Properties

Label 102.14.a.c
Level $102$
Weight $14$
Character orbit 102.a
Self dual yes
Analytic conductor $109.376$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [102,14,Mod(1,102)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(102, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("102.1");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 102 = 2 \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 102.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(109.375547531\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 13078169x^{2} - 5525405910x + 22928880943080 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 64 q^{2} - 729 q^{3} + 4096 q^{4} + (\beta_{3} - 3 \beta_{2} - 9189) q^{5} - 46656 q^{6} + (7 \beta_{3} + 4 \beta_{2} + \cdots + 44047) q^{7} + 262144 q^{8} + 531441 q^{9} + (64 \beta_{3} - 192 \beta_{2} - 588096) q^{10}+ \cdots + ( - 140300424 \beta_{3} + \cdots - 521040699630) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 256 q^{2} - 2916 q^{3} + 16384 q^{4} - 36750 q^{5} - 186624 q^{6} + 176212 q^{7} + 1048576 q^{8} + 2125764 q^{9} - 2352000 q^{10} - 3922006 q^{11} - 11943936 q^{12} - 10375302 q^{13} + 11277568 q^{14}+ \cdots - 2084314790646 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 13078169x^{2} - 5525405910x + 22928880943080 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -324\nu^{3} + 451039\nu^{2} + 3228342050\nu - 1602037001250 ) / 139744605 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 2\nu^{3} + 38293\nu^{2} - 1607610\nu - 258737722380 ) / 19963515 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 62\nu^{3} - 143818\nu^{2} - 308030704\nu + 682444569135 ) / 27948921 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} + \beta _1 + 7 ) / 12 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -223\beta_{3} + 2693\beta_{2} - 97\beta _1 + 39235811 ) / 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 4671572\beta_{3} + 8730923\beta_{2} + 2259113\beta _1 + 24987525146 ) / 6 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2909.34
3583.54
−1856.70
1184.50
64.0000 −729.000 4096.00 −54016.2 −46656.0 −335501. 262144. 531441. −3.45704e6
1.2 64.0000 −729.000 4096.00 −36242.2 −46656.0 157321. 262144. 531441. −2.31950e6
1.3 64.0000 −729.000 4096.00 24273.0 −46656.0 561533. 262144. 531441. 1.55347e6
1.4 64.0000 −729.000 4096.00 29235.4 −46656.0 −207141. 262144. 531441. 1.87107e6
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 102.14.a.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
102.14.a.c 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 36750T_{5}^{3} - 2162286135T_{5}^{2} - 40701412457500T_{5} + 1389219666096442500 \) acting on \(S_{14}^{\mathrm{new}}(\Gamma_0(102))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 64)^{4} \) Copy content Toggle raw display
$3$ \( (T + 729)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 13\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 61\!\cdots\!44 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots - 77\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 97\!\cdots\!56 \) Copy content Toggle raw display
$17$ \( (T - 24137569)^{4} \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 63\!\cdots\!64 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 13\!\cdots\!96 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots - 10\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 14\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 37\!\cdots\!64 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 21\!\cdots\!04 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 32\!\cdots\!84 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 79\!\cdots\!36 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 12\!\cdots\!76 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 96\!\cdots\!80 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 87\!\cdots\!80 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 97\!\cdots\!80 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 32\!\cdots\!36 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 59\!\cdots\!44 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 17\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 62\!\cdots\!24 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 67\!\cdots\!84 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 13\!\cdots\!80 \) Copy content Toggle raw display
show more
show less