Properties

Label 102.2.f.a.13.2
Level $102$
Weight $2$
Character 102.13
Analytic conductor $0.814$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [102,2,Mod(13,102)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(102, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("102.13");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 102 = 2 \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 102.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.814474100617\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 13.2
Root \(0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 102.13
Dual form 102.2.f.a.55.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +(0.707107 + 0.707107i) q^{3} -1.00000 q^{4} +(0.414214 + 0.414214i) q^{5} +(0.707107 - 0.707107i) q^{6} +(3.41421 - 3.41421i) q^{7} +1.00000i q^{8} +1.00000i q^{9} +(0.414214 - 0.414214i) q^{10} +(-2.82843 + 2.82843i) q^{11} +(-0.707107 - 0.707107i) q^{12} -2.82843 q^{13} +(-3.41421 - 3.41421i) q^{14} +0.585786i q^{15} +1.00000 q^{16} +(-3.00000 - 2.82843i) q^{17} +1.00000 q^{18} +6.82843i q^{19} +(-0.414214 - 0.414214i) q^{20} +4.82843 q^{21} +(2.82843 + 2.82843i) q^{22} +(-2.24264 + 2.24264i) q^{23} +(-0.707107 + 0.707107i) q^{24} -4.65685i q^{25} +2.82843i q^{26} +(-0.707107 + 0.707107i) q^{27} +(-3.41421 + 3.41421i) q^{28} +(-0.414214 - 0.414214i) q^{29} +0.585786 q^{30} +(0.585786 + 0.585786i) q^{31} -1.00000i q^{32} -4.00000 q^{33} +(-2.82843 + 3.00000i) q^{34} +2.82843 q^{35} -1.00000i q^{36} +(-1.58579 - 1.58579i) q^{37} +6.82843 q^{38} +(-2.00000 - 2.00000i) q^{39} +(-0.414214 + 0.414214i) q^{40} +(-2.17157 + 2.17157i) q^{41} -4.82843i q^{42} +1.65685i q^{43} +(2.82843 - 2.82843i) q^{44} +(-0.414214 + 0.414214i) q^{45} +(2.24264 + 2.24264i) q^{46} +12.4853 q^{47} +(0.707107 + 0.707107i) q^{48} -16.3137i q^{49} -4.65685 q^{50} +(-0.121320 - 4.12132i) q^{51} +2.82843 q^{52} -2.82843i q^{53} +(0.707107 + 0.707107i) q^{54} -2.34315 q^{55} +(3.41421 + 3.41421i) q^{56} +(-4.82843 + 4.82843i) q^{57} +(-0.414214 + 0.414214i) q^{58} -12.4853i q^{59} -0.585786i q^{60} +(0.757359 - 0.757359i) q^{61} +(0.585786 - 0.585786i) q^{62} +(3.41421 + 3.41421i) q^{63} -1.00000 q^{64} +(-1.17157 - 1.17157i) q^{65} +4.00000i q^{66} +1.17157 q^{67} +(3.00000 + 2.82843i) q^{68} -3.17157 q^{69} -2.82843i q^{70} +(4.58579 + 4.58579i) q^{71} -1.00000 q^{72} +(6.65685 + 6.65685i) q^{73} +(-1.58579 + 1.58579i) q^{74} +(3.29289 - 3.29289i) q^{75} -6.82843i q^{76} +19.3137i q^{77} +(-2.00000 + 2.00000i) q^{78} +(-10.2426 + 10.2426i) q^{79} +(0.414214 + 0.414214i) q^{80} -1.00000 q^{81} +(2.17157 + 2.17157i) q^{82} -4.48528i q^{83} -4.82843 q^{84} +(-0.0710678 - 2.41421i) q^{85} +1.65685 q^{86} -0.585786i q^{87} +(-2.82843 - 2.82843i) q^{88} +(0.414214 + 0.414214i) q^{90} +(-9.65685 + 9.65685i) q^{91} +(2.24264 - 2.24264i) q^{92} +0.828427i q^{93} -12.4853i q^{94} +(-2.82843 + 2.82843i) q^{95} +(0.707107 - 0.707107i) q^{96} +(-9.48528 - 9.48528i) q^{97} -16.3137 q^{98} +(-2.82843 - 2.82843i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 4 q^{5} + 8 q^{7} - 4 q^{10} - 8 q^{14} + 4 q^{16} - 12 q^{17} + 4 q^{18} + 4 q^{20} + 8 q^{21} + 8 q^{23} - 8 q^{28} + 4 q^{29} + 8 q^{30} + 8 q^{31} - 16 q^{33} - 12 q^{37} + 16 q^{38}+ \cdots - 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/102\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(37\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0.707107 + 0.707107i 0.408248 + 0.408248i
\(4\) −1.00000 −0.500000
\(5\) 0.414214 + 0.414214i 0.185242 + 0.185242i 0.793635 0.608394i \(-0.208186\pi\)
−0.608394 + 0.793635i \(0.708186\pi\)
\(6\) 0.707107 0.707107i 0.288675 0.288675i
\(7\) 3.41421 3.41421i 1.29045 1.29045i 0.355944 0.934507i \(-0.384159\pi\)
0.934507 0.355944i \(-0.115841\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 1.00000i 0.333333i
\(10\) 0.414214 0.414214i 0.130986 0.130986i
\(11\) −2.82843 + 2.82843i −0.852803 + 0.852803i −0.990478 0.137675i \(-0.956037\pi\)
0.137675 + 0.990478i \(0.456037\pi\)
\(12\) −0.707107 0.707107i −0.204124 0.204124i
\(13\) −2.82843 −0.784465 −0.392232 0.919866i \(-0.628297\pi\)
−0.392232 + 0.919866i \(0.628297\pi\)
\(14\) −3.41421 3.41421i −0.912487 0.912487i
\(15\) 0.585786i 0.151249i
\(16\) 1.00000 0.250000
\(17\) −3.00000 2.82843i −0.727607 0.685994i
\(18\) 1.00000 0.235702
\(19\) 6.82843i 1.56655i 0.621676 + 0.783274i \(0.286452\pi\)
−0.621676 + 0.783274i \(0.713548\pi\)
\(20\) −0.414214 0.414214i −0.0926210 0.0926210i
\(21\) 4.82843 1.05365
\(22\) 2.82843 + 2.82843i 0.603023 + 0.603023i
\(23\) −2.24264 + 2.24264i −0.467623 + 0.467623i −0.901144 0.433521i \(-0.857271\pi\)
0.433521 + 0.901144i \(0.357271\pi\)
\(24\) −0.707107 + 0.707107i −0.144338 + 0.144338i
\(25\) 4.65685i 0.931371i
\(26\) 2.82843i 0.554700i
\(27\) −0.707107 + 0.707107i −0.136083 + 0.136083i
\(28\) −3.41421 + 3.41421i −0.645226 + 0.645226i
\(29\) −0.414214 0.414214i −0.0769175 0.0769175i 0.667601 0.744519i \(-0.267321\pi\)
−0.744519 + 0.667601i \(0.767321\pi\)
\(30\) 0.585786 0.106949
\(31\) 0.585786 + 0.585786i 0.105210 + 0.105210i 0.757752 0.652542i \(-0.226297\pi\)
−0.652542 + 0.757752i \(0.726297\pi\)
\(32\) 1.00000i 0.176777i
\(33\) −4.00000 −0.696311
\(34\) −2.82843 + 3.00000i −0.485071 + 0.514496i
\(35\) 2.82843 0.478091
\(36\) 1.00000i 0.166667i
\(37\) −1.58579 1.58579i −0.260702 0.260702i 0.564637 0.825339i \(-0.309016\pi\)
−0.825339 + 0.564637i \(0.809016\pi\)
\(38\) 6.82843 1.10772
\(39\) −2.00000 2.00000i −0.320256 0.320256i
\(40\) −0.414214 + 0.414214i −0.0654929 + 0.0654929i
\(41\) −2.17157 + 2.17157i −0.339143 + 0.339143i −0.856045 0.516902i \(-0.827085\pi\)
0.516902 + 0.856045i \(0.327085\pi\)
\(42\) 4.82843i 0.745042i
\(43\) 1.65685i 0.252668i 0.991988 + 0.126334i \(0.0403211\pi\)
−0.991988 + 0.126334i \(0.959679\pi\)
\(44\) 2.82843 2.82843i 0.426401 0.426401i
\(45\) −0.414214 + 0.414214i −0.0617473 + 0.0617473i
\(46\) 2.24264 + 2.24264i 0.330659 + 0.330659i
\(47\) 12.4853 1.82117 0.910583 0.413327i \(-0.135633\pi\)
0.910583 + 0.413327i \(0.135633\pi\)
\(48\) 0.707107 + 0.707107i 0.102062 + 0.102062i
\(49\) 16.3137i 2.33053i
\(50\) −4.65685 −0.658579
\(51\) −0.121320 4.12132i −0.0169882 0.577100i
\(52\) 2.82843 0.392232
\(53\) 2.82843i 0.388514i −0.980951 0.194257i \(-0.937770\pi\)
0.980951 0.194257i \(-0.0622296\pi\)
\(54\) 0.707107 + 0.707107i 0.0962250 + 0.0962250i
\(55\) −2.34315 −0.315950
\(56\) 3.41421 + 3.41421i 0.456243 + 0.456243i
\(57\) −4.82843 + 4.82843i −0.639541 + 0.639541i
\(58\) −0.414214 + 0.414214i −0.0543889 + 0.0543889i
\(59\) 12.4853i 1.62545i −0.582651 0.812723i \(-0.697984\pi\)
0.582651 0.812723i \(-0.302016\pi\)
\(60\) 0.585786i 0.0756247i
\(61\) 0.757359 0.757359i 0.0969699 0.0969699i −0.656958 0.753928i \(-0.728157\pi\)
0.753928 + 0.656958i \(0.228157\pi\)
\(62\) 0.585786 0.585786i 0.0743950 0.0743950i
\(63\) 3.41421 + 3.41421i 0.430150 + 0.430150i
\(64\) −1.00000 −0.125000
\(65\) −1.17157 1.17157i −0.145316 0.145316i
\(66\) 4.00000i 0.492366i
\(67\) 1.17157 0.143130 0.0715652 0.997436i \(-0.477201\pi\)
0.0715652 + 0.997436i \(0.477201\pi\)
\(68\) 3.00000 + 2.82843i 0.363803 + 0.342997i
\(69\) −3.17157 −0.381813
\(70\) 2.82843i 0.338062i
\(71\) 4.58579 + 4.58579i 0.544233 + 0.544233i 0.924767 0.380534i \(-0.124260\pi\)
−0.380534 + 0.924767i \(0.624260\pi\)
\(72\) −1.00000 −0.117851
\(73\) 6.65685 + 6.65685i 0.779126 + 0.779126i 0.979682 0.200556i \(-0.0642750\pi\)
−0.200556 + 0.979682i \(0.564275\pi\)
\(74\) −1.58579 + 1.58579i −0.184344 + 0.184344i
\(75\) 3.29289 3.29289i 0.380231 0.380231i
\(76\) 6.82843i 0.783274i
\(77\) 19.3137i 2.20100i
\(78\) −2.00000 + 2.00000i −0.226455 + 0.226455i
\(79\) −10.2426 + 10.2426i −1.15239 + 1.15239i −0.166314 + 0.986073i \(0.553187\pi\)
−0.986073 + 0.166314i \(0.946813\pi\)
\(80\) 0.414214 + 0.414214i 0.0463105 + 0.0463105i
\(81\) −1.00000 −0.111111
\(82\) 2.17157 + 2.17157i 0.239810 + 0.239810i
\(83\) 4.48528i 0.492324i −0.969229 0.246162i \(-0.920831\pi\)
0.969229 0.246162i \(-0.0791695\pi\)
\(84\) −4.82843 −0.526825
\(85\) −0.0710678 2.41421i −0.00770839 0.261858i
\(86\) 1.65685 0.178663
\(87\) 0.585786i 0.0628029i
\(88\) −2.82843 2.82843i −0.301511 0.301511i
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0.414214 + 0.414214i 0.0436619 + 0.0436619i
\(91\) −9.65685 + 9.65685i −1.01231 + 1.01231i
\(92\) 2.24264 2.24264i 0.233811 0.233811i
\(93\) 0.828427i 0.0859039i
\(94\) 12.4853i 1.28776i
\(95\) −2.82843 + 2.82843i −0.290191 + 0.290191i
\(96\) 0.707107 0.707107i 0.0721688 0.0721688i
\(97\) −9.48528 9.48528i −0.963084 0.963084i 0.0362581 0.999342i \(-0.488456\pi\)
−0.999342 + 0.0362581i \(0.988456\pi\)
\(98\) −16.3137 −1.64793
\(99\) −2.82843 2.82843i −0.284268 0.284268i
\(100\) 4.65685i 0.465685i
\(101\) 5.17157 0.514591 0.257295 0.966333i \(-0.417169\pi\)
0.257295 + 0.966333i \(0.417169\pi\)
\(102\) −4.12132 + 0.121320i −0.408072 + 0.0120125i
\(103\) 14.8284 1.46109 0.730544 0.682865i \(-0.239266\pi\)
0.730544 + 0.682865i \(0.239266\pi\)
\(104\) 2.82843i 0.277350i
\(105\) 2.00000 + 2.00000i 0.195180 + 0.195180i
\(106\) −2.82843 −0.274721
\(107\) 9.65685 + 9.65685i 0.933563 + 0.933563i 0.997927 0.0643632i \(-0.0205016\pi\)
−0.0643632 + 0.997927i \(0.520502\pi\)
\(108\) 0.707107 0.707107i 0.0680414 0.0680414i
\(109\) −2.75736 + 2.75736i −0.264107 + 0.264107i −0.826720 0.562613i \(-0.809796\pi\)
0.562613 + 0.826720i \(0.309796\pi\)
\(110\) 2.34315i 0.223410i
\(111\) 2.24264i 0.212862i
\(112\) 3.41421 3.41421i 0.322613 0.322613i
\(113\) 9.00000 9.00000i 0.846649 0.846649i −0.143065 0.989713i \(-0.545696\pi\)
0.989713 + 0.143065i \(0.0456957\pi\)
\(114\) 4.82843 + 4.82843i 0.452224 + 0.452224i
\(115\) −1.85786 −0.173247
\(116\) 0.414214 + 0.414214i 0.0384588 + 0.0384588i
\(117\) 2.82843i 0.261488i
\(118\) −12.4853 −1.14936
\(119\) −19.8995 + 0.585786i −1.82418 + 0.0536990i
\(120\) −0.585786 −0.0534747
\(121\) 5.00000i 0.454545i
\(122\) −0.757359 0.757359i −0.0685681 0.0685681i
\(123\) −3.07107 −0.276909
\(124\) −0.585786 0.585786i −0.0526052 0.0526052i
\(125\) 4.00000 4.00000i 0.357771 0.357771i
\(126\) 3.41421 3.41421i 0.304162 0.304162i
\(127\) 13.6569i 1.21185i 0.795522 + 0.605925i \(0.207197\pi\)
−0.795522 + 0.605925i \(0.792803\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −1.17157 + 1.17157i −0.103151 + 0.103151i
\(130\) −1.17157 + 1.17157i −0.102754 + 0.102754i
\(131\) −13.6569 13.6569i −1.19320 1.19320i −0.976162 0.217043i \(-0.930359\pi\)
−0.217043 0.976162i \(-0.569641\pi\)
\(132\) 4.00000 0.348155
\(133\) 23.3137 + 23.3137i 2.02155 + 2.02155i
\(134\) 1.17157i 0.101208i
\(135\) −0.585786 −0.0504165
\(136\) 2.82843 3.00000i 0.242536 0.257248i
\(137\) −17.6569 −1.50853 −0.754263 0.656572i \(-0.772006\pi\)
−0.754263 + 0.656572i \(0.772006\pi\)
\(138\) 3.17157i 0.269982i
\(139\) 4.48528 + 4.48528i 0.380437 + 0.380437i 0.871259 0.490823i \(-0.163304\pi\)
−0.490823 + 0.871259i \(0.663304\pi\)
\(140\) −2.82843 −0.239046
\(141\) 8.82843 + 8.82843i 0.743488 + 0.743488i
\(142\) 4.58579 4.58579i 0.384831 0.384831i
\(143\) 8.00000 8.00000i 0.668994 0.668994i
\(144\) 1.00000i 0.0833333i
\(145\) 0.343146i 0.0284967i
\(146\) 6.65685 6.65685i 0.550925 0.550925i
\(147\) 11.5355 11.5355i 0.951435 0.951435i
\(148\) 1.58579 + 1.58579i 0.130351 + 0.130351i
\(149\) 10.0000 0.819232 0.409616 0.912258i \(-0.365663\pi\)
0.409616 + 0.912258i \(0.365663\pi\)
\(150\) −3.29289 3.29289i −0.268864 0.268864i
\(151\) 13.6569i 1.11138i −0.831390 0.555690i \(-0.812454\pi\)
0.831390 0.555690i \(-0.187546\pi\)
\(152\) −6.82843 −0.553859
\(153\) 2.82843 3.00000i 0.228665 0.242536i
\(154\) 19.3137 1.55634
\(155\) 0.485281i 0.0389787i
\(156\) 2.00000 + 2.00000i 0.160128 + 0.160128i
\(157\) 6.00000 0.478852 0.239426 0.970915i \(-0.423041\pi\)
0.239426 + 0.970915i \(0.423041\pi\)
\(158\) 10.2426 + 10.2426i 0.814861 + 0.814861i
\(159\) 2.00000 2.00000i 0.158610 0.158610i
\(160\) 0.414214 0.414214i 0.0327465 0.0327465i
\(161\) 15.3137i 1.20689i
\(162\) 1.00000i 0.0785674i
\(163\) 1.65685 1.65685i 0.129775 0.129775i −0.639236 0.769011i \(-0.720749\pi\)
0.769011 + 0.639236i \(0.220749\pi\)
\(164\) 2.17157 2.17157i 0.169571 0.169571i
\(165\) −1.65685 1.65685i −0.128986 0.128986i
\(166\) −4.48528 −0.348125
\(167\) −15.4142 15.4142i −1.19279 1.19279i −0.976281 0.216506i \(-0.930534\pi\)
−0.216506 0.976281i \(-0.569466\pi\)
\(168\) 4.82843i 0.372521i
\(169\) −5.00000 −0.384615
\(170\) −2.41421 + 0.0710678i −0.185162 + 0.00545065i
\(171\) −6.82843 −0.522183
\(172\) 1.65685i 0.126334i
\(173\) 2.89949 + 2.89949i 0.220445 + 0.220445i 0.808686 0.588241i \(-0.200179\pi\)
−0.588241 + 0.808686i \(0.700179\pi\)
\(174\) −0.585786 −0.0444084
\(175\) −15.8995 15.8995i −1.20189 1.20189i
\(176\) −2.82843 + 2.82843i −0.213201 + 0.213201i
\(177\) 8.82843 8.82843i 0.663585 0.663585i
\(178\) 0 0
\(179\) 12.9706i 0.969465i −0.874662 0.484733i \(-0.838917\pi\)
0.874662 0.484733i \(-0.161083\pi\)
\(180\) 0.414214 0.414214i 0.0308737 0.0308737i
\(181\) −5.58579 + 5.58579i −0.415188 + 0.415188i −0.883541 0.468353i \(-0.844848\pi\)
0.468353 + 0.883541i \(0.344848\pi\)
\(182\) 9.65685 + 9.65685i 0.715814 + 0.715814i
\(183\) 1.07107 0.0791756
\(184\) −2.24264 2.24264i −0.165330 0.165330i
\(185\) 1.31371i 0.0965858i
\(186\) 0.828427 0.0607432
\(187\) 16.4853 0.485281i 1.20552 0.0354873i
\(188\) −12.4853 −0.910583
\(189\) 4.82843i 0.351216i
\(190\) 2.82843 + 2.82843i 0.205196 + 0.205196i
\(191\) 1.17157 0.0847720 0.0423860 0.999101i \(-0.486504\pi\)
0.0423860 + 0.999101i \(0.486504\pi\)
\(192\) −0.707107 0.707107i −0.0510310 0.0510310i
\(193\) −4.17157 + 4.17157i −0.300276 + 0.300276i −0.841122 0.540846i \(-0.818104\pi\)
0.540846 + 0.841122i \(0.318104\pi\)
\(194\) −9.48528 + 9.48528i −0.681004 + 0.681004i
\(195\) 1.65685i 0.118650i
\(196\) 16.3137i 1.16526i
\(197\) −7.24264 + 7.24264i −0.516017 + 0.516017i −0.916364 0.400347i \(-0.868890\pi\)
0.400347 + 0.916364i \(0.368890\pi\)
\(198\) −2.82843 + 2.82843i −0.201008 + 0.201008i
\(199\) −0.585786 0.585786i −0.0415253 0.0415253i 0.686039 0.727565i \(-0.259348\pi\)
−0.727565 + 0.686039i \(0.759348\pi\)
\(200\) 4.65685 0.329289
\(201\) 0.828427 + 0.828427i 0.0584327 + 0.0584327i
\(202\) 5.17157i 0.363871i
\(203\) −2.82843 −0.198517
\(204\) 0.121320 + 4.12132i 0.00849412 + 0.288550i
\(205\) −1.79899 −0.125647
\(206\) 14.8284i 1.03315i
\(207\) −2.24264 2.24264i −0.155874 0.155874i
\(208\) −2.82843 −0.196116
\(209\) −19.3137 19.3137i −1.33596 1.33596i
\(210\) 2.00000 2.00000i 0.138013 0.138013i
\(211\) −20.4853 + 20.4853i −1.41026 + 1.41026i −0.652329 + 0.757936i \(0.726208\pi\)
−0.757936 + 0.652329i \(0.773792\pi\)
\(212\) 2.82843i 0.194257i
\(213\) 6.48528i 0.444364i
\(214\) 9.65685 9.65685i 0.660129 0.660129i
\(215\) −0.686292 + 0.686292i −0.0468047 + 0.0468047i
\(216\) −0.707107 0.707107i −0.0481125 0.0481125i
\(217\) 4.00000 0.271538
\(218\) 2.75736 + 2.75736i 0.186752 + 0.186752i
\(219\) 9.41421i 0.636154i
\(220\) 2.34315 0.157975
\(221\) 8.48528 + 8.00000i 0.570782 + 0.538138i
\(222\) −2.24264 −0.150516
\(223\) 6.82843i 0.457265i −0.973513 0.228633i \(-0.926575\pi\)
0.973513 0.228633i \(-0.0734255\pi\)
\(224\) −3.41421 3.41421i −0.228122 0.228122i
\(225\) 4.65685 0.310457
\(226\) −9.00000 9.00000i −0.598671 0.598671i
\(227\) −12.4853 + 12.4853i −0.828677 + 0.828677i −0.987334 0.158657i \(-0.949284\pi\)
0.158657 + 0.987334i \(0.449284\pi\)
\(228\) 4.82843 4.82843i 0.319770 0.319770i
\(229\) 14.0000i 0.925146i −0.886581 0.462573i \(-0.846926\pi\)
0.886581 0.462573i \(-0.153074\pi\)
\(230\) 1.85786i 0.122504i
\(231\) −13.6569 + 13.6569i −0.898555 + 0.898555i
\(232\) 0.414214 0.414214i 0.0271945 0.0271945i
\(233\) 9.00000 + 9.00000i 0.589610 + 0.589610i 0.937526 0.347916i \(-0.113111\pi\)
−0.347916 + 0.937526i \(0.613111\pi\)
\(234\) −2.82843 −0.184900
\(235\) 5.17157 + 5.17157i 0.337356 + 0.337356i
\(236\) 12.4853i 0.812723i
\(237\) −14.4853 −0.940920
\(238\) 0.585786 + 19.8995i 0.0379709 + 1.28989i
\(239\) 12.4853 0.807606 0.403803 0.914846i \(-0.367688\pi\)
0.403803 + 0.914846i \(0.367688\pi\)
\(240\) 0.585786i 0.0378124i
\(241\) −5.82843 5.82843i −0.375442 0.375442i 0.494013 0.869455i \(-0.335530\pi\)
−0.869455 + 0.494013i \(0.835530\pi\)
\(242\) −5.00000 −0.321412
\(243\) −0.707107 0.707107i −0.0453609 0.0453609i
\(244\) −0.757359 + 0.757359i −0.0484850 + 0.0484850i
\(245\) 6.75736 6.75736i 0.431712 0.431712i
\(246\) 3.07107i 0.195804i
\(247\) 19.3137i 1.22890i
\(248\) −0.585786 + 0.585786i −0.0371975 + 0.0371975i
\(249\) 3.17157 3.17157i 0.200990 0.200990i
\(250\) −4.00000 4.00000i −0.252982 0.252982i
\(251\) 17.6569 1.11449 0.557245 0.830348i \(-0.311858\pi\)
0.557245 + 0.830348i \(0.311858\pi\)
\(252\) −3.41421 3.41421i −0.215075 0.215075i
\(253\) 12.6863i 0.797580i
\(254\) 13.6569 0.856907
\(255\) 1.65685 1.75736i 0.103756 0.110050i
\(256\) 1.00000 0.0625000
\(257\) 29.3137i 1.82854i 0.405107 + 0.914269i \(0.367234\pi\)
−0.405107 + 0.914269i \(0.632766\pi\)
\(258\) 1.17157 + 1.17157i 0.0729389 + 0.0729389i
\(259\) −10.8284 −0.672846
\(260\) 1.17157 + 1.17157i 0.0726579 + 0.0726579i
\(261\) 0.414214 0.414214i 0.0256392 0.0256392i
\(262\) −13.6569 + 13.6569i −0.843723 + 0.843723i
\(263\) 10.1421i 0.625391i 0.949853 + 0.312695i \(0.101232\pi\)
−0.949853 + 0.312695i \(0.898768\pi\)
\(264\) 4.00000i 0.246183i
\(265\) 1.17157 1.17157i 0.0719691 0.0719691i
\(266\) 23.3137 23.3137i 1.42946 1.42946i
\(267\) 0 0
\(268\) −1.17157 −0.0715652
\(269\) −3.58579 3.58579i −0.218629 0.218629i 0.589291 0.807921i \(-0.299407\pi\)
−0.807921 + 0.589291i \(0.799407\pi\)
\(270\) 0.585786i 0.0356498i
\(271\) 21.6569 1.31556 0.657780 0.753210i \(-0.271496\pi\)
0.657780 + 0.753210i \(0.271496\pi\)
\(272\) −3.00000 2.82843i −0.181902 0.171499i
\(273\) −13.6569 −0.826550
\(274\) 17.6569i 1.06669i
\(275\) 13.1716 + 13.1716i 0.794276 + 0.794276i
\(276\) 3.17157 0.190906
\(277\) −6.89949 6.89949i −0.414550 0.414550i 0.468770 0.883320i \(-0.344697\pi\)
−0.883320 + 0.468770i \(0.844697\pi\)
\(278\) 4.48528 4.48528i 0.269009 0.269009i
\(279\) −0.585786 + 0.585786i −0.0350701 + 0.0350701i
\(280\) 2.82843i 0.169031i
\(281\) 19.3137i 1.15216i −0.817394 0.576080i \(-0.804582\pi\)
0.817394 0.576080i \(-0.195418\pi\)
\(282\) 8.82843 8.82843i 0.525725 0.525725i
\(283\) 5.65685 5.65685i 0.336265 0.336265i −0.518695 0.854960i \(-0.673582\pi\)
0.854960 + 0.518695i \(0.173582\pi\)
\(284\) −4.58579 4.58579i −0.272116 0.272116i
\(285\) −4.00000 −0.236940
\(286\) −8.00000 8.00000i −0.473050 0.473050i
\(287\) 14.8284i 0.875294i
\(288\) 1.00000 0.0589256
\(289\) 1.00000 + 16.9706i 0.0588235 + 0.998268i
\(290\) −0.343146 −0.0201502
\(291\) 13.4142i 0.786355i
\(292\) −6.65685 6.65685i −0.389563 0.389563i
\(293\) 9.31371 0.544113 0.272056 0.962281i \(-0.412296\pi\)
0.272056 + 0.962281i \(0.412296\pi\)
\(294\) −11.5355 11.5355i −0.672766 0.672766i
\(295\) 5.17157 5.17157i 0.301101 0.301101i
\(296\) 1.58579 1.58579i 0.0921720 0.0921720i
\(297\) 4.00000i 0.232104i
\(298\) 10.0000i 0.579284i
\(299\) 6.34315 6.34315i 0.366834 0.366834i
\(300\) −3.29289 + 3.29289i −0.190115 + 0.190115i
\(301\) 5.65685 + 5.65685i 0.326056 + 0.326056i
\(302\) −13.6569 −0.785864
\(303\) 3.65685 + 3.65685i 0.210081 + 0.210081i
\(304\) 6.82843i 0.391637i
\(305\) 0.627417 0.0359258
\(306\) −3.00000 2.82843i −0.171499 0.161690i
\(307\) −6.34315 −0.362022 −0.181011 0.983481i \(-0.557937\pi\)
−0.181011 + 0.983481i \(0.557937\pi\)
\(308\) 19.3137i 1.10050i
\(309\) 10.4853 + 10.4853i 0.596487 + 0.596487i
\(310\) 0.485281 0.0275621
\(311\) 0.585786 + 0.585786i 0.0332169 + 0.0332169i 0.723520 0.690303i \(-0.242523\pi\)
−0.690303 + 0.723520i \(0.742523\pi\)
\(312\) 2.00000 2.00000i 0.113228 0.113228i
\(313\) 7.14214 7.14214i 0.403697 0.403697i −0.475836 0.879534i \(-0.657855\pi\)
0.879534 + 0.475836i \(0.157855\pi\)
\(314\) 6.00000i 0.338600i
\(315\) 2.82843i 0.159364i
\(316\) 10.2426 10.2426i 0.576194 0.576194i
\(317\) −15.2426 + 15.2426i −0.856112 + 0.856112i −0.990878 0.134766i \(-0.956972\pi\)
0.134766 + 0.990878i \(0.456972\pi\)
\(318\) −2.00000 2.00000i −0.112154 0.112154i
\(319\) 2.34315 0.131191
\(320\) −0.414214 0.414214i −0.0231552 0.0231552i
\(321\) 13.6569i 0.762251i
\(322\) 15.3137 0.853400
\(323\) 19.3137 20.4853i 1.07464 1.13983i
\(324\) 1.00000 0.0555556
\(325\) 13.1716i 0.730627i
\(326\) −1.65685 1.65685i −0.0917647 0.0917647i
\(327\) −3.89949 −0.215643
\(328\) −2.17157 2.17157i −0.119905 0.119905i
\(329\) 42.6274 42.6274i 2.35013 2.35013i
\(330\) −1.65685 + 1.65685i −0.0912068 + 0.0912068i
\(331\) 18.6274i 1.02386i 0.859029 + 0.511928i \(0.171068\pi\)
−0.859029 + 0.511928i \(0.828932\pi\)
\(332\) 4.48528i 0.246162i
\(333\) 1.58579 1.58579i 0.0869006 0.0869006i
\(334\) −15.4142 + 15.4142i −0.843428 + 0.843428i
\(335\) 0.485281 + 0.485281i 0.0265138 + 0.0265138i
\(336\) 4.82843 0.263412
\(337\) 9.00000 + 9.00000i 0.490261 + 0.490261i 0.908388 0.418127i \(-0.137313\pi\)
−0.418127 + 0.908388i \(0.637313\pi\)
\(338\) 5.00000i 0.271964i
\(339\) 12.7279 0.691286
\(340\) 0.0710678 + 2.41421i 0.00385419 + 0.130929i
\(341\) −3.31371 −0.179447
\(342\) 6.82843i 0.369239i
\(343\) −31.7990 31.7990i −1.71698 1.71698i
\(344\) −1.65685 −0.0893316
\(345\) −1.31371 1.31371i −0.0707277 0.0707277i
\(346\) 2.89949 2.89949i 0.155878 0.155878i
\(347\) −8.00000 + 8.00000i −0.429463 + 0.429463i −0.888445 0.458983i \(-0.848214\pi\)
0.458983 + 0.888445i \(0.348214\pi\)
\(348\) 0.585786i 0.0314014i
\(349\) 10.8284i 0.579632i −0.957082 0.289816i \(-0.906406\pi\)
0.957082 0.289816i \(-0.0935942\pi\)
\(350\) −15.8995 + 15.8995i −0.849864 + 0.849864i
\(351\) 2.00000 2.00000i 0.106752 0.106752i
\(352\) 2.82843 + 2.82843i 0.150756 + 0.150756i
\(353\) −12.6274 −0.672090 −0.336045 0.941846i \(-0.609089\pi\)
−0.336045 + 0.941846i \(0.609089\pi\)
\(354\) −8.82843 8.82843i −0.469226 0.469226i
\(355\) 3.79899i 0.201629i
\(356\) 0 0
\(357\) −14.4853 13.6569i −0.766642 0.722797i
\(358\) −12.9706 −0.685516
\(359\) 16.0000i 0.844448i 0.906492 + 0.422224i \(0.138750\pi\)
−0.906492 + 0.422224i \(0.861250\pi\)
\(360\) −0.414214 0.414214i −0.0218310 0.0218310i
\(361\) −27.6274 −1.45407
\(362\) 5.58579 + 5.58579i 0.293582 + 0.293582i
\(363\) 3.53553 3.53553i 0.185567 0.185567i
\(364\) 9.65685 9.65685i 0.506157 0.506157i
\(365\) 5.51472i 0.288654i
\(366\) 1.07107i 0.0559856i
\(367\) −12.3848 + 12.3848i −0.646480 + 0.646480i −0.952141 0.305661i \(-0.901123\pi\)
0.305661 + 0.952141i \(0.401123\pi\)
\(368\) −2.24264 + 2.24264i −0.116906 + 0.116906i
\(369\) −2.17157 2.17157i −0.113048 0.113048i
\(370\) −1.31371 −0.0682965
\(371\) −9.65685 9.65685i −0.501359 0.501359i
\(372\) 0.828427i 0.0429519i
\(373\) 19.7990 1.02515 0.512576 0.858642i \(-0.328691\pi\)
0.512576 + 0.858642i \(0.328691\pi\)
\(374\) −0.485281 16.4853i −0.0250933 0.852434i
\(375\) 5.65685 0.292119
\(376\) 12.4853i 0.643879i
\(377\) 1.17157 + 1.17157i 0.0603391 + 0.0603391i
\(378\) 4.82843 0.248347
\(379\) 17.6569 + 17.6569i 0.906972 + 0.906972i 0.996027 0.0890550i \(-0.0283847\pi\)
−0.0890550 + 0.996027i \(0.528385\pi\)
\(380\) 2.82843 2.82843i 0.145095 0.145095i
\(381\) −9.65685 + 9.65685i −0.494736 + 0.494736i
\(382\) 1.17157i 0.0599429i
\(383\) 23.7990i 1.21607i 0.793910 + 0.608036i \(0.208042\pi\)
−0.793910 + 0.608036i \(0.791958\pi\)
\(384\) −0.707107 + 0.707107i −0.0360844 + 0.0360844i
\(385\) −8.00000 + 8.00000i −0.407718 + 0.407718i
\(386\) 4.17157 + 4.17157i 0.212327 + 0.212327i
\(387\) −1.65685 −0.0842226
\(388\) 9.48528 + 9.48528i 0.481542 + 0.481542i
\(389\) 36.6274i 1.85708i 0.371228 + 0.928542i \(0.378937\pi\)
−0.371228 + 0.928542i \(0.621063\pi\)
\(390\) −1.65685 −0.0838981
\(391\) 13.0711 0.384776i 0.661032 0.0194590i
\(392\) 16.3137 0.823967
\(393\) 19.3137i 0.974248i
\(394\) 7.24264 + 7.24264i 0.364879 + 0.364879i
\(395\) −8.48528 −0.426941
\(396\) 2.82843 + 2.82843i 0.142134 + 0.142134i
\(397\) 23.3848 23.3848i 1.17365 1.17365i 0.192315 0.981333i \(-0.438400\pi\)
0.981333 0.192315i \(-0.0615995\pi\)
\(398\) −0.585786 + 0.585786i −0.0293628 + 0.0293628i
\(399\) 32.9706i 1.65059i
\(400\) 4.65685i 0.232843i
\(401\) −6.17157 + 6.17157i −0.308194 + 0.308194i −0.844209 0.536015i \(-0.819929\pi\)
0.536015 + 0.844209i \(0.319929\pi\)
\(402\) 0.828427 0.828427i 0.0413182 0.0413182i
\(403\) −1.65685 1.65685i −0.0825338 0.0825338i
\(404\) −5.17157 −0.257295
\(405\) −0.414214 0.414214i −0.0205824 0.0205824i
\(406\) 2.82843i 0.140372i
\(407\) 8.97056 0.444654
\(408\) 4.12132 0.121320i 0.204036 0.00600625i
\(409\) −14.0000 −0.692255 −0.346128 0.938187i \(-0.612504\pi\)
−0.346128 + 0.938187i \(0.612504\pi\)
\(410\) 1.79899i 0.0888458i
\(411\) −12.4853 12.4853i −0.615854 0.615854i
\(412\) −14.8284 −0.730544
\(413\) −42.6274 42.6274i −2.09756 2.09756i
\(414\) −2.24264 + 2.24264i −0.110220 + 0.110220i
\(415\) 1.85786 1.85786i 0.0911990 0.0911990i
\(416\) 2.82843i 0.138675i
\(417\) 6.34315i 0.310625i
\(418\) −19.3137 + 19.3137i −0.944664 + 0.944664i
\(419\) 1.17157 1.17157i 0.0572351 0.0572351i −0.677910 0.735145i \(-0.737114\pi\)
0.735145 + 0.677910i \(0.237114\pi\)
\(420\) −2.00000 2.00000i −0.0975900 0.0975900i
\(421\) −15.5147 −0.756141 −0.378071 0.925777i \(-0.623412\pi\)
−0.378071 + 0.925777i \(0.623412\pi\)
\(422\) 20.4853 + 20.4853i 0.997208 + 0.997208i
\(423\) 12.4853i 0.607055i
\(424\) 2.82843 0.137361
\(425\) −13.1716 + 13.9706i −0.638915 + 0.677672i
\(426\) 6.48528 0.314213
\(427\) 5.17157i 0.250270i
\(428\) −9.65685 9.65685i −0.466782 0.466782i
\(429\) 11.3137 0.546231
\(430\) 0.686292 + 0.686292i 0.0330959 + 0.0330959i
\(431\) −14.2426 + 14.2426i −0.686044 + 0.686044i −0.961355 0.275311i \(-0.911219\pi\)
0.275311 + 0.961355i \(0.411219\pi\)
\(432\) −0.707107 + 0.707107i −0.0340207 + 0.0340207i
\(433\) 16.6274i 0.799063i −0.916720 0.399531i \(-0.869173\pi\)
0.916720 0.399531i \(-0.130827\pi\)
\(434\) 4.00000i 0.192006i
\(435\) 0.242641 0.242641i 0.0116337 0.0116337i
\(436\) 2.75736 2.75736i 0.132054 0.132054i
\(437\) −15.3137 15.3137i −0.732554 0.732554i
\(438\) 9.41421 0.449829
\(439\) −9.55635 9.55635i −0.456100 0.456100i 0.441273 0.897373i \(-0.354527\pi\)
−0.897373 + 0.441273i \(0.854527\pi\)
\(440\) 2.34315i 0.111705i
\(441\) 16.3137 0.776843
\(442\) 8.00000 8.48528i 0.380521 0.403604i
\(443\) −28.9706 −1.37643 −0.688216 0.725505i \(-0.741606\pi\)
−0.688216 + 0.725505i \(0.741606\pi\)
\(444\) 2.24264i 0.106431i
\(445\) 0 0
\(446\) −6.82843 −0.323335
\(447\) 7.07107 + 7.07107i 0.334450 + 0.334450i
\(448\) −3.41421 + 3.41421i −0.161306 + 0.161306i
\(449\) 8.51472 8.51472i 0.401834 0.401834i −0.477045 0.878879i \(-0.658292\pi\)
0.878879 + 0.477045i \(0.158292\pi\)
\(450\) 4.65685i 0.219526i
\(451\) 12.2843i 0.578444i
\(452\) −9.00000 + 9.00000i −0.423324 + 0.423324i
\(453\) 9.65685 9.65685i 0.453719 0.453719i
\(454\) 12.4853 + 12.4853i 0.585963 + 0.585963i
\(455\) −8.00000 −0.375046
\(456\) −4.82843 4.82843i −0.226112 0.226112i
\(457\) 2.68629i 0.125659i 0.998024 + 0.0628297i \(0.0200125\pi\)
−0.998024 + 0.0628297i \(0.979988\pi\)
\(458\) −14.0000 −0.654177
\(459\) 4.12132 0.121320i 0.192367 0.00566275i
\(460\) 1.85786 0.0866234
\(461\) 25.4558i 1.18560i −0.805351 0.592798i \(-0.798023\pi\)
0.805351 0.592798i \(-0.201977\pi\)
\(462\) 13.6569 + 13.6569i 0.635374 + 0.635374i
\(463\) 6.82843 0.317344 0.158672 0.987331i \(-0.449279\pi\)
0.158672 + 0.987331i \(0.449279\pi\)
\(464\) −0.414214 0.414214i −0.0192294 0.0192294i
\(465\) −0.343146 + 0.343146i −0.0159130 + 0.0159130i
\(466\) 9.00000 9.00000i 0.416917 0.416917i
\(467\) 28.0000i 1.29569i −0.761774 0.647843i \(-0.775671\pi\)
0.761774 0.647843i \(-0.224329\pi\)
\(468\) 2.82843i 0.130744i
\(469\) 4.00000 4.00000i 0.184703 0.184703i
\(470\) 5.17157 5.17157i 0.238547 0.238547i
\(471\) 4.24264 + 4.24264i 0.195491 + 0.195491i
\(472\) 12.4853 0.574682
\(473\) −4.68629 4.68629i −0.215476 0.215476i
\(474\) 14.4853i 0.665331i
\(475\) 31.7990 1.45904
\(476\) 19.8995 0.585786i 0.912092 0.0268495i
\(477\) 2.82843 0.129505
\(478\) 12.4853i 0.571063i
\(479\) −5.07107 5.07107i −0.231703 0.231703i 0.581700 0.813403i \(-0.302388\pi\)
−0.813403 + 0.581700i \(0.802388\pi\)
\(480\) 0.585786 0.0267374
\(481\) 4.48528 + 4.48528i 0.204511 + 0.204511i
\(482\) −5.82843 + 5.82843i −0.265478 + 0.265478i
\(483\) −10.8284 + 10.8284i −0.492710 + 0.492710i
\(484\) 5.00000i 0.227273i
\(485\) 7.85786i 0.356807i
\(486\) −0.707107 + 0.707107i −0.0320750 + 0.0320750i
\(487\) 29.0711 29.0711i 1.31734 1.31734i 0.401459 0.915877i \(-0.368503\pi\)
0.915877 0.401459i \(-0.131497\pi\)
\(488\) 0.757359 + 0.757359i 0.0342840 + 0.0342840i
\(489\) 2.34315 0.105961
\(490\) −6.75736 6.75736i −0.305266 0.305266i
\(491\) 16.2843i 0.734899i 0.930043 + 0.367449i \(0.119769\pi\)
−0.930043 + 0.367449i \(0.880231\pi\)
\(492\) 3.07107 0.138454
\(493\) 0.0710678 + 2.41421i 0.00320073 + 0.108731i
\(494\) −19.3137 −0.868965
\(495\) 2.34315i 0.105317i
\(496\) 0.585786 + 0.585786i 0.0263026 + 0.0263026i
\(497\) 31.3137 1.40461
\(498\) −3.17157 3.17157i −0.142122 0.142122i
\(499\) −17.6569 + 17.6569i −0.790429 + 0.790429i −0.981564 0.191135i \(-0.938783\pi\)
0.191135 + 0.981564i \(0.438783\pi\)
\(500\) −4.00000 + 4.00000i −0.178885 + 0.178885i
\(501\) 21.7990i 0.973907i
\(502\) 17.6569i 0.788064i
\(503\) 6.72792 6.72792i 0.299983 0.299983i −0.541024 0.841007i \(-0.681963\pi\)
0.841007 + 0.541024i \(0.181963\pi\)
\(504\) −3.41421 + 3.41421i −0.152081 + 0.152081i
\(505\) 2.14214 + 2.14214i 0.0953238 + 0.0953238i
\(506\) −12.6863 −0.563974
\(507\) −3.53553 3.53553i −0.157019 0.157019i
\(508\) 13.6569i 0.605925i
\(509\) 2.68629 0.119068 0.0595339 0.998226i \(-0.481039\pi\)
0.0595339 + 0.998226i \(0.481039\pi\)
\(510\) −1.75736 1.65685i −0.0778172 0.0733667i
\(511\) 45.4558 2.01085
\(512\) 1.00000i 0.0441942i
\(513\) −4.82843 4.82843i −0.213180 0.213180i
\(514\) 29.3137 1.29297
\(515\) 6.14214 + 6.14214i 0.270655 + 0.270655i
\(516\) 1.17157 1.17157i 0.0515756 0.0515756i
\(517\) −35.3137 + 35.3137i −1.55310 + 1.55310i
\(518\) 10.8284i 0.475774i
\(519\) 4.10051i 0.179992i
\(520\) 1.17157 1.17157i 0.0513769 0.0513769i
\(521\) −5.48528 + 5.48528i −0.240315 + 0.240315i −0.816980 0.576666i \(-0.804354\pi\)
0.576666 + 0.816980i \(0.304354\pi\)
\(522\) −0.414214 0.414214i −0.0181296 0.0181296i
\(523\) −18.1421 −0.793300 −0.396650 0.917970i \(-0.629827\pi\)
−0.396650 + 0.917970i \(0.629827\pi\)
\(524\) 13.6569 + 13.6569i 0.596602 + 0.596602i
\(525\) 22.4853i 0.981338i
\(526\) 10.1421 0.442218
\(527\) −0.100505 3.41421i −0.00437807 0.148725i
\(528\) −4.00000 −0.174078
\(529\) 12.9411i 0.562658i
\(530\) −1.17157 1.17157i −0.0508899 0.0508899i
\(531\) 12.4853 0.541815
\(532\) −23.3137 23.3137i −1.01078 1.01078i
\(533\) 6.14214 6.14214i 0.266045 0.266045i
\(534\) 0 0
\(535\) 8.00000i 0.345870i
\(536\) 1.17157i 0.0506042i
\(537\) 9.17157 9.17157i 0.395783 0.395783i
\(538\) −3.58579 + 3.58579i −0.154594 + 0.154594i
\(539\) 46.1421 + 46.1421i 1.98748 + 1.98748i
\(540\) 0.585786 0.0252082
\(541\) −12.8995 12.8995i −0.554593 0.554593i 0.373170 0.927763i \(-0.378271\pi\)
−0.927763 + 0.373170i \(0.878271\pi\)
\(542\) 21.6569i 0.930242i
\(543\) −7.89949 −0.339000
\(544\) −2.82843 + 3.00000i −0.121268 + 0.128624i
\(545\) −2.28427 −0.0978474
\(546\) 13.6569i 0.584459i
\(547\) −13.1716 13.1716i −0.563176 0.563176i 0.367032 0.930208i \(-0.380374\pi\)
−0.930208 + 0.367032i \(0.880374\pi\)
\(548\) 17.6569 0.754263
\(549\) 0.757359 + 0.757359i 0.0323233 + 0.0323233i
\(550\) 13.1716 13.1716i 0.561638 0.561638i
\(551\) 2.82843 2.82843i 0.120495 0.120495i
\(552\) 3.17157i 0.134991i
\(553\) 69.9411i 2.97420i
\(554\) −6.89949 + 6.89949i −0.293131 + 0.293131i
\(555\) 0.928932 0.928932i 0.0394310 0.0394310i
\(556\) −4.48528 4.48528i −0.190218 0.190218i
\(557\) 8.48528 0.359533 0.179766 0.983709i \(-0.442466\pi\)
0.179766 + 0.983709i \(0.442466\pi\)
\(558\) 0.585786 + 0.585786i 0.0247983 + 0.0247983i
\(559\) 4.68629i 0.198209i
\(560\) 2.82843 0.119523
\(561\) 12.0000 + 11.3137i 0.506640 + 0.477665i
\(562\) −19.3137 −0.814700
\(563\) 3.51472i 0.148128i 0.997254 + 0.0740639i \(0.0235969\pi\)
−0.997254 + 0.0740639i \(0.976403\pi\)
\(564\) −8.82843 8.82843i −0.371744 0.371744i
\(565\) 7.45584 0.313670
\(566\) −5.65685 5.65685i −0.237775 0.237775i
\(567\) −3.41421 + 3.41421i −0.143383 + 0.143383i
\(568\) −4.58579 + 4.58579i −0.192415 + 0.192415i
\(569\) 12.9706i 0.543754i −0.962332 0.271877i \(-0.912356\pi\)
0.962332 0.271877i \(-0.0876444\pi\)
\(570\) 4.00000i 0.167542i
\(571\) 6.14214 6.14214i 0.257040 0.257040i −0.566809 0.823849i \(-0.691822\pi\)
0.823849 + 0.566809i \(0.191822\pi\)
\(572\) −8.00000 + 8.00000i −0.334497 + 0.334497i
\(573\) 0.828427 + 0.828427i 0.0346080 + 0.0346080i
\(574\) 14.8284 0.618927
\(575\) 10.4437 + 10.4437i 0.435530 + 0.435530i
\(576\) 1.00000i 0.0416667i
\(577\) −3.31371 −0.137951 −0.0689757 0.997618i \(-0.521973\pi\)
−0.0689757 + 0.997618i \(0.521973\pi\)
\(578\) 16.9706 1.00000i 0.705882 0.0415945i
\(579\) −5.89949 −0.245175
\(580\) 0.343146i 0.0142484i
\(581\) −15.3137 15.3137i −0.635320 0.635320i
\(582\) −13.4142 −0.556037
\(583\) 8.00000 + 8.00000i 0.331326 + 0.331326i
\(584\) −6.65685 + 6.65685i −0.275463 + 0.275463i
\(585\) 1.17157 1.17157i 0.0484386 0.0484386i
\(586\) 9.31371i 0.384746i
\(587\) 36.9706i 1.52594i −0.646435 0.762969i \(-0.723741\pi\)
0.646435 0.762969i \(-0.276259\pi\)
\(588\) −11.5355 + 11.5355i −0.475717 + 0.475717i
\(589\) −4.00000 + 4.00000i −0.164817 + 0.164817i
\(590\) −5.17157 5.17157i −0.212910 0.212910i
\(591\) −10.2426 −0.421326
\(592\) −1.58579 1.58579i −0.0651754 0.0651754i
\(593\) 4.00000i 0.164260i −0.996622 0.0821302i \(-0.973828\pi\)
0.996622 0.0821302i \(-0.0261723\pi\)
\(594\) −4.00000 −0.164122
\(595\) −8.48528 8.00000i −0.347863 0.327968i
\(596\) −10.0000 −0.409616
\(597\) 0.828427i 0.0339053i
\(598\) −6.34315 6.34315i −0.259391 0.259391i
\(599\) −30.6274 −1.25140 −0.625701 0.780063i \(-0.715187\pi\)
−0.625701 + 0.780063i \(0.715187\pi\)
\(600\) 3.29289 + 3.29289i 0.134432 + 0.134432i
\(601\) −4.65685 + 4.65685i −0.189957 + 0.189957i −0.795678 0.605720i \(-0.792885\pi\)
0.605720 + 0.795678i \(0.292885\pi\)
\(602\) 5.65685 5.65685i 0.230556 0.230556i
\(603\) 1.17157i 0.0477101i
\(604\) 13.6569i 0.555690i
\(605\) 2.07107 2.07107i 0.0842009 0.0842009i
\(606\) 3.65685 3.65685i 0.148550 0.148550i
\(607\) 7.41421 + 7.41421i 0.300934 + 0.300934i 0.841379 0.540445i \(-0.181744\pi\)
−0.540445 + 0.841379i \(0.681744\pi\)
\(608\) 6.82843 0.276929
\(609\) −2.00000 2.00000i −0.0810441 0.0810441i
\(610\) 0.627417i 0.0254034i
\(611\) −35.3137 −1.42864
\(612\) −2.82843 + 3.00000i −0.114332 + 0.121268i
\(613\) −21.3137 −0.860853 −0.430426 0.902626i \(-0.641637\pi\)
−0.430426 + 0.902626i \(0.641637\pi\)
\(614\) 6.34315i 0.255989i
\(615\) −1.27208 1.27208i −0.0512951 0.0512951i
\(616\) −19.3137 −0.778171
\(617\) 10.6569 + 10.6569i 0.429029 + 0.429029i 0.888297 0.459269i \(-0.151888\pi\)
−0.459269 + 0.888297i \(0.651888\pi\)
\(618\) 10.4853 10.4853i 0.421780 0.421780i
\(619\) −16.9706 + 16.9706i −0.682105 + 0.682105i −0.960474 0.278370i \(-0.910206\pi\)
0.278370 + 0.960474i \(0.410206\pi\)
\(620\) 0.485281i 0.0194894i
\(621\) 3.17157i 0.127271i
\(622\) 0.585786 0.585786i 0.0234879 0.0234879i
\(623\) 0 0
\(624\) −2.00000 2.00000i −0.0800641 0.0800641i
\(625\) −19.9706 −0.798823
\(626\) −7.14214 7.14214i −0.285457 0.285457i
\(627\) 27.3137i 1.09080i
\(628\) −6.00000 −0.239426
\(629\) 0.272078 + 9.24264i 0.0108485 + 0.368528i
\(630\) 2.82843 0.112687
\(631\) 26.1421i 1.04070i −0.853952 0.520351i \(-0.825801\pi\)
0.853952 0.520351i \(-0.174199\pi\)
\(632\) −10.2426 10.2426i −0.407430 0.407430i
\(633\) −28.9706 −1.15148
\(634\) 15.2426 + 15.2426i 0.605363 + 0.605363i
\(635\) −5.65685 + 5.65685i −0.224485 + 0.224485i
\(636\) −2.00000 + 2.00000i −0.0793052 + 0.0793052i
\(637\) 46.1421i 1.82822i
\(638\) 2.34315i 0.0927660i
\(639\) −4.58579 + 4.58579i −0.181411 + 0.181411i
\(640\) −0.414214 + 0.414214i −0.0163732 + 0.0163732i
\(641\) 13.4853 + 13.4853i 0.532637 + 0.532637i 0.921356 0.388720i \(-0.127082\pi\)
−0.388720 + 0.921356i \(0.627082\pi\)
\(642\) 13.6569 0.538993
\(643\) 0.485281 + 0.485281i 0.0191376 + 0.0191376i 0.716611 0.697473i \(-0.245692\pi\)
−0.697473 + 0.716611i \(0.745692\pi\)
\(644\) 15.3137i 0.603445i
\(645\) −0.970563 −0.0382159
\(646\) −20.4853 19.3137i −0.805983 0.759888i
\(647\) 38.4264 1.51070 0.755349 0.655323i \(-0.227467\pi\)
0.755349 + 0.655323i \(0.227467\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) 35.3137 + 35.3137i 1.38618 + 1.38618i
\(650\) 13.1716 0.516632
\(651\) 2.82843 + 2.82843i 0.110855 + 0.110855i
\(652\) −1.65685 + 1.65685i −0.0648874 + 0.0648874i
\(653\) 22.2132 22.2132i 0.869270 0.869270i −0.123122 0.992392i \(-0.539291\pi\)
0.992392 + 0.123122i \(0.0392906\pi\)
\(654\) 3.89949i 0.152482i
\(655\) 11.3137i 0.442063i
\(656\) −2.17157 + 2.17157i −0.0847857 + 0.0847857i
\(657\) −6.65685 + 6.65685i −0.259709 + 0.259709i
\(658\) −42.6274 42.6274i −1.66179 1.66179i
\(659\) 3.51472 0.136914 0.0684570 0.997654i \(-0.478192\pi\)
0.0684570 + 0.997654i \(0.478192\pi\)
\(660\) 1.65685 + 1.65685i 0.0644930 + 0.0644930i
\(661\) 30.1421i 1.17239i 0.810169 + 0.586197i \(0.199375\pi\)
−0.810169 + 0.586197i \(0.800625\pi\)
\(662\) 18.6274 0.723975
\(663\) 0.343146 + 11.6569i 0.0133267 + 0.452715i
\(664\) 4.48528 0.174063
\(665\) 19.3137i 0.748953i
\(666\) −1.58579 1.58579i −0.0614480 0.0614480i
\(667\) 1.85786 0.0719368
\(668\) 15.4142 + 15.4142i 0.596394 + 0.596394i
\(669\) 4.82843 4.82843i 0.186678 0.186678i
\(670\) 0.485281 0.485281i 0.0187481 0.0187481i
\(671\) 4.28427i 0.165392i
\(672\) 4.82843i 0.186261i
\(673\) 25.1421 25.1421i 0.969158 0.969158i −0.0303803 0.999538i \(-0.509672\pi\)
0.999538 + 0.0303803i \(0.00967184\pi\)
\(674\) 9.00000 9.00000i 0.346667 0.346667i
\(675\) 3.29289 + 3.29289i 0.126744 + 0.126744i
\(676\) 5.00000 0.192308
\(677\) 20.0711 + 20.0711i 0.771394 + 0.771394i 0.978350 0.206956i \(-0.0663558\pi\)
−0.206956 + 0.978350i \(0.566356\pi\)
\(678\) 12.7279i 0.488813i
\(679\) −64.7696 −2.48563
\(680\) 2.41421 0.0710678i 0.0925809 0.00272533i
\(681\) −17.6569 −0.676612
\(682\) 3.31371i 0.126888i
\(683\) 14.3431 + 14.3431i 0.548825 + 0.548825i 0.926101 0.377276i \(-0.123139\pi\)
−0.377276 + 0.926101i \(0.623139\pi\)
\(684\) 6.82843 0.261091
\(685\) −7.31371 7.31371i −0.279442 0.279442i
\(686\) −31.7990 + 31.7990i −1.21409 + 1.21409i
\(687\) 9.89949 9.89949i 0.377689 0.377689i
\(688\) 1.65685i 0.0631670i
\(689\) 8.00000i 0.304776i
\(690\) −1.31371 + 1.31371i −0.0500120 + 0.0500120i
\(691\) −9.17157 + 9.17157i −0.348903 + 0.348903i −0.859701 0.510798i \(-0.829350\pi\)
0.510798 + 0.859701i \(0.329350\pi\)
\(692\) −2.89949 2.89949i −0.110222 0.110222i
\(693\) −19.3137 −0.733667
\(694\) 8.00000 + 8.00000i 0.303676 + 0.303676i
\(695\) 3.71573i 0.140946i
\(696\) 0.585786 0.0222042
\(697\) 12.6569 0.372583i 0.479413 0.0141126i
\(698\) −10.8284 −0.409862
\(699\) 12.7279i 0.481414i
\(700\) 15.8995 + 15.8995i 0.600944 + 0.600944i
\(701\) −23.5147 −0.888139 −0.444069 0.895992i \(-0.646466\pi\)
−0.444069 + 0.895992i \(0.646466\pi\)
\(702\) −2.00000 2.00000i −0.0754851 0.0754851i
\(703\) 10.8284 10.8284i 0.408402 0.408402i
\(704\) 2.82843 2.82843i 0.106600 0.106600i
\(705\) 7.31371i 0.275450i
\(706\) 12.6274i 0.475239i
\(707\) 17.6569 17.6569i 0.664054 0.664054i
\(708\) −8.82843 + 8.82843i −0.331793 + 0.331793i
\(709\) −23.5858 23.5858i −0.885783 0.885783i 0.108332 0.994115i \(-0.465449\pi\)
−0.994115 + 0.108332i \(0.965449\pi\)
\(710\) 3.79899 0.142574
\(711\) −10.2426 10.2426i −0.384129 0.384129i
\(712\) 0 0
\(713\) −2.62742 −0.0983975
\(714\) −13.6569 + 14.4853i −0.511095 + 0.542098i
\(715\) 6.62742 0.247851
\(716\) 12.9706i 0.484733i
\(717\) 8.82843 + 8.82843i 0.329704 + 0.329704i
\(718\) 16.0000 0.597115
\(719\) 7.21320 + 7.21320i 0.269007 + 0.269007i 0.828700 0.559693i \(-0.189081\pi\)
−0.559693 + 0.828700i \(0.689081\pi\)
\(720\) −0.414214 + 0.414214i −0.0154368 + 0.0154368i
\(721\) 50.6274 50.6274i 1.88546 1.88546i
\(722\) 27.6274i 1.02819i
\(723\) 8.24264i 0.306547i
\(724\) 5.58579 5.58579i 0.207594 0.207594i
\(725\) −1.92893 + 1.92893i −0.0716387 + 0.0716387i
\(726\) −3.53553 3.53553i −0.131216 0.131216i
\(727\) −10.3431 −0.383606 −0.191803 0.981433i \(-0.561433\pi\)
−0.191803 + 0.981433i \(0.561433\pi\)
\(728\) −9.65685 9.65685i −0.357907 0.357907i
\(729\) 1.00000i 0.0370370i
\(730\) 5.51472 0.204109
\(731\) 4.68629 4.97056i 0.173329 0.183843i
\(732\) −1.07107 −0.0395878
\(733\) 41.4558i 1.53121i −0.643313 0.765603i \(-0.722441\pi\)
0.643313 0.765603i \(-0.277559\pi\)
\(734\) 12.3848 + 12.3848i 0.457130 + 0.457130i
\(735\) 9.55635 0.352491
\(736\) 2.24264 + 2.24264i 0.0826648 + 0.0826648i
\(737\) −3.31371 + 3.31371i −0.122062 + 0.122062i
\(738\) −2.17157 + 2.17157i −0.0799367 + 0.0799367i
\(739\) 9.17157i 0.337382i −0.985669 0.168691i \(-0.946046\pi\)
0.985669 0.168691i \(-0.0539540\pi\)
\(740\) 1.31371i 0.0482929i
\(741\) 13.6569 13.6569i 0.501697 0.501697i
\(742\) −9.65685 + 9.65685i −0.354514 + 0.354514i
\(743\) −22.2426 22.2426i −0.816003 0.816003i 0.169523 0.985526i \(-0.445777\pi\)
−0.985526 + 0.169523i \(0.945777\pi\)
\(744\) −0.828427 −0.0303716
\(745\) 4.14214 + 4.14214i 0.151756 + 0.151756i
\(746\) 19.7990i 0.724893i
\(747\) 4.48528 0.164108
\(748\) −16.4853 + 0.485281i −0.602762 + 0.0177436i
\(749\) 65.9411 2.40944
\(750\) 5.65685i 0.206559i
\(751\) 8.10051 + 8.10051i 0.295592 + 0.295592i 0.839284 0.543693i \(-0.182974\pi\)
−0.543693 + 0.839284i \(0.682974\pi\)
\(752\) 12.4853 0.455291
\(753\) 12.4853 + 12.4853i 0.454989 + 0.454989i
\(754\) 1.17157 1.17157i 0.0426662 0.0426662i
\(755\) 5.65685 5.65685i 0.205874 0.205874i
\(756\) 4.82843i 0.175608i
\(757\) 6.00000i 0.218074i −0.994038 0.109037i \(-0.965223\pi\)
0.994038 0.109037i \(-0.0347767\pi\)
\(758\) 17.6569 17.6569i 0.641326 0.641326i
\(759\) 8.97056 8.97056i 0.325611 0.325611i
\(760\) −2.82843 2.82843i −0.102598 0.102598i
\(761\) 1.65685 0.0600609 0.0300305 0.999549i \(-0.490440\pi\)
0.0300305 + 0.999549i \(0.490440\pi\)
\(762\) 9.65685 + 9.65685i 0.349831 + 0.349831i
\(763\) 18.8284i 0.681635i
\(764\) −1.17157 −0.0423860
\(765\) 2.41421 0.0710678i 0.0872861 0.00256946i
\(766\) 23.7990 0.859892
\(767\) 35.3137i 1.27510i
\(768\) 0.707107 + 0.707107i 0.0255155 + 0.0255155i
\(769\) 40.9706 1.47744 0.738718 0.674014i \(-0.235431\pi\)
0.738718 + 0.674014i \(0.235431\pi\)
\(770\) 8.00000 + 8.00000i 0.288300 + 0.288300i
\(771\) −20.7279 + 20.7279i −0.746498 + 0.746498i
\(772\) 4.17157 4.17157i 0.150138 0.150138i
\(773\) 44.6274i 1.60514i −0.596560 0.802568i \(-0.703466\pi\)
0.596560 0.802568i \(-0.296534\pi\)
\(774\) 1.65685i 0.0595544i
\(775\) 2.72792 2.72792i 0.0979899 0.0979899i
\(776\) 9.48528 9.48528i 0.340502 0.340502i
\(777\) −7.65685 7.65685i −0.274688 0.274688i
\(778\) 36.6274 1.31316
\(779\) −14.8284 14.8284i −0.531284 0.531284i
\(780\) 1.65685i 0.0593249i
\(781\) −25.9411 −0.928246
\(782\) −0.384776 13.0711i −0.0137596 0.467420i
\(783\) 0.585786 0.0209343
\(784\) 16.3137i 0.582632i
\(785\) 2.48528 + 2.48528i 0.0887035 + 0.0887035i
\(786\) −19.3137 −0.688897
\(787\) −15.5147 15.5147i −0.553040 0.553040i 0.374277 0.927317i \(-0.377891\pi\)
−0.927317 + 0.374277i \(0.877891\pi\)
\(788\) 7.24264 7.24264i 0.258008 0.258008i
\(789\) −7.17157 + 7.17157i −0.255315 + 0.255315i
\(790\) 8.48528i 0.301893i
\(791\) 61.4558i 2.18512i
\(792\) 2.82843 2.82843i 0.100504 0.100504i
\(793\) −2.14214 + 2.14214i −0.0760695 + 0.0760695i
\(794\) −23.3848 23.3848i −0.829895 0.829895i
\(795\) 1.65685 0.0587626
\(796\) 0.585786 + 0.585786i 0.0207626 + 0.0207626i
\(797\) 21.1716i 0.749936i −0.927038 0.374968i \(-0.877654\pi\)
0.927038 0.374968i \(-0.122346\pi\)
\(798\) 32.9706 1.16715
\(799\) −37.4558 35.3137i −1.32509 1.24931i
\(800\) −4.65685 −0.164645
\(801\) 0 0
\(802\) 6.17157 + 6.17157i 0.217926 + 0.217926i
\(803\) −37.6569 −1.32888
\(804\) −0.828427 0.828427i −0.0292164 0.0292164i
\(805\) −6.34315 + 6.34315i −0.223567 + 0.223567i
\(806\) −1.65685 + 1.65685i −0.0583602 + 0.0583602i
\(807\) 5.07107i 0.178510i
\(808\) 5.17157i 0.181935i
\(809\) −31.4853 + 31.4853i −1.10696 + 1.10696i −0.113416 + 0.993548i \(0.536179\pi\)
−0.993548 + 0.113416i \(0.963821\pi\)
\(810\) −0.414214 + 0.414214i −0.0145540 + 0.0145540i
\(811\) 20.4853 + 20.4853i 0.719336 + 0.719336i 0.968469 0.249134i \(-0.0801458\pi\)
−0.249134 + 0.968469i \(0.580146\pi\)
\(812\) 2.82843 0.0992583
\(813\) 15.3137 + 15.3137i 0.537075 + 0.537075i
\(814\) 8.97056i 0.314418i
\(815\) 1.37258 0.0480795
\(816\) −0.121320 4.12132i −0.00424706 0.144275i
\(817\) −11.3137 −0.395817
\(818\) 14.0000i 0.489499i
\(819\) −9.65685 9.65685i −0.337438 0.337438i
\(820\) 1.79899 0.0628235
\(821\) 9.72792 + 9.72792i 0.339507 + 0.339507i 0.856182 0.516675i \(-0.172830\pi\)
−0.516675 + 0.856182i \(0.672830\pi\)
\(822\) −12.4853 + 12.4853i −0.435474 + 0.435474i
\(823\) 22.0416 22.0416i 0.768323 0.768323i −0.209488 0.977811i \(-0.567180\pi\)
0.977811 + 0.209488i \(0.0671798\pi\)
\(824\) 14.8284i 0.516573i
\(825\) 18.6274i 0.648523i
\(826\) −42.6274 + 42.6274i −1.48320 + 1.48320i
\(827\) −26.8284 + 26.8284i −0.932916 + 0.932916i −0.997887 0.0649713i \(-0.979304\pi\)
0.0649713 + 0.997887i \(0.479304\pi\)
\(828\) 2.24264 + 2.24264i 0.0779372 + 0.0779372i
\(829\) −27.9411 −0.970435 −0.485218 0.874393i \(-0.661260\pi\)
−0.485218 + 0.874393i \(0.661260\pi\)
\(830\) −1.85786 1.85786i −0.0644874 0.0644874i
\(831\) 9.75736i 0.338479i
\(832\) 2.82843 0.0980581
\(833\) −46.1421 + 48.9411i −1.59873 + 1.69571i
\(834\) 6.34315 0.219645
\(835\) 12.7696i 0.441909i
\(836\) 19.3137 + 19.3137i 0.667979 + 0.667979i
\(837\) −0.828427 −0.0286346
\(838\) −1.17157 1.17157i −0.0404713 0.0404713i
\(839\) 1.75736 1.75736i 0.0606708 0.0606708i −0.676120 0.736791i \(-0.736340\pi\)
0.736791 + 0.676120i \(0.236340\pi\)
\(840\) −2.00000 + 2.00000i −0.0690066 + 0.0690066i
\(841\) 28.6569i 0.988167i
\(842\) 15.5147i 0.534673i
\(843\) 13.6569 13.6569i 0.470367 0.470367i
\(844\) 20.4853 20.4853i 0.705132 0.705132i
\(845\) −2.07107 2.07107i −0.0712469 0.0712469i
\(846\) 12.4853 0.429253
\(847\) −17.0711 17.0711i −0.586569 0.586569i
\(848\) 2.82843i 0.0971286i
\(849\) 8.00000 0.274559
\(850\) 13.9706 + 13.1716i 0.479186 + 0.451781i
\(851\) 7.11270 0.243820
\(852\) 6.48528i 0.222182i
\(853\) 34.2132 + 34.2132i 1.17144 + 1.17144i 0.981867 + 0.189571i \(0.0607096\pi\)
0.189571 + 0.981867i \(0.439290\pi\)
\(854\) −5.17157 −0.176968
\(855\) −2.82843 2.82843i −0.0967302 0.0967302i
\(856\) −9.65685 + 9.65685i −0.330064 + 0.330064i
\(857\) −11.1421 + 11.1421i −0.380608 + 0.380608i −0.871321 0.490713i \(-0.836736\pi\)
0.490713 + 0.871321i \(0.336736\pi\)
\(858\) 11.3137i 0.386244i
\(859\) 1.65685i 0.0565311i −0.999600 0.0282656i \(-0.991002\pi\)
0.999600 0.0282656i \(-0.00899841\pi\)
\(860\) 0.686292 0.686292i 0.0234023 0.0234023i
\(861\) −10.4853 + 10.4853i −0.357337 + 0.357337i
\(862\) 14.2426 + 14.2426i 0.485106 + 0.485106i
\(863\) 5.65685 0.192562 0.0962808 0.995354i \(-0.469305\pi\)
0.0962808 + 0.995354i \(0.469305\pi\)
\(864\) 0.707107 + 0.707107i 0.0240563 + 0.0240563i
\(865\) 2.40202i 0.0816711i
\(866\) −16.6274 −0.565023
\(867\) −11.2929 + 12.7071i −0.383527 + 0.431556i
\(868\) −4.00000 −0.135769
\(869\) 57.9411i 1.96552i
\(870\) −0.242641 0.242641i −0.00822629 0.00822629i
\(871\) −3.31371 −0.112281
\(872\) −2.75736 2.75736i −0.0933760 0.0933760i
\(873\) 9.48528 9.48528i 0.321028 0.321028i
\(874\) −15.3137 + 15.3137i −0.517994 + 0.517994i
\(875\) 27.3137i 0.923372i
\(876\) 9.41421i 0.318077i
\(877\) 8.55635 8.55635i 0.288927 0.288927i −0.547729 0.836656i \(-0.684507\pi\)
0.836656 + 0.547729i \(0.184507\pi\)
\(878\) −9.55635 + 9.55635i −0.322511 + 0.322511i
\(879\) 6.58579 + 6.58579i 0.222133 + 0.222133i
\(880\) −2.34315 −0.0789874
\(881\) 20.6569 + 20.6569i 0.695947 + 0.695947i 0.963534 0.267587i \(-0.0862262\pi\)
−0.267587 + 0.963534i \(0.586226\pi\)
\(882\) 16.3137i 0.549311i
\(883\) −48.7696 −1.64123 −0.820613 0.571484i \(-0.806368\pi\)
−0.820613 + 0.571484i \(0.806368\pi\)
\(884\) −8.48528 8.00000i −0.285391 0.269069i
\(885\) 7.31371 0.245848
\(886\) 28.9706i 0.973285i
\(887\) −1.27208 1.27208i −0.0427122 0.0427122i 0.685428 0.728140i \(-0.259615\pi\)
−0.728140 + 0.685428i \(0.759615\pi\)
\(888\) 2.24264 0.0752581
\(889\) 46.6274 + 46.6274i 1.56383 + 1.56383i
\(890\) 0 0
\(891\) 2.82843 2.82843i 0.0947559 0.0947559i
\(892\) 6.82843i 0.228633i
\(893\) 85.2548i 2.85294i
\(894\) 7.07107 7.07107i 0.236492 0.236492i
\(895\) 5.37258 5.37258i 0.179586 0.179586i
\(896\) 3.41421 + 3.41421i 0.114061 + 0.114061i
\(897\) 8.97056 0.299518
\(898\) −8.51472 8.51472i −0.284140 0.284140i
\(899\) 0.485281i 0.0161850i
\(900\) −4.65685 −0.155228
\(901\) −8.00000 + 8.48528i −0.266519 + 0.282686i
\(902\) −12.2843 −0.409021
\(903\) 8.00000i 0.266223i
\(904\) 9.00000 + 9.00000i 0.299336 + 0.299336i
\(905\) −4.62742 −0.153821
\(906\) −9.65685 9.65685i −0.320827 0.320827i
\(907\) −8.97056 + 8.97056i −0.297863 + 0.297863i −0.840176 0.542314i \(-0.817548\pi\)
0.542314 + 0.840176i \(0.317548\pi\)
\(908\) 12.4853 12.4853i 0.414339 0.414339i
\(909\) 5.17157i 0.171530i
\(910\) 8.00000i 0.265197i
\(911\) 20.5858 20.5858i 0.682038 0.682038i −0.278421 0.960459i \(-0.589811\pi\)
0.960459 + 0.278421i \(0.0898112\pi\)
\(912\) −4.82843 + 4.82843i −0.159885 + 0.159885i
\(913\) 12.6863 + 12.6863i 0.419855 + 0.419855i
\(914\) 2.68629 0.0888546
\(915\) 0.443651 + 0.443651i 0.0146666 + 0.0146666i
\(916\) 14.0000i 0.462573i
\(917\) −93.2548 −3.07955
\(918\) −0.121320 4.12132i −0.00400417 0.136024i
\(919\) −18.3431 −0.605085 −0.302542 0.953136i \(-0.597835\pi\)
−0.302542 + 0.953136i \(0.597835\pi\)
\(920\) 1.85786i 0.0612520i
\(921\) −4.48528 4.48528i −0.147795 0.147795i
\(922\) −25.4558 −0.838344
\(923\) −12.9706 12.9706i −0.426931 0.426931i
\(924\) 13.6569 13.6569i 0.449278 0.449278i
\(925\) −7.38478 + 7.38478i −0.242810 + 0.242810i
\(926\) 6.82843i 0.224396i
\(927\) 14.8284i 0.487029i
\(928\) −0.414214 + 0.414214i −0.0135972 + 0.0135972i
\(929\) 30.1127 30.1127i 0.987966 0.987966i −0.0119629 0.999928i \(-0.503808\pi\)
0.999928 + 0.0119629i \(0.00380799\pi\)
\(930\) 0.343146 + 0.343146i 0.0112522 + 0.0112522i
\(931\) 111.397 3.65089
\(932\) −9.00000 9.00000i −0.294805 0.294805i
\(933\) 0.828427i 0.0271215i
\(934\) −28.0000 −0.916188
\(935\) 7.02944 + 6.62742i 0.229887 + 0.216740i
\(936\) 2.82843 0.0924500
\(937\) 4.00000i 0.130674i 0.997863 + 0.0653372i \(0.0208123\pi\)
−0.997863 + 0.0653372i \(0.979188\pi\)
\(938\) −4.00000 4.00000i −0.130605 0.130605i
\(939\) 10.1005 0.329618
\(940\) −5.17157 5.17157i −0.168678 0.168678i
\(941\) −24.2132 + 24.2132i −0.789328 + 0.789328i −0.981384 0.192056i \(-0.938484\pi\)
0.192056 + 0.981384i \(0.438484\pi\)
\(942\) 4.24264 4.24264i 0.138233 0.138233i
\(943\) 9.74012i 0.317182i
\(944\) 12.4853i 0.406361i
\(945\) −2.00000 + 2.00000i −0.0650600 + 0.0650600i
\(946\) −4.68629 + 4.68629i −0.152364 + 0.152364i
\(947\) −15.5147 15.5147i −0.504161 0.504161i 0.408567 0.912728i \(-0.366028\pi\)
−0.912728 + 0.408567i \(0.866028\pi\)
\(948\) 14.4853 0.470460
\(949\) −18.8284 18.8284i −0.611197 0.611197i
\(950\) 31.7990i 1.03170i
\(951\) −21.5563 −0.699013
\(952\) −0.585786 19.8995i −0.0189854 0.644946i
\(953\) 7.02944 0.227706 0.113853 0.993498i \(-0.463681\pi\)
0.113853 + 0.993498i \(0.463681\pi\)
\(954\) 2.82843i 0.0915737i
\(955\) 0.485281 + 0.485281i 0.0157033 + 0.0157033i
\(956\) −12.4853 −0.403803
\(957\) 1.65685 + 1.65685i 0.0535585 + 0.0535585i
\(958\) −5.07107 + 5.07107i −0.163839 + 0.163839i
\(959\) −60.2843 + 60.2843i −1.94668 + 1.94668i
\(960\) 0.585786i 0.0189062i
\(961\) 30.3137i 0.977862i
\(962\) 4.48528 4.48528i 0.144611 0.144611i
\(963\) −9.65685 + 9.65685i −0.311188 + 0.311188i
\(964\) 5.82843 + 5.82843i 0.187721 + 0.187721i
\(965\) −3.45584 −0.111248
\(966\) 10.8284 + 10.8284i 0.348399 + 0.348399i
\(967\) 18.1421i 0.583412i 0.956508 + 0.291706i \(0.0942228\pi\)
−0.956508 + 0.291706i \(0.905777\pi\)
\(968\) 5.00000 0.160706
\(969\) 28.1421 0.828427i 0.904056 0.0266129i
\(970\) −7.85786 −0.252301
\(971\) 20.4853i 0.657404i 0.944434 + 0.328702i \(0.106611\pi\)
−0.944434 + 0.328702i \(0.893389\pi\)
\(972\) 0.707107 + 0.707107i 0.0226805 + 0.0226805i
\(973\) 30.6274 0.981870
\(974\) −29.0711 29.0711i −0.931497 0.931497i
\(975\) −9.31371 + 9.31371i −0.298277 + 0.298277i
\(976\) 0.757359 0.757359i 0.0242425 0.0242425i
\(977\) 0.284271i 0.00909464i −0.999990 0.00454732i \(-0.998553\pi\)
0.999990 0.00454732i \(-0.00144746\pi\)
\(978\) 2.34315i 0.0749255i
\(979\) 0 0
\(980\) −6.75736 + 6.75736i −0.215856 + 0.215856i
\(981\) −2.75736 2.75736i −0.0880357 0.0880357i
\(982\) 16.2843 0.519652
\(983\) 3.41421 + 3.41421i 0.108897 + 0.108897i 0.759456 0.650559i \(-0.225465\pi\)
−0.650559 + 0.759456i \(0.725465\pi\)
\(984\) 3.07107i 0.0979021i
\(985\) −6.00000 −0.191176
\(986\) 2.41421 0.0710678i 0.0768842 0.00226326i
\(987\) 60.2843 1.91887
\(988\) 19.3137i 0.614451i
\(989\) −3.71573 3.71573i −0.118153 0.118153i
\(990\) −2.34315 −0.0744701
\(991\) 38.5269 + 38.5269i 1.22385 + 1.22385i 0.966253 + 0.257595i \(0.0829299\pi\)
0.257595 + 0.966253i \(0.417070\pi\)
\(992\) 0.585786 0.585786i 0.0185987 0.0185987i
\(993\) −13.1716 + 13.1716i −0.417987 + 0.417987i
\(994\) 31.3137i 0.993211i
\(995\) 0.485281i 0.0153845i
\(996\) −3.17157 + 3.17157i −0.100495 + 0.100495i
\(997\) 32.8995 32.8995i 1.04194 1.04194i 0.0428562 0.999081i \(-0.486354\pi\)
0.999081 0.0428562i \(-0.0136457\pi\)
\(998\) 17.6569 + 17.6569i 0.558918 + 0.558918i
\(999\) 2.24264 0.0709540
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 102.2.f.a.13.2 4
3.2 odd 2 306.2.g.g.217.1 4
4.3 odd 2 816.2.bd.a.625.1 4
12.11 even 2 2448.2.be.t.1441.1 4
17.2 even 8 1734.2.a.o.1.2 2
17.4 even 4 inner 102.2.f.a.55.2 yes 4
17.8 even 8 1734.2.b.h.577.1 4
17.9 even 8 1734.2.b.h.577.4 4
17.13 even 4 1734.2.f.i.1483.1 4
17.15 even 8 1734.2.a.n.1.1 2
17.16 even 2 1734.2.f.i.829.1 4
51.2 odd 8 5202.2.a.x.1.1 2
51.32 odd 8 5202.2.a.o.1.2 2
51.38 odd 4 306.2.g.g.55.1 4
68.55 odd 4 816.2.bd.a.769.1 4
204.191 even 4 2448.2.be.t.1585.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
102.2.f.a.13.2 4 1.1 even 1 trivial
102.2.f.a.55.2 yes 4 17.4 even 4 inner
306.2.g.g.55.1 4 51.38 odd 4
306.2.g.g.217.1 4 3.2 odd 2
816.2.bd.a.625.1 4 4.3 odd 2
816.2.bd.a.769.1 4 68.55 odd 4
1734.2.a.n.1.1 2 17.15 even 8
1734.2.a.o.1.2 2 17.2 even 8
1734.2.b.h.577.1 4 17.8 even 8
1734.2.b.h.577.4 4 17.9 even 8
1734.2.f.i.829.1 4 17.16 even 2
1734.2.f.i.1483.1 4 17.13 even 4
2448.2.be.t.1441.1 4 12.11 even 2
2448.2.be.t.1585.1 4 204.191 even 4
5202.2.a.o.1.2 2 51.32 odd 8
5202.2.a.x.1.1 2 51.2 odd 8