 0.341051i 0.0110885i
\(947\) −35.3168 35.3168i −1.14764 1.14764i −0.987015 0.160628i \(-0.948648\pi\)
−0.160628 0.987015i \(-0.551352\pi\)
\(948\) 7.65354 + 23.2166i 0.248575 + 0.754041i
\(949\) 0 0
\(950\) 18.8600i 0.611900i
\(951\) 3.19078 6.32907i 0.103468 0.205234i
\(952\) −14.3360 −0.464634
\(953\) 52.6019 1.70394 0.851971 0.523589i \(-0.175407\pi\)
0.851971 + 0.523589i \(0.175407\pi\)
\(954\) −32.5443 4.86935i −1.05366 0.157651i
\(955\) 37.5173 + 37.5173i 1.21403 + 1.21403i
\(956\) 14.7898 + 14.7898i 0.478336 + 0.478336i
\(957\) 5.56430 11.0371i 0.179868 0.356778i
\(958\) 5.13328 0.165849
\(959\) 12.9468 0.418074
\(960\) −5.08829 2.56525i −0.164224 0.0827929i
\(961\) 1.75805i 0.0567111i
\(962\) 0 0
\(963\) 3.86984 + 5.23161i 0.124704 + 0.168586i
\(964\) −12.3821 12.3821i −0.398802 0.398802i
\(965\) 11.7889i 0.379500i
\(966\) −6.30452 19.1244i −0.202844 0.615318i
\(967\) 37.4636 + 37.4636i 1.20475 + 1.20475i 0.972706 + 0.232042i \(0.0745407\pi\)
0.232042 + 0.972706i \(0.425459\pi\)
\(968\) −6.11469 + 6.11469i −0.196534 + 0.196534i
\(969\) 28.7360 + 14.4872i 0.923134 + 0.465395i
\(970\) 38.0972 38.0972i 1.22323 1.22323i
\(971\) 52.0962i 1.67185i −0.548845 0.835924i \(-0.684932\pi\)
0.548845 0.835924i \(-0.315068\pi\)
\(972\) 15.5849 0.333537i 0.499886 0.0106982i
\(973\) 3.92668 3.92668i 0.125883 0.125883i
\(974\) −13.2032 −0.423056
\(975\) 0 0
\(976\) −3.06759 −0.0981911
\(977\) 14.4414 14.4414i 0.462021 0.462021i −0.437296 0.899318i \(-0.644064\pi\)
0.899318 + 0.437296i \(0.144064\pi\)
\(978\) −13.2116 40.0768i −0.422461 1.28151i
\(979\) 13.9078i 0.444495i
\(980\) 1.75907 1.75907i 0.0561913 0.0561913i
\(981\) −10.3931 1.55504i −0.331827 0.0496487i
\(982\) 6.63172 6.63172i 0.211627 0.211627i
\(983\) 26.7699 + 26.7699i 0.853827 + 0.853827i 0.990602 0.136775i \(-0.0436737\pi\)
−0.136775 + 0.990602i \(0.543674\pi\)
\(984\) −0.953903 + 0.314462i −0.0304093 + 0.0100247i
\(985\) 20.9159i 0.666437i
\(986\) 18.8752 + 18.8752i 0.601109 + 0.601109i
\(987\) 44.4900 14.6665i 1.41613 0.466839i
\(988\) 0 0
\(989\) 1.03456i 0.0328971i
\(990\) 2.24009 14.9716i 0.0711947 0.475830i
\(991\) −43.9241 −1.39529 −0.697647 0.716442i \(-0.745770\pi\)
−0.697647 + 0.716442i \(0.745770\pi\)
\(992\) −5.40758 −0.171691
\(993\) 4.52233 + 2.27992i 0.143512 + 0.0723510i
\(994\) 13.7043 + 13.7043i 0.434675 + 0.434675i
\(995\) 53.8276 + 53.8276i 1.70645 + 1.70645i
\(996\) 3.06000 + 1.54269i 0.0969599 + 0.0488820i
\(997\) −34.5254 −1.09343 −0.546716 0.837318i \(-0.684122\pi\)
−0.546716 + 0.837318i \(0.684122\pi\)
\(998\) 0.249271 0.00789054
\(999\) 3.79856 + 22.1396i 0.120181 + 0.700466i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1014.2.g.b.437.4 12
3.2 odd 2 inner 1014.2.g.b.437.1 12
13.5 odd 4 inner 1014.2.g.b.239.1 12
13.8 odd 4 78.2.g.a.5.4 yes 12
13.12 even 2 78.2.g.a.47.1 yes 12
39.5 even 4 inner 1014.2.g.b.239.4 12
39.8 even 4 78.2.g.a.5.1 12
39.38 odd 2 78.2.g.a.47.4 yes 12
52.47 even 4 624.2.bf.f.161.5 12
52.51 odd 2 624.2.bf.f.593.5 12
156.47 odd 4 624.2.bf.f.161.6 12
156.155 even 2 624.2.bf.f.593.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.2.g.a.5.1 12 39.8 even 4
78.2.g.a.5.4 yes 12 13.8 odd 4
78.2.g.a.47.1 yes 12 13.12 even 2
78.2.g.a.47.4 yes 12 39.38 odd 2
624.2.bf.f.161.5 12 52.47 even 4
624.2.bf.f.161.6 12 156.47 odd 4
624.2.bf.f.593.5 12 52.51 odd 2
624.2.bf.f.593.6 12 156.155 even 2
1014.2.g.b.239.1 12 13.5 odd 4 inner
1014.2.g.b.239.4 12 39.5 even 4 inner
1014.2.g.b.437.1 12 3.2 odd 2 inner
1014.2.g.b.437.4 12 1.1 even 1 trivial