Properties

Label 78.6.a.c.1.1
Level $78$
Weight $6$
Character 78.1
Self dual yes
Analytic conductor $12.510$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [78,6,Mod(1,78)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(78, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("78.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 78 = 2 \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 78.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.5099379454\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 78.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +9.00000 q^{3} +16.0000 q^{4} +76.0000 q^{5} -36.0000 q^{6} +100.000 q^{7} -64.0000 q^{8} +81.0000 q^{9} -304.000 q^{10} -106.000 q^{11} +144.000 q^{12} -169.000 q^{13} -400.000 q^{14} +684.000 q^{15} +256.000 q^{16} +234.000 q^{17} -324.000 q^{18} -276.000 q^{19} +1216.00 q^{20} +900.000 q^{21} +424.000 q^{22} +2548.00 q^{23} -576.000 q^{24} +2651.00 q^{25} +676.000 q^{26} +729.000 q^{27} +1600.00 q^{28} +8266.00 q^{29} -2736.00 q^{30} -608.000 q^{31} -1024.00 q^{32} -954.000 q^{33} -936.000 q^{34} +7600.00 q^{35} +1296.00 q^{36} -2010.00 q^{37} +1104.00 q^{38} -1521.00 q^{39} -4864.00 q^{40} +8844.00 q^{41} -3600.00 q^{42} -17636.0 q^{43} -1696.00 q^{44} +6156.00 q^{45} -10192.0 q^{46} +18770.0 q^{47} +2304.00 q^{48} -6807.00 q^{49} -10604.0 q^{50} +2106.00 q^{51} -2704.00 q^{52} -26970.0 q^{53} -2916.00 q^{54} -8056.00 q^{55} -6400.00 q^{56} -2484.00 q^{57} -33064.0 q^{58} -41966.0 q^{59} +10944.0 q^{60} +778.000 q^{61} +2432.00 q^{62} +8100.00 q^{63} +4096.00 q^{64} -12844.0 q^{65} +3816.00 q^{66} -12632.0 q^{67} +3744.00 q^{68} +22932.0 q^{69} -30400.0 q^{70} +40466.0 q^{71} -5184.00 q^{72} +54302.0 q^{73} +8040.00 q^{74} +23859.0 q^{75} -4416.00 q^{76} -10600.0 q^{77} +6084.00 q^{78} -44656.0 q^{79} +19456.0 q^{80} +6561.00 q^{81} -35376.0 q^{82} +69918.0 q^{83} +14400.0 q^{84} +17784.0 q^{85} +70544.0 q^{86} +74394.0 q^{87} +6784.00 q^{88} -44520.0 q^{89} -24624.0 q^{90} -16900.0 q^{91} +40768.0 q^{92} -5472.00 q^{93} -75080.0 q^{94} -20976.0 q^{95} -9216.00 q^{96} -86026.0 q^{97} +27228.0 q^{98} -8586.00 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 9.00000 0.577350
\(4\) 16.0000 0.500000
\(5\) 76.0000 1.35953 0.679765 0.733430i \(-0.262082\pi\)
0.679765 + 0.733430i \(0.262082\pi\)
\(6\) −36.0000 −0.408248
\(7\) 100.000 0.771356 0.385678 0.922633i \(-0.373968\pi\)
0.385678 + 0.922633i \(0.373968\pi\)
\(8\) −64.0000 −0.353553
\(9\) 81.0000 0.333333
\(10\) −304.000 −0.961332
\(11\) −106.000 −0.264134 −0.132067 0.991241i \(-0.542161\pi\)
−0.132067 + 0.991241i \(0.542161\pi\)
\(12\) 144.000 0.288675
\(13\) −169.000 −0.277350
\(14\) −400.000 −0.545431
\(15\) 684.000 0.784925
\(16\) 256.000 0.250000
\(17\) 234.000 0.196378 0.0981892 0.995168i \(-0.468695\pi\)
0.0981892 + 0.995168i \(0.468695\pi\)
\(18\) −324.000 −0.235702
\(19\) −276.000 −0.175398 −0.0876991 0.996147i \(-0.527951\pi\)
−0.0876991 + 0.996147i \(0.527951\pi\)
\(20\) 1216.00 0.679765
\(21\) 900.000 0.445343
\(22\) 424.000 0.186771
\(23\) 2548.00 1.00434 0.502169 0.864770i \(-0.332536\pi\)
0.502169 + 0.864770i \(0.332536\pi\)
\(24\) −576.000 −0.204124
\(25\) 2651.00 0.848320
\(26\) 676.000 0.196116
\(27\) 729.000 0.192450
\(28\) 1600.00 0.385678
\(29\) 8266.00 1.82516 0.912579 0.408901i \(-0.134088\pi\)
0.912579 + 0.408901i \(0.134088\pi\)
\(30\) −2736.00 −0.555026
\(31\) −608.000 −0.113632 −0.0568158 0.998385i \(-0.518095\pi\)
−0.0568158 + 0.998385i \(0.518095\pi\)
\(32\) −1024.00 −0.176777
\(33\) −954.000 −0.152498
\(34\) −936.000 −0.138860
\(35\) 7600.00 1.04868
\(36\) 1296.00 0.166667
\(37\) −2010.00 −0.241375 −0.120687 0.992691i \(-0.538510\pi\)
−0.120687 + 0.992691i \(0.538510\pi\)
\(38\) 1104.00 0.124025
\(39\) −1521.00 −0.160128
\(40\) −4864.00 −0.480666
\(41\) 8844.00 0.821654 0.410827 0.911713i \(-0.365240\pi\)
0.410827 + 0.911713i \(0.365240\pi\)
\(42\) −3600.00 −0.314905
\(43\) −17636.0 −1.45455 −0.727275 0.686346i \(-0.759214\pi\)
−0.727275 + 0.686346i \(0.759214\pi\)
\(44\) −1696.00 −0.132067
\(45\) 6156.00 0.453176
\(46\) −10192.0 −0.710174
\(47\) 18770.0 1.23942 0.619712 0.784830i \(-0.287250\pi\)
0.619712 + 0.784830i \(0.287250\pi\)
\(48\) 2304.00 0.144338
\(49\) −6807.00 −0.405010
\(50\) −10604.0 −0.599853
\(51\) 2106.00 0.113379
\(52\) −2704.00 −0.138675
\(53\) −26970.0 −1.31884 −0.659419 0.751776i \(-0.729198\pi\)
−0.659419 + 0.751776i \(0.729198\pi\)
\(54\) −2916.00 −0.136083
\(55\) −8056.00 −0.359098
\(56\) −6400.00 −0.272716
\(57\) −2484.00 −0.101266
\(58\) −33064.0 −1.29058
\(59\) −41966.0 −1.56952 −0.784761 0.619798i \(-0.787214\pi\)
−0.784761 + 0.619798i \(0.787214\pi\)
\(60\) 10944.0 0.392462
\(61\) 778.000 0.0267704 0.0133852 0.999910i \(-0.495739\pi\)
0.0133852 + 0.999910i \(0.495739\pi\)
\(62\) 2432.00 0.0803497
\(63\) 8100.00 0.257119
\(64\) 4096.00 0.125000
\(65\) −12844.0 −0.377066
\(66\) 3816.00 0.107832
\(67\) −12632.0 −0.343784 −0.171892 0.985116i \(-0.554988\pi\)
−0.171892 + 0.985116i \(0.554988\pi\)
\(68\) 3744.00 0.0981892
\(69\) 22932.0 0.579855
\(70\) −30400.0 −0.741530
\(71\) 40466.0 0.952674 0.476337 0.879263i \(-0.341964\pi\)
0.476337 + 0.879263i \(0.341964\pi\)
\(72\) −5184.00 −0.117851
\(73\) 54302.0 1.19264 0.596319 0.802748i \(-0.296629\pi\)
0.596319 + 0.802748i \(0.296629\pi\)
\(74\) 8040.00 0.170678
\(75\) 23859.0 0.489778
\(76\) −4416.00 −0.0876991
\(77\) −10600.0 −0.203741
\(78\) 6084.00 0.113228
\(79\) −44656.0 −0.805030 −0.402515 0.915413i \(-0.631864\pi\)
−0.402515 + 0.915413i \(0.631864\pi\)
\(80\) 19456.0 0.339882
\(81\) 6561.00 0.111111
\(82\) −35376.0 −0.580997
\(83\) 69918.0 1.11402 0.557011 0.830505i \(-0.311948\pi\)
0.557011 + 0.830505i \(0.311948\pi\)
\(84\) 14400.0 0.222671
\(85\) 17784.0 0.266982
\(86\) 70544.0 1.02852
\(87\) 74394.0 1.05376
\(88\) 6784.00 0.0933854
\(89\) −44520.0 −0.595772 −0.297886 0.954601i \(-0.596282\pi\)
−0.297886 + 0.954601i \(0.596282\pi\)
\(90\) −24624.0 −0.320444
\(91\) −16900.0 −0.213936
\(92\) 40768.0 0.502169
\(93\) −5472.00 −0.0656053
\(94\) −75080.0 −0.876405
\(95\) −20976.0 −0.238459
\(96\) −9216.00 −0.102062
\(97\) −86026.0 −0.928326 −0.464163 0.885750i \(-0.653645\pi\)
−0.464163 + 0.885750i \(0.653645\pi\)
\(98\) 27228.0 0.286385
\(99\) −8586.00 −0.0880446
\(100\) 42416.0 0.424160
\(101\) 22418.0 0.218672 0.109336 0.994005i \(-0.465128\pi\)
0.109336 + 0.994005i \(0.465128\pi\)
\(102\) −8424.00 −0.0801711
\(103\) −137600. −1.27798 −0.638992 0.769213i \(-0.720648\pi\)
−0.638992 + 0.769213i \(0.720648\pi\)
\(104\) 10816.0 0.0980581
\(105\) 68400.0 0.605456
\(106\) 107880. 0.932559
\(107\) −102152. −0.862556 −0.431278 0.902219i \(-0.641937\pi\)
−0.431278 + 0.902219i \(0.641937\pi\)
\(108\) 11664.0 0.0962250
\(109\) 156250. 1.25966 0.629831 0.776732i \(-0.283124\pi\)
0.629831 + 0.776732i \(0.283124\pi\)
\(110\) 32224.0 0.253920
\(111\) −18090.0 −0.139358
\(112\) 25600.0 0.192839
\(113\) −72890.0 −0.536997 −0.268498 0.963280i \(-0.586527\pi\)
−0.268498 + 0.963280i \(0.586527\pi\)
\(114\) 9936.00 0.0716060
\(115\) 193648. 1.36543
\(116\) 132256. 0.912579
\(117\) −13689.0 −0.0924500
\(118\) 167864. 1.10982
\(119\) 23400.0 0.151478
\(120\) −43776.0 −0.277513
\(121\) −149815. −0.930233
\(122\) −3112.00 −0.0189295
\(123\) 79596.0 0.474382
\(124\) −9728.00 −0.0568158
\(125\) −36024.0 −0.206213
\(126\) −32400.0 −0.181810
\(127\) 36568.0 0.201183 0.100592 0.994928i \(-0.467926\pi\)
0.100592 + 0.994928i \(0.467926\pi\)
\(128\) −16384.0 −0.0883883
\(129\) −158724. −0.839785
\(130\) 51376.0 0.266626
\(131\) −304208. −1.54879 −0.774395 0.632703i \(-0.781946\pi\)
−0.774395 + 0.632703i \(0.781946\pi\)
\(132\) −15264.0 −0.0762489
\(133\) −27600.0 −0.135294
\(134\) 50528.0 0.243092
\(135\) 55404.0 0.261642
\(136\) −14976.0 −0.0694302
\(137\) −211140. −0.961101 −0.480551 0.876967i \(-0.659563\pi\)
−0.480551 + 0.876967i \(0.659563\pi\)
\(138\) −91728.0 −0.410019
\(139\) −274748. −1.20614 −0.603070 0.797688i \(-0.706056\pi\)
−0.603070 + 0.797688i \(0.706056\pi\)
\(140\) 121600. 0.524341
\(141\) 168930. 0.715581
\(142\) −161864. −0.673642
\(143\) 17914.0 0.0732576
\(144\) 20736.0 0.0833333
\(145\) 628216. 2.48136
\(146\) −217208. −0.843322
\(147\) −61263.0 −0.233833
\(148\) −32160.0 −0.120687
\(149\) 377976. 1.39476 0.697379 0.716703i \(-0.254350\pi\)
0.697379 + 0.716703i \(0.254350\pi\)
\(150\) −95436.0 −0.346325
\(151\) −480960. −1.71659 −0.858295 0.513157i \(-0.828476\pi\)
−0.858295 + 0.513157i \(0.828476\pi\)
\(152\) 17664.0 0.0620126
\(153\) 18954.0 0.0654594
\(154\) 42400.0 0.144067
\(155\) −46208.0 −0.154486
\(156\) −24336.0 −0.0800641
\(157\) 381038. 1.23373 0.616864 0.787070i \(-0.288403\pi\)
0.616864 + 0.787070i \(0.288403\pi\)
\(158\) 178624. 0.569242
\(159\) −242730. −0.761431
\(160\) −77824.0 −0.240333
\(161\) 254800. 0.774702
\(162\) −26244.0 −0.0785674
\(163\) −292636. −0.862698 −0.431349 0.902185i \(-0.641962\pi\)
−0.431349 + 0.902185i \(0.641962\pi\)
\(164\) 141504. 0.410827
\(165\) −72504.0 −0.207325
\(166\) −279672. −0.787733
\(167\) −463302. −1.28550 −0.642751 0.766075i \(-0.722207\pi\)
−0.642751 + 0.766075i \(0.722207\pi\)
\(168\) −57600.0 −0.157452
\(169\) 28561.0 0.0769231
\(170\) −71136.0 −0.188785
\(171\) −22356.0 −0.0584661
\(172\) −282176. −0.727275
\(173\) −12518.0 −0.0317995 −0.0158997 0.999874i \(-0.505061\pi\)
−0.0158997 + 0.999874i \(0.505061\pi\)
\(174\) −297576. −0.745118
\(175\) 265100. 0.654357
\(176\) −27136.0 −0.0660335
\(177\) −377694. −0.906164
\(178\) 178080. 0.421274
\(179\) −609108. −1.42089 −0.710447 0.703751i \(-0.751507\pi\)
−0.710447 + 0.703751i \(0.751507\pi\)
\(180\) 98496.0 0.226588
\(181\) 217206. 0.492805 0.246403 0.969168i \(-0.420751\pi\)
0.246403 + 0.969168i \(0.420751\pi\)
\(182\) 67600.0 0.151275
\(183\) 7002.00 0.0154559
\(184\) −163072. −0.355087
\(185\) −152760. −0.328156
\(186\) 21888.0 0.0463899
\(187\) −24804.0 −0.0518702
\(188\) 300320. 0.619712
\(189\) 72900.0 0.148448
\(190\) 83904.0 0.168616
\(191\) −702160. −1.39268 −0.696342 0.717710i \(-0.745190\pi\)
−0.696342 + 0.717710i \(0.745190\pi\)
\(192\) 36864.0 0.0721688
\(193\) 744170. 1.43807 0.719033 0.694976i \(-0.244585\pi\)
0.719033 + 0.694976i \(0.244585\pi\)
\(194\) 344104. 0.656425
\(195\) −115596. −0.217699
\(196\) −108912. −0.202505
\(197\) 476676. 0.875100 0.437550 0.899194i \(-0.355846\pi\)
0.437550 + 0.899194i \(0.355846\pi\)
\(198\) 34344.0 0.0622570
\(199\) 496232. 0.888284 0.444142 0.895956i \(-0.353508\pi\)
0.444142 + 0.895956i \(0.353508\pi\)
\(200\) −169664. −0.299926
\(201\) −113688. −0.198484
\(202\) −89672.0 −0.154625
\(203\) 826600. 1.40785
\(204\) 33696.0 0.0566895
\(205\) 672144. 1.11706
\(206\) 550400. 0.903671
\(207\) 206388. 0.334779
\(208\) −43264.0 −0.0693375
\(209\) 29256.0 0.0463286
\(210\) −273600. −0.428122
\(211\) 672068. 1.03922 0.519610 0.854404i \(-0.326077\pi\)
0.519610 + 0.854404i \(0.326077\pi\)
\(212\) −431520. −0.659419
\(213\) 364194. 0.550027
\(214\) 408608. 0.609919
\(215\) −1.34034e6 −1.97750
\(216\) −46656.0 −0.0680414
\(217\) −60800.0 −0.0876505
\(218\) −625000. −0.890715
\(219\) 488718. 0.688570
\(220\) −128896. −0.179549
\(221\) −39546.0 −0.0544655
\(222\) 72360.0 0.0985408
\(223\) 327408. 0.440887 0.220443 0.975400i \(-0.429250\pi\)
0.220443 + 0.975400i \(0.429250\pi\)
\(224\) −102400. −0.136358
\(225\) 214731. 0.282773
\(226\) 291560. 0.379714
\(227\) 490674. 0.632016 0.316008 0.948756i \(-0.397657\pi\)
0.316008 + 0.948756i \(0.397657\pi\)
\(228\) −39744.0 −0.0506331
\(229\) 601674. 0.758180 0.379090 0.925360i \(-0.376237\pi\)
0.379090 + 0.925360i \(0.376237\pi\)
\(230\) −774592. −0.965503
\(231\) −95400.0 −0.117630
\(232\) −529024. −0.645291
\(233\) 1.42557e6 1.72027 0.860137 0.510063i \(-0.170378\pi\)
0.860137 + 0.510063i \(0.170378\pi\)
\(234\) 54756.0 0.0653720
\(235\) 1.42652e6 1.68503
\(236\) −671456. −0.784761
\(237\) −401904. −0.464784
\(238\) −93600.0 −0.107111
\(239\) 412482. 0.467100 0.233550 0.972345i \(-0.424966\pi\)
0.233550 + 0.972345i \(0.424966\pi\)
\(240\) 175104. 0.196231
\(241\) −1.59256e6 −1.76626 −0.883128 0.469132i \(-0.844567\pi\)
−0.883128 + 0.469132i \(0.844567\pi\)
\(242\) 599260. 0.657774
\(243\) 59049.0 0.0641500
\(244\) 12448.0 0.0133852
\(245\) −517332. −0.550623
\(246\) −318384. −0.335439
\(247\) 46644.0 0.0486467
\(248\) 38912.0 0.0401749
\(249\) 629262. 0.643181
\(250\) 144096. 0.145815
\(251\) −1.28333e6 −1.28574 −0.642870 0.765975i \(-0.722257\pi\)
−0.642870 + 0.765975i \(0.722257\pi\)
\(252\) 129600. 0.128559
\(253\) −270088. −0.265280
\(254\) −146272. −0.142258
\(255\) 160056. 0.154142
\(256\) 65536.0 0.0625000
\(257\) 88014.0 0.0831226 0.0415613 0.999136i \(-0.486767\pi\)
0.0415613 + 0.999136i \(0.486767\pi\)
\(258\) 634896. 0.593818
\(259\) −201000. −0.186186
\(260\) −205504. −0.188533
\(261\) 669546. 0.608386
\(262\) 1.21683e6 1.09516
\(263\) 1.16708e6 1.04043 0.520215 0.854035i \(-0.325852\pi\)
0.520215 + 0.854035i \(0.325852\pi\)
\(264\) 61056.0 0.0539161
\(265\) −2.04972e6 −1.79300
\(266\) 110400. 0.0956676
\(267\) −400680. −0.343969
\(268\) −202112. −0.171892
\(269\) −206406. −0.173917 −0.0869584 0.996212i \(-0.527715\pi\)
−0.0869584 + 0.996212i \(0.527715\pi\)
\(270\) −221616. −0.185009
\(271\) −1.36692e6 −1.13063 −0.565313 0.824877i \(-0.691244\pi\)
−0.565313 + 0.824877i \(0.691244\pi\)
\(272\) 59904.0 0.0490946
\(273\) −152100. −0.123516
\(274\) 844560. 0.679601
\(275\) −281006. −0.224070
\(276\) 366912. 0.289927
\(277\) −2.28813e6 −1.79177 −0.895883 0.444290i \(-0.853456\pi\)
−0.895883 + 0.444290i \(0.853456\pi\)
\(278\) 1.09899e6 0.852869
\(279\) −49248.0 −0.0378772
\(280\) −486400. −0.370765
\(281\) 2.00462e6 1.51449 0.757245 0.653131i \(-0.226545\pi\)
0.757245 + 0.653131i \(0.226545\pi\)
\(282\) −675720. −0.505992
\(283\) 276340. 0.205106 0.102553 0.994728i \(-0.467299\pi\)
0.102553 + 0.994728i \(0.467299\pi\)
\(284\) 647456. 0.476337
\(285\) −188784. −0.137674
\(286\) −71656.0 −0.0518009
\(287\) 884400. 0.633788
\(288\) −82944.0 −0.0589256
\(289\) −1.36510e6 −0.961436
\(290\) −2.51286e6 −1.75458
\(291\) −774234. −0.535969
\(292\) 868832. 0.596319
\(293\) −526216. −0.358092 −0.179046 0.983841i \(-0.557301\pi\)
−0.179046 + 0.983841i \(0.557301\pi\)
\(294\) 245052. 0.165345
\(295\) −3.18942e6 −2.13381
\(296\) 128640. 0.0853388
\(297\) −77274.0 −0.0508326
\(298\) −1.51190e6 −0.986242
\(299\) −430612. −0.278553
\(300\) 381744. 0.244889
\(301\) −1.76360e6 −1.12198
\(302\) 1.92384e6 1.21381
\(303\) 201762. 0.126250
\(304\) −70656.0 −0.0438495
\(305\) 59128.0 0.0363952
\(306\) −75816.0 −0.0462868
\(307\) −621592. −0.376409 −0.188204 0.982130i \(-0.560267\pi\)
−0.188204 + 0.982130i \(0.560267\pi\)
\(308\) −169600. −0.101871
\(309\) −1.23840e6 −0.737844
\(310\) 184832. 0.109238
\(311\) −1.89260e6 −1.10958 −0.554790 0.831990i \(-0.687201\pi\)
−0.554790 + 0.831990i \(0.687201\pi\)
\(312\) 97344.0 0.0566139
\(313\) 2.36212e6 1.36283 0.681414 0.731899i \(-0.261366\pi\)
0.681414 + 0.731899i \(0.261366\pi\)
\(314\) −1.52415e6 −0.872377
\(315\) 615600. 0.349560
\(316\) −714496. −0.402515
\(317\) −674292. −0.376877 −0.188439 0.982085i \(-0.560343\pi\)
−0.188439 + 0.982085i \(0.560343\pi\)
\(318\) 970920. 0.538413
\(319\) −876196. −0.482086
\(320\) 311296. 0.169941
\(321\) −919368. −0.497997
\(322\) −1.01920e6 −0.547797
\(323\) −64584.0 −0.0344444
\(324\) 104976. 0.0555556
\(325\) −448019. −0.235282
\(326\) 1.17054e6 0.610020
\(327\) 1.40625e6 0.727266
\(328\) −566016. −0.290499
\(329\) 1.87700e6 0.956037
\(330\) 290016. 0.146601
\(331\) 1.76000e6 0.882963 0.441482 0.897270i \(-0.354453\pi\)
0.441482 + 0.897270i \(0.354453\pi\)
\(332\) 1.11869e6 0.557011
\(333\) −162810. −0.0804582
\(334\) 1.85321e6 0.908988
\(335\) −960032. −0.467384
\(336\) 230400. 0.111336
\(337\) 3.57150e6 1.71307 0.856537 0.516086i \(-0.172611\pi\)
0.856537 + 0.516086i \(0.172611\pi\)
\(338\) −114244. −0.0543928
\(339\) −656010. −0.310035
\(340\) 284544. 0.133491
\(341\) 64448.0 0.0300140
\(342\) 89424.0 0.0413417
\(343\) −2.36140e6 −1.08376
\(344\) 1.12870e6 0.514261
\(345\) 1.74283e6 0.788330
\(346\) 50072.0 0.0224856
\(347\) 2.26974e6 1.01193 0.505967 0.862553i \(-0.331136\pi\)
0.505967 + 0.862553i \(0.331136\pi\)
\(348\) 1.19030e6 0.526878
\(349\) −28874.0 −0.0126895 −0.00634473 0.999980i \(-0.502020\pi\)
−0.00634473 + 0.999980i \(0.502020\pi\)
\(350\) −1.06040e6 −0.462700
\(351\) −123201. −0.0533761
\(352\) 108544. 0.0466927
\(353\) 3.38366e6 1.44527 0.722637 0.691228i \(-0.242930\pi\)
0.722637 + 0.691228i \(0.242930\pi\)
\(354\) 1.51078e6 0.640755
\(355\) 3.07542e6 1.29519
\(356\) −712320. −0.297886
\(357\) 210600. 0.0874556
\(358\) 2.43643e6 1.00472
\(359\) 1.05979e6 0.433992 0.216996 0.976172i \(-0.430374\pi\)
0.216996 + 0.976172i \(0.430374\pi\)
\(360\) −393984. −0.160222
\(361\) −2.39992e6 −0.969235
\(362\) −868824. −0.348466
\(363\) −1.34834e6 −0.537070
\(364\) −270400. −0.106968
\(365\) 4.12695e6 1.62143
\(366\) −28008.0 −0.0109290
\(367\) −926104. −0.358917 −0.179459 0.983766i \(-0.557435\pi\)
−0.179459 + 0.983766i \(0.557435\pi\)
\(368\) 652288. 0.251084
\(369\) 716364. 0.273885
\(370\) 611040. 0.232041
\(371\) −2.69700e6 −1.01729
\(372\) −87552.0 −0.0328026
\(373\) −4.41324e6 −1.64242 −0.821212 0.570623i \(-0.806702\pi\)
−0.821212 + 0.570623i \(0.806702\pi\)
\(374\) 99216.0 0.0366778
\(375\) −324216. −0.119057
\(376\) −1.20128e6 −0.438202
\(377\) −1.39695e6 −0.506208
\(378\) −291600. −0.104968
\(379\) 4.12124e6 1.47377 0.736885 0.676019i \(-0.236296\pi\)
0.736885 + 0.676019i \(0.236296\pi\)
\(380\) −335616. −0.119229
\(381\) 329112. 0.116153
\(382\) 2.80864e6 0.984776
\(383\) 3.85666e6 1.34343 0.671714 0.740810i \(-0.265558\pi\)
0.671714 + 0.740810i \(0.265558\pi\)
\(384\) −147456. −0.0510310
\(385\) −805600. −0.276992
\(386\) −2.97668e6 −1.01687
\(387\) −1.42852e6 −0.484850
\(388\) −1.37642e6 −0.464163
\(389\) −578154. −0.193718 −0.0968589 0.995298i \(-0.530880\pi\)
−0.0968589 + 0.995298i \(0.530880\pi\)
\(390\) 462384. 0.153936
\(391\) 596232. 0.197230
\(392\) 435648. 0.143193
\(393\) −2.73787e6 −0.894194
\(394\) −1.90670e6 −0.618789
\(395\) −3.39386e6 −1.09446
\(396\) −137376. −0.0440223
\(397\) 3.11975e6 0.993444 0.496722 0.867910i \(-0.334537\pi\)
0.496722 + 0.867910i \(0.334537\pi\)
\(398\) −1.98493e6 −0.628112
\(399\) −248400. −0.0781123
\(400\) 678656. 0.212080
\(401\) 4.00850e6 1.24486 0.622431 0.782674i \(-0.286145\pi\)
0.622431 + 0.782674i \(0.286145\pi\)
\(402\) 454752. 0.140349
\(403\) 102752. 0.0315158
\(404\) 358688. 0.109336
\(405\) 498636. 0.151059
\(406\) −3.30640e6 −0.995498
\(407\) 213060. 0.0637552
\(408\) −134784. −0.0400856
\(409\) 1.37484e6 0.406390 0.203195 0.979138i \(-0.434867\pi\)
0.203195 + 0.979138i \(0.434867\pi\)
\(410\) −2.68858e6 −0.789883
\(411\) −1.90026e6 −0.554892
\(412\) −2.20160e6 −0.638992
\(413\) −4.19660e6 −1.21066
\(414\) −825552. −0.236725
\(415\) 5.31377e6 1.51455
\(416\) 173056. 0.0490290
\(417\) −2.47273e6 −0.696365
\(418\) −117024. −0.0327593
\(419\) 3.58834e6 0.998523 0.499261 0.866451i \(-0.333605\pi\)
0.499261 + 0.866451i \(0.333605\pi\)
\(420\) 1.09440e6 0.302728
\(421\) −4.01005e6 −1.10267 −0.551334 0.834284i \(-0.685881\pi\)
−0.551334 + 0.834284i \(0.685881\pi\)
\(422\) −2.68827e6 −0.734839
\(423\) 1.52037e6 0.413141
\(424\) 1.72608e6 0.466279
\(425\) 620334. 0.166592
\(426\) −1.45678e6 −0.388928
\(427\) 77800.0 0.0206495
\(428\) −1.63443e6 −0.431278
\(429\) 161226. 0.0422953
\(430\) 5.36134e6 1.39831
\(431\) 2.95249e6 0.765587 0.382794 0.923834i \(-0.374962\pi\)
0.382794 + 0.923834i \(0.374962\pi\)
\(432\) 186624. 0.0481125
\(433\) 2.48889e6 0.637950 0.318975 0.947763i \(-0.396661\pi\)
0.318975 + 0.947763i \(0.396661\pi\)
\(434\) 243200. 0.0619782
\(435\) 5.65394e6 1.43261
\(436\) 2.50000e6 0.629831
\(437\) −703248. −0.176159
\(438\) −1.95487e6 −0.486892
\(439\) −2.49604e6 −0.618145 −0.309072 0.951039i \(-0.600019\pi\)
−0.309072 + 0.951039i \(0.600019\pi\)
\(440\) 515584. 0.126960
\(441\) −551367. −0.135003
\(442\) 158184. 0.0385130
\(443\) 855216. 0.207046 0.103523 0.994627i \(-0.466988\pi\)
0.103523 + 0.994627i \(0.466988\pi\)
\(444\) −289440. −0.0696789
\(445\) −3.38352e6 −0.809970
\(446\) −1.30963e6 −0.311754
\(447\) 3.40178e6 0.805263
\(448\) 409600. 0.0964195
\(449\) −1.47275e6 −0.344758 −0.172379 0.985031i \(-0.555145\pi\)
−0.172379 + 0.985031i \(0.555145\pi\)
\(450\) −858924. −0.199951
\(451\) −937464. −0.217027
\(452\) −1.16624e6 −0.268498
\(453\) −4.32864e6 −0.991074
\(454\) −1.96270e6 −0.446903
\(455\) −1.28440e6 −0.290852
\(456\) 158976. 0.0358030
\(457\) 5.56125e6 1.24561 0.622805 0.782377i \(-0.285993\pi\)
0.622805 + 0.782377i \(0.285993\pi\)
\(458\) −2.40670e6 −0.536114
\(459\) 170586. 0.0377930
\(460\) 3.09837e6 0.682713
\(461\) −8.04203e6 −1.76244 −0.881218 0.472710i \(-0.843276\pi\)
−0.881218 + 0.472710i \(0.843276\pi\)
\(462\) 381600. 0.0831770
\(463\) 1.63479e6 0.354412 0.177206 0.984174i \(-0.443294\pi\)
0.177206 + 0.984174i \(0.443294\pi\)
\(464\) 2.11610e6 0.456289
\(465\) −415872. −0.0891923
\(466\) −5.70226e6 −1.21642
\(467\) −3.69145e6 −0.783257 −0.391629 0.920123i \(-0.628088\pi\)
−0.391629 + 0.920123i \(0.628088\pi\)
\(468\) −219024. −0.0462250
\(469\) −1.26320e6 −0.265180
\(470\) −5.70608e6 −1.19150
\(471\) 3.42934e6 0.712293
\(472\) 2.68582e6 0.554910
\(473\) 1.86942e6 0.384196
\(474\) 1.60762e6 0.328652
\(475\) −731676. −0.148794
\(476\) 374400. 0.0757388
\(477\) −2.18457e6 −0.439612
\(478\) −1.64993e6 −0.330290
\(479\) −8.12522e6 −1.61807 −0.809033 0.587763i \(-0.800009\pi\)
−0.809033 + 0.587763i \(0.800009\pi\)
\(480\) −700416. −0.138756
\(481\) 339690. 0.0669453
\(482\) 6.37025e6 1.24893
\(483\) 2.29320e6 0.447274
\(484\) −2.39704e6 −0.465117
\(485\) −6.53798e6 −1.26209
\(486\) −236196. −0.0453609
\(487\) 3.52078e6 0.672693 0.336347 0.941738i \(-0.390809\pi\)
0.336347 + 0.941738i \(0.390809\pi\)
\(488\) −49792.0 −0.00946477
\(489\) −2.63372e6 −0.498079
\(490\) 2.06933e6 0.389349
\(491\) −31576.0 −0.00591090 −0.00295545 0.999996i \(-0.500941\pi\)
−0.00295545 + 0.999996i \(0.500941\pi\)
\(492\) 1.27354e6 0.237191
\(493\) 1.93424e6 0.358421
\(494\) −186576. −0.0343984
\(495\) −652536. −0.119699
\(496\) −155648. −0.0284079
\(497\) 4.04660e6 0.734851
\(498\) −2.51705e6 −0.454798
\(499\) 1.59040e6 0.285927 0.142963 0.989728i \(-0.454337\pi\)
0.142963 + 0.989728i \(0.454337\pi\)
\(500\) −576384. −0.103107
\(501\) −4.16972e6 −0.742185
\(502\) 5.13331e6 0.909156
\(503\) 9.81007e6 1.72883 0.864415 0.502780i \(-0.167689\pi\)
0.864415 + 0.502780i \(0.167689\pi\)
\(504\) −518400. −0.0909052
\(505\) 1.70377e6 0.297291
\(506\) 1.08035e6 0.187581
\(507\) 257049. 0.0444116
\(508\) 585088. 0.100592
\(509\) 205940. 0.0352327 0.0176164 0.999845i \(-0.494392\pi\)
0.0176164 + 0.999845i \(0.494392\pi\)
\(510\) −640224. −0.108995
\(511\) 5.43020e6 0.919949
\(512\) −262144. −0.0441942
\(513\) −201204. −0.0337554
\(514\) −352056. −0.0587765
\(515\) −1.04576e7 −1.73746
\(516\) −2.53958e6 −0.419893
\(517\) −1.98962e6 −0.327374
\(518\) 804000. 0.131653
\(519\) −112662. −0.0183594
\(520\) 822016. 0.133313
\(521\) −7.96711e6 −1.28590 −0.642949 0.765909i \(-0.722289\pi\)
−0.642949 + 0.765909i \(0.722289\pi\)
\(522\) −2.67818e6 −0.430194
\(523\) 9.14536e6 1.46200 0.730998 0.682379i \(-0.239055\pi\)
0.730998 + 0.682379i \(0.239055\pi\)
\(524\) −4.86733e6 −0.774395
\(525\) 2.38590e6 0.377793
\(526\) −4.66834e6 −0.735695
\(527\) −142272. −0.0223148
\(528\) −244224. −0.0381244
\(529\) 55961.0 0.00869453
\(530\) 8.19888e6 1.26784
\(531\) −3.39925e6 −0.523174
\(532\) −441600. −0.0676472
\(533\) −1.49464e6 −0.227886
\(534\) 1.60272e6 0.243223
\(535\) −7.76355e6 −1.17267
\(536\) 808448. 0.121546
\(537\) −5.48197e6 −0.820354
\(538\) 825624. 0.122978
\(539\) 721542. 0.106977
\(540\) 886464. 0.130821
\(541\) 3.46356e6 0.508780 0.254390 0.967102i \(-0.418125\pi\)
0.254390 + 0.967102i \(0.418125\pi\)
\(542\) 5.46766e6 0.799473
\(543\) 1.95485e6 0.284521
\(544\) −239616. −0.0347151
\(545\) 1.18750e7 1.71255
\(546\) 608400. 0.0873389
\(547\) 1.51606e6 0.216645 0.108322 0.994116i \(-0.465452\pi\)
0.108322 + 0.994116i \(0.465452\pi\)
\(548\) −3.37824e6 −0.480551
\(549\) 63018.0 0.00892347
\(550\) 1.12402e6 0.158441
\(551\) −2.28142e6 −0.320129
\(552\) −1.46765e6 −0.205010
\(553\) −4.46560e6 −0.620965
\(554\) 9.15252e6 1.26697
\(555\) −1.37484e6 −0.189461
\(556\) −4.39597e6 −0.603070
\(557\) 1.30872e7 1.78734 0.893670 0.448725i \(-0.148122\pi\)
0.893670 + 0.448725i \(0.148122\pi\)
\(558\) 196992. 0.0267832
\(559\) 2.98048e6 0.403420
\(560\) 1.94560e6 0.262170
\(561\) −223236. −0.0299473
\(562\) −8.01848e6 −1.07091
\(563\) −5.79391e6 −0.770372 −0.385186 0.922839i \(-0.625863\pi\)
−0.385186 + 0.922839i \(0.625863\pi\)
\(564\) 2.70288e6 0.357791
\(565\) −5.53964e6 −0.730063
\(566\) −1.10536e6 −0.145032
\(567\) 656100. 0.0857062
\(568\) −2.58982e6 −0.336821
\(569\) 7.35779e6 0.952723 0.476362 0.879249i \(-0.341955\pi\)
0.476362 + 0.879249i \(0.341955\pi\)
\(570\) 755136. 0.0973505
\(571\) −4.28317e6 −0.549763 −0.274881 0.961478i \(-0.588639\pi\)
−0.274881 + 0.961478i \(0.588639\pi\)
\(572\) 286624. 0.0366288
\(573\) −6.31944e6 −0.804067
\(574\) −3.53760e6 −0.448156
\(575\) 6.75475e6 0.852000
\(576\) 331776. 0.0416667
\(577\) −4.11440e6 −0.514478 −0.257239 0.966348i \(-0.582813\pi\)
−0.257239 + 0.966348i \(0.582813\pi\)
\(578\) 5.46040e6 0.679838
\(579\) 6.69753e6 0.830268
\(580\) 1.00515e7 1.24068
\(581\) 6.99180e6 0.859308
\(582\) 3.09694e6 0.378987
\(583\) 2.85882e6 0.348350
\(584\) −3.47533e6 −0.421661
\(585\) −1.04036e6 −0.125689
\(586\) 2.10486e6 0.253210
\(587\) −102218. −0.0122442 −0.00612212 0.999981i \(-0.501949\pi\)
−0.00612212 + 0.999981i \(0.501949\pi\)
\(588\) −980208. −0.116916
\(589\) 167808. 0.0199308
\(590\) 1.27577e7 1.50883
\(591\) 4.29008e6 0.505239
\(592\) −514560. −0.0603437
\(593\) 2.27550e6 0.265730 0.132865 0.991134i \(-0.457582\pi\)
0.132865 + 0.991134i \(0.457582\pi\)
\(594\) 309096. 0.0359441
\(595\) 1.77840e6 0.205938
\(596\) 6.04762e6 0.697379
\(597\) 4.46609e6 0.512851
\(598\) 1.72245e6 0.196967
\(599\) −1.05767e7 −1.20443 −0.602216 0.798333i \(-0.705716\pi\)
−0.602216 + 0.798333i \(0.705716\pi\)
\(600\) −1.52698e6 −0.173163
\(601\) −1.32670e7 −1.49826 −0.749128 0.662425i \(-0.769527\pi\)
−0.749128 + 0.662425i \(0.769527\pi\)
\(602\) 7.05440e6 0.793357
\(603\) −1.02319e6 −0.114595
\(604\) −7.69536e6 −0.858295
\(605\) −1.13859e7 −1.26468
\(606\) −807048. −0.0892725
\(607\) 1.56567e7 1.72476 0.862380 0.506261i \(-0.168973\pi\)
0.862380 + 0.506261i \(0.168973\pi\)
\(608\) 282624. 0.0310063
\(609\) 7.43940e6 0.812821
\(610\) −236512. −0.0257353
\(611\) −3.17213e6 −0.343754
\(612\) 303264. 0.0327297
\(613\) 3.48923e6 0.375041 0.187520 0.982261i \(-0.439955\pi\)
0.187520 + 0.982261i \(0.439955\pi\)
\(614\) 2.48637e6 0.266161
\(615\) 6.04930e6 0.644937
\(616\) 678400. 0.0720334
\(617\) 2.73237e6 0.288953 0.144476 0.989508i \(-0.453850\pi\)
0.144476 + 0.989508i \(0.453850\pi\)
\(618\) 4.95360e6 0.521735
\(619\) 1.04378e6 0.109492 0.0547458 0.998500i \(-0.482565\pi\)
0.0547458 + 0.998500i \(0.482565\pi\)
\(620\) −739328. −0.0772428
\(621\) 1.85749e6 0.193285
\(622\) 7.57042e6 0.784592
\(623\) −4.45200e6 −0.459552
\(624\) −389376. −0.0400320
\(625\) −1.10222e7 −1.12867
\(626\) −9.44847e6 −0.963664
\(627\) 263304. 0.0267478
\(628\) 6.09661e6 0.616864
\(629\) −470340. −0.0474008
\(630\) −2.46240e6 −0.247177
\(631\) −1.21693e7 −1.21672 −0.608360 0.793661i \(-0.708172\pi\)
−0.608360 + 0.793661i \(0.708172\pi\)
\(632\) 2.85798e6 0.284621
\(633\) 6.04861e6 0.599993
\(634\) 2.69717e6 0.266492
\(635\) 2.77917e6 0.273515
\(636\) −3.88368e6 −0.380716
\(637\) 1.15038e6 0.112330
\(638\) 3.50478e6 0.340886
\(639\) 3.27775e6 0.317558
\(640\) −1.24518e6 −0.120167
\(641\) −1.69525e7 −1.62963 −0.814813 0.579724i \(-0.803160\pi\)
−0.814813 + 0.579724i \(0.803160\pi\)
\(642\) 3.67747e6 0.352137
\(643\) −1.46819e7 −1.40041 −0.700204 0.713943i \(-0.746908\pi\)
−0.700204 + 0.713943i \(0.746908\pi\)
\(644\) 4.07680e6 0.387351
\(645\) −1.20630e7 −1.14171
\(646\) 258336. 0.0243559
\(647\) −4.59194e6 −0.431256 −0.215628 0.976476i \(-0.569180\pi\)
−0.215628 + 0.976476i \(0.569180\pi\)
\(648\) −419904. −0.0392837
\(649\) 4.44840e6 0.414564
\(650\) 1.79208e6 0.166369
\(651\) −547200. −0.0506050
\(652\) −4.68218e6 −0.431349
\(653\) 9.17275e6 0.841815 0.420907 0.907104i \(-0.361712\pi\)
0.420907 + 0.907104i \(0.361712\pi\)
\(654\) −5.62500e6 −0.514255
\(655\) −2.31198e7 −2.10562
\(656\) 2.26406e6 0.205414
\(657\) 4.39846e6 0.397546
\(658\) −7.50800e6 −0.676020
\(659\) −1.06207e7 −0.952660 −0.476330 0.879267i \(-0.658033\pi\)
−0.476330 + 0.879267i \(0.658033\pi\)
\(660\) −1.16006e6 −0.103663
\(661\) −7.02779e6 −0.625626 −0.312813 0.949815i \(-0.601271\pi\)
−0.312813 + 0.949815i \(0.601271\pi\)
\(662\) −7.04000e6 −0.624349
\(663\) −355914. −0.0314457
\(664\) −4.47475e6 −0.393866
\(665\) −2.09760e6 −0.183937
\(666\) 651240. 0.0568926
\(667\) 2.10618e7 1.83308
\(668\) −7.41283e6 −0.642751
\(669\) 2.94667e6 0.254546
\(670\) 3.84013e6 0.330490
\(671\) −82468.0 −0.00707097
\(672\) −921600. −0.0787262
\(673\) 1.24935e7 1.06327 0.531637 0.846972i \(-0.321577\pi\)
0.531637 + 0.846972i \(0.321577\pi\)
\(674\) −1.42860e7 −1.21133
\(675\) 1.93258e6 0.163259
\(676\) 456976. 0.0384615
\(677\) −1.84440e7 −1.54662 −0.773310 0.634028i \(-0.781401\pi\)
−0.773310 + 0.634028i \(0.781401\pi\)
\(678\) 2.62404e6 0.219228
\(679\) −8.60260e6 −0.716070
\(680\) −1.13818e6 −0.0943924
\(681\) 4.41607e6 0.364895
\(682\) −257792. −0.0212231
\(683\) −2.20988e6 −0.181266 −0.0906332 0.995884i \(-0.528889\pi\)
−0.0906332 + 0.995884i \(0.528889\pi\)
\(684\) −357696. −0.0292330
\(685\) −1.60466e7 −1.30665
\(686\) 9.44560e6 0.766336
\(687\) 5.41507e6 0.437736
\(688\) −4.51482e6 −0.363638
\(689\) 4.55793e6 0.365780
\(690\) −6.97133e6 −0.557433
\(691\) 6.70893e6 0.534513 0.267256 0.963625i \(-0.413883\pi\)
0.267256 + 0.963625i \(0.413883\pi\)
\(692\) −200288. −0.0158997
\(693\) −858600. −0.0679138
\(694\) −9.07896e6 −0.715546
\(695\) −2.08808e7 −1.63978
\(696\) −4.76122e6 −0.372559
\(697\) 2.06950e6 0.161355
\(698\) 115496. 0.00897281
\(699\) 1.28301e7 0.993200
\(700\) 4.24160e6 0.327178
\(701\) 1.74858e7 1.34397 0.671986 0.740564i \(-0.265442\pi\)
0.671986 + 0.740564i \(0.265442\pi\)
\(702\) 492804. 0.0377426
\(703\) 554760. 0.0423367
\(704\) −434176. −0.0330167
\(705\) 1.28387e7 0.972854
\(706\) −1.35346e7 −1.02196
\(707\) 2.24180e6 0.168674
\(708\) −6.04310e6 −0.453082
\(709\) 1.01508e7 0.758380 0.379190 0.925319i \(-0.376203\pi\)
0.379190 + 0.925319i \(0.376203\pi\)
\(710\) −1.23017e7 −0.915837
\(711\) −3.61714e6 −0.268343
\(712\) 2.84928e6 0.210637
\(713\) −1.54918e6 −0.114125
\(714\) −842400. −0.0618405
\(715\) 1.36146e6 0.0995958
\(716\) −9.74573e6 −0.710447
\(717\) 3.71234e6 0.269681
\(718\) −4.23914e6 −0.306879
\(719\) 2.55785e7 1.84524 0.922619 0.385714i \(-0.126045\pi\)
0.922619 + 0.385714i \(0.126045\pi\)
\(720\) 1.57594e6 0.113294
\(721\) −1.37600e7 −0.985781
\(722\) 9.59969e6 0.685353
\(723\) −1.43331e7 −1.01975
\(724\) 3.47530e6 0.246403
\(725\) 2.19132e7 1.54832
\(726\) 5.39334e6 0.379766
\(727\) 1.10507e7 0.775453 0.387727 0.921774i \(-0.373261\pi\)
0.387727 + 0.921774i \(0.373261\pi\)
\(728\) 1.08160e6 0.0756377
\(729\) 531441. 0.0370370
\(730\) −1.65078e7 −1.14652
\(731\) −4.12682e6 −0.285642
\(732\) 112032. 0.00772795
\(733\) −1.69360e7 −1.16426 −0.582132 0.813094i \(-0.697781\pi\)
−0.582132 + 0.813094i \(0.697781\pi\)
\(734\) 3.70442e6 0.253793
\(735\) −4.65599e6 −0.317902
\(736\) −2.60915e6 −0.177544
\(737\) 1.33899e6 0.0908049
\(738\) −2.86546e6 −0.193666
\(739\) −2.26764e6 −0.152744 −0.0763718 0.997079i \(-0.524334\pi\)
−0.0763718 + 0.997079i \(0.524334\pi\)
\(740\) −2.44416e6 −0.164078
\(741\) 419796. 0.0280862
\(742\) 1.07880e7 0.719335
\(743\) 1.03705e7 0.689175 0.344588 0.938754i \(-0.388019\pi\)
0.344588 + 0.938754i \(0.388019\pi\)
\(744\) 350208. 0.0231950
\(745\) 2.87262e7 1.89621
\(746\) 1.76530e7 1.16137
\(747\) 5.66336e6 0.371341
\(748\) −396864. −0.0259351
\(749\) −1.02152e7 −0.665338
\(750\) 1.29686e6 0.0841863
\(751\) 8.19751e6 0.530374 0.265187 0.964197i \(-0.414566\pi\)
0.265187 + 0.964197i \(0.414566\pi\)
\(752\) 4.80512e6 0.309856
\(753\) −1.15500e7 −0.742323
\(754\) 5.58782e6 0.357943
\(755\) −3.65530e7 −2.33375
\(756\) 1.16640e6 0.0742238
\(757\) −2.55308e7 −1.61929 −0.809646 0.586919i \(-0.800341\pi\)
−0.809646 + 0.586919i \(0.800341\pi\)
\(758\) −1.64849e7 −1.04211
\(759\) −2.43079e6 −0.153159
\(760\) 1.34246e6 0.0843080
\(761\) 3.05669e7 1.91333 0.956664 0.291193i \(-0.0940520\pi\)
0.956664 + 0.291193i \(0.0940520\pi\)
\(762\) −1.31645e6 −0.0821327
\(763\) 1.56250e7 0.971647
\(764\) −1.12346e7 −0.696342
\(765\) 1.44050e6 0.0889940
\(766\) −1.54266e7 −0.949948
\(767\) 7.09225e6 0.435307
\(768\) 589824. 0.0360844
\(769\) 1.53170e7 0.934026 0.467013 0.884251i \(-0.345330\pi\)
0.467013 + 0.884251i \(0.345330\pi\)
\(770\) 3.22240e6 0.195863
\(771\) 792126. 0.0479908
\(772\) 1.19067e7 0.719033
\(773\) −2.36631e6 −0.142437 −0.0712186 0.997461i \(-0.522689\pi\)
−0.0712186 + 0.997461i \(0.522689\pi\)
\(774\) 5.71406e6 0.342841
\(775\) −1.61181e6 −0.0963960
\(776\) 5.50566e6 0.328213
\(777\) −1.80900e6 −0.107494
\(778\) 2.31262e6 0.136979
\(779\) −2.44094e6 −0.144117
\(780\) −1.84954e6 −0.108849
\(781\) −4.28940e6 −0.251634
\(782\) −2.38493e6 −0.139463
\(783\) 6.02591e6 0.351252
\(784\) −1.74259e6 −0.101252
\(785\) 2.89589e7 1.67729
\(786\) 1.09515e7 0.632291
\(787\) 1.39758e7 0.804339 0.402170 0.915565i \(-0.368256\pi\)
0.402170 + 0.915565i \(0.368256\pi\)
\(788\) 7.62682e6 0.437550
\(789\) 1.05038e7 0.600692
\(790\) 1.35754e7 0.773901
\(791\) −7.28900e6 −0.414216
\(792\) 549504. 0.0311285
\(793\) −131482. −0.00742478
\(794\) −1.24790e7 −0.702471
\(795\) −1.84475e7 −1.03519
\(796\) 7.93971e6 0.444142
\(797\) 1.87784e7 1.04716 0.523580 0.851977i \(-0.324596\pi\)
0.523580 + 0.851977i \(0.324596\pi\)
\(798\) 993600. 0.0552337
\(799\) 4.39218e6 0.243396
\(800\) −2.71462e6 −0.149963
\(801\) −3.60612e6 −0.198591
\(802\) −1.60340e7 −0.880251
\(803\) −5.75601e6 −0.315016
\(804\) −1.81901e6 −0.0992418
\(805\) 1.93648e7 1.05323
\(806\) −411008. −0.0222850
\(807\) −1.85765e6 −0.100411
\(808\) −1.43475e6 −0.0773123
\(809\) 1.48824e7 0.799468 0.399734 0.916631i \(-0.369102\pi\)
0.399734 + 0.916631i \(0.369102\pi\)
\(810\) −1.99454e6 −0.106815
\(811\) −5.40879e6 −0.288767 −0.144384 0.989522i \(-0.546120\pi\)
−0.144384 + 0.989522i \(0.546120\pi\)
\(812\) 1.32256e7 0.703923
\(813\) −1.23022e7 −0.652767
\(814\) −852240. −0.0450818
\(815\) −2.22403e7 −1.17286
\(816\) 539136. 0.0283448
\(817\) 4.86754e6 0.255126
\(818\) −5.49935e6 −0.287361
\(819\) −1.36890e6 −0.0713119
\(820\) 1.07543e7 0.558532
\(821\) −1.00651e7 −0.521147 −0.260574 0.965454i \(-0.583912\pi\)
−0.260574 + 0.965454i \(0.583912\pi\)
\(822\) 7.60104e6 0.392368
\(823\) 1.22916e7 0.632569 0.316285 0.948664i \(-0.397565\pi\)
0.316285 + 0.948664i \(0.397565\pi\)
\(824\) 8.80640e6 0.451836
\(825\) −2.52905e6 −0.129367
\(826\) 1.67864e7 0.856066
\(827\) 1.20837e7 0.614378 0.307189 0.951648i \(-0.400612\pi\)
0.307189 + 0.951648i \(0.400612\pi\)
\(828\) 3.30221e6 0.167390
\(829\) 2.23351e7 1.12876 0.564379 0.825516i \(-0.309116\pi\)
0.564379 + 0.825516i \(0.309116\pi\)
\(830\) −2.12551e7 −1.07095
\(831\) −2.05932e7 −1.03448
\(832\) −692224. −0.0346688
\(833\) −1.59284e6 −0.0795352
\(834\) 9.89093e6 0.492404
\(835\) −3.52110e7 −1.74768
\(836\) 468096. 0.0231643
\(837\) −443232. −0.0218684
\(838\) −1.43533e7 −0.706062
\(839\) 9.89083e6 0.485096 0.242548 0.970139i \(-0.422017\pi\)
0.242548 + 0.970139i \(0.422017\pi\)
\(840\) −4.37760e6 −0.214061
\(841\) 4.78156e7 2.33120
\(842\) 1.60402e7 0.779704
\(843\) 1.80416e7 0.874391
\(844\) 1.07531e7 0.519610
\(845\) 2.17064e6 0.104579
\(846\) −6.08148e6 −0.292135
\(847\) −1.49815e7 −0.717541
\(848\) −6.90432e6 −0.329709
\(849\) 2.48706e6 0.118418
\(850\) −2.48134e6 −0.117798
\(851\) −5.12148e6 −0.242422
\(852\) 5.82710e6 0.275013
\(853\) 4.84677e6 0.228076 0.114038 0.993476i \(-0.463621\pi\)
0.114038 + 0.993476i \(0.463621\pi\)
\(854\) −311200. −0.0146014
\(855\) −1.69906e6 −0.0794863
\(856\) 6.53773e6 0.304960
\(857\) −1.60904e6 −0.0748368 −0.0374184 0.999300i \(-0.511913\pi\)
−0.0374184 + 0.999300i \(0.511913\pi\)
\(858\) −644904. −0.0299073
\(859\) 1.19283e7 0.551562 0.275781 0.961221i \(-0.411064\pi\)
0.275781 + 0.961221i \(0.411064\pi\)
\(860\) −2.14454e7 −0.988752
\(861\) 7.95960e6 0.365918
\(862\) −1.18099e7 −0.541352
\(863\) −1.04897e7 −0.479442 −0.239721 0.970842i \(-0.577056\pi\)
−0.239721 + 0.970842i \(0.577056\pi\)
\(864\) −746496. −0.0340207
\(865\) −951368. −0.0432323
\(866\) −9.95558e6 −0.451099
\(867\) −1.22859e7 −0.555085
\(868\) −972800. −0.0438252
\(869\) 4.73354e6 0.212636
\(870\) −2.26158e7 −1.01301
\(871\) 2.13481e6 0.0953484
\(872\) −1.00000e7 −0.445358
\(873\) −6.96811e6 −0.309442
\(874\) 2.81299e6 0.124563
\(875\) −3.60240e6 −0.159064
\(876\) 7.81949e6 0.344285
\(877\) −4.41328e7 −1.93759 −0.968797 0.247856i \(-0.920274\pi\)
−0.968797 + 0.247856i \(0.920274\pi\)
\(878\) 9.98416e6 0.437094
\(879\) −4.73594e6 −0.206745
\(880\) −2.06234e6 −0.0897744
\(881\) −3.06299e7 −1.32955 −0.664777 0.747042i \(-0.731473\pi\)
−0.664777 + 0.747042i \(0.731473\pi\)
\(882\) 2.20547e6 0.0954617
\(883\) 2.84920e7 1.22976 0.614880 0.788620i \(-0.289204\pi\)
0.614880 + 0.788620i \(0.289204\pi\)
\(884\) −632736. −0.0272328
\(885\) −2.87047e7 −1.23196
\(886\) −3.42086e6 −0.146404
\(887\) 4.68877e6 0.200101 0.100051 0.994982i \(-0.468100\pi\)
0.100051 + 0.994982i \(0.468100\pi\)
\(888\) 1.15776e6 0.0492704
\(889\) 3.65680e6 0.155184
\(890\) 1.35341e7 0.572735
\(891\) −695466. −0.0293482
\(892\) 5.23853e6 0.220443
\(893\) −5.18052e6 −0.217393
\(894\) −1.36071e7 −0.569407
\(895\) −4.62922e7 −1.93175
\(896\) −1.63840e6 −0.0681789
\(897\) −3.87551e6 −0.160823
\(898\) 5.89101e6 0.243780
\(899\) −5.02573e6 −0.207396
\(900\) 3.43570e6 0.141387
\(901\) −6.31098e6 −0.258991
\(902\) 3.74986e6 0.153461
\(903\) −1.58724e7 −0.647774
\(904\) 4.66496e6 0.189857
\(905\) 1.65077e7 0.669983
\(906\) 1.73146e7 0.700795
\(907\) −3.71845e7 −1.50087 −0.750437 0.660942i \(-0.770157\pi\)
−0.750437 + 0.660942i \(0.770157\pi\)
\(908\) 7.85078e6 0.316008
\(909\) 1.81586e6 0.0728907
\(910\) 5.13760e6 0.205663
\(911\) 1.04275e7 0.416280 0.208140 0.978099i \(-0.433259\pi\)
0.208140 + 0.978099i \(0.433259\pi\)
\(912\) −635904. −0.0253165
\(913\) −7.41131e6 −0.294251
\(914\) −2.22450e7 −0.880780
\(915\) 532152. 0.0210128
\(916\) 9.62678e6 0.379090
\(917\) −3.04208e7 −1.19467
\(918\) −682344. −0.0267237
\(919\) 3.27595e7 1.27953 0.639763 0.768572i \(-0.279033\pi\)
0.639763 + 0.768572i \(0.279033\pi\)
\(920\) −1.23935e7 −0.482751
\(921\) −5.59433e6 −0.217320
\(922\) 3.21681e7 1.24623
\(923\) −6.83875e6 −0.264224
\(924\) −1.52640e6 −0.0588150
\(925\) −5.32851e6 −0.204763
\(926\) −6.53915e6 −0.250607
\(927\) −1.11456e7 −0.425995
\(928\) −8.46438e6 −0.322645
\(929\) 1.27643e7 0.485242 0.242621 0.970121i \(-0.421993\pi\)
0.242621 + 0.970121i \(0.421993\pi\)
\(930\) 1.66349e6 0.0630685
\(931\) 1.87873e6 0.0710380
\(932\) 2.28091e7 0.860137
\(933\) −1.70334e7 −0.640617
\(934\) 1.47658e7 0.553847
\(935\) −1.88510e6 −0.0705190
\(936\) 876096. 0.0326860
\(937\) 1.78729e7 0.665037 0.332518 0.943097i \(-0.392102\pi\)
0.332518 + 0.943097i \(0.392102\pi\)
\(938\) 5.05280e6 0.187510
\(939\) 2.12591e7 0.786829
\(940\) 2.28243e7 0.842516
\(941\) 6.47876e6 0.238516 0.119258 0.992863i \(-0.461948\pi\)
0.119258 + 0.992863i \(0.461948\pi\)
\(942\) −1.37174e7 −0.503667
\(943\) 2.25345e7 0.825218
\(944\) −1.07433e7 −0.392381
\(945\) 5.54040e6 0.201819
\(946\) −7.47766e6 −0.271668
\(947\) −3.14448e7 −1.13939 −0.569696 0.821855i \(-0.692939\pi\)
−0.569696 + 0.821855i \(0.692939\pi\)
\(948\) −6.43046e6 −0.232392
\(949\) −9.17704e6 −0.330778
\(950\) 2.92670e6 0.105213
\(951\) −6.06863e6 −0.217590
\(952\) −1.49760e6 −0.0535554
\(953\) 2.24057e7 0.799145 0.399572 0.916702i \(-0.369159\pi\)
0.399572 + 0.916702i \(0.369159\pi\)
\(954\) 8.73828e6 0.310853
\(955\) −5.33642e7 −1.89340
\(956\) 6.59971e6 0.233550
\(957\) −7.88576e6 −0.278333
\(958\) 3.25009e7 1.14415
\(959\) −2.11140e7 −0.741351
\(960\) 2.80166e6 0.0981156
\(961\) −2.82595e7 −0.987088
\(962\) −1.35876e6 −0.0473375
\(963\) −8.27431e6 −0.287519
\(964\) −2.54810e7 −0.883128
\(965\) 5.65569e7 1.95509
\(966\) −9.17280e6 −0.316271
\(967\) −3.08409e7 −1.06062 −0.530311 0.847803i \(-0.677925\pi\)
−0.530311 + 0.847803i \(0.677925\pi\)
\(968\) 9.58816e6 0.328887
\(969\) −581256. −0.0198865
\(970\) 2.61519e7 0.892430
\(971\) 1.92695e7 0.655877 0.327939 0.944699i \(-0.393646\pi\)
0.327939 + 0.944699i \(0.393646\pi\)
\(972\) 944784. 0.0320750
\(973\) −2.74748e7 −0.930363
\(974\) −1.40831e7 −0.475666
\(975\) −4.03217e6 −0.135840
\(976\) 199168. 0.00669260
\(977\) 1.57140e6 0.0526684 0.0263342 0.999653i \(-0.491617\pi\)
0.0263342 + 0.999653i \(0.491617\pi\)
\(978\) 1.05349e7 0.352195
\(979\) 4.71912e6 0.157364
\(980\) −8.27731e6 −0.275311
\(981\) 1.26562e7 0.419887
\(982\) 126304. 0.00417964
\(983\) −3.62448e7 −1.19636 −0.598180 0.801362i \(-0.704109\pi\)
−0.598180 + 0.801362i \(0.704109\pi\)
\(984\) −5.09414e6 −0.167719
\(985\) 3.62274e7 1.18972
\(986\) −7.73698e6 −0.253442
\(987\) 1.68930e7 0.551968
\(988\) 746304. 0.0243234
\(989\) −4.49365e7 −1.46086
\(990\) 2.61014e6 0.0846402
\(991\) −2.93799e7 −0.950313 −0.475157 0.879901i \(-0.657609\pi\)
−0.475157 + 0.879901i \(0.657609\pi\)
\(992\) 622592. 0.0200874
\(993\) 1.58400e7 0.509779
\(994\) −1.61864e7 −0.519618
\(995\) 3.77136e7 1.20765
\(996\) 1.00682e7 0.321590
\(997\) 1.72567e7 0.549818 0.274909 0.961470i \(-0.411352\pi\)
0.274909 + 0.961470i \(0.411352\pi\)
\(998\) −6.36160e6 −0.202181
\(999\) −1.46529e6 −0.0464526
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 78.6.a.c.1.1 1
3.2 odd 2 234.6.a.d.1.1 1
4.3 odd 2 624.6.a.d.1.1 1
13.12 even 2 1014.6.a.f.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.6.a.c.1.1 1 1.1 even 1 trivial
234.6.a.d.1.1 1 3.2 odd 2
624.6.a.d.1.1 1 4.3 odd 2
1014.6.a.f.1.1 1 13.12 even 2