Properties

Label 1014.6.a.f.1.1
Level $1014$
Weight $6$
Character 1014.1
Self dual yes
Analytic conductor $162.629$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1014,6,Mod(1,1014)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1014, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1014.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1014.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(162.629193290\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 78)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1014.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +9.00000 q^{3} +16.0000 q^{4} -76.0000 q^{5} +36.0000 q^{6} -100.000 q^{7} +64.0000 q^{8} +81.0000 q^{9} -304.000 q^{10} +106.000 q^{11} +144.000 q^{12} -400.000 q^{14} -684.000 q^{15} +256.000 q^{16} +234.000 q^{17} +324.000 q^{18} +276.000 q^{19} -1216.00 q^{20} -900.000 q^{21} +424.000 q^{22} +2548.00 q^{23} +576.000 q^{24} +2651.00 q^{25} +729.000 q^{27} -1600.00 q^{28} +8266.00 q^{29} -2736.00 q^{30} +608.000 q^{31} +1024.00 q^{32} +954.000 q^{33} +936.000 q^{34} +7600.00 q^{35} +1296.00 q^{36} +2010.00 q^{37} +1104.00 q^{38} -4864.00 q^{40} -8844.00 q^{41} -3600.00 q^{42} -17636.0 q^{43} +1696.00 q^{44} -6156.00 q^{45} +10192.0 q^{46} -18770.0 q^{47} +2304.00 q^{48} -6807.00 q^{49} +10604.0 q^{50} +2106.00 q^{51} -26970.0 q^{53} +2916.00 q^{54} -8056.00 q^{55} -6400.00 q^{56} +2484.00 q^{57} +33064.0 q^{58} +41966.0 q^{59} -10944.0 q^{60} +778.000 q^{61} +2432.00 q^{62} -8100.00 q^{63} +4096.00 q^{64} +3816.00 q^{66} +12632.0 q^{67} +3744.00 q^{68} +22932.0 q^{69} +30400.0 q^{70} -40466.0 q^{71} +5184.00 q^{72} -54302.0 q^{73} +8040.00 q^{74} +23859.0 q^{75} +4416.00 q^{76} -10600.0 q^{77} -44656.0 q^{79} -19456.0 q^{80} +6561.00 q^{81} -35376.0 q^{82} -69918.0 q^{83} -14400.0 q^{84} -17784.0 q^{85} -70544.0 q^{86} +74394.0 q^{87} +6784.00 q^{88} +44520.0 q^{89} -24624.0 q^{90} +40768.0 q^{92} +5472.00 q^{93} -75080.0 q^{94} -20976.0 q^{95} +9216.00 q^{96} +86026.0 q^{97} -27228.0 q^{98} +8586.00 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 9.00000 0.577350
\(4\) 16.0000 0.500000
\(5\) −76.0000 −1.35953 −0.679765 0.733430i \(-0.737918\pi\)
−0.679765 + 0.733430i \(0.737918\pi\)
\(6\) 36.0000 0.408248
\(7\) −100.000 −0.771356 −0.385678 0.922633i \(-0.626032\pi\)
−0.385678 + 0.922633i \(0.626032\pi\)
\(8\) 64.0000 0.353553
\(9\) 81.0000 0.333333
\(10\) −304.000 −0.961332
\(11\) 106.000 0.264134 0.132067 0.991241i \(-0.457839\pi\)
0.132067 + 0.991241i \(0.457839\pi\)
\(12\) 144.000 0.288675
\(13\) 0 0
\(14\) −400.000 −0.545431
\(15\) −684.000 −0.784925
\(16\) 256.000 0.250000
\(17\) 234.000 0.196378 0.0981892 0.995168i \(-0.468695\pi\)
0.0981892 + 0.995168i \(0.468695\pi\)
\(18\) 324.000 0.235702
\(19\) 276.000 0.175398 0.0876991 0.996147i \(-0.472049\pi\)
0.0876991 + 0.996147i \(0.472049\pi\)
\(20\) −1216.00 −0.679765
\(21\) −900.000 −0.445343
\(22\) 424.000 0.186771
\(23\) 2548.00 1.00434 0.502169 0.864770i \(-0.332536\pi\)
0.502169 + 0.864770i \(0.332536\pi\)
\(24\) 576.000 0.204124
\(25\) 2651.00 0.848320
\(26\) 0 0
\(27\) 729.000 0.192450
\(28\) −1600.00 −0.385678
\(29\) 8266.00 1.82516 0.912579 0.408901i \(-0.134088\pi\)
0.912579 + 0.408901i \(0.134088\pi\)
\(30\) −2736.00 −0.555026
\(31\) 608.000 0.113632 0.0568158 0.998385i \(-0.481905\pi\)
0.0568158 + 0.998385i \(0.481905\pi\)
\(32\) 1024.00 0.176777
\(33\) 954.000 0.152498
\(34\) 936.000 0.138860
\(35\) 7600.00 1.04868
\(36\) 1296.00 0.166667
\(37\) 2010.00 0.241375 0.120687 0.992691i \(-0.461490\pi\)
0.120687 + 0.992691i \(0.461490\pi\)
\(38\) 1104.00 0.124025
\(39\) 0 0
\(40\) −4864.00 −0.480666
\(41\) −8844.00 −0.821654 −0.410827 0.911713i \(-0.634760\pi\)
−0.410827 + 0.911713i \(0.634760\pi\)
\(42\) −3600.00 −0.314905
\(43\) −17636.0 −1.45455 −0.727275 0.686346i \(-0.759214\pi\)
−0.727275 + 0.686346i \(0.759214\pi\)
\(44\) 1696.00 0.132067
\(45\) −6156.00 −0.453176
\(46\) 10192.0 0.710174
\(47\) −18770.0 −1.23942 −0.619712 0.784830i \(-0.712750\pi\)
−0.619712 + 0.784830i \(0.712750\pi\)
\(48\) 2304.00 0.144338
\(49\) −6807.00 −0.405010
\(50\) 10604.0 0.599853
\(51\) 2106.00 0.113379
\(52\) 0 0
\(53\) −26970.0 −1.31884 −0.659419 0.751776i \(-0.729198\pi\)
−0.659419 + 0.751776i \(0.729198\pi\)
\(54\) 2916.00 0.136083
\(55\) −8056.00 −0.359098
\(56\) −6400.00 −0.272716
\(57\) 2484.00 0.101266
\(58\) 33064.0 1.29058
\(59\) 41966.0 1.56952 0.784761 0.619798i \(-0.212786\pi\)
0.784761 + 0.619798i \(0.212786\pi\)
\(60\) −10944.0 −0.392462
\(61\) 778.000 0.0267704 0.0133852 0.999910i \(-0.495739\pi\)
0.0133852 + 0.999910i \(0.495739\pi\)
\(62\) 2432.00 0.0803497
\(63\) −8100.00 −0.257119
\(64\) 4096.00 0.125000
\(65\) 0 0
\(66\) 3816.00 0.107832
\(67\) 12632.0 0.343784 0.171892 0.985116i \(-0.445012\pi\)
0.171892 + 0.985116i \(0.445012\pi\)
\(68\) 3744.00 0.0981892
\(69\) 22932.0 0.579855
\(70\) 30400.0 0.741530
\(71\) −40466.0 −0.952674 −0.476337 0.879263i \(-0.658036\pi\)
−0.476337 + 0.879263i \(0.658036\pi\)
\(72\) 5184.00 0.117851
\(73\) −54302.0 −1.19264 −0.596319 0.802748i \(-0.703371\pi\)
−0.596319 + 0.802748i \(0.703371\pi\)
\(74\) 8040.00 0.170678
\(75\) 23859.0 0.489778
\(76\) 4416.00 0.0876991
\(77\) −10600.0 −0.203741
\(78\) 0 0
\(79\) −44656.0 −0.805030 −0.402515 0.915413i \(-0.631864\pi\)
−0.402515 + 0.915413i \(0.631864\pi\)
\(80\) −19456.0 −0.339882
\(81\) 6561.00 0.111111
\(82\) −35376.0 −0.580997
\(83\) −69918.0 −1.11402 −0.557011 0.830505i \(-0.688052\pi\)
−0.557011 + 0.830505i \(0.688052\pi\)
\(84\) −14400.0 −0.222671
\(85\) −17784.0 −0.266982
\(86\) −70544.0 −1.02852
\(87\) 74394.0 1.05376
\(88\) 6784.00 0.0933854
\(89\) 44520.0 0.595772 0.297886 0.954601i \(-0.403718\pi\)
0.297886 + 0.954601i \(0.403718\pi\)
\(90\) −24624.0 −0.320444
\(91\) 0 0
\(92\) 40768.0 0.502169
\(93\) 5472.00 0.0656053
\(94\) −75080.0 −0.876405
\(95\) −20976.0 −0.238459
\(96\) 9216.00 0.102062
\(97\) 86026.0 0.928326 0.464163 0.885750i \(-0.346355\pi\)
0.464163 + 0.885750i \(0.346355\pi\)
\(98\) −27228.0 −0.286385
\(99\) 8586.00 0.0880446
\(100\) 42416.0 0.424160
\(101\) 22418.0 0.218672 0.109336 0.994005i \(-0.465128\pi\)
0.109336 + 0.994005i \(0.465128\pi\)
\(102\) 8424.00 0.0801711
\(103\) −137600. −1.27798 −0.638992 0.769213i \(-0.720648\pi\)
−0.638992 + 0.769213i \(0.720648\pi\)
\(104\) 0 0
\(105\) 68400.0 0.605456
\(106\) −107880. −0.932559
\(107\) −102152. −0.862556 −0.431278 0.902219i \(-0.641937\pi\)
−0.431278 + 0.902219i \(0.641937\pi\)
\(108\) 11664.0 0.0962250
\(109\) −156250. −1.25966 −0.629831 0.776732i \(-0.716876\pi\)
−0.629831 + 0.776732i \(0.716876\pi\)
\(110\) −32224.0 −0.253920
\(111\) 18090.0 0.139358
\(112\) −25600.0 −0.192839
\(113\) −72890.0 −0.536997 −0.268498 0.963280i \(-0.586527\pi\)
−0.268498 + 0.963280i \(0.586527\pi\)
\(114\) 9936.00 0.0716060
\(115\) −193648. −1.36543
\(116\) 132256. 0.912579
\(117\) 0 0
\(118\) 167864. 1.10982
\(119\) −23400.0 −0.151478
\(120\) −43776.0 −0.277513
\(121\) −149815. −0.930233
\(122\) 3112.00 0.0189295
\(123\) −79596.0 −0.474382
\(124\) 9728.00 0.0568158
\(125\) 36024.0 0.206213
\(126\) −32400.0 −0.181810
\(127\) 36568.0 0.201183 0.100592 0.994928i \(-0.467926\pi\)
0.100592 + 0.994928i \(0.467926\pi\)
\(128\) 16384.0 0.0883883
\(129\) −158724. −0.839785
\(130\) 0 0
\(131\) −304208. −1.54879 −0.774395 0.632703i \(-0.781946\pi\)
−0.774395 + 0.632703i \(0.781946\pi\)
\(132\) 15264.0 0.0762489
\(133\) −27600.0 −0.135294
\(134\) 50528.0 0.243092
\(135\) −55404.0 −0.261642
\(136\) 14976.0 0.0694302
\(137\) 211140. 0.961101 0.480551 0.876967i \(-0.340437\pi\)
0.480551 + 0.876967i \(0.340437\pi\)
\(138\) 91728.0 0.410019
\(139\) −274748. −1.20614 −0.603070 0.797688i \(-0.706056\pi\)
−0.603070 + 0.797688i \(0.706056\pi\)
\(140\) 121600. 0.524341
\(141\) −168930. −0.715581
\(142\) −161864. −0.673642
\(143\) 0 0
\(144\) 20736.0 0.0833333
\(145\) −628216. −2.48136
\(146\) −217208. −0.843322
\(147\) −61263.0 −0.233833
\(148\) 32160.0 0.120687
\(149\) −377976. −1.39476 −0.697379 0.716703i \(-0.745650\pi\)
−0.697379 + 0.716703i \(0.745650\pi\)
\(150\) 95436.0 0.346325
\(151\) 480960. 1.71659 0.858295 0.513157i \(-0.171524\pi\)
0.858295 + 0.513157i \(0.171524\pi\)
\(152\) 17664.0 0.0620126
\(153\) 18954.0 0.0654594
\(154\) −42400.0 −0.144067
\(155\) −46208.0 −0.154486
\(156\) 0 0
\(157\) 381038. 1.23373 0.616864 0.787070i \(-0.288403\pi\)
0.616864 + 0.787070i \(0.288403\pi\)
\(158\) −178624. −0.569242
\(159\) −242730. −0.761431
\(160\) −77824.0 −0.240333
\(161\) −254800. −0.774702
\(162\) 26244.0 0.0785674
\(163\) 292636. 0.862698 0.431349 0.902185i \(-0.358038\pi\)
0.431349 + 0.902185i \(0.358038\pi\)
\(164\) −141504. −0.410827
\(165\) −72504.0 −0.207325
\(166\) −279672. −0.787733
\(167\) 463302. 1.28550 0.642751 0.766075i \(-0.277793\pi\)
0.642751 + 0.766075i \(0.277793\pi\)
\(168\) −57600.0 −0.157452
\(169\) 0 0
\(170\) −71136.0 −0.188785
\(171\) 22356.0 0.0584661
\(172\) −282176. −0.727275
\(173\) −12518.0 −0.0317995 −0.0158997 0.999874i \(-0.505061\pi\)
−0.0158997 + 0.999874i \(0.505061\pi\)
\(174\) 297576. 0.745118
\(175\) −265100. −0.654357
\(176\) 27136.0 0.0660335
\(177\) 377694. 0.906164
\(178\) 178080. 0.421274
\(179\) −609108. −1.42089 −0.710447 0.703751i \(-0.751507\pi\)
−0.710447 + 0.703751i \(0.751507\pi\)
\(180\) −98496.0 −0.226588
\(181\) 217206. 0.492805 0.246403 0.969168i \(-0.420751\pi\)
0.246403 + 0.969168i \(0.420751\pi\)
\(182\) 0 0
\(183\) 7002.00 0.0154559
\(184\) 163072. 0.355087
\(185\) −152760. −0.328156
\(186\) 21888.0 0.0463899
\(187\) 24804.0 0.0518702
\(188\) −300320. −0.619712
\(189\) −72900.0 −0.148448
\(190\) −83904.0 −0.168616
\(191\) −702160. −1.39268 −0.696342 0.717710i \(-0.745190\pi\)
−0.696342 + 0.717710i \(0.745190\pi\)
\(192\) 36864.0 0.0721688
\(193\) −744170. −1.43807 −0.719033 0.694976i \(-0.755415\pi\)
−0.719033 + 0.694976i \(0.755415\pi\)
\(194\) 344104. 0.656425
\(195\) 0 0
\(196\) −108912. −0.202505
\(197\) −476676. −0.875100 −0.437550 0.899194i \(-0.644154\pi\)
−0.437550 + 0.899194i \(0.644154\pi\)
\(198\) 34344.0 0.0622570
\(199\) 496232. 0.888284 0.444142 0.895956i \(-0.353508\pi\)
0.444142 + 0.895956i \(0.353508\pi\)
\(200\) 169664. 0.299926
\(201\) 113688. 0.198484
\(202\) 89672.0 0.154625
\(203\) −826600. −1.40785
\(204\) 33696.0 0.0566895
\(205\) 672144. 1.11706
\(206\) −550400. −0.903671
\(207\) 206388. 0.334779
\(208\) 0 0
\(209\) 29256.0 0.0463286
\(210\) 273600. 0.428122
\(211\) 672068. 1.03922 0.519610 0.854404i \(-0.326077\pi\)
0.519610 + 0.854404i \(0.326077\pi\)
\(212\) −431520. −0.659419
\(213\) −364194. −0.550027
\(214\) −408608. −0.609919
\(215\) 1.34034e6 1.97750
\(216\) 46656.0 0.0680414
\(217\) −60800.0 −0.0876505
\(218\) −625000. −0.890715
\(219\) −488718. −0.688570
\(220\) −128896. −0.179549
\(221\) 0 0
\(222\) 72360.0 0.0985408
\(223\) −327408. −0.440887 −0.220443 0.975400i \(-0.570750\pi\)
−0.220443 + 0.975400i \(0.570750\pi\)
\(224\) −102400. −0.136358
\(225\) 214731. 0.282773
\(226\) −291560. −0.379714
\(227\) −490674. −0.632016 −0.316008 0.948756i \(-0.602343\pi\)
−0.316008 + 0.948756i \(0.602343\pi\)
\(228\) 39744.0 0.0506331
\(229\) −601674. −0.758180 −0.379090 0.925360i \(-0.623763\pi\)
−0.379090 + 0.925360i \(0.623763\pi\)
\(230\) −774592. −0.965503
\(231\) −95400.0 −0.117630
\(232\) 529024. 0.645291
\(233\) 1.42557e6 1.72027 0.860137 0.510063i \(-0.170378\pi\)
0.860137 + 0.510063i \(0.170378\pi\)
\(234\) 0 0
\(235\) 1.42652e6 1.68503
\(236\) 671456. 0.784761
\(237\) −401904. −0.464784
\(238\) −93600.0 −0.107111
\(239\) −412482. −0.467100 −0.233550 0.972345i \(-0.575034\pi\)
−0.233550 + 0.972345i \(0.575034\pi\)
\(240\) −175104. −0.196231
\(241\) 1.59256e6 1.76626 0.883128 0.469132i \(-0.155433\pi\)
0.883128 + 0.469132i \(0.155433\pi\)
\(242\) −599260. −0.657774
\(243\) 59049.0 0.0641500
\(244\) 12448.0 0.0133852
\(245\) 517332. 0.550623
\(246\) −318384. −0.335439
\(247\) 0 0
\(248\) 38912.0 0.0401749
\(249\) −629262. −0.643181
\(250\) 144096. 0.145815
\(251\) −1.28333e6 −1.28574 −0.642870 0.765975i \(-0.722257\pi\)
−0.642870 + 0.765975i \(0.722257\pi\)
\(252\) −129600. −0.128559
\(253\) 270088. 0.265280
\(254\) 146272. 0.142258
\(255\) −160056. −0.154142
\(256\) 65536.0 0.0625000
\(257\) 88014.0 0.0831226 0.0415613 0.999136i \(-0.486767\pi\)
0.0415613 + 0.999136i \(0.486767\pi\)
\(258\) −634896. −0.593818
\(259\) −201000. −0.186186
\(260\) 0 0
\(261\) 669546. 0.608386
\(262\) −1.21683e6 −1.09516
\(263\) 1.16708e6 1.04043 0.520215 0.854035i \(-0.325852\pi\)
0.520215 + 0.854035i \(0.325852\pi\)
\(264\) 61056.0 0.0539161
\(265\) 2.04972e6 1.79300
\(266\) −110400. −0.0956676
\(267\) 400680. 0.343969
\(268\) 202112. 0.171892
\(269\) −206406. −0.173917 −0.0869584 0.996212i \(-0.527715\pi\)
−0.0869584 + 0.996212i \(0.527715\pi\)
\(270\) −221616. −0.185009
\(271\) 1.36692e6 1.13063 0.565313 0.824877i \(-0.308756\pi\)
0.565313 + 0.824877i \(0.308756\pi\)
\(272\) 59904.0 0.0490946
\(273\) 0 0
\(274\) 844560. 0.679601
\(275\) 281006. 0.224070
\(276\) 366912. 0.289927
\(277\) −2.28813e6 −1.79177 −0.895883 0.444290i \(-0.853456\pi\)
−0.895883 + 0.444290i \(0.853456\pi\)
\(278\) −1.09899e6 −0.852869
\(279\) 49248.0 0.0378772
\(280\) 486400. 0.370765
\(281\) −2.00462e6 −1.51449 −0.757245 0.653131i \(-0.773455\pi\)
−0.757245 + 0.653131i \(0.773455\pi\)
\(282\) −675720. −0.505992
\(283\) 276340. 0.205106 0.102553 0.994728i \(-0.467299\pi\)
0.102553 + 0.994728i \(0.467299\pi\)
\(284\) −647456. −0.476337
\(285\) −188784. −0.137674
\(286\) 0 0
\(287\) 884400. 0.633788
\(288\) 82944.0 0.0589256
\(289\) −1.36510e6 −0.961436
\(290\) −2.51286e6 −1.75458
\(291\) 774234. 0.535969
\(292\) −868832. −0.596319
\(293\) 526216. 0.358092 0.179046 0.983841i \(-0.442699\pi\)
0.179046 + 0.983841i \(0.442699\pi\)
\(294\) −245052. −0.165345
\(295\) −3.18942e6 −2.13381
\(296\) 128640. 0.0853388
\(297\) 77274.0 0.0508326
\(298\) −1.51190e6 −0.986242
\(299\) 0 0
\(300\) 381744. 0.244889
\(301\) 1.76360e6 1.12198
\(302\) 1.92384e6 1.21381
\(303\) 201762. 0.126250
\(304\) 70656.0 0.0438495
\(305\) −59128.0 −0.0363952
\(306\) 75816.0 0.0462868
\(307\) 621592. 0.376409 0.188204 0.982130i \(-0.439733\pi\)
0.188204 + 0.982130i \(0.439733\pi\)
\(308\) −169600. −0.101871
\(309\) −1.23840e6 −0.737844
\(310\) −184832. −0.109238
\(311\) −1.89260e6 −1.10958 −0.554790 0.831990i \(-0.687201\pi\)
−0.554790 + 0.831990i \(0.687201\pi\)
\(312\) 0 0
\(313\) 2.36212e6 1.36283 0.681414 0.731899i \(-0.261366\pi\)
0.681414 + 0.731899i \(0.261366\pi\)
\(314\) 1.52415e6 0.872377
\(315\) 615600. 0.349560
\(316\) −714496. −0.402515
\(317\) 674292. 0.376877 0.188439 0.982085i \(-0.439657\pi\)
0.188439 + 0.982085i \(0.439657\pi\)
\(318\) −970920. −0.538413
\(319\) 876196. 0.482086
\(320\) −311296. −0.169941
\(321\) −919368. −0.497997
\(322\) −1.01920e6 −0.547797
\(323\) 64584.0 0.0344444
\(324\) 104976. 0.0555556
\(325\) 0 0
\(326\) 1.17054e6 0.610020
\(327\) −1.40625e6 −0.727266
\(328\) −566016. −0.290499
\(329\) 1.87700e6 0.956037
\(330\) −290016. −0.146601
\(331\) −1.76000e6 −0.882963 −0.441482 0.897270i \(-0.645547\pi\)
−0.441482 + 0.897270i \(0.645547\pi\)
\(332\) −1.11869e6 −0.557011
\(333\) 162810. 0.0804582
\(334\) 1.85321e6 0.908988
\(335\) −960032. −0.467384
\(336\) −230400. −0.111336
\(337\) 3.57150e6 1.71307 0.856537 0.516086i \(-0.172611\pi\)
0.856537 + 0.516086i \(0.172611\pi\)
\(338\) 0 0
\(339\) −656010. −0.310035
\(340\) −284544. −0.133491
\(341\) 64448.0 0.0300140
\(342\) 89424.0 0.0413417
\(343\) 2.36140e6 1.08376
\(344\) −1.12870e6 −0.514261
\(345\) −1.74283e6 −0.788330
\(346\) −50072.0 −0.0224856
\(347\) 2.26974e6 1.01193 0.505967 0.862553i \(-0.331136\pi\)
0.505967 + 0.862553i \(0.331136\pi\)
\(348\) 1.19030e6 0.526878
\(349\) 28874.0 0.0126895 0.00634473 0.999980i \(-0.497980\pi\)
0.00634473 + 0.999980i \(0.497980\pi\)
\(350\) −1.06040e6 −0.462700
\(351\) 0 0
\(352\) 108544. 0.0466927
\(353\) −3.38366e6 −1.44527 −0.722637 0.691228i \(-0.757070\pi\)
−0.722637 + 0.691228i \(0.757070\pi\)
\(354\) 1.51078e6 0.640755
\(355\) 3.07542e6 1.29519
\(356\) 712320. 0.297886
\(357\) −210600. −0.0874556
\(358\) −2.43643e6 −1.00472
\(359\) −1.05979e6 −0.433992 −0.216996 0.976172i \(-0.569626\pi\)
−0.216996 + 0.976172i \(0.569626\pi\)
\(360\) −393984. −0.160222
\(361\) −2.39992e6 −0.969235
\(362\) 868824. 0.348466
\(363\) −1.34834e6 −0.537070
\(364\) 0 0
\(365\) 4.12695e6 1.62143
\(366\) 28008.0 0.0109290
\(367\) −926104. −0.358917 −0.179459 0.983766i \(-0.557435\pi\)
−0.179459 + 0.983766i \(0.557435\pi\)
\(368\) 652288. 0.251084
\(369\) −716364. −0.273885
\(370\) −611040. −0.232041
\(371\) 2.69700e6 1.01729
\(372\) 87552.0 0.0328026
\(373\) −4.41324e6 −1.64242 −0.821212 0.570623i \(-0.806702\pi\)
−0.821212 + 0.570623i \(0.806702\pi\)
\(374\) 99216.0 0.0366778
\(375\) 324216. 0.119057
\(376\) −1.20128e6 −0.438202
\(377\) 0 0
\(378\) −291600. −0.104968
\(379\) −4.12124e6 −1.47377 −0.736885 0.676019i \(-0.763704\pi\)
−0.736885 + 0.676019i \(0.763704\pi\)
\(380\) −335616. −0.119229
\(381\) 329112. 0.116153
\(382\) −2.80864e6 −0.984776
\(383\) −3.85666e6 −1.34343 −0.671714 0.740810i \(-0.734442\pi\)
−0.671714 + 0.740810i \(0.734442\pi\)
\(384\) 147456. 0.0510310
\(385\) 805600. 0.276992
\(386\) −2.97668e6 −1.01687
\(387\) −1.42852e6 −0.484850
\(388\) 1.37642e6 0.464163
\(389\) −578154. −0.193718 −0.0968589 0.995298i \(-0.530880\pi\)
−0.0968589 + 0.995298i \(0.530880\pi\)
\(390\) 0 0
\(391\) 596232. 0.197230
\(392\) −435648. −0.143193
\(393\) −2.73787e6 −0.894194
\(394\) −1.90670e6 −0.618789
\(395\) 3.39386e6 1.09446
\(396\) 137376. 0.0440223
\(397\) −3.11975e6 −0.993444 −0.496722 0.867910i \(-0.665463\pi\)
−0.496722 + 0.867910i \(0.665463\pi\)
\(398\) 1.98493e6 0.628112
\(399\) −248400. −0.0781123
\(400\) 678656. 0.212080
\(401\) −4.00850e6 −1.24486 −0.622431 0.782674i \(-0.713855\pi\)
−0.622431 + 0.782674i \(0.713855\pi\)
\(402\) 454752. 0.140349
\(403\) 0 0
\(404\) 358688. 0.109336
\(405\) −498636. −0.151059
\(406\) −3.30640e6 −0.995498
\(407\) 213060. 0.0637552
\(408\) 134784. 0.0400856
\(409\) −1.37484e6 −0.406390 −0.203195 0.979138i \(-0.565133\pi\)
−0.203195 + 0.979138i \(0.565133\pi\)
\(410\) 2.68858e6 0.789883
\(411\) 1.90026e6 0.554892
\(412\) −2.20160e6 −0.638992
\(413\) −4.19660e6 −1.21066
\(414\) 825552. 0.236725
\(415\) 5.31377e6 1.51455
\(416\) 0 0
\(417\) −2.47273e6 −0.696365
\(418\) 117024. 0.0327593
\(419\) 3.58834e6 0.998523 0.499261 0.866451i \(-0.333605\pi\)
0.499261 + 0.866451i \(0.333605\pi\)
\(420\) 1.09440e6 0.302728
\(421\) 4.01005e6 1.10267 0.551334 0.834284i \(-0.314119\pi\)
0.551334 + 0.834284i \(0.314119\pi\)
\(422\) 2.68827e6 0.734839
\(423\) −1.52037e6 −0.413141
\(424\) −1.72608e6 −0.466279
\(425\) 620334. 0.166592
\(426\) −1.45678e6 −0.388928
\(427\) −77800.0 −0.0206495
\(428\) −1.63443e6 −0.431278
\(429\) 0 0
\(430\) 5.36134e6 1.39831
\(431\) −2.95249e6 −0.765587 −0.382794 0.923834i \(-0.625038\pi\)
−0.382794 + 0.923834i \(0.625038\pi\)
\(432\) 186624. 0.0481125
\(433\) 2.48889e6 0.637950 0.318975 0.947763i \(-0.396661\pi\)
0.318975 + 0.947763i \(0.396661\pi\)
\(434\) −243200. −0.0619782
\(435\) −5.65394e6 −1.43261
\(436\) −2.50000e6 −0.629831
\(437\) 703248. 0.176159
\(438\) −1.95487e6 −0.486892
\(439\) −2.49604e6 −0.618145 −0.309072 0.951039i \(-0.600019\pi\)
−0.309072 + 0.951039i \(0.600019\pi\)
\(440\) −515584. −0.126960
\(441\) −551367. −0.135003
\(442\) 0 0
\(443\) 855216. 0.207046 0.103523 0.994627i \(-0.466988\pi\)
0.103523 + 0.994627i \(0.466988\pi\)
\(444\) 289440. 0.0696789
\(445\) −3.38352e6 −0.809970
\(446\) −1.30963e6 −0.311754
\(447\) −3.40178e6 −0.805263
\(448\) −409600. −0.0964195
\(449\) 1.47275e6 0.344758 0.172379 0.985031i \(-0.444855\pi\)
0.172379 + 0.985031i \(0.444855\pi\)
\(450\) 858924. 0.199951
\(451\) −937464. −0.217027
\(452\) −1.16624e6 −0.268498
\(453\) 4.32864e6 0.991074
\(454\) −1.96270e6 −0.446903
\(455\) 0 0
\(456\) 158976. 0.0358030
\(457\) −5.56125e6 −1.24561 −0.622805 0.782377i \(-0.714007\pi\)
−0.622805 + 0.782377i \(0.714007\pi\)
\(458\) −2.40670e6 −0.536114
\(459\) 170586. 0.0377930
\(460\) −3.09837e6 −0.682713
\(461\) 8.04203e6 1.76244 0.881218 0.472710i \(-0.156724\pi\)
0.881218 + 0.472710i \(0.156724\pi\)
\(462\) −381600. −0.0831770
\(463\) −1.63479e6 −0.354412 −0.177206 0.984174i \(-0.556706\pi\)
−0.177206 + 0.984174i \(0.556706\pi\)
\(464\) 2.11610e6 0.456289
\(465\) −415872. −0.0891923
\(466\) 5.70226e6 1.21642
\(467\) −3.69145e6 −0.783257 −0.391629 0.920123i \(-0.628088\pi\)
−0.391629 + 0.920123i \(0.628088\pi\)
\(468\) 0 0
\(469\) −1.26320e6 −0.265180
\(470\) 5.70608e6 1.19150
\(471\) 3.42934e6 0.712293
\(472\) 2.68582e6 0.554910
\(473\) −1.86942e6 −0.384196
\(474\) −1.60762e6 −0.328652
\(475\) 731676. 0.148794
\(476\) −374400. −0.0757388
\(477\) −2.18457e6 −0.439612
\(478\) −1.64993e6 −0.330290
\(479\) 8.12522e6 1.61807 0.809033 0.587763i \(-0.199991\pi\)
0.809033 + 0.587763i \(0.199991\pi\)
\(480\) −700416. −0.138756
\(481\) 0 0
\(482\) 6.37025e6 1.24893
\(483\) −2.29320e6 −0.447274
\(484\) −2.39704e6 −0.465117
\(485\) −6.53798e6 −1.26209
\(486\) 236196. 0.0453609
\(487\) −3.52078e6 −0.672693 −0.336347 0.941738i \(-0.609191\pi\)
−0.336347 + 0.941738i \(0.609191\pi\)
\(488\) 49792.0 0.00946477
\(489\) 2.63372e6 0.498079
\(490\) 2.06933e6 0.389349
\(491\) −31576.0 −0.00591090 −0.00295545 0.999996i \(-0.500941\pi\)
−0.00295545 + 0.999996i \(0.500941\pi\)
\(492\) −1.27354e6 −0.237191
\(493\) 1.93424e6 0.358421
\(494\) 0 0
\(495\) −652536. −0.119699
\(496\) 155648. 0.0284079
\(497\) 4.04660e6 0.734851
\(498\) −2.51705e6 −0.454798
\(499\) −1.59040e6 −0.285927 −0.142963 0.989728i \(-0.545663\pi\)
−0.142963 + 0.989728i \(0.545663\pi\)
\(500\) 576384. 0.103107
\(501\) 4.16972e6 0.742185
\(502\) −5.13331e6 −0.909156
\(503\) 9.81007e6 1.72883 0.864415 0.502780i \(-0.167689\pi\)
0.864415 + 0.502780i \(0.167689\pi\)
\(504\) −518400. −0.0909052
\(505\) −1.70377e6 −0.297291
\(506\) 1.08035e6 0.187581
\(507\) 0 0
\(508\) 585088. 0.100592
\(509\) −205940. −0.0352327 −0.0176164 0.999845i \(-0.505608\pi\)
−0.0176164 + 0.999845i \(0.505608\pi\)
\(510\) −640224. −0.108995
\(511\) 5.43020e6 0.919949
\(512\) 262144. 0.0441942
\(513\) 201204. 0.0337554
\(514\) 352056. 0.0587765
\(515\) 1.04576e7 1.73746
\(516\) −2.53958e6 −0.419893
\(517\) −1.98962e6 −0.327374
\(518\) −804000. −0.131653
\(519\) −112662. −0.0183594
\(520\) 0 0
\(521\) −7.96711e6 −1.28590 −0.642949 0.765909i \(-0.722289\pi\)
−0.642949 + 0.765909i \(0.722289\pi\)
\(522\) 2.67818e6 0.430194
\(523\) 9.14536e6 1.46200 0.730998 0.682379i \(-0.239055\pi\)
0.730998 + 0.682379i \(0.239055\pi\)
\(524\) −4.86733e6 −0.774395
\(525\) −2.38590e6 −0.377793
\(526\) 4.66834e6 0.735695
\(527\) 142272. 0.0223148
\(528\) 244224. 0.0381244
\(529\) 55961.0 0.00869453
\(530\) 8.19888e6 1.26784
\(531\) 3.39925e6 0.523174
\(532\) −441600. −0.0676472
\(533\) 0 0
\(534\) 1.60272e6 0.243223
\(535\) 7.76355e6 1.17267
\(536\) 808448. 0.121546
\(537\) −5.48197e6 −0.820354
\(538\) −825624. −0.122978
\(539\) −721542. −0.106977
\(540\) −886464. −0.130821
\(541\) −3.46356e6 −0.508780 −0.254390 0.967102i \(-0.581875\pi\)
−0.254390 + 0.967102i \(0.581875\pi\)
\(542\) 5.46766e6 0.799473
\(543\) 1.95485e6 0.284521
\(544\) 239616. 0.0347151
\(545\) 1.18750e7 1.71255
\(546\) 0 0
\(547\) 1.51606e6 0.216645 0.108322 0.994116i \(-0.465452\pi\)
0.108322 + 0.994116i \(0.465452\pi\)
\(548\) 3.37824e6 0.480551
\(549\) 63018.0 0.00892347
\(550\) 1.12402e6 0.158441
\(551\) 2.28142e6 0.320129
\(552\) 1.46765e6 0.205010
\(553\) 4.46560e6 0.620965
\(554\) −9.15252e6 −1.26697
\(555\) −1.37484e6 −0.189461
\(556\) −4.39597e6 −0.603070
\(557\) −1.30872e7 −1.78734 −0.893670 0.448725i \(-0.851878\pi\)
−0.893670 + 0.448725i \(0.851878\pi\)
\(558\) 196992. 0.0267832
\(559\) 0 0
\(560\) 1.94560e6 0.262170
\(561\) 223236. 0.0299473
\(562\) −8.01848e6 −1.07091
\(563\) −5.79391e6 −0.770372 −0.385186 0.922839i \(-0.625863\pi\)
−0.385186 + 0.922839i \(0.625863\pi\)
\(564\) −2.70288e6 −0.357791
\(565\) 5.53964e6 0.730063
\(566\) 1.10536e6 0.145032
\(567\) −656100. −0.0857062
\(568\) −2.58982e6 −0.336821
\(569\) 7.35779e6 0.952723 0.476362 0.879249i \(-0.341955\pi\)
0.476362 + 0.879249i \(0.341955\pi\)
\(570\) −755136. −0.0973505
\(571\) −4.28317e6 −0.549763 −0.274881 0.961478i \(-0.588639\pi\)
−0.274881 + 0.961478i \(0.588639\pi\)
\(572\) 0 0
\(573\) −6.31944e6 −0.804067
\(574\) 3.53760e6 0.448156
\(575\) 6.75475e6 0.852000
\(576\) 331776. 0.0416667
\(577\) 4.11440e6 0.514478 0.257239 0.966348i \(-0.417187\pi\)
0.257239 + 0.966348i \(0.417187\pi\)
\(578\) −5.46040e6 −0.679838
\(579\) −6.69753e6 −0.830268
\(580\) −1.00515e7 −1.24068
\(581\) 6.99180e6 0.859308
\(582\) 3.09694e6 0.378987
\(583\) −2.85882e6 −0.348350
\(584\) −3.47533e6 −0.421661
\(585\) 0 0
\(586\) 2.10486e6 0.253210
\(587\) 102218. 0.0122442 0.00612212 0.999981i \(-0.498051\pi\)
0.00612212 + 0.999981i \(0.498051\pi\)
\(588\) −980208. −0.116916
\(589\) 167808. 0.0199308
\(590\) −1.27577e7 −1.50883
\(591\) −4.29008e6 −0.505239
\(592\) 514560. 0.0603437
\(593\) −2.27550e6 −0.265730 −0.132865 0.991134i \(-0.542418\pi\)
−0.132865 + 0.991134i \(0.542418\pi\)
\(594\) 309096. 0.0359441
\(595\) 1.77840e6 0.205938
\(596\) −6.04762e6 −0.697379
\(597\) 4.46609e6 0.512851
\(598\) 0 0
\(599\) −1.05767e7 −1.20443 −0.602216 0.798333i \(-0.705716\pi\)
−0.602216 + 0.798333i \(0.705716\pi\)
\(600\) 1.52698e6 0.173163
\(601\) −1.32670e7 −1.49826 −0.749128 0.662425i \(-0.769527\pi\)
−0.749128 + 0.662425i \(0.769527\pi\)
\(602\) 7.05440e6 0.793357
\(603\) 1.02319e6 0.114595
\(604\) 7.69536e6 0.858295
\(605\) 1.13859e7 1.26468
\(606\) 807048. 0.0892725
\(607\) 1.56567e7 1.72476 0.862380 0.506261i \(-0.168973\pi\)
0.862380 + 0.506261i \(0.168973\pi\)
\(608\) 282624. 0.0310063
\(609\) −7.43940e6 −0.812821
\(610\) −236512. −0.0257353
\(611\) 0 0
\(612\) 303264. 0.0327297
\(613\) −3.48923e6 −0.375041 −0.187520 0.982261i \(-0.560045\pi\)
−0.187520 + 0.982261i \(0.560045\pi\)
\(614\) 2.48637e6 0.266161
\(615\) 6.04930e6 0.644937
\(616\) −678400. −0.0720334
\(617\) −2.73237e6 −0.288953 −0.144476 0.989508i \(-0.546150\pi\)
−0.144476 + 0.989508i \(0.546150\pi\)
\(618\) −4.95360e6 −0.521735
\(619\) −1.04378e6 −0.109492 −0.0547458 0.998500i \(-0.517435\pi\)
−0.0547458 + 0.998500i \(0.517435\pi\)
\(620\) −739328. −0.0772428
\(621\) 1.85749e6 0.193285
\(622\) −7.57042e6 −0.784592
\(623\) −4.45200e6 −0.459552
\(624\) 0 0
\(625\) −1.10222e7 −1.12867
\(626\) 9.44847e6 0.963664
\(627\) 263304. 0.0267478
\(628\) 6.09661e6 0.616864
\(629\) 470340. 0.0474008
\(630\) 2.46240e6 0.247177
\(631\) 1.21693e7 1.21672 0.608360 0.793661i \(-0.291828\pi\)
0.608360 + 0.793661i \(0.291828\pi\)
\(632\) −2.85798e6 −0.284621
\(633\) 6.04861e6 0.599993
\(634\) 2.69717e6 0.266492
\(635\) −2.77917e6 −0.273515
\(636\) −3.88368e6 −0.380716
\(637\) 0 0
\(638\) 3.50478e6 0.340886
\(639\) −3.27775e6 −0.317558
\(640\) −1.24518e6 −0.120167
\(641\) −1.69525e7 −1.62963 −0.814813 0.579724i \(-0.803160\pi\)
−0.814813 + 0.579724i \(0.803160\pi\)
\(642\) −3.67747e6 −0.352137
\(643\) 1.46819e7 1.40041 0.700204 0.713943i \(-0.253092\pi\)
0.700204 + 0.713943i \(0.253092\pi\)
\(644\) −4.07680e6 −0.387351
\(645\) 1.20630e7 1.14171
\(646\) 258336. 0.0243559
\(647\) −4.59194e6 −0.431256 −0.215628 0.976476i \(-0.569180\pi\)
−0.215628 + 0.976476i \(0.569180\pi\)
\(648\) 419904. 0.0392837
\(649\) 4.44840e6 0.414564
\(650\) 0 0
\(651\) −547200. −0.0506050
\(652\) 4.68218e6 0.431349
\(653\) 9.17275e6 0.841815 0.420907 0.907104i \(-0.361712\pi\)
0.420907 + 0.907104i \(0.361712\pi\)
\(654\) −5.62500e6 −0.514255
\(655\) 2.31198e7 2.10562
\(656\) −2.26406e6 −0.205414
\(657\) −4.39846e6 −0.397546
\(658\) 7.50800e6 0.676020
\(659\) −1.06207e7 −0.952660 −0.476330 0.879267i \(-0.658033\pi\)
−0.476330 + 0.879267i \(0.658033\pi\)
\(660\) −1.16006e6 −0.103663
\(661\) 7.02779e6 0.625626 0.312813 0.949815i \(-0.398729\pi\)
0.312813 + 0.949815i \(0.398729\pi\)
\(662\) −7.04000e6 −0.624349
\(663\) 0 0
\(664\) −4.47475e6 −0.393866
\(665\) 2.09760e6 0.183937
\(666\) 651240. 0.0568926
\(667\) 2.10618e7 1.83308
\(668\) 7.41283e6 0.642751
\(669\) −2.94667e6 −0.254546
\(670\) −3.84013e6 −0.330490
\(671\) 82468.0 0.00707097
\(672\) −921600. −0.0787262
\(673\) 1.24935e7 1.06327 0.531637 0.846972i \(-0.321577\pi\)
0.531637 + 0.846972i \(0.321577\pi\)
\(674\) 1.42860e7 1.21133
\(675\) 1.93258e6 0.163259
\(676\) 0 0
\(677\) −1.84440e7 −1.54662 −0.773310 0.634028i \(-0.781401\pi\)
−0.773310 + 0.634028i \(0.781401\pi\)
\(678\) −2.62404e6 −0.219228
\(679\) −8.60260e6 −0.716070
\(680\) −1.13818e6 −0.0943924
\(681\) −4.41607e6 −0.364895
\(682\) 257792. 0.0212231
\(683\) 2.20988e6 0.181266 0.0906332 0.995884i \(-0.471111\pi\)
0.0906332 + 0.995884i \(0.471111\pi\)
\(684\) 357696. 0.0292330
\(685\) −1.60466e7 −1.30665
\(686\) 9.44560e6 0.766336
\(687\) −5.41507e6 −0.437736
\(688\) −4.51482e6 −0.363638
\(689\) 0 0
\(690\) −6.97133e6 −0.557433
\(691\) −6.70893e6 −0.534513 −0.267256 0.963625i \(-0.586117\pi\)
−0.267256 + 0.963625i \(0.586117\pi\)
\(692\) −200288. −0.0158997
\(693\) −858600. −0.0679138
\(694\) 9.07896e6 0.715546
\(695\) 2.08808e7 1.63978
\(696\) 4.76122e6 0.372559
\(697\) −2.06950e6 −0.161355
\(698\) 115496. 0.00897281
\(699\) 1.28301e7 0.993200
\(700\) −4.24160e6 −0.327178
\(701\) 1.74858e7 1.34397 0.671986 0.740564i \(-0.265442\pi\)
0.671986 + 0.740564i \(0.265442\pi\)
\(702\) 0 0
\(703\) 554760. 0.0423367
\(704\) 434176. 0.0330167
\(705\) 1.28387e7 0.972854
\(706\) −1.35346e7 −1.02196
\(707\) −2.24180e6 −0.168674
\(708\) 6.04310e6 0.453082
\(709\) −1.01508e7 −0.758380 −0.379190 0.925319i \(-0.623797\pi\)
−0.379190 + 0.925319i \(0.623797\pi\)
\(710\) 1.23017e7 0.915837
\(711\) −3.61714e6 −0.268343
\(712\) 2.84928e6 0.210637
\(713\) 1.54918e6 0.114125
\(714\) −842400. −0.0618405
\(715\) 0 0
\(716\) −9.74573e6 −0.710447
\(717\) −3.71234e6 −0.269681
\(718\) −4.23914e6 −0.306879
\(719\) 2.55785e7 1.84524 0.922619 0.385714i \(-0.126045\pi\)
0.922619 + 0.385714i \(0.126045\pi\)
\(720\) −1.57594e6 −0.113294
\(721\) 1.37600e7 0.985781
\(722\) −9.59969e6 −0.685353
\(723\) 1.43331e7 1.01975
\(724\) 3.47530e6 0.246403
\(725\) 2.19132e7 1.54832
\(726\) −5.39334e6 −0.379766
\(727\) 1.10507e7 0.775453 0.387727 0.921774i \(-0.373261\pi\)
0.387727 + 0.921774i \(0.373261\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 1.65078e7 1.14652
\(731\) −4.12682e6 −0.285642
\(732\) 112032. 0.00772795
\(733\) 1.69360e7 1.16426 0.582132 0.813094i \(-0.302219\pi\)
0.582132 + 0.813094i \(0.302219\pi\)
\(734\) −3.70442e6 −0.253793
\(735\) 4.65599e6 0.317902
\(736\) 2.60915e6 0.177544
\(737\) 1.33899e6 0.0908049
\(738\) −2.86546e6 −0.193666
\(739\) 2.26764e6 0.152744 0.0763718 0.997079i \(-0.475666\pi\)
0.0763718 + 0.997079i \(0.475666\pi\)
\(740\) −2.44416e6 −0.164078
\(741\) 0 0
\(742\) 1.07880e7 0.719335
\(743\) −1.03705e7 −0.689175 −0.344588 0.938754i \(-0.611981\pi\)
−0.344588 + 0.938754i \(0.611981\pi\)
\(744\) 350208. 0.0231950
\(745\) 2.87262e7 1.89621
\(746\) −1.76530e7 −1.16137
\(747\) −5.66336e6 −0.371341
\(748\) 396864. 0.0259351
\(749\) 1.02152e7 0.665338
\(750\) 1.29686e6 0.0841863
\(751\) 8.19751e6 0.530374 0.265187 0.964197i \(-0.414566\pi\)
0.265187 + 0.964197i \(0.414566\pi\)
\(752\) −4.80512e6 −0.309856
\(753\) −1.15500e7 −0.742323
\(754\) 0 0
\(755\) −3.65530e7 −2.33375
\(756\) −1.16640e6 −0.0742238
\(757\) −2.55308e7 −1.61929 −0.809646 0.586919i \(-0.800341\pi\)
−0.809646 + 0.586919i \(0.800341\pi\)
\(758\) −1.64849e7 −1.04211
\(759\) 2.43079e6 0.153159
\(760\) −1.34246e6 −0.0843080
\(761\) −3.05669e7 −1.91333 −0.956664 0.291193i \(-0.905948\pi\)
−0.956664 + 0.291193i \(0.905948\pi\)
\(762\) 1.31645e6 0.0821327
\(763\) 1.56250e7 0.971647
\(764\) −1.12346e7 −0.696342
\(765\) −1.44050e6 −0.0889940
\(766\) −1.54266e7 −0.949948
\(767\) 0 0
\(768\) 589824. 0.0360844
\(769\) −1.53170e7 −0.934026 −0.467013 0.884251i \(-0.654670\pi\)
−0.467013 + 0.884251i \(0.654670\pi\)
\(770\) 3.22240e6 0.195863
\(771\) 792126. 0.0479908
\(772\) −1.19067e7 −0.719033
\(773\) 2.36631e6 0.142437 0.0712186 0.997461i \(-0.477311\pi\)
0.0712186 + 0.997461i \(0.477311\pi\)
\(774\) −5.71406e6 −0.342841
\(775\) 1.61181e6 0.0963960
\(776\) 5.50566e6 0.328213
\(777\) −1.80900e6 −0.107494
\(778\) −2.31262e6 −0.136979
\(779\) −2.44094e6 −0.144117
\(780\) 0 0
\(781\) −4.28940e6 −0.251634
\(782\) 2.38493e6 0.139463
\(783\) 6.02591e6 0.351252
\(784\) −1.74259e6 −0.101252
\(785\) −2.89589e7 −1.67729
\(786\) −1.09515e7 −0.632291
\(787\) −1.39758e7 −0.804339 −0.402170 0.915565i \(-0.631744\pi\)
−0.402170 + 0.915565i \(0.631744\pi\)
\(788\) −7.62682e6 −0.437550
\(789\) 1.05038e7 0.600692
\(790\) 1.35754e7 0.773901
\(791\) 7.28900e6 0.414216
\(792\) 549504. 0.0311285
\(793\) 0 0
\(794\) −1.24790e7 −0.702471
\(795\) 1.84475e7 1.03519
\(796\) 7.93971e6 0.444142
\(797\) 1.87784e7 1.04716 0.523580 0.851977i \(-0.324596\pi\)
0.523580 + 0.851977i \(0.324596\pi\)
\(798\) −993600. −0.0552337
\(799\) −4.39218e6 −0.243396
\(800\) 2.71462e6 0.149963
\(801\) 3.60612e6 0.198591
\(802\) −1.60340e7 −0.880251
\(803\) −5.75601e6 −0.315016
\(804\) 1.81901e6 0.0992418
\(805\) 1.93648e7 1.05323
\(806\) 0 0
\(807\) −1.85765e6 −0.100411
\(808\) 1.43475e6 0.0773123
\(809\) 1.48824e7 0.799468 0.399734 0.916631i \(-0.369102\pi\)
0.399734 + 0.916631i \(0.369102\pi\)
\(810\) −1.99454e6 −0.106815
\(811\) 5.40879e6 0.288767 0.144384 0.989522i \(-0.453880\pi\)
0.144384 + 0.989522i \(0.453880\pi\)
\(812\) −1.32256e7 −0.703923
\(813\) 1.23022e7 0.652767
\(814\) 852240. 0.0450818
\(815\) −2.22403e7 −1.17286
\(816\) 539136. 0.0283448
\(817\) −4.86754e6 −0.255126
\(818\) −5.49935e6 −0.287361
\(819\) 0 0
\(820\) 1.07543e7 0.558532
\(821\) 1.00651e7 0.521147 0.260574 0.965454i \(-0.416088\pi\)
0.260574 + 0.965454i \(0.416088\pi\)
\(822\) 7.60104e6 0.392368
\(823\) 1.22916e7 0.632569 0.316285 0.948664i \(-0.397565\pi\)
0.316285 + 0.948664i \(0.397565\pi\)
\(824\) −8.80640e6 −0.451836
\(825\) 2.52905e6 0.129367
\(826\) −1.67864e7 −0.856066
\(827\) −1.20837e7 −0.614378 −0.307189 0.951648i \(-0.599388\pi\)
−0.307189 + 0.951648i \(0.599388\pi\)
\(828\) 3.30221e6 0.167390
\(829\) 2.23351e7 1.12876 0.564379 0.825516i \(-0.309116\pi\)
0.564379 + 0.825516i \(0.309116\pi\)
\(830\) 2.12551e7 1.07095
\(831\) −2.05932e7 −1.03448
\(832\) 0 0
\(833\) −1.59284e6 −0.0795352
\(834\) −9.89093e6 −0.492404
\(835\) −3.52110e7 −1.74768
\(836\) 468096. 0.0231643
\(837\) 443232. 0.0218684
\(838\) 1.43533e7 0.706062
\(839\) −9.89083e6 −0.485096 −0.242548 0.970139i \(-0.577983\pi\)
−0.242548 + 0.970139i \(0.577983\pi\)
\(840\) 4.37760e6 0.214061
\(841\) 4.78156e7 2.33120
\(842\) 1.60402e7 0.779704
\(843\) −1.80416e7 −0.874391
\(844\) 1.07531e7 0.519610
\(845\) 0 0
\(846\) −6.08148e6 −0.292135
\(847\) 1.49815e7 0.717541
\(848\) −6.90432e6 −0.329709
\(849\) 2.48706e6 0.118418
\(850\) 2.48134e6 0.117798
\(851\) 5.12148e6 0.242422
\(852\) −5.82710e6 −0.275013
\(853\) −4.84677e6 −0.228076 −0.114038 0.993476i \(-0.536379\pi\)
−0.114038 + 0.993476i \(0.536379\pi\)
\(854\) −311200. −0.0146014
\(855\) −1.69906e6 −0.0794863
\(856\) −6.53773e6 −0.304960
\(857\) −1.60904e6 −0.0748368 −0.0374184 0.999300i \(-0.511913\pi\)
−0.0374184 + 0.999300i \(0.511913\pi\)
\(858\) 0 0
\(859\) 1.19283e7 0.551562 0.275781 0.961221i \(-0.411064\pi\)
0.275781 + 0.961221i \(0.411064\pi\)
\(860\) 2.14454e7 0.988752
\(861\) 7.95960e6 0.365918
\(862\) −1.18099e7 −0.541352
\(863\) 1.04897e7 0.479442 0.239721 0.970842i \(-0.422944\pi\)
0.239721 + 0.970842i \(0.422944\pi\)
\(864\) 746496. 0.0340207
\(865\) 951368. 0.0432323
\(866\) 9.95558e6 0.451099
\(867\) −1.22859e7 −0.555085
\(868\) −972800. −0.0438252
\(869\) −4.73354e6 −0.212636
\(870\) −2.26158e7 −1.01301
\(871\) 0 0
\(872\) −1.00000e7 −0.445358
\(873\) 6.96811e6 0.309442
\(874\) 2.81299e6 0.124563
\(875\) −3.60240e6 −0.159064
\(876\) −7.81949e6 −0.344285
\(877\) 4.41328e7 1.93759 0.968797 0.247856i \(-0.0797259\pi\)
0.968797 + 0.247856i \(0.0797259\pi\)
\(878\) −9.98416e6 −0.437094
\(879\) 4.73594e6 0.206745
\(880\) −2.06234e6 −0.0897744
\(881\) −3.06299e7 −1.32955 −0.664777 0.747042i \(-0.731473\pi\)
−0.664777 + 0.747042i \(0.731473\pi\)
\(882\) −2.20547e6 −0.0954617
\(883\) 2.84920e7 1.22976 0.614880 0.788620i \(-0.289204\pi\)
0.614880 + 0.788620i \(0.289204\pi\)
\(884\) 0 0
\(885\) −2.87047e7 −1.23196
\(886\) 3.42086e6 0.146404
\(887\) 4.68877e6 0.200101 0.100051 0.994982i \(-0.468100\pi\)
0.100051 + 0.994982i \(0.468100\pi\)
\(888\) 1.15776e6 0.0492704
\(889\) −3.65680e6 −0.155184
\(890\) −1.35341e7 −0.572735
\(891\) 695466. 0.0293482
\(892\) −5.23853e6 −0.220443
\(893\) −5.18052e6 −0.217393
\(894\) −1.36071e7 −0.569407
\(895\) 4.62922e7 1.93175
\(896\) −1.63840e6 −0.0681789
\(897\) 0 0
\(898\) 5.89101e6 0.243780
\(899\) 5.02573e6 0.207396
\(900\) 3.43570e6 0.141387
\(901\) −6.31098e6 −0.258991
\(902\) −3.74986e6 −0.153461
\(903\) 1.58724e7 0.647774
\(904\) −4.66496e6 −0.189857
\(905\) −1.65077e7 −0.669983
\(906\) 1.73146e7 0.700795
\(907\) −3.71845e7 −1.50087 −0.750437 0.660942i \(-0.770157\pi\)
−0.750437 + 0.660942i \(0.770157\pi\)
\(908\) −7.85078e6 −0.316008
\(909\) 1.81586e6 0.0728907
\(910\) 0 0
\(911\) 1.04275e7 0.416280 0.208140 0.978099i \(-0.433259\pi\)
0.208140 + 0.978099i \(0.433259\pi\)
\(912\) 635904. 0.0253165
\(913\) −7.41131e6 −0.294251
\(914\) −2.22450e7 −0.880780
\(915\) −532152. −0.0210128
\(916\) −9.62678e6 −0.379090
\(917\) 3.04208e7 1.19467
\(918\) 682344. 0.0267237
\(919\) 3.27595e7 1.27953 0.639763 0.768572i \(-0.279033\pi\)
0.639763 + 0.768572i \(0.279033\pi\)
\(920\) −1.23935e7 −0.482751
\(921\) 5.59433e6 0.217320
\(922\) 3.21681e7 1.24623
\(923\) 0 0
\(924\) −1.52640e6 −0.0588150
\(925\) 5.32851e6 0.204763
\(926\) −6.53915e6 −0.250607
\(927\) −1.11456e7 −0.425995
\(928\) 8.46438e6 0.322645
\(929\) −1.27643e7 −0.485242 −0.242621 0.970121i \(-0.578007\pi\)
−0.242621 + 0.970121i \(0.578007\pi\)
\(930\) −1.66349e6 −0.0630685
\(931\) −1.87873e6 −0.0710380
\(932\) 2.28091e7 0.860137
\(933\) −1.70334e7 −0.640617
\(934\) −1.47658e7 −0.553847
\(935\) −1.88510e6 −0.0705190
\(936\) 0 0
\(937\) 1.78729e7 0.665037 0.332518 0.943097i \(-0.392102\pi\)
0.332518 + 0.943097i \(0.392102\pi\)
\(938\) −5.05280e6 −0.187510
\(939\) 2.12591e7 0.786829
\(940\) 2.28243e7 0.842516
\(941\) −6.47876e6 −0.238516 −0.119258 0.992863i \(-0.538052\pi\)
−0.119258 + 0.992863i \(0.538052\pi\)
\(942\) 1.37174e7 0.503667
\(943\) −2.25345e7 −0.825218
\(944\) 1.07433e7 0.392381
\(945\) 5.54040e6 0.201819
\(946\) −7.47766e6 −0.271668
\(947\) 3.14448e7 1.13939 0.569696 0.821855i \(-0.307061\pi\)
0.569696 + 0.821855i \(0.307061\pi\)
\(948\) −6.43046e6 −0.232392
\(949\) 0 0
\(950\) 2.92670e6 0.105213
\(951\) 6.06863e6 0.217590
\(952\) −1.49760e6 −0.0535554
\(953\) 2.24057e7 0.799145 0.399572 0.916702i \(-0.369159\pi\)
0.399572 + 0.916702i \(0.369159\pi\)
\(954\) −8.73828e6 −0.310853
\(955\) 5.33642e7 1.89340
\(956\) −6.59971e6 −0.233550
\(957\) 7.88576e6 0.278333
\(958\) 3.25009e7 1.14415
\(959\) −2.11140e7 −0.741351
\(960\) −2.80166e6 −0.0981156
\(961\) −2.82595e7 −0.987088
\(962\) 0 0
\(963\) −8.27431e6 −0.287519
\(964\) 2.54810e7 0.883128
\(965\) 5.65569e7 1.95509
\(966\) −9.17280e6 −0.316271
\(967\) 3.08409e7 1.06062 0.530311 0.847803i \(-0.322075\pi\)
0.530311 + 0.847803i \(0.322075\pi\)
\(968\) −9.58816e6 −0.328887
\(969\) 581256. 0.0198865
\(970\) −2.61519e7 −0.892430
\(971\) 1.92695e7 0.655877 0.327939 0.944699i \(-0.393646\pi\)
0.327939 + 0.944699i \(0.393646\pi\)
\(972\) 944784. 0.0320750
\(973\) 2.74748e7 0.930363
\(974\) −1.40831e7 −0.475666
\(975\) 0 0
\(976\) 199168. 0.00669260
\(977\) −1.57140e6 −0.0526684 −0.0263342 0.999653i \(-0.508383\pi\)
−0.0263342 + 0.999653i \(0.508383\pi\)
\(978\) 1.05349e7 0.352195
\(979\) 4.71912e6 0.157364
\(980\) 8.27731e6 0.275311
\(981\) −1.26562e7 −0.419887
\(982\) −126304. −0.00417964
\(983\) 3.62448e7 1.19636 0.598180 0.801362i \(-0.295891\pi\)
0.598180 + 0.801362i \(0.295891\pi\)
\(984\) −5.09414e6 −0.167719
\(985\) 3.62274e7 1.18972
\(986\) 7.73698e6 0.253442
\(987\) 1.68930e7 0.551968
\(988\) 0 0
\(989\) −4.49365e7 −1.46086
\(990\) −2.61014e6 −0.0846402
\(991\) −2.93799e7 −0.950313 −0.475157 0.879901i \(-0.657609\pi\)
−0.475157 + 0.879901i \(0.657609\pi\)
\(992\) 622592. 0.0200874
\(993\) −1.58400e7 −0.509779
\(994\) 1.61864e7 0.519618
\(995\) −3.77136e7 −1.20765
\(996\) −1.00682e7 −0.321590
\(997\) 1.72567e7 0.549818 0.274909 0.961470i \(-0.411352\pi\)
0.274909 + 0.961470i \(0.411352\pi\)
\(998\) −6.36160e6 −0.202181
\(999\) 1.46529e6 0.0464526
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1014.6.a.f.1.1 1
13.12 even 2 78.6.a.c.1.1 1
39.38 odd 2 234.6.a.d.1.1 1
52.51 odd 2 624.6.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.6.a.c.1.1 1 13.12 even 2
234.6.a.d.1.1 1 39.38 odd 2
624.6.a.d.1.1 1 52.51 odd 2
1014.6.a.f.1.1 1 1.1 even 1 trivial