Properties

Label 1014.6.a.f.1.1
Level 10141014
Weight 66
Character 1014.1
Self dual yes
Analytic conductor 162.629162.629
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1014,6,Mod(1,1014)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1014, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1014.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 1014=23132 1014 = 2 \cdot 3 \cdot 13^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 1014.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 162.629193290162.629193290
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 78)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Character χ\chi == 1014.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+4.00000q2+9.00000q3+16.0000q476.0000q5+36.0000q6100.000q7+64.0000q8+81.0000q9304.000q10+106.000q11+144.000q12400.000q14684.000q15+256.000q16+234.000q17+324.000q18+276.000q191216.00q20900.000q21+424.000q22+2548.00q23+576.000q24+2651.00q25+729.000q271600.00q28+8266.00q292736.00q30+608.000q31+1024.00q32+954.000q33+936.000q34+7600.00q35+1296.00q36+2010.00q37+1104.00q384864.00q408844.00q413600.00q4217636.0q43+1696.00q446156.00q45+10192.0q4618770.0q47+2304.00q486807.00q49+10604.0q50+2106.00q5126970.0q53+2916.00q548056.00q556400.00q56+2484.00q57+33064.0q58+41966.0q5910944.0q60+778.000q61+2432.00q628100.00q63+4096.00q64+3816.00q66+12632.0q67+3744.00q68+22932.0q69+30400.0q7040466.0q71+5184.00q7254302.0q73+8040.00q74+23859.0q75+4416.00q7610600.0q7744656.0q7919456.0q80+6561.00q8135376.0q8269918.0q8314400.0q8417784.0q8570544.0q86+74394.0q87+6784.00q88+44520.0q8924624.0q90+40768.0q92+5472.00q9375080.0q9420976.0q95+9216.00q96+86026.0q9727228.0q98+8586.00q99+O(q100)q+4.00000 q^{2} +9.00000 q^{3} +16.0000 q^{4} -76.0000 q^{5} +36.0000 q^{6} -100.000 q^{7} +64.0000 q^{8} +81.0000 q^{9} -304.000 q^{10} +106.000 q^{11} +144.000 q^{12} -400.000 q^{14} -684.000 q^{15} +256.000 q^{16} +234.000 q^{17} +324.000 q^{18} +276.000 q^{19} -1216.00 q^{20} -900.000 q^{21} +424.000 q^{22} +2548.00 q^{23} +576.000 q^{24} +2651.00 q^{25} +729.000 q^{27} -1600.00 q^{28} +8266.00 q^{29} -2736.00 q^{30} +608.000 q^{31} +1024.00 q^{32} +954.000 q^{33} +936.000 q^{34} +7600.00 q^{35} +1296.00 q^{36} +2010.00 q^{37} +1104.00 q^{38} -4864.00 q^{40} -8844.00 q^{41} -3600.00 q^{42} -17636.0 q^{43} +1696.00 q^{44} -6156.00 q^{45} +10192.0 q^{46} -18770.0 q^{47} +2304.00 q^{48} -6807.00 q^{49} +10604.0 q^{50} +2106.00 q^{51} -26970.0 q^{53} +2916.00 q^{54} -8056.00 q^{55} -6400.00 q^{56} +2484.00 q^{57} +33064.0 q^{58} +41966.0 q^{59} -10944.0 q^{60} +778.000 q^{61} +2432.00 q^{62} -8100.00 q^{63} +4096.00 q^{64} +3816.00 q^{66} +12632.0 q^{67} +3744.00 q^{68} +22932.0 q^{69} +30400.0 q^{70} -40466.0 q^{71} +5184.00 q^{72} -54302.0 q^{73} +8040.00 q^{74} +23859.0 q^{75} +4416.00 q^{76} -10600.0 q^{77} -44656.0 q^{79} -19456.0 q^{80} +6561.00 q^{81} -35376.0 q^{82} -69918.0 q^{83} -14400.0 q^{84} -17784.0 q^{85} -70544.0 q^{86} +74394.0 q^{87} +6784.00 q^{88} +44520.0 q^{89} -24624.0 q^{90} +40768.0 q^{92} +5472.00 q^{93} -75080.0 q^{94} -20976.0 q^{95} +9216.00 q^{96} +86026.0 q^{97} -27228.0 q^{98} +8586.00 q^{99} +O(q^{100})

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 4.00000 0.707107
33 9.00000 0.577350
44 16.0000 0.500000
55 −76.0000 −1.35953 −0.679765 0.733430i 0.737918π-0.737918\pi
−0.679765 + 0.733430i 0.737918π0.737918\pi
66 36.0000 0.408248
77 −100.000 −0.771356 −0.385678 0.922633i 0.626032π-0.626032\pi
−0.385678 + 0.922633i 0.626032π0.626032\pi
88 64.0000 0.353553
99 81.0000 0.333333
1010 −304.000 −0.961332
1111 106.000 0.264134 0.132067 0.991241i 0.457839π-0.457839\pi
0.132067 + 0.991241i 0.457839π0.457839\pi
1212 144.000 0.288675
1313 0 0
1414 −400.000 −0.545431
1515 −684.000 −0.784925
1616 256.000 0.250000
1717 234.000 0.196378 0.0981892 0.995168i 0.468695π-0.468695\pi
0.0981892 + 0.995168i 0.468695π0.468695\pi
1818 324.000 0.235702
1919 276.000 0.175398 0.0876991 0.996147i 0.472049π-0.472049\pi
0.0876991 + 0.996147i 0.472049π0.472049\pi
2020 −1216.00 −0.679765
2121 −900.000 −0.445343
2222 424.000 0.186771
2323 2548.00 1.00434 0.502169 0.864770i 0.332536π-0.332536\pi
0.502169 + 0.864770i 0.332536π0.332536\pi
2424 576.000 0.204124
2525 2651.00 0.848320
2626 0 0
2727 729.000 0.192450
2828 −1600.00 −0.385678
2929 8266.00 1.82516 0.912579 0.408901i 0.134088π-0.134088\pi
0.912579 + 0.408901i 0.134088π0.134088\pi
3030 −2736.00 −0.555026
3131 608.000 0.113632 0.0568158 0.998385i 0.481905π-0.481905\pi
0.0568158 + 0.998385i 0.481905π0.481905\pi
3232 1024.00 0.176777
3333 954.000 0.152498
3434 936.000 0.138860
3535 7600.00 1.04868
3636 1296.00 0.166667
3737 2010.00 0.241375 0.120687 0.992691i 0.461490π-0.461490\pi
0.120687 + 0.992691i 0.461490π0.461490\pi
3838 1104.00 0.124025
3939 0 0
4040 −4864.00 −0.480666
4141 −8844.00 −0.821654 −0.410827 0.911713i 0.634760π-0.634760\pi
−0.410827 + 0.911713i 0.634760π0.634760\pi
4242 −3600.00 −0.314905
4343 −17636.0 −1.45455 −0.727275 0.686346i 0.759214π-0.759214\pi
−0.727275 + 0.686346i 0.759214π0.759214\pi
4444 1696.00 0.132067
4545 −6156.00 −0.453176
4646 10192.0 0.710174
4747 −18770.0 −1.23942 −0.619712 0.784830i 0.712750π-0.712750\pi
−0.619712 + 0.784830i 0.712750π0.712750\pi
4848 2304.00 0.144338
4949 −6807.00 −0.405010
5050 10604.0 0.599853
5151 2106.00 0.113379
5252 0 0
5353 −26970.0 −1.31884 −0.659419 0.751776i 0.729198π-0.729198\pi
−0.659419 + 0.751776i 0.729198π0.729198\pi
5454 2916.00 0.136083
5555 −8056.00 −0.359098
5656 −6400.00 −0.272716
5757 2484.00 0.101266
5858 33064.0 1.29058
5959 41966.0 1.56952 0.784761 0.619798i 0.212786π-0.212786\pi
0.784761 + 0.619798i 0.212786π0.212786\pi
6060 −10944.0 −0.392462
6161 778.000 0.0267704 0.0133852 0.999910i 0.495739π-0.495739\pi
0.0133852 + 0.999910i 0.495739π0.495739\pi
6262 2432.00 0.0803497
6363 −8100.00 −0.257119
6464 4096.00 0.125000
6565 0 0
6666 3816.00 0.107832
6767 12632.0 0.343784 0.171892 0.985116i 0.445012π-0.445012\pi
0.171892 + 0.985116i 0.445012π0.445012\pi
6868 3744.00 0.0981892
6969 22932.0 0.579855
7070 30400.0 0.741530
7171 −40466.0 −0.952674 −0.476337 0.879263i 0.658036π-0.658036\pi
−0.476337 + 0.879263i 0.658036π0.658036\pi
7272 5184.00 0.117851
7373 −54302.0 −1.19264 −0.596319 0.802748i 0.703371π-0.703371\pi
−0.596319 + 0.802748i 0.703371π0.703371\pi
7474 8040.00 0.170678
7575 23859.0 0.489778
7676 4416.00 0.0876991
7777 −10600.0 −0.203741
7878 0 0
7979 −44656.0 −0.805030 −0.402515 0.915413i 0.631864π-0.631864\pi
−0.402515 + 0.915413i 0.631864π0.631864\pi
8080 −19456.0 −0.339882
8181 6561.00 0.111111
8282 −35376.0 −0.580997
8383 −69918.0 −1.11402 −0.557011 0.830505i 0.688052π-0.688052\pi
−0.557011 + 0.830505i 0.688052π0.688052\pi
8484 −14400.0 −0.222671
8585 −17784.0 −0.266982
8686 −70544.0 −1.02852
8787 74394.0 1.05376
8888 6784.00 0.0933854
8989 44520.0 0.595772 0.297886 0.954601i 0.403718π-0.403718\pi
0.297886 + 0.954601i 0.403718π0.403718\pi
9090 −24624.0 −0.320444
9191 0 0
9292 40768.0 0.502169
9393 5472.00 0.0656053
9494 −75080.0 −0.876405
9595 −20976.0 −0.238459
9696 9216.00 0.102062
9797 86026.0 0.928326 0.464163 0.885750i 0.346355π-0.346355\pi
0.464163 + 0.885750i 0.346355π0.346355\pi
9898 −27228.0 −0.286385
9999 8586.00 0.0880446
100100 42416.0 0.424160
101101 22418.0 0.218672 0.109336 0.994005i 0.465128π-0.465128\pi
0.109336 + 0.994005i 0.465128π0.465128\pi
102102 8424.00 0.0801711
103103 −137600. −1.27798 −0.638992 0.769213i 0.720648π-0.720648\pi
−0.638992 + 0.769213i 0.720648π0.720648\pi
104104 0 0
105105 68400.0 0.605456
106106 −107880. −0.932559
107107 −102152. −0.862556 −0.431278 0.902219i 0.641937π-0.641937\pi
−0.431278 + 0.902219i 0.641937π0.641937\pi
108108 11664.0 0.0962250
109109 −156250. −1.25966 −0.629831 0.776732i 0.716876π-0.716876\pi
−0.629831 + 0.776732i 0.716876π0.716876\pi
110110 −32224.0 −0.253920
111111 18090.0 0.139358
112112 −25600.0 −0.192839
113113 −72890.0 −0.536997 −0.268498 0.963280i 0.586527π-0.586527\pi
−0.268498 + 0.963280i 0.586527π0.586527\pi
114114 9936.00 0.0716060
115115 −193648. −1.36543
116116 132256. 0.912579
117117 0 0
118118 167864. 1.10982
119119 −23400.0 −0.151478
120120 −43776.0 −0.277513
121121 −149815. −0.930233
122122 3112.00 0.0189295
123123 −79596.0 −0.474382
124124 9728.00 0.0568158
125125 36024.0 0.206213
126126 −32400.0 −0.181810
127127 36568.0 0.201183 0.100592 0.994928i 0.467926π-0.467926\pi
0.100592 + 0.994928i 0.467926π0.467926\pi
128128 16384.0 0.0883883
129129 −158724. −0.839785
130130 0 0
131131 −304208. −1.54879 −0.774395 0.632703i 0.781946π-0.781946\pi
−0.774395 + 0.632703i 0.781946π0.781946\pi
132132 15264.0 0.0762489
133133 −27600.0 −0.135294
134134 50528.0 0.243092
135135 −55404.0 −0.261642
136136 14976.0 0.0694302
137137 211140. 0.961101 0.480551 0.876967i 0.340437π-0.340437\pi
0.480551 + 0.876967i 0.340437π0.340437\pi
138138 91728.0 0.410019
139139 −274748. −1.20614 −0.603070 0.797688i 0.706056π-0.706056\pi
−0.603070 + 0.797688i 0.706056π0.706056\pi
140140 121600. 0.524341
141141 −168930. −0.715581
142142 −161864. −0.673642
143143 0 0
144144 20736.0 0.0833333
145145 −628216. −2.48136
146146 −217208. −0.843322
147147 −61263.0 −0.233833
148148 32160.0 0.120687
149149 −377976. −1.39476 −0.697379 0.716703i 0.745650π-0.745650\pi
−0.697379 + 0.716703i 0.745650π0.745650\pi
150150 95436.0 0.346325
151151 480960. 1.71659 0.858295 0.513157i 0.171524π-0.171524\pi
0.858295 + 0.513157i 0.171524π0.171524\pi
152152 17664.0 0.0620126
153153 18954.0 0.0654594
154154 −42400.0 −0.144067
155155 −46208.0 −0.154486
156156 0 0
157157 381038. 1.23373 0.616864 0.787070i 0.288403π-0.288403\pi
0.616864 + 0.787070i 0.288403π0.288403\pi
158158 −178624. −0.569242
159159 −242730. −0.761431
160160 −77824.0 −0.240333
161161 −254800. −0.774702
162162 26244.0 0.0785674
163163 292636. 0.862698 0.431349 0.902185i 0.358038π-0.358038\pi
0.431349 + 0.902185i 0.358038π0.358038\pi
164164 −141504. −0.410827
165165 −72504.0 −0.207325
166166 −279672. −0.787733
167167 463302. 1.28550 0.642751 0.766075i 0.277793π-0.277793\pi
0.642751 + 0.766075i 0.277793π0.277793\pi
168168 −57600.0 −0.157452
169169 0 0
170170 −71136.0 −0.188785
171171 22356.0 0.0584661
172172 −282176. −0.727275
173173 −12518.0 −0.0317995 −0.0158997 0.999874i 0.505061π-0.505061\pi
−0.0158997 + 0.999874i 0.505061π0.505061\pi
174174 297576. 0.745118
175175 −265100. −0.654357
176176 27136.0 0.0660335
177177 377694. 0.906164
178178 178080. 0.421274
179179 −609108. −1.42089 −0.710447 0.703751i 0.751507π-0.751507\pi
−0.710447 + 0.703751i 0.751507π0.751507\pi
180180 −98496.0 −0.226588
181181 217206. 0.492805 0.246403 0.969168i 0.420751π-0.420751\pi
0.246403 + 0.969168i 0.420751π0.420751\pi
182182 0 0
183183 7002.00 0.0154559
184184 163072. 0.355087
185185 −152760. −0.328156
186186 21888.0 0.0463899
187187 24804.0 0.0518702
188188 −300320. −0.619712
189189 −72900.0 −0.148448
190190 −83904.0 −0.168616
191191 −702160. −1.39268 −0.696342 0.717710i 0.745190π-0.745190\pi
−0.696342 + 0.717710i 0.745190π0.745190\pi
192192 36864.0 0.0721688
193193 −744170. −1.43807 −0.719033 0.694976i 0.755415π-0.755415\pi
−0.719033 + 0.694976i 0.755415π0.755415\pi
194194 344104. 0.656425
195195 0 0
196196 −108912. −0.202505
197197 −476676. −0.875100 −0.437550 0.899194i 0.644154π-0.644154\pi
−0.437550 + 0.899194i 0.644154π0.644154\pi
198198 34344.0 0.0622570
199199 496232. 0.888284 0.444142 0.895956i 0.353508π-0.353508\pi
0.444142 + 0.895956i 0.353508π0.353508\pi
200200 169664. 0.299926
201201 113688. 0.198484
202202 89672.0 0.154625
203203 −826600. −1.40785
204204 33696.0 0.0566895
205205 672144. 1.11706
206206 −550400. −0.903671
207207 206388. 0.334779
208208 0 0
209209 29256.0 0.0463286
210210 273600. 0.428122
211211 672068. 1.03922 0.519610 0.854404i 0.326077π-0.326077\pi
0.519610 + 0.854404i 0.326077π0.326077\pi
212212 −431520. −0.659419
213213 −364194. −0.550027
214214 −408608. −0.609919
215215 1.34034e6 1.97750
216216 46656.0 0.0680414
217217 −60800.0 −0.0876505
218218 −625000. −0.890715
219219 −488718. −0.688570
220220 −128896. −0.179549
221221 0 0
222222 72360.0 0.0985408
223223 −327408. −0.440887 −0.220443 0.975400i 0.570750π-0.570750\pi
−0.220443 + 0.975400i 0.570750π0.570750\pi
224224 −102400. −0.136358
225225 214731. 0.282773
226226 −291560. −0.379714
227227 −490674. −0.632016 −0.316008 0.948756i 0.602343π-0.602343\pi
−0.316008 + 0.948756i 0.602343π0.602343\pi
228228 39744.0 0.0506331
229229 −601674. −0.758180 −0.379090 0.925360i 0.623763π-0.623763\pi
−0.379090 + 0.925360i 0.623763π0.623763\pi
230230 −774592. −0.965503
231231 −95400.0 −0.117630
232232 529024. 0.645291
233233 1.42557e6 1.72027 0.860137 0.510063i 0.170378π-0.170378\pi
0.860137 + 0.510063i 0.170378π0.170378\pi
234234 0 0
235235 1.42652e6 1.68503
236236 671456. 0.784761
237237 −401904. −0.464784
238238 −93600.0 −0.107111
239239 −412482. −0.467100 −0.233550 0.972345i 0.575034π-0.575034\pi
−0.233550 + 0.972345i 0.575034π0.575034\pi
240240 −175104. −0.196231
241241 1.59256e6 1.76626 0.883128 0.469132i 0.155433π-0.155433\pi
0.883128 + 0.469132i 0.155433π0.155433\pi
242242 −599260. −0.657774
243243 59049.0 0.0641500
244244 12448.0 0.0133852
245245 517332. 0.550623
246246 −318384. −0.335439
247247 0 0
248248 38912.0 0.0401749
249249 −629262. −0.643181
250250 144096. 0.145815
251251 −1.28333e6 −1.28574 −0.642870 0.765975i 0.722257π-0.722257\pi
−0.642870 + 0.765975i 0.722257π0.722257\pi
252252 −129600. −0.128559
253253 270088. 0.265280
254254 146272. 0.142258
255255 −160056. −0.154142
256256 65536.0 0.0625000
257257 88014.0 0.0831226 0.0415613 0.999136i 0.486767π-0.486767\pi
0.0415613 + 0.999136i 0.486767π0.486767\pi
258258 −634896. −0.593818
259259 −201000. −0.186186
260260 0 0
261261 669546. 0.608386
262262 −1.21683e6 −1.09516
263263 1.16708e6 1.04043 0.520215 0.854035i 0.325852π-0.325852\pi
0.520215 + 0.854035i 0.325852π0.325852\pi
264264 61056.0 0.0539161
265265 2.04972e6 1.79300
266266 −110400. −0.0956676
267267 400680. 0.343969
268268 202112. 0.171892
269269 −206406. −0.173917 −0.0869584 0.996212i 0.527715π-0.527715\pi
−0.0869584 + 0.996212i 0.527715π0.527715\pi
270270 −221616. −0.185009
271271 1.36692e6 1.13063 0.565313 0.824877i 0.308756π-0.308756\pi
0.565313 + 0.824877i 0.308756π0.308756\pi
272272 59904.0 0.0490946
273273 0 0
274274 844560. 0.679601
275275 281006. 0.224070
276276 366912. 0.289927
277277 −2.28813e6 −1.79177 −0.895883 0.444290i 0.853456π-0.853456\pi
−0.895883 + 0.444290i 0.853456π0.853456\pi
278278 −1.09899e6 −0.852869
279279 49248.0 0.0378772
280280 486400. 0.370765
281281 −2.00462e6 −1.51449 −0.757245 0.653131i 0.773455π-0.773455\pi
−0.757245 + 0.653131i 0.773455π0.773455\pi
282282 −675720. −0.505992
283283 276340. 0.205106 0.102553 0.994728i 0.467299π-0.467299\pi
0.102553 + 0.994728i 0.467299π0.467299\pi
284284 −647456. −0.476337
285285 −188784. −0.137674
286286 0 0
287287 884400. 0.633788
288288 82944.0 0.0589256
289289 −1.36510e6 −0.961436
290290 −2.51286e6 −1.75458
291291 774234. 0.535969
292292 −868832. −0.596319
293293 526216. 0.358092 0.179046 0.983841i 0.442699π-0.442699\pi
0.179046 + 0.983841i 0.442699π0.442699\pi
294294 −245052. −0.165345
295295 −3.18942e6 −2.13381
296296 128640. 0.0853388
297297 77274.0 0.0508326
298298 −1.51190e6 −0.986242
299299 0 0
300300 381744. 0.244889
301301 1.76360e6 1.12198
302302 1.92384e6 1.21381
303303 201762. 0.126250
304304 70656.0 0.0438495
305305 −59128.0 −0.0363952
306306 75816.0 0.0462868
307307 621592. 0.376409 0.188204 0.982130i 0.439733π-0.439733\pi
0.188204 + 0.982130i 0.439733π0.439733\pi
308308 −169600. −0.101871
309309 −1.23840e6 −0.737844
310310 −184832. −0.109238
311311 −1.89260e6 −1.10958 −0.554790 0.831990i 0.687201π-0.687201\pi
−0.554790 + 0.831990i 0.687201π0.687201\pi
312312 0 0
313313 2.36212e6 1.36283 0.681414 0.731899i 0.261366π-0.261366\pi
0.681414 + 0.731899i 0.261366π0.261366\pi
314314 1.52415e6 0.872377
315315 615600. 0.349560
316316 −714496. −0.402515
317317 674292. 0.376877 0.188439 0.982085i 0.439657π-0.439657\pi
0.188439 + 0.982085i 0.439657π0.439657\pi
318318 −970920. −0.538413
319319 876196. 0.482086
320320 −311296. −0.169941
321321 −919368. −0.497997
322322 −1.01920e6 −0.547797
323323 64584.0 0.0344444
324324 104976. 0.0555556
325325 0 0
326326 1.17054e6 0.610020
327327 −1.40625e6 −0.727266
328328 −566016. −0.290499
329329 1.87700e6 0.956037
330330 −290016. −0.146601
331331 −1.76000e6 −0.882963 −0.441482 0.897270i 0.645547π-0.645547\pi
−0.441482 + 0.897270i 0.645547π0.645547\pi
332332 −1.11869e6 −0.557011
333333 162810. 0.0804582
334334 1.85321e6 0.908988
335335 −960032. −0.467384
336336 −230400. −0.111336
337337 3.57150e6 1.71307 0.856537 0.516086i 0.172611π-0.172611\pi
0.856537 + 0.516086i 0.172611π0.172611\pi
338338 0 0
339339 −656010. −0.310035
340340 −284544. −0.133491
341341 64448.0 0.0300140
342342 89424.0 0.0413417
343343 2.36140e6 1.08376
344344 −1.12870e6 −0.514261
345345 −1.74283e6 −0.788330
346346 −50072.0 −0.0224856
347347 2.26974e6 1.01193 0.505967 0.862553i 0.331136π-0.331136\pi
0.505967 + 0.862553i 0.331136π0.331136\pi
348348 1.19030e6 0.526878
349349 28874.0 0.0126895 0.00634473 0.999980i 0.497980π-0.497980\pi
0.00634473 + 0.999980i 0.497980π0.497980\pi
350350 −1.06040e6 −0.462700
351351 0 0
352352 108544. 0.0466927
353353 −3.38366e6 −1.44527 −0.722637 0.691228i 0.757070π-0.757070\pi
−0.722637 + 0.691228i 0.757070π0.757070\pi
354354 1.51078e6 0.640755
355355 3.07542e6 1.29519
356356 712320. 0.297886
357357 −210600. −0.0874556
358358 −2.43643e6 −1.00472
359359 −1.05979e6 −0.433992 −0.216996 0.976172i 0.569626π-0.569626\pi
−0.216996 + 0.976172i 0.569626π0.569626\pi
360360 −393984. −0.160222
361361 −2.39992e6 −0.969235
362362 868824. 0.348466
363363 −1.34834e6 −0.537070
364364 0 0
365365 4.12695e6 1.62143
366366 28008.0 0.0109290
367367 −926104. −0.358917 −0.179459 0.983766i 0.557435π-0.557435\pi
−0.179459 + 0.983766i 0.557435π0.557435\pi
368368 652288. 0.251084
369369 −716364. −0.273885
370370 −611040. −0.232041
371371 2.69700e6 1.01729
372372 87552.0 0.0328026
373373 −4.41324e6 −1.64242 −0.821212 0.570623i 0.806702π-0.806702\pi
−0.821212 + 0.570623i 0.806702π0.806702\pi
374374 99216.0 0.0366778
375375 324216. 0.119057
376376 −1.20128e6 −0.438202
377377 0 0
378378 −291600. −0.104968
379379 −4.12124e6 −1.47377 −0.736885 0.676019i 0.763704π-0.763704\pi
−0.736885 + 0.676019i 0.763704π0.763704\pi
380380 −335616. −0.119229
381381 329112. 0.116153
382382 −2.80864e6 −0.984776
383383 −3.85666e6 −1.34343 −0.671714 0.740810i 0.734442π-0.734442\pi
−0.671714 + 0.740810i 0.734442π0.734442\pi
384384 147456. 0.0510310
385385 805600. 0.276992
386386 −2.97668e6 −1.01687
387387 −1.42852e6 −0.484850
388388 1.37642e6 0.464163
389389 −578154. −0.193718 −0.0968589 0.995298i 0.530880π-0.530880\pi
−0.0968589 + 0.995298i 0.530880π0.530880\pi
390390 0 0
391391 596232. 0.197230
392392 −435648. −0.143193
393393 −2.73787e6 −0.894194
394394 −1.90670e6 −0.618789
395395 3.39386e6 1.09446
396396 137376. 0.0440223
397397 −3.11975e6 −0.993444 −0.496722 0.867910i 0.665463π-0.665463\pi
−0.496722 + 0.867910i 0.665463π0.665463\pi
398398 1.98493e6 0.628112
399399 −248400. −0.0781123
400400 678656. 0.212080
401401 −4.00850e6 −1.24486 −0.622431 0.782674i 0.713855π-0.713855\pi
−0.622431 + 0.782674i 0.713855π0.713855\pi
402402 454752. 0.140349
403403 0 0
404404 358688. 0.109336
405405 −498636. −0.151059
406406 −3.30640e6 −0.995498
407407 213060. 0.0637552
408408 134784. 0.0400856
409409 −1.37484e6 −0.406390 −0.203195 0.979138i 0.565133π-0.565133\pi
−0.203195 + 0.979138i 0.565133π0.565133\pi
410410 2.68858e6 0.789883
411411 1.90026e6 0.554892
412412 −2.20160e6 −0.638992
413413 −4.19660e6 −1.21066
414414 825552. 0.236725
415415 5.31377e6 1.51455
416416 0 0
417417 −2.47273e6 −0.696365
418418 117024. 0.0327593
419419 3.58834e6 0.998523 0.499261 0.866451i 0.333605π-0.333605\pi
0.499261 + 0.866451i 0.333605π0.333605\pi
420420 1.09440e6 0.302728
421421 4.01005e6 1.10267 0.551334 0.834284i 0.314119π-0.314119\pi
0.551334 + 0.834284i 0.314119π0.314119\pi
422422 2.68827e6 0.734839
423423 −1.52037e6 −0.413141
424424 −1.72608e6 −0.466279
425425 620334. 0.166592
426426 −1.45678e6 −0.388928
427427 −77800.0 −0.0206495
428428 −1.63443e6 −0.431278
429429 0 0
430430 5.36134e6 1.39831
431431 −2.95249e6 −0.765587 −0.382794 0.923834i 0.625038π-0.625038\pi
−0.382794 + 0.923834i 0.625038π0.625038\pi
432432 186624. 0.0481125
433433 2.48889e6 0.637950 0.318975 0.947763i 0.396661π-0.396661\pi
0.318975 + 0.947763i 0.396661π0.396661\pi
434434 −243200. −0.0619782
435435 −5.65394e6 −1.43261
436436 −2.50000e6 −0.629831
437437 703248. 0.176159
438438 −1.95487e6 −0.486892
439439 −2.49604e6 −0.618145 −0.309072 0.951039i 0.600019π-0.600019\pi
−0.309072 + 0.951039i 0.600019π0.600019\pi
440440 −515584. −0.126960
441441 −551367. −0.135003
442442 0 0
443443 855216. 0.207046 0.103523 0.994627i 0.466988π-0.466988\pi
0.103523 + 0.994627i 0.466988π0.466988\pi
444444 289440. 0.0696789
445445 −3.38352e6 −0.809970
446446 −1.30963e6 −0.311754
447447 −3.40178e6 −0.805263
448448 −409600. −0.0964195
449449 1.47275e6 0.344758 0.172379 0.985031i 0.444855π-0.444855\pi
0.172379 + 0.985031i 0.444855π0.444855\pi
450450 858924. 0.199951
451451 −937464. −0.217027
452452 −1.16624e6 −0.268498
453453 4.32864e6 0.991074
454454 −1.96270e6 −0.446903
455455 0 0
456456 158976. 0.0358030
457457 −5.56125e6 −1.24561 −0.622805 0.782377i 0.714007π-0.714007\pi
−0.622805 + 0.782377i 0.714007π0.714007\pi
458458 −2.40670e6 −0.536114
459459 170586. 0.0377930
460460 −3.09837e6 −0.682713
461461 8.04203e6 1.76244 0.881218 0.472710i 0.156724π-0.156724\pi
0.881218 + 0.472710i 0.156724π0.156724\pi
462462 −381600. −0.0831770
463463 −1.63479e6 −0.354412 −0.177206 0.984174i 0.556706π-0.556706\pi
−0.177206 + 0.984174i 0.556706π0.556706\pi
464464 2.11610e6 0.456289
465465 −415872. −0.0891923
466466 5.70226e6 1.21642
467467 −3.69145e6 −0.783257 −0.391629 0.920123i 0.628088π-0.628088\pi
−0.391629 + 0.920123i 0.628088π0.628088\pi
468468 0 0
469469 −1.26320e6 −0.265180
470470 5.70608e6 1.19150
471471 3.42934e6 0.712293
472472 2.68582e6 0.554910
473473 −1.86942e6 −0.384196
474474 −1.60762e6 −0.328652
475475 731676. 0.148794
476476 −374400. −0.0757388
477477 −2.18457e6 −0.439612
478478 −1.64993e6 −0.330290
479479 8.12522e6 1.61807 0.809033 0.587763i 0.199991π-0.199991\pi
0.809033 + 0.587763i 0.199991π0.199991\pi
480480 −700416. −0.138756
481481 0 0
482482 6.37025e6 1.24893
483483 −2.29320e6 −0.447274
484484 −2.39704e6 −0.465117
485485 −6.53798e6 −1.26209
486486 236196. 0.0453609
487487 −3.52078e6 −0.672693 −0.336347 0.941738i 0.609191π-0.609191\pi
−0.336347 + 0.941738i 0.609191π0.609191\pi
488488 49792.0 0.00946477
489489 2.63372e6 0.498079
490490 2.06933e6 0.389349
491491 −31576.0 −0.00591090 −0.00295545 0.999996i 0.500941π-0.500941\pi
−0.00295545 + 0.999996i 0.500941π0.500941\pi
492492 −1.27354e6 −0.237191
493493 1.93424e6 0.358421
494494 0 0
495495 −652536. −0.119699
496496 155648. 0.0284079
497497 4.04660e6 0.734851
498498 −2.51705e6 −0.454798
499499 −1.59040e6 −0.285927 −0.142963 0.989728i 0.545663π-0.545663\pi
−0.142963 + 0.989728i 0.545663π0.545663\pi
500500 576384. 0.103107
501501 4.16972e6 0.742185
502502 −5.13331e6 −0.909156
503503 9.81007e6 1.72883 0.864415 0.502780i 0.167689π-0.167689\pi
0.864415 + 0.502780i 0.167689π0.167689\pi
504504 −518400. −0.0909052
505505 −1.70377e6 −0.297291
506506 1.08035e6 0.187581
507507 0 0
508508 585088. 0.100592
509509 −205940. −0.0352327 −0.0176164 0.999845i 0.505608π-0.505608\pi
−0.0176164 + 0.999845i 0.505608π0.505608\pi
510510 −640224. −0.108995
511511 5.43020e6 0.919949
512512 262144. 0.0441942
513513 201204. 0.0337554
514514 352056. 0.0587765
515515 1.04576e7 1.73746
516516 −2.53958e6 −0.419893
517517 −1.98962e6 −0.327374
518518 −804000. −0.131653
519519 −112662. −0.0183594
520520 0 0
521521 −7.96711e6 −1.28590 −0.642949 0.765909i 0.722289π-0.722289\pi
−0.642949 + 0.765909i 0.722289π0.722289\pi
522522 2.67818e6 0.430194
523523 9.14536e6 1.46200 0.730998 0.682379i 0.239055π-0.239055\pi
0.730998 + 0.682379i 0.239055π0.239055\pi
524524 −4.86733e6 −0.774395
525525 −2.38590e6 −0.377793
526526 4.66834e6 0.735695
527527 142272. 0.0223148
528528 244224. 0.0381244
529529 55961.0 0.00869453
530530 8.19888e6 1.26784
531531 3.39925e6 0.523174
532532 −441600. −0.0676472
533533 0 0
534534 1.60272e6 0.243223
535535 7.76355e6 1.17267
536536 808448. 0.121546
537537 −5.48197e6 −0.820354
538538 −825624. −0.122978
539539 −721542. −0.106977
540540 −886464. −0.130821
541541 −3.46356e6 −0.508780 −0.254390 0.967102i 0.581875π-0.581875\pi
−0.254390 + 0.967102i 0.581875π0.581875\pi
542542 5.46766e6 0.799473
543543 1.95485e6 0.284521
544544 239616. 0.0347151
545545 1.18750e7 1.71255
546546 0 0
547547 1.51606e6 0.216645 0.108322 0.994116i 0.465452π-0.465452\pi
0.108322 + 0.994116i 0.465452π0.465452\pi
548548 3.37824e6 0.480551
549549 63018.0 0.00892347
550550 1.12402e6 0.158441
551551 2.28142e6 0.320129
552552 1.46765e6 0.205010
553553 4.46560e6 0.620965
554554 −9.15252e6 −1.26697
555555 −1.37484e6 −0.189461
556556 −4.39597e6 −0.603070
557557 −1.30872e7 −1.78734 −0.893670 0.448725i 0.851878π-0.851878\pi
−0.893670 + 0.448725i 0.851878π0.851878\pi
558558 196992. 0.0267832
559559 0 0
560560 1.94560e6 0.262170
561561 223236. 0.0299473
562562 −8.01848e6 −1.07091
563563 −5.79391e6 −0.770372 −0.385186 0.922839i 0.625863π-0.625863\pi
−0.385186 + 0.922839i 0.625863π0.625863\pi
564564 −2.70288e6 −0.357791
565565 5.53964e6 0.730063
566566 1.10536e6 0.145032
567567 −656100. −0.0857062
568568 −2.58982e6 −0.336821
569569 7.35779e6 0.952723 0.476362 0.879249i 0.341955π-0.341955\pi
0.476362 + 0.879249i 0.341955π0.341955\pi
570570 −755136. −0.0973505
571571 −4.28317e6 −0.549763 −0.274881 0.961478i 0.588639π-0.588639\pi
−0.274881 + 0.961478i 0.588639π0.588639\pi
572572 0 0
573573 −6.31944e6 −0.804067
574574 3.53760e6 0.448156
575575 6.75475e6 0.852000
576576 331776. 0.0416667
577577 4.11440e6 0.514478 0.257239 0.966348i 0.417187π-0.417187\pi
0.257239 + 0.966348i 0.417187π0.417187\pi
578578 −5.46040e6 −0.679838
579579 −6.69753e6 −0.830268
580580 −1.00515e7 −1.24068
581581 6.99180e6 0.859308
582582 3.09694e6 0.378987
583583 −2.85882e6 −0.348350
584584 −3.47533e6 −0.421661
585585 0 0
586586 2.10486e6 0.253210
587587 102218. 0.0122442 0.00612212 0.999981i 0.498051π-0.498051\pi
0.00612212 + 0.999981i 0.498051π0.498051\pi
588588 −980208. −0.116916
589589 167808. 0.0199308
590590 −1.27577e7 −1.50883
591591 −4.29008e6 −0.505239
592592 514560. 0.0603437
593593 −2.27550e6 −0.265730 −0.132865 0.991134i 0.542418π-0.542418\pi
−0.132865 + 0.991134i 0.542418π0.542418\pi
594594 309096. 0.0359441
595595 1.77840e6 0.205938
596596 −6.04762e6 −0.697379
597597 4.46609e6 0.512851
598598 0 0
599599 −1.05767e7 −1.20443 −0.602216 0.798333i 0.705716π-0.705716\pi
−0.602216 + 0.798333i 0.705716π0.705716\pi
600600 1.52698e6 0.173163
601601 −1.32670e7 −1.49826 −0.749128 0.662425i 0.769527π-0.769527\pi
−0.749128 + 0.662425i 0.769527π0.769527\pi
602602 7.05440e6 0.793357
603603 1.02319e6 0.114595
604604 7.69536e6 0.858295
605605 1.13859e7 1.26468
606606 807048. 0.0892725
607607 1.56567e7 1.72476 0.862380 0.506261i 0.168973π-0.168973\pi
0.862380 + 0.506261i 0.168973π0.168973\pi
608608 282624. 0.0310063
609609 −7.43940e6 −0.812821
610610 −236512. −0.0257353
611611 0 0
612612 303264. 0.0327297
613613 −3.48923e6 −0.375041 −0.187520 0.982261i 0.560045π-0.560045\pi
−0.187520 + 0.982261i 0.560045π0.560045\pi
614614 2.48637e6 0.266161
615615 6.04930e6 0.644937
616616 −678400. −0.0720334
617617 −2.73237e6 −0.288953 −0.144476 0.989508i 0.546150π-0.546150\pi
−0.144476 + 0.989508i 0.546150π0.546150\pi
618618 −4.95360e6 −0.521735
619619 −1.04378e6 −0.109492 −0.0547458 0.998500i 0.517435π-0.517435\pi
−0.0547458 + 0.998500i 0.517435π0.517435\pi
620620 −739328. −0.0772428
621621 1.85749e6 0.193285
622622 −7.57042e6 −0.784592
623623 −4.45200e6 −0.459552
624624 0 0
625625 −1.10222e7 −1.12867
626626 9.44847e6 0.963664
627627 263304. 0.0267478
628628 6.09661e6 0.616864
629629 470340. 0.0474008
630630 2.46240e6 0.247177
631631 1.21693e7 1.21672 0.608360 0.793661i 0.291828π-0.291828\pi
0.608360 + 0.793661i 0.291828π0.291828\pi
632632 −2.85798e6 −0.284621
633633 6.04861e6 0.599993
634634 2.69717e6 0.266492
635635 −2.77917e6 −0.273515
636636 −3.88368e6 −0.380716
637637 0 0
638638 3.50478e6 0.340886
639639 −3.27775e6 −0.317558
640640 −1.24518e6 −0.120167
641641 −1.69525e7 −1.62963 −0.814813 0.579724i 0.803160π-0.803160\pi
−0.814813 + 0.579724i 0.803160π0.803160\pi
642642 −3.67747e6 −0.352137
643643 1.46819e7 1.40041 0.700204 0.713943i 0.253092π-0.253092\pi
0.700204 + 0.713943i 0.253092π0.253092\pi
644644 −4.07680e6 −0.387351
645645 1.20630e7 1.14171
646646 258336. 0.0243559
647647 −4.59194e6 −0.431256 −0.215628 0.976476i 0.569180π-0.569180\pi
−0.215628 + 0.976476i 0.569180π0.569180\pi
648648 419904. 0.0392837
649649 4.44840e6 0.414564
650650 0 0
651651 −547200. −0.0506050
652652 4.68218e6 0.431349
653653 9.17275e6 0.841815 0.420907 0.907104i 0.361712π-0.361712\pi
0.420907 + 0.907104i 0.361712π0.361712\pi
654654 −5.62500e6 −0.514255
655655 2.31198e7 2.10562
656656 −2.26406e6 −0.205414
657657 −4.39846e6 −0.397546
658658 7.50800e6 0.676020
659659 −1.06207e7 −0.952660 −0.476330 0.879267i 0.658033π-0.658033\pi
−0.476330 + 0.879267i 0.658033π0.658033\pi
660660 −1.16006e6 −0.103663
661661 7.02779e6 0.625626 0.312813 0.949815i 0.398729π-0.398729\pi
0.312813 + 0.949815i 0.398729π0.398729\pi
662662 −7.04000e6 −0.624349
663663 0 0
664664 −4.47475e6 −0.393866
665665 2.09760e6 0.183937
666666 651240. 0.0568926
667667 2.10618e7 1.83308
668668 7.41283e6 0.642751
669669 −2.94667e6 −0.254546
670670 −3.84013e6 −0.330490
671671 82468.0 0.00707097
672672 −921600. −0.0787262
673673 1.24935e7 1.06327 0.531637 0.846972i 0.321577π-0.321577\pi
0.531637 + 0.846972i 0.321577π0.321577\pi
674674 1.42860e7 1.21133
675675 1.93258e6 0.163259
676676 0 0
677677 −1.84440e7 −1.54662 −0.773310 0.634028i 0.781401π-0.781401\pi
−0.773310 + 0.634028i 0.781401π0.781401\pi
678678 −2.62404e6 −0.219228
679679 −8.60260e6 −0.716070
680680 −1.13818e6 −0.0943924
681681 −4.41607e6 −0.364895
682682 257792. 0.0212231
683683 2.20988e6 0.181266 0.0906332 0.995884i 0.471111π-0.471111\pi
0.0906332 + 0.995884i 0.471111π0.471111\pi
684684 357696. 0.0292330
685685 −1.60466e7 −1.30665
686686 9.44560e6 0.766336
687687 −5.41507e6 −0.437736
688688 −4.51482e6 −0.363638
689689 0 0
690690 −6.97133e6 −0.557433
691691 −6.70893e6 −0.534513 −0.267256 0.963625i 0.586117π-0.586117\pi
−0.267256 + 0.963625i 0.586117π0.586117\pi
692692 −200288. −0.0158997
693693 −858600. −0.0679138
694694 9.07896e6 0.715546
695695 2.08808e7 1.63978
696696 4.76122e6 0.372559
697697 −2.06950e6 −0.161355
698698 115496. 0.00897281
699699 1.28301e7 0.993200
700700 −4.24160e6 −0.327178
701701 1.74858e7 1.34397 0.671986 0.740564i 0.265442π-0.265442\pi
0.671986 + 0.740564i 0.265442π0.265442\pi
702702 0 0
703703 554760. 0.0423367
704704 434176. 0.0330167
705705 1.28387e7 0.972854
706706 −1.35346e7 −1.02196
707707 −2.24180e6 −0.168674
708708 6.04310e6 0.453082
709709 −1.01508e7 −0.758380 −0.379190 0.925319i 0.623797π-0.623797\pi
−0.379190 + 0.925319i 0.623797π0.623797\pi
710710 1.23017e7 0.915837
711711 −3.61714e6 −0.268343
712712 2.84928e6 0.210637
713713 1.54918e6 0.114125
714714 −842400. −0.0618405
715715 0 0
716716 −9.74573e6 −0.710447
717717 −3.71234e6 −0.269681
718718 −4.23914e6 −0.306879
719719 2.55785e7 1.84524 0.922619 0.385714i 0.126045π-0.126045\pi
0.922619 + 0.385714i 0.126045π0.126045\pi
720720 −1.57594e6 −0.113294
721721 1.37600e7 0.985781
722722 −9.59969e6 −0.685353
723723 1.43331e7 1.01975
724724 3.47530e6 0.246403
725725 2.19132e7 1.54832
726726 −5.39334e6 −0.379766
727727 1.10507e7 0.775453 0.387727 0.921774i 0.373261π-0.373261\pi
0.387727 + 0.921774i 0.373261π0.373261\pi
728728 0 0
729729 531441. 0.0370370
730730 1.65078e7 1.14652
731731 −4.12682e6 −0.285642
732732 112032. 0.00772795
733733 1.69360e7 1.16426 0.582132 0.813094i 0.302219π-0.302219\pi
0.582132 + 0.813094i 0.302219π0.302219\pi
734734 −3.70442e6 −0.253793
735735 4.65599e6 0.317902
736736 2.60915e6 0.177544
737737 1.33899e6 0.0908049
738738 −2.86546e6 −0.193666
739739 2.26764e6 0.152744 0.0763718 0.997079i 0.475666π-0.475666\pi
0.0763718 + 0.997079i 0.475666π0.475666\pi
740740 −2.44416e6 −0.164078
741741 0 0
742742 1.07880e7 0.719335
743743 −1.03705e7 −0.689175 −0.344588 0.938754i 0.611981π-0.611981\pi
−0.344588 + 0.938754i 0.611981π0.611981\pi
744744 350208. 0.0231950
745745 2.87262e7 1.89621
746746 −1.76530e7 −1.16137
747747 −5.66336e6 −0.371341
748748 396864. 0.0259351
749749 1.02152e7 0.665338
750750 1.29686e6 0.0841863
751751 8.19751e6 0.530374 0.265187 0.964197i 0.414566π-0.414566\pi
0.265187 + 0.964197i 0.414566π0.414566\pi
752752 −4.80512e6 −0.309856
753753 −1.15500e7 −0.742323
754754 0 0
755755 −3.65530e7 −2.33375
756756 −1.16640e6 −0.0742238
757757 −2.55308e7 −1.61929 −0.809646 0.586919i 0.800341π-0.800341\pi
−0.809646 + 0.586919i 0.800341π0.800341\pi
758758 −1.64849e7 −1.04211
759759 2.43079e6 0.153159
760760 −1.34246e6 −0.0843080
761761 −3.05669e7 −1.91333 −0.956664 0.291193i 0.905948π-0.905948\pi
−0.956664 + 0.291193i 0.905948π0.905948\pi
762762 1.31645e6 0.0821327
763763 1.56250e7 0.971647
764764 −1.12346e7 −0.696342
765765 −1.44050e6 −0.0889940
766766 −1.54266e7 −0.949948
767767 0 0
768768 589824. 0.0360844
769769 −1.53170e7 −0.934026 −0.467013 0.884251i 0.654670π-0.654670\pi
−0.467013 + 0.884251i 0.654670π0.654670\pi
770770 3.22240e6 0.195863
771771 792126. 0.0479908
772772 −1.19067e7 −0.719033
773773 2.36631e6 0.142437 0.0712186 0.997461i 0.477311π-0.477311\pi
0.0712186 + 0.997461i 0.477311π0.477311\pi
774774 −5.71406e6 −0.342841
775775 1.61181e6 0.0963960
776776 5.50566e6 0.328213
777777 −1.80900e6 −0.107494
778778 −2.31262e6 −0.136979
779779 −2.44094e6 −0.144117
780780 0 0
781781 −4.28940e6 −0.251634
782782 2.38493e6 0.139463
783783 6.02591e6 0.351252
784784 −1.74259e6 −0.101252
785785 −2.89589e7 −1.67729
786786 −1.09515e7 −0.632291
787787 −1.39758e7 −0.804339 −0.402170 0.915565i 0.631744π-0.631744\pi
−0.402170 + 0.915565i 0.631744π0.631744\pi
788788 −7.62682e6 −0.437550
789789 1.05038e7 0.600692
790790 1.35754e7 0.773901
791791 7.28900e6 0.414216
792792 549504. 0.0311285
793793 0 0
794794 −1.24790e7 −0.702471
795795 1.84475e7 1.03519
796796 7.93971e6 0.444142
797797 1.87784e7 1.04716 0.523580 0.851977i 0.324596π-0.324596\pi
0.523580 + 0.851977i 0.324596π0.324596\pi
798798 −993600. −0.0552337
799799 −4.39218e6 −0.243396
800800 2.71462e6 0.149963
801801 3.60612e6 0.198591
802802 −1.60340e7 −0.880251
803803 −5.75601e6 −0.315016
804804 1.81901e6 0.0992418
805805 1.93648e7 1.05323
806806 0 0
807807 −1.85765e6 −0.100411
808808 1.43475e6 0.0773123
809809 1.48824e7 0.799468 0.399734 0.916631i 0.369102π-0.369102\pi
0.399734 + 0.916631i 0.369102π0.369102\pi
810810 −1.99454e6 −0.106815
811811 5.40879e6 0.288767 0.144384 0.989522i 0.453880π-0.453880\pi
0.144384 + 0.989522i 0.453880π0.453880\pi
812812 −1.32256e7 −0.703923
813813 1.23022e7 0.652767
814814 852240. 0.0450818
815815 −2.22403e7 −1.17286
816816 539136. 0.0283448
817817 −4.86754e6 −0.255126
818818 −5.49935e6 −0.287361
819819 0 0
820820 1.07543e7 0.558532
821821 1.00651e7 0.521147 0.260574 0.965454i 0.416088π-0.416088\pi
0.260574 + 0.965454i 0.416088π0.416088\pi
822822 7.60104e6 0.392368
823823 1.22916e7 0.632569 0.316285 0.948664i 0.397565π-0.397565\pi
0.316285 + 0.948664i 0.397565π0.397565\pi
824824 −8.80640e6 −0.451836
825825 2.52905e6 0.129367
826826 −1.67864e7 −0.856066
827827 −1.20837e7 −0.614378 −0.307189 0.951648i 0.599388π-0.599388\pi
−0.307189 + 0.951648i 0.599388π0.599388\pi
828828 3.30221e6 0.167390
829829 2.23351e7 1.12876 0.564379 0.825516i 0.309116π-0.309116\pi
0.564379 + 0.825516i 0.309116π0.309116\pi
830830 2.12551e7 1.07095
831831 −2.05932e7 −1.03448
832832 0 0
833833 −1.59284e6 −0.0795352
834834 −9.89093e6 −0.492404
835835 −3.52110e7 −1.74768
836836 468096. 0.0231643
837837 443232. 0.0218684
838838 1.43533e7 0.706062
839839 −9.89083e6 −0.485096 −0.242548 0.970139i 0.577983π-0.577983\pi
−0.242548 + 0.970139i 0.577983π0.577983\pi
840840 4.37760e6 0.214061
841841 4.78156e7 2.33120
842842 1.60402e7 0.779704
843843 −1.80416e7 −0.874391
844844 1.07531e7 0.519610
845845 0 0
846846 −6.08148e6 −0.292135
847847 1.49815e7 0.717541
848848 −6.90432e6 −0.329709
849849 2.48706e6 0.118418
850850 2.48134e6 0.117798
851851 5.12148e6 0.242422
852852 −5.82710e6 −0.275013
853853 −4.84677e6 −0.228076 −0.114038 0.993476i 0.536379π-0.536379\pi
−0.114038 + 0.993476i 0.536379π0.536379\pi
854854 −311200. −0.0146014
855855 −1.69906e6 −0.0794863
856856 −6.53773e6 −0.304960
857857 −1.60904e6 −0.0748368 −0.0374184 0.999300i 0.511913π-0.511913\pi
−0.0374184 + 0.999300i 0.511913π0.511913\pi
858858 0 0
859859 1.19283e7 0.551562 0.275781 0.961221i 0.411064π-0.411064\pi
0.275781 + 0.961221i 0.411064π0.411064\pi
860860 2.14454e7 0.988752
861861 7.95960e6 0.365918
862862 −1.18099e7 −0.541352
863863 1.04897e7 0.479442 0.239721 0.970842i 0.422944π-0.422944\pi
0.239721 + 0.970842i 0.422944π0.422944\pi
864864 746496. 0.0340207
865865 951368. 0.0432323
866866 9.95558e6 0.451099
867867 −1.22859e7 −0.555085
868868 −972800. −0.0438252
869869 −4.73354e6 −0.212636
870870 −2.26158e7 −1.01301
871871 0 0
872872 −1.00000e7 −0.445358
873873 6.96811e6 0.309442
874874 2.81299e6 0.124563
875875 −3.60240e6 −0.159064
876876 −7.81949e6 −0.344285
877877 4.41328e7 1.93759 0.968797 0.247856i 0.0797259π-0.0797259\pi
0.968797 + 0.247856i 0.0797259π0.0797259\pi
878878 −9.98416e6 −0.437094
879879 4.73594e6 0.206745
880880 −2.06234e6 −0.0897744
881881 −3.06299e7 −1.32955 −0.664777 0.747042i 0.731473π-0.731473\pi
−0.664777 + 0.747042i 0.731473π0.731473\pi
882882 −2.20547e6 −0.0954617
883883 2.84920e7 1.22976 0.614880 0.788620i 0.289204π-0.289204\pi
0.614880 + 0.788620i 0.289204π0.289204\pi
884884 0 0
885885 −2.87047e7 −1.23196
886886 3.42086e6 0.146404
887887 4.68877e6 0.200101 0.100051 0.994982i 0.468100π-0.468100\pi
0.100051 + 0.994982i 0.468100π0.468100\pi
888888 1.15776e6 0.0492704
889889 −3.65680e6 −0.155184
890890 −1.35341e7 −0.572735
891891 695466. 0.0293482
892892 −5.23853e6 −0.220443
893893 −5.18052e6 −0.217393
894894 −1.36071e7 −0.569407
895895 4.62922e7 1.93175
896896 −1.63840e6 −0.0681789
897897 0 0
898898 5.89101e6 0.243780
899899 5.02573e6 0.207396
900900 3.43570e6 0.141387
901901 −6.31098e6 −0.258991
902902 −3.74986e6 −0.153461
903903 1.58724e7 0.647774
904904 −4.66496e6 −0.189857
905905 −1.65077e7 −0.669983
906906 1.73146e7 0.700795
907907 −3.71845e7 −1.50087 −0.750437 0.660942i 0.770157π-0.770157\pi
−0.750437 + 0.660942i 0.770157π0.770157\pi
908908 −7.85078e6 −0.316008
909909 1.81586e6 0.0728907
910910 0 0
911911 1.04275e7 0.416280 0.208140 0.978099i 0.433259π-0.433259\pi
0.208140 + 0.978099i 0.433259π0.433259\pi
912912 635904. 0.0253165
913913 −7.41131e6 −0.294251
914914 −2.22450e7 −0.880780
915915 −532152. −0.0210128
916916 −9.62678e6 −0.379090
917917 3.04208e7 1.19467
918918 682344. 0.0267237
919919 3.27595e7 1.27953 0.639763 0.768572i 0.279033π-0.279033\pi
0.639763 + 0.768572i 0.279033π0.279033\pi
920920 −1.23935e7 −0.482751
921921 5.59433e6 0.217320
922922 3.21681e7 1.24623
923923 0 0
924924 −1.52640e6 −0.0588150
925925 5.32851e6 0.204763
926926 −6.53915e6 −0.250607
927927 −1.11456e7 −0.425995
928928 8.46438e6 0.322645
929929 −1.27643e7 −0.485242 −0.242621 0.970121i 0.578007π-0.578007\pi
−0.242621 + 0.970121i 0.578007π0.578007\pi
930930 −1.66349e6 −0.0630685
931931 −1.87873e6 −0.0710380
932932 2.28091e7 0.860137
933933 −1.70334e7 −0.640617
934934 −1.47658e7 −0.553847
935935 −1.88510e6 −0.0705190
936936 0 0
937937 1.78729e7 0.665037 0.332518 0.943097i 0.392102π-0.392102\pi
0.332518 + 0.943097i 0.392102π0.392102\pi
938938 −5.05280e6 −0.187510
939939 2.12591e7 0.786829
940940 2.28243e7 0.842516
941941 −6.47876e6 −0.238516 −0.119258 0.992863i 0.538052π-0.538052\pi
−0.119258 + 0.992863i 0.538052π0.538052\pi
942942 1.37174e7 0.503667
943943 −2.25345e7 −0.825218
944944 1.07433e7 0.392381
945945 5.54040e6 0.201819
946946 −7.47766e6 −0.271668
947947 3.14448e7 1.13939 0.569696 0.821855i 0.307061π-0.307061\pi
0.569696 + 0.821855i 0.307061π0.307061\pi
948948 −6.43046e6 −0.232392
949949 0 0
950950 2.92670e6 0.105213
951951 6.06863e6 0.217590
952952 −1.49760e6 −0.0535554
953953 2.24057e7 0.799145 0.399572 0.916702i 0.369159π-0.369159\pi
0.399572 + 0.916702i 0.369159π0.369159\pi
954954 −8.73828e6 −0.310853
955955 5.33642e7 1.89340
956956 −6.59971e6 −0.233550
957957 7.88576e6 0.278333
958958 3.25009e7 1.14415
959959 −2.11140e7 −0.741351
960960 −2.80166e6 −0.0981156
961961 −2.82595e7 −0.987088
962962 0 0
963963 −8.27431e6 −0.287519
964964 2.54810e7 0.883128
965965 5.65569e7 1.95509
966966 −9.17280e6 −0.316271
967967 3.08409e7 1.06062 0.530311 0.847803i 0.322075π-0.322075\pi
0.530311 + 0.847803i 0.322075π0.322075\pi
968968 −9.58816e6 −0.328887
969969 581256. 0.0198865
970970 −2.61519e7 −0.892430
971971 1.92695e7 0.655877 0.327939 0.944699i 0.393646π-0.393646\pi
0.327939 + 0.944699i 0.393646π0.393646\pi
972972 944784. 0.0320750
973973 2.74748e7 0.930363
974974 −1.40831e7 −0.475666
975975 0 0
976976 199168. 0.00669260
977977 −1.57140e6 −0.0526684 −0.0263342 0.999653i 0.508383π-0.508383\pi
−0.0263342 + 0.999653i 0.508383π0.508383\pi
978978 1.05349e7 0.352195
979979 4.71912e6 0.157364
980980 8.27731e6 0.275311
981981 −1.26562e7 −0.419887
982982 −126304. −0.00417964
983983 3.62448e7 1.19636 0.598180 0.801362i 0.295891π-0.295891\pi
0.598180 + 0.801362i 0.295891π0.295891\pi
984984 −5.09414e6 −0.167719
985985 3.62274e7 1.18972
986986 7.73698e6 0.253442
987987 1.68930e7 0.551968
988988 0 0
989989 −4.49365e7 −1.46086
990990 −2.61014e6 −0.0846402
991991 −2.93799e7 −0.950313 −0.475157 0.879901i 0.657609π-0.657609\pi
−0.475157 + 0.879901i 0.657609π0.657609\pi
992992 622592. 0.0200874
993993 −1.58400e7 −0.509779
994994 1.61864e7 0.519618
995995 −3.77136e7 −1.20765
996996 −1.00682e7 −0.321590
997997 1.72567e7 0.549818 0.274909 0.961470i 0.411352π-0.411352\pi
0.274909 + 0.961470i 0.411352π0.411352\pi
998998 −6.36160e6 −0.202181
999999 1.46529e6 0.0464526
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1014.6.a.f.1.1 1
13.12 even 2 78.6.a.c.1.1 1
39.38 odd 2 234.6.a.d.1.1 1
52.51 odd 2 624.6.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.6.a.c.1.1 1 13.12 even 2
234.6.a.d.1.1 1 39.38 odd 2
624.6.a.d.1.1 1 52.51 odd 2
1014.6.a.f.1.1 1 1.1 even 1 trivial