Properties

Label 5202.2.a.o.1.2
Level 52025202
Weight 22
Character 5202.1
Self dual yes
Analytic conductor 41.53841.538
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5202,2,Mod(1,5202)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5202, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5202.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 5202=232172 5202 = 2 \cdot 3^{2} \cdot 17^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 5202.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 41.538179131541.5381791315
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ8)+\Q(\zeta_{8})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x22 x^{2} - 2 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 102)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.2
Root 1.414211.41421 of defining polynomial
Character χ\chi == 5202.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.00000q2+1.00000q40.585786q5+4.82843q71.00000q8+0.585786q104.00000q11+2.82843q134.82843q14+1.00000q166.82843q190.585786q20+4.00000q223.17157q234.65685q252.82843q26+4.82843q28+0.585786q290.828427q311.00000q322.82843q35+2.24264q37+6.82843q38+0.585786q40+3.07107q41+1.65685q434.00000q44+3.17157q46+12.4853q47+16.3137q49+4.65685q50+2.82843q522.82843q53+2.34315q554.82843q560.585786q58+12.4853q59+1.07107q61+0.828427q62+1.00000q641.65685q65+1.17157q67+2.82843q70+6.48528q71+9.41421q732.24264q746.82843q7619.3137q77+14.4853q790.585786q803.07107q824.48528q831.65685q86+4.00000q88+13.6569q913.17157q9212.4853q94+4.00000q9513.4142q9716.3137q98+O(q100)q-1.00000 q^{2} +1.00000 q^{4} -0.585786 q^{5} +4.82843 q^{7} -1.00000 q^{8} +0.585786 q^{10} -4.00000 q^{11} +2.82843 q^{13} -4.82843 q^{14} +1.00000 q^{16} -6.82843 q^{19} -0.585786 q^{20} +4.00000 q^{22} -3.17157 q^{23} -4.65685 q^{25} -2.82843 q^{26} +4.82843 q^{28} +0.585786 q^{29} -0.828427 q^{31} -1.00000 q^{32} -2.82843 q^{35} +2.24264 q^{37} +6.82843 q^{38} +0.585786 q^{40} +3.07107 q^{41} +1.65685 q^{43} -4.00000 q^{44} +3.17157 q^{46} +12.4853 q^{47} +16.3137 q^{49} +4.65685 q^{50} +2.82843 q^{52} -2.82843 q^{53} +2.34315 q^{55} -4.82843 q^{56} -0.585786 q^{58} +12.4853 q^{59} +1.07107 q^{61} +0.828427 q^{62} +1.00000 q^{64} -1.65685 q^{65} +1.17157 q^{67} +2.82843 q^{70} +6.48528 q^{71} +9.41421 q^{73} -2.24264 q^{74} -6.82843 q^{76} -19.3137 q^{77} +14.4853 q^{79} -0.585786 q^{80} -3.07107 q^{82} -4.48528 q^{83} -1.65685 q^{86} +4.00000 q^{88} +13.6569 q^{91} -3.17157 q^{92} -12.4853 q^{94} +4.00000 q^{95} -13.4142 q^{97} -16.3137 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q2+2q44q5+4q72q8+4q108q114q14+2q168q194q20+8q2212q23+2q25+4q28+4q29+4q312q324q37+10q98+O(q100) 2 q - 2 q^{2} + 2 q^{4} - 4 q^{5} + 4 q^{7} - 2 q^{8} + 4 q^{10} - 8 q^{11} - 4 q^{14} + 2 q^{16} - 8 q^{19} - 4 q^{20} + 8 q^{22} - 12 q^{23} + 2 q^{25} + 4 q^{28} + 4 q^{29} + 4 q^{31} - 2 q^{32} - 4 q^{37}+ \cdots - 10 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.00000 −0.707107
33 0 0
44 1.00000 0.500000
55 −0.585786 −0.261972 −0.130986 0.991384i 0.541814π-0.541814\pi
−0.130986 + 0.991384i 0.541814π0.541814\pi
66 0 0
77 4.82843 1.82497 0.912487 0.409106i 0.134159π-0.134159\pi
0.912487 + 0.409106i 0.134159π0.134159\pi
88 −1.00000 −0.353553
99 0 0
1010 0.585786 0.185242
1111 −4.00000 −1.20605 −0.603023 0.797724i 0.706037π-0.706037\pi
−0.603023 + 0.797724i 0.706037π0.706037\pi
1212 0 0
1313 2.82843 0.784465 0.392232 0.919866i 0.371703π-0.371703\pi
0.392232 + 0.919866i 0.371703π0.371703\pi
1414 −4.82843 −1.29045
1515 0 0
1616 1.00000 0.250000
1717 0 0
1818 0 0
1919 −6.82843 −1.56655 −0.783274 0.621676i 0.786452π-0.786452\pi
−0.783274 + 0.621676i 0.786452π0.786452\pi
2020 −0.585786 −0.130986
2121 0 0
2222 4.00000 0.852803
2323 −3.17157 −0.661319 −0.330659 0.943750i 0.607271π-0.607271\pi
−0.330659 + 0.943750i 0.607271π0.607271\pi
2424 0 0
2525 −4.65685 −0.931371
2626 −2.82843 −0.554700
2727 0 0
2828 4.82843 0.912487
2929 0.585786 0.108778 0.0543889 0.998520i 0.482679π-0.482679\pi
0.0543889 + 0.998520i 0.482679π0.482679\pi
3030 0 0
3131 −0.828427 −0.148790 −0.0743950 0.997229i 0.523703π-0.523703\pi
−0.0743950 + 0.997229i 0.523703π0.523703\pi
3232 −1.00000 −0.176777
3333 0 0
3434 0 0
3535 −2.82843 −0.478091
3636 0 0
3737 2.24264 0.368688 0.184344 0.982862i 0.440984π-0.440984\pi
0.184344 + 0.982862i 0.440984π0.440984\pi
3838 6.82843 1.10772
3939 0 0
4040 0.585786 0.0926210
4141 3.07107 0.479620 0.239810 0.970820i 0.422915π-0.422915\pi
0.239810 + 0.970820i 0.422915π0.422915\pi
4242 0 0
4343 1.65685 0.252668 0.126334 0.991988i 0.459679π-0.459679\pi
0.126334 + 0.991988i 0.459679π0.459679\pi
4444 −4.00000 −0.603023
4545 0 0
4646 3.17157 0.467623
4747 12.4853 1.82117 0.910583 0.413327i 0.135633π-0.135633\pi
0.910583 + 0.413327i 0.135633π0.135633\pi
4848 0 0
4949 16.3137 2.33053
5050 4.65685 0.658579
5151 0 0
5252 2.82843 0.392232
5353 −2.82843 −0.388514 −0.194257 0.980951i 0.562230π-0.562230\pi
−0.194257 + 0.980951i 0.562230π0.562230\pi
5454 0 0
5555 2.34315 0.315950
5656 −4.82843 −0.645226
5757 0 0
5858 −0.585786 −0.0769175
5959 12.4853 1.62545 0.812723 0.582651i 0.197984π-0.197984\pi
0.812723 + 0.582651i 0.197984π0.197984\pi
6060 0 0
6161 1.07107 0.137136 0.0685681 0.997646i 0.478157π-0.478157\pi
0.0685681 + 0.997646i 0.478157π0.478157\pi
6262 0.828427 0.105210
6363 0 0
6464 1.00000 0.125000
6565 −1.65685 −0.205507
6666 0 0
6767 1.17157 0.143130 0.0715652 0.997436i 0.477201π-0.477201\pi
0.0715652 + 0.997436i 0.477201π0.477201\pi
6868 0 0
6969 0 0
7070 2.82843 0.338062
7171 6.48528 0.769661 0.384831 0.922987i 0.374260π-0.374260\pi
0.384831 + 0.922987i 0.374260π0.374260\pi
7272 0 0
7373 9.41421 1.10185 0.550925 0.834555i 0.314275π-0.314275\pi
0.550925 + 0.834555i 0.314275π0.314275\pi
7474 −2.24264 −0.260702
7575 0 0
7676 −6.82843 −0.783274
7777 −19.3137 −2.20100
7878 0 0
7979 14.4853 1.62972 0.814861 0.579657i 0.196813π-0.196813\pi
0.814861 + 0.579657i 0.196813π0.196813\pi
8080 −0.585786 −0.0654929
8181 0 0
8282 −3.07107 −0.339143
8383 −4.48528 −0.492324 −0.246162 0.969229i 0.579169π-0.579169\pi
−0.246162 + 0.969229i 0.579169π0.579169\pi
8484 0 0
8585 0 0
8686 −1.65685 −0.178663
8787 0 0
8888 4.00000 0.426401
8989 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
9090 0 0
9191 13.6569 1.43163
9292 −3.17157 −0.330659
9393 0 0
9494 −12.4853 −1.28776
9595 4.00000 0.410391
9696 0 0
9797 −13.4142 −1.36201 −0.681004 0.732280i 0.738456π-0.738456\pi
−0.681004 + 0.732280i 0.738456π0.738456\pi
9898 −16.3137 −1.64793
9999 0 0
100100 −4.65685 −0.465685
101101 −5.17157 −0.514591 −0.257295 0.966333i 0.582831π-0.582831\pi
−0.257295 + 0.966333i 0.582831π0.582831\pi
102102 0 0
103103 14.8284 1.46109 0.730544 0.682865i 0.239266π-0.239266\pi
0.730544 + 0.682865i 0.239266π0.239266\pi
104104 −2.82843 −0.277350
105105 0 0
106106 2.82843 0.274721
107107 −13.6569 −1.32026 −0.660129 0.751152i 0.729498π-0.729498\pi
−0.660129 + 0.751152i 0.729498π0.729498\pi
108108 0 0
109109 −3.89949 −0.373504 −0.186752 0.982407i 0.559796π-0.559796\pi
−0.186752 + 0.982407i 0.559796π0.559796\pi
110110 −2.34315 −0.223410
111111 0 0
112112 4.82843 0.456243
113113 12.7279 1.19734 0.598671 0.800995i 0.295696π-0.295696\pi
0.598671 + 0.800995i 0.295696π0.295696\pi
114114 0 0
115115 1.85786 0.173247
116116 0.585786 0.0543889
117117 0 0
118118 −12.4853 −1.14936
119119 0 0
120120 0 0
121121 5.00000 0.454545
122122 −1.07107 −0.0969699
123123 0 0
124124 −0.828427 −0.0743950
125125 5.65685 0.505964
126126 0 0
127127 13.6569 1.21185 0.605925 0.795522i 0.292803π-0.292803\pi
0.605925 + 0.795522i 0.292803π0.292803\pi
128128 −1.00000 −0.0883883
129129 0 0
130130 1.65685 0.145316
131131 19.3137 1.68745 0.843723 0.536778i 0.180359π-0.180359\pi
0.843723 + 0.536778i 0.180359π0.180359\pi
132132 0 0
133133 −32.9706 −2.85891
134134 −1.17157 −0.101208
135135 0 0
136136 0 0
137137 17.6569 1.50853 0.754263 0.656572i 0.227994π-0.227994\pi
0.754263 + 0.656572i 0.227994π0.227994\pi
138138 0 0
139139 −6.34315 −0.538019 −0.269009 0.963138i 0.586696π-0.586696\pi
−0.269009 + 0.963138i 0.586696π0.586696\pi
140140 −2.82843 −0.239046
141141 0 0
142142 −6.48528 −0.544233
143143 −11.3137 −0.946100
144144 0 0
145145 −0.343146 −0.0284967
146146 −9.41421 −0.779126
147147 0 0
148148 2.24264 0.184344
149149 10.0000 0.819232 0.409616 0.912258i 0.365663π-0.365663\pi
0.409616 + 0.912258i 0.365663π0.365663\pi
150150 0 0
151151 13.6569 1.11138 0.555690 0.831390i 0.312454π-0.312454\pi
0.555690 + 0.831390i 0.312454π0.312454\pi
152152 6.82843 0.553859
153153 0 0
154154 19.3137 1.55634
155155 0.485281 0.0389787
156156 0 0
157157 −6.00000 −0.478852 −0.239426 0.970915i 0.576959π-0.576959\pi
−0.239426 + 0.970915i 0.576959π0.576959\pi
158158 −14.4853 −1.15239
159159 0 0
160160 0.585786 0.0463105
161161 −15.3137 −1.20689
162162 0 0
163163 2.34315 0.183529 0.0917647 0.995781i 0.470749π-0.470749\pi
0.0917647 + 0.995781i 0.470749π0.470749\pi
164164 3.07107 0.239810
165165 0 0
166166 4.48528 0.348125
167167 −21.7990 −1.68686 −0.843428 0.537242i 0.819466π-0.819466\pi
−0.843428 + 0.537242i 0.819466π0.819466\pi
168168 0 0
169169 −5.00000 −0.384615
170170 0 0
171171 0 0
172172 1.65685 0.126334
173173 4.10051 0.311756 0.155878 0.987776i 0.450179π-0.450179\pi
0.155878 + 0.987776i 0.450179π0.450179\pi
174174 0 0
175175 −22.4853 −1.69973
176176 −4.00000 −0.301511
177177 0 0
178178 0 0
179179 12.9706 0.969465 0.484733 0.874662i 0.338917π-0.338917\pi
0.484733 + 0.874662i 0.338917π0.338917\pi
180180 0 0
181181 7.89949 0.587165 0.293582 0.955934i 0.405152π-0.405152\pi
0.293582 + 0.955934i 0.405152π0.405152\pi
182182 −13.6569 −1.01231
183183 0 0
184184 3.17157 0.233811
185185 −1.31371 −0.0965858
186186 0 0
187187 0 0
188188 12.4853 0.910583
189189 0 0
190190 −4.00000 −0.290191
191191 1.17157 0.0847720 0.0423860 0.999101i 0.486504π-0.486504\pi
0.0423860 + 0.999101i 0.486504π0.486504\pi
192192 0 0
193193 5.89949 0.424655 0.212327 0.977199i 0.431896π-0.431896\pi
0.212327 + 0.977199i 0.431896π0.431896\pi
194194 13.4142 0.963084
195195 0 0
196196 16.3137 1.16526
197197 10.2426 0.729758 0.364879 0.931055i 0.381110π-0.381110\pi
0.364879 + 0.931055i 0.381110π0.381110\pi
198198 0 0
199199 −0.828427 −0.0587256 −0.0293628 0.999569i 0.509348π-0.509348\pi
−0.0293628 + 0.999569i 0.509348π0.509348\pi
200200 4.65685 0.329289
201201 0 0
202202 5.17157 0.363871
203203 2.82843 0.198517
204204 0 0
205205 −1.79899 −0.125647
206206 −14.8284 −1.03315
207207 0 0
208208 2.82843 0.196116
209209 27.3137 1.88933
210210 0 0
211211 −28.9706 −1.99442 −0.997208 0.0746754i 0.976208π-0.976208\pi
−0.997208 + 0.0746754i 0.976208π0.976208\pi
212212 −2.82843 −0.194257
213213 0 0
214214 13.6569 0.933563
215215 −0.970563 −0.0661918
216216 0 0
217217 −4.00000 −0.271538
218218 3.89949 0.264107
219219 0 0
220220 2.34315 0.157975
221221 0 0
222222 0 0
223223 6.82843 0.457265 0.228633 0.973513i 0.426575π-0.426575\pi
0.228633 + 0.973513i 0.426575π0.426575\pi
224224 −4.82843 −0.322613
225225 0 0
226226 −12.7279 −0.846649
227227 −17.6569 −1.17193 −0.585963 0.810338i 0.699284π-0.699284\pi
−0.585963 + 0.810338i 0.699284π0.699284\pi
228228 0 0
229229 −14.0000 −0.925146 −0.462573 0.886581i 0.653074π-0.653074\pi
−0.462573 + 0.886581i 0.653074π0.653074\pi
230230 −1.85786 −0.122504
231231 0 0
232232 −0.585786 −0.0384588
233233 −12.7279 −0.833834 −0.416917 0.908945i 0.636889π-0.636889\pi
−0.416917 + 0.908945i 0.636889π0.636889\pi
234234 0 0
235235 −7.31371 −0.477094
236236 12.4853 0.812723
237237 0 0
238238 0 0
239239 −12.4853 −0.807606 −0.403803 0.914846i 0.632312π-0.632312\pi
−0.403803 + 0.914846i 0.632312π0.632312\pi
240240 0 0
241241 8.24264 0.530955 0.265478 0.964117i 0.414470π-0.414470\pi
0.265478 + 0.964117i 0.414470π0.414470\pi
242242 −5.00000 −0.321412
243243 0 0
244244 1.07107 0.0685681
245245 −9.55635 −0.610533
246246 0 0
247247 −19.3137 −1.22890
248248 0.828427 0.0526052
249249 0 0
250250 −5.65685 −0.357771
251251 17.6569 1.11449 0.557245 0.830348i 0.311858π-0.311858\pi
0.557245 + 0.830348i 0.311858π0.311858\pi
252252 0 0
253253 12.6863 0.797580
254254 −13.6569 −0.856907
255255 0 0
256256 1.00000 0.0625000
257257 29.3137 1.82854 0.914269 0.405107i 0.132766π-0.132766\pi
0.914269 + 0.405107i 0.132766π0.132766\pi
258258 0 0
259259 10.8284 0.672846
260260 −1.65685 −0.102754
261261 0 0
262262 −19.3137 −1.19320
263263 −10.1421 −0.625391 −0.312695 0.949853i 0.601232π-0.601232\pi
−0.312695 + 0.949853i 0.601232π0.601232\pi
264264 0 0
265265 1.65685 0.101780
266266 32.9706 2.02155
267267 0 0
268268 1.17157 0.0715652
269269 −5.07107 −0.309188 −0.154594 0.987978i 0.549407π-0.549407\pi
−0.154594 + 0.987978i 0.549407π0.549407\pi
270270 0 0
271271 21.6569 1.31556 0.657780 0.753210i 0.271496π-0.271496\pi
0.657780 + 0.753210i 0.271496π0.271496\pi
272272 0 0
273273 0 0
274274 −17.6569 −1.06669
275275 18.6274 1.12328
276276 0 0
277277 −9.75736 −0.586263 −0.293131 0.956072i 0.594697π-0.594697\pi
−0.293131 + 0.956072i 0.594697π0.594697\pi
278278 6.34315 0.380437
279279 0 0
280280 2.82843 0.169031
281281 19.3137 1.15216 0.576080 0.817394i 0.304582π-0.304582\pi
0.576080 + 0.817394i 0.304582π0.304582\pi
282282 0 0
283283 −8.00000 −0.475551 −0.237775 0.971320i 0.576418π-0.576418\pi
−0.237775 + 0.971320i 0.576418π0.576418\pi
284284 6.48528 0.384831
285285 0 0
286286 11.3137 0.668994
287287 14.8284 0.875294
288288 0 0
289289 0 0
290290 0.343146 0.0201502
291291 0 0
292292 9.41421 0.550925
293293 9.31371 0.544113 0.272056 0.962281i 0.412296π-0.412296\pi
0.272056 + 0.962281i 0.412296π0.412296\pi
294294 0 0
295295 −7.31371 −0.425821
296296 −2.24264 −0.130351
297297 0 0
298298 −10.0000 −0.579284
299299 −8.97056 −0.518781
300300 0 0
301301 8.00000 0.461112
302302 −13.6569 −0.785864
303303 0 0
304304 −6.82843 −0.391637
305305 −0.627417 −0.0359258
306306 0 0
307307 −6.34315 −0.362022 −0.181011 0.983481i 0.557937π-0.557937\pi
−0.181011 + 0.983481i 0.557937π0.557937\pi
308308 −19.3137 −1.10050
309309 0 0
310310 −0.485281 −0.0275621
311311 −0.828427 −0.0469758 −0.0234879 0.999724i 0.507477π-0.507477\pi
−0.0234879 + 0.999724i 0.507477π0.507477\pi
312312 0 0
313313 10.1005 0.570914 0.285457 0.958391i 0.407855π-0.407855\pi
0.285457 + 0.958391i 0.407855π0.407855\pi
314314 6.00000 0.338600
315315 0 0
316316 14.4853 0.814861
317317 −21.5563 −1.21073 −0.605363 0.795950i 0.706972π-0.706972\pi
−0.605363 + 0.795950i 0.706972π0.706972\pi
318318 0 0
319319 −2.34315 −0.131191
320320 −0.585786 −0.0327465
321321 0 0
322322 15.3137 0.853400
323323 0 0
324324 0 0
325325 −13.1716 −0.730627
326326 −2.34315 −0.129775
327327 0 0
328328 −3.07107 −0.169571
329329 60.2843 3.32358
330330 0 0
331331 18.6274 1.02386 0.511928 0.859029i 0.328932π-0.328932\pi
0.511928 + 0.859029i 0.328932π0.328932\pi
332332 −4.48528 −0.246162
333333 0 0
334334 21.7990 1.19279
335335 −0.686292 −0.0374961
336336 0 0
337337 −12.7279 −0.693334 −0.346667 0.937988i 0.612687π-0.612687\pi
−0.346667 + 0.937988i 0.612687π0.612687\pi
338338 5.00000 0.271964
339339 0 0
340340 0 0
341341 3.31371 0.179447
342342 0 0
343343 44.9706 2.42818
344344 −1.65685 −0.0893316
345345 0 0
346346 −4.10051 −0.220445
347347 11.3137 0.607352 0.303676 0.952775i 0.401786π-0.401786\pi
0.303676 + 0.952775i 0.401786π0.401786\pi
348348 0 0
349349 −10.8284 −0.579632 −0.289816 0.957082i 0.593594π-0.593594\pi
−0.289816 + 0.957082i 0.593594π0.593594\pi
350350 22.4853 1.20189
351351 0 0
352352 4.00000 0.213201
353353 −12.6274 −0.672090 −0.336045 0.941846i 0.609089π-0.609089\pi
−0.336045 + 0.941846i 0.609089π0.609089\pi
354354 0 0
355355 −3.79899 −0.201629
356356 0 0
357357 0 0
358358 −12.9706 −0.685516
359359 16.0000 0.844448 0.422224 0.906492i 0.361250π-0.361250\pi
0.422224 + 0.906492i 0.361250π0.361250\pi
360360 0 0
361361 27.6274 1.45407
362362 −7.89949 −0.415188
363363 0 0
364364 13.6569 0.715814
365365 −5.51472 −0.288654
366366 0 0
367367 −17.5147 −0.914261 −0.457130 0.889400i 0.651123π-0.651123\pi
−0.457130 + 0.889400i 0.651123π0.651123\pi
368368 −3.17157 −0.165330
369369 0 0
370370 1.31371 0.0682965
371371 −13.6569 −0.709029
372372 0 0
373373 19.7990 1.02515 0.512576 0.858642i 0.328691π-0.328691\pi
0.512576 + 0.858642i 0.328691π0.328691\pi
374374 0 0
375375 0 0
376376 −12.4853 −0.643879
377377 1.65685 0.0853323
378378 0 0
379379 24.9706 1.28265 0.641326 0.767269i 0.278385π-0.278385\pi
0.641326 + 0.767269i 0.278385π0.278385\pi
380380 4.00000 0.205196
381381 0 0
382382 −1.17157 −0.0599429
383383 −23.7990 −1.21607 −0.608036 0.793910i 0.708042π-0.708042\pi
−0.608036 + 0.793910i 0.708042π0.708042\pi
384384 0 0
385385 11.3137 0.576600
386386 −5.89949 −0.300276
387387 0 0
388388 −13.4142 −0.681004
389389 36.6274 1.85708 0.928542 0.371228i 0.121063π-0.121063\pi
0.928542 + 0.371228i 0.121063π0.121063\pi
390390 0 0
391391 0 0
392392 −16.3137 −0.823967
393393 0 0
394394 −10.2426 −0.516017
395395 −8.48528 −0.426941
396396 0 0
397397 −33.0711 −1.65979 −0.829895 0.557920i 0.811600π-0.811600\pi
−0.829895 + 0.557920i 0.811600π0.811600\pi
398398 0.828427 0.0415253
399399 0 0
400400 −4.65685 −0.232843
401401 8.72792 0.435852 0.217926 0.975965i 0.430071π-0.430071\pi
0.217926 + 0.975965i 0.430071π0.430071\pi
402402 0 0
403403 −2.34315 −0.116720
404404 −5.17157 −0.257295
405405 0 0
406406 −2.82843 −0.140372
407407 −8.97056 −0.444654
408408 0 0
409409 −14.0000 −0.692255 −0.346128 0.938187i 0.612504π-0.612504\pi
−0.346128 + 0.938187i 0.612504π0.612504\pi
410410 1.79899 0.0888458
411411 0 0
412412 14.8284 0.730544
413413 60.2843 2.96640
414414 0 0
415415 2.62742 0.128975
416416 −2.82843 −0.138675
417417 0 0
418418 −27.3137 −1.33596
419419 1.65685 0.0809426 0.0404713 0.999181i 0.487114π-0.487114\pi
0.0404713 + 0.999181i 0.487114π0.487114\pi
420420 0 0
421421 15.5147 0.756141 0.378071 0.925777i 0.376588π-0.376588\pi
0.378071 + 0.925777i 0.376588π0.376588\pi
422422 28.9706 1.41026
423423 0 0
424424 2.82843 0.137361
425425 0 0
426426 0 0
427427 5.17157 0.250270
428428 −13.6569 −0.660129
429429 0 0
430430 0.970563 0.0468047
431431 −20.1421 −0.970213 −0.485106 0.874455i 0.661219π-0.661219\pi
−0.485106 + 0.874455i 0.661219π0.661219\pi
432432 0 0
433433 −16.6274 −0.799063 −0.399531 0.916720i 0.630827π-0.630827\pi
−0.399531 + 0.916720i 0.630827π0.630827\pi
434434 4.00000 0.192006
435435 0 0
436436 −3.89949 −0.186752
437437 21.6569 1.03599
438438 0 0
439439 13.5147 0.645022 0.322511 0.946566i 0.395473π-0.395473\pi
0.322511 + 0.946566i 0.395473π0.395473\pi
440440 −2.34315 −0.111705
441441 0 0
442442 0 0
443443 28.9706 1.37643 0.688216 0.725505i 0.258394π-0.258394\pi
0.688216 + 0.725505i 0.258394π0.258394\pi
444444 0 0
445445 0 0
446446 −6.82843 −0.323335
447447 0 0
448448 4.82843 0.228122
449449 −12.0416 −0.568280 −0.284140 0.958783i 0.591708π-0.591708\pi
−0.284140 + 0.958783i 0.591708π0.591708\pi
450450 0 0
451451 −12.2843 −0.578444
452452 12.7279 0.598671
453453 0 0
454454 17.6569 0.828677
455455 −8.00000 −0.375046
456456 0 0
457457 −2.68629 −0.125659 −0.0628297 0.998024i 0.520012π-0.520012\pi
−0.0628297 + 0.998024i 0.520012π0.520012\pi
458458 14.0000 0.654177
459459 0 0
460460 1.85786 0.0866234
461461 −25.4558 −1.18560 −0.592798 0.805351i 0.701977π-0.701977\pi
−0.592798 + 0.805351i 0.701977π0.701977\pi
462462 0 0
463463 −6.82843 −0.317344 −0.158672 0.987331i 0.550721π-0.550721\pi
−0.158672 + 0.987331i 0.550721π0.550721\pi
464464 0.585786 0.0271945
465465 0 0
466466 12.7279 0.589610
467467 28.0000 1.29569 0.647843 0.761774i 0.275671π-0.275671\pi
0.647843 + 0.761774i 0.275671π0.275671\pi
468468 0 0
469469 5.65685 0.261209
470470 7.31371 0.337356
471471 0 0
472472 −12.4853 −0.574682
473473 −6.62742 −0.304729
474474 0 0
475475 31.7990 1.45904
476476 0 0
477477 0 0
478478 12.4853 0.571063
479479 −7.17157 −0.327678 −0.163839 0.986487i 0.552388π-0.552388\pi
−0.163839 + 0.986487i 0.552388π0.552388\pi
480480 0 0
481481 6.34315 0.289223
482482 −8.24264 −0.375442
483483 0 0
484484 5.00000 0.227273
485485 7.85786 0.356807
486486 0 0
487487 −41.1127 −1.86299 −0.931497 0.363749i 0.881497π-0.881497\pi
−0.931497 + 0.363749i 0.881497π0.881497\pi
488488 −1.07107 −0.0484850
489489 0 0
490490 9.55635 0.431712
491491 16.2843 0.734899 0.367449 0.930043i 0.380231π-0.380231\pi
0.367449 + 0.930043i 0.380231π0.380231\pi
492492 0 0
493493 0 0
494494 19.3137 0.868965
495495 0 0
496496 −0.828427 −0.0371975
497497 31.3137 1.40461
498498 0 0
499499 24.9706 1.11784 0.558918 0.829223i 0.311217π-0.311217\pi
0.558918 + 0.829223i 0.311217π0.311217\pi
500500 5.65685 0.252982
501501 0 0
502502 −17.6569 −0.788064
503503 −9.51472 −0.424240 −0.212120 0.977244i 0.568037π-0.568037\pi
−0.212120 + 0.977244i 0.568037π0.568037\pi
504504 0 0
505505 3.02944 0.134808
506506 −12.6863 −0.563974
507507 0 0
508508 13.6569 0.605925
509509 −2.68629 −0.119068 −0.0595339 0.998226i 0.518961π-0.518961\pi
−0.0595339 + 0.998226i 0.518961π0.518961\pi
510510 0 0
511511 45.4558 2.01085
512512 −1.00000 −0.0441942
513513 0 0
514514 −29.3137 −1.29297
515515 −8.68629 −0.382764
516516 0 0
517517 −49.9411 −2.19641
518518 −10.8284 −0.475774
519519 0 0
520520 1.65685 0.0726579
521521 −7.75736 −0.339856 −0.169928 0.985456i 0.554354π-0.554354\pi
−0.169928 + 0.985456i 0.554354π0.554354\pi
522522 0 0
523523 18.1421 0.793300 0.396650 0.917970i 0.370173π-0.370173\pi
0.396650 + 0.917970i 0.370173π0.370173\pi
524524 19.3137 0.843723
525525 0 0
526526 10.1421 0.442218
527527 0 0
528528 0 0
529529 −12.9411 −0.562658
530530 −1.65685 −0.0719691
531531 0 0
532532 −32.9706 −1.42946
533533 8.68629 0.376245
534534 0 0
535535 8.00000 0.345870
536536 −1.17157 −0.0506042
537537 0 0
538538 5.07107 0.218629
539539 −65.2548 −2.81072
540540 0 0
541541 18.2426 0.784312 0.392156 0.919899i 0.371729π-0.371729\pi
0.392156 + 0.919899i 0.371729π0.371729\pi
542542 −21.6569 −0.930242
543543 0 0
544544 0 0
545545 2.28427 0.0978474
546546 0 0
547547 18.6274 0.796451 0.398225 0.917288i 0.369626π-0.369626\pi
0.398225 + 0.917288i 0.369626π0.369626\pi
548548 17.6569 0.754263
549549 0 0
550550 −18.6274 −0.794276
551551 −4.00000 −0.170406
552552 0 0
553553 69.9411 2.97420
554554 9.75736 0.414550
555555 0 0
556556 −6.34315 −0.269009
557557 8.48528 0.359533 0.179766 0.983709i 0.442466π-0.442466\pi
0.179766 + 0.983709i 0.442466π0.442466\pi
558558 0 0
559559 4.68629 0.198209
560560 −2.82843 −0.119523
561561 0 0
562562 −19.3137 −0.814700
563563 3.51472 0.148128 0.0740639 0.997254i 0.476403π-0.476403\pi
0.0740639 + 0.997254i 0.476403π0.476403\pi
564564 0 0
565565 −7.45584 −0.313670
566566 8.00000 0.336265
567567 0 0
568568 −6.48528 −0.272116
569569 12.9706 0.543754 0.271877 0.962332i 0.412356π-0.412356\pi
0.271877 + 0.962332i 0.412356π0.412356\pi
570570 0 0
571571 8.68629 0.363510 0.181755 0.983344i 0.441822π-0.441822\pi
0.181755 + 0.983344i 0.441822π0.441822\pi
572572 −11.3137 −0.473050
573573 0 0
574574 −14.8284 −0.618927
575575 14.7696 0.615933
576576 0 0
577577 −3.31371 −0.137951 −0.0689757 0.997618i 0.521973π-0.521973\pi
−0.0689757 + 0.997618i 0.521973π0.521973\pi
578578 0 0
579579 0 0
580580 −0.343146 −0.0142484
581581 −21.6569 −0.898478
582582 0 0
583583 11.3137 0.468566
584584 −9.41421 −0.389563
585585 0 0
586586 −9.31371 −0.384746
587587 36.9706 1.52594 0.762969 0.646435i 0.223741π-0.223741\pi
0.762969 + 0.646435i 0.223741π0.223741\pi
588588 0 0
589589 5.65685 0.233087
590590 7.31371 0.301101
591591 0 0
592592 2.24264 0.0921720
593593 −4.00000 −0.164260 −0.0821302 0.996622i 0.526172π-0.526172\pi
−0.0821302 + 0.996622i 0.526172π0.526172\pi
594594 0 0
595595 0 0
596596 10.0000 0.409616
597597 0 0
598598 8.97056 0.366834
599599 −30.6274 −1.25140 −0.625701 0.780063i 0.715187π-0.715187\pi
−0.625701 + 0.780063i 0.715187π0.715187\pi
600600 0 0
601601 6.58579 0.268640 0.134320 0.990938i 0.457115π-0.457115\pi
0.134320 + 0.990938i 0.457115π0.457115\pi
602602 −8.00000 −0.326056
603603 0 0
604604 13.6569 0.555690
605605 −2.92893 −0.119078
606606 0 0
607607 10.4853 0.425584 0.212792 0.977097i 0.431744π-0.431744\pi
0.212792 + 0.977097i 0.431744π0.431744\pi
608608 6.82843 0.276929
609609 0 0
610610 0.627417 0.0254034
611611 35.3137 1.42864
612612 0 0
613613 −21.3137 −0.860853 −0.430426 0.902626i 0.641637π-0.641637\pi
−0.430426 + 0.902626i 0.641637π0.641637\pi
614614 6.34315 0.255989
615615 0 0
616616 19.3137 0.778171
617617 −15.0711 −0.606738 −0.303369 0.952873i 0.598112π-0.598112\pi
−0.303369 + 0.952873i 0.598112π0.598112\pi
618618 0 0
619619 −24.0000 −0.964641 −0.482321 0.875995i 0.660206π-0.660206\pi
−0.482321 + 0.875995i 0.660206π0.660206\pi
620620 0.485281 0.0194894
621621 0 0
622622 0.828427 0.0332169
623623 0 0
624624 0 0
625625 19.9706 0.798823
626626 −10.1005 −0.403697
627627 0 0
628628 −6.00000 −0.239426
629629 0 0
630630 0 0
631631 26.1421 1.04070 0.520351 0.853952i 0.325801π-0.325801\pi
0.520351 + 0.853952i 0.325801π0.325801\pi
632632 −14.4853 −0.576194
633633 0 0
634634 21.5563 0.856112
635635 −8.00000 −0.317470
636636 0 0
637637 46.1421 1.82822
638638 2.34315 0.0927660
639639 0 0
640640 0.585786 0.0231552
641641 −19.0711 −0.753262 −0.376631 0.926363i 0.622918π-0.622918\pi
−0.376631 + 0.926363i 0.622918π0.622918\pi
642642 0 0
643643 −0.686292 −0.0270647 −0.0135323 0.999908i 0.504308π-0.504308\pi
−0.0135323 + 0.999908i 0.504308π0.504308\pi
644644 −15.3137 −0.603445
645645 0 0
646646 0 0
647647 −38.4264 −1.51070 −0.755349 0.655323i 0.772533π-0.772533\pi
−0.755349 + 0.655323i 0.772533π0.772533\pi
648648 0 0
649649 −49.9411 −1.96036
650650 13.1716 0.516632
651651 0 0
652652 2.34315 0.0917647
653653 −31.4142 −1.22933 −0.614667 0.788787i 0.710709π-0.710709\pi
−0.614667 + 0.788787i 0.710709π0.710709\pi
654654 0 0
655655 −11.3137 −0.442063
656656 3.07107 0.119905
657657 0 0
658658 −60.2843 −2.35013
659659 3.51472 0.136914 0.0684570 0.997654i 0.478192π-0.478192\pi
0.0684570 + 0.997654i 0.478192π0.478192\pi
660660 0 0
661661 −30.1421 −1.17239 −0.586197 0.810169i 0.699375π-0.699375\pi
−0.586197 + 0.810169i 0.699375π0.699375\pi
662662 −18.6274 −0.723975
663663 0 0
664664 4.48528 0.174063
665665 19.3137 0.748953
666666 0 0
667667 −1.85786 −0.0719368
668668 −21.7990 −0.843428
669669 0 0
670670 0.686292 0.0265138
671671 −4.28427 −0.165392
672672 0 0
673673 35.5563 1.37060 0.685298 0.728263i 0.259672π-0.259672\pi
0.685298 + 0.728263i 0.259672π0.259672\pi
674674 12.7279 0.490261
675675 0 0
676676 −5.00000 −0.192308
677677 28.3848 1.09092 0.545458 0.838138i 0.316356π-0.316356\pi
0.545458 + 0.838138i 0.316356π0.316356\pi
678678 0 0
679679 −64.7696 −2.48563
680680 0 0
681681 0 0
682682 −3.31371 −0.126888
683683 20.2843 0.776156 0.388078 0.921627i 0.373139π-0.373139\pi
0.388078 + 0.921627i 0.373139π0.373139\pi
684684 0 0
685685 −10.3431 −0.395191
686686 −44.9706 −1.71698
687687 0 0
688688 1.65685 0.0631670
689689 −8.00000 −0.304776
690690 0 0
691691 12.9706 0.493423 0.246712 0.969089i 0.420650π-0.420650\pi
0.246712 + 0.969089i 0.420650π0.420650\pi
692692 4.10051 0.155878
693693 0 0
694694 −11.3137 −0.429463
695695 3.71573 0.140946
696696 0 0
697697 0 0
698698 10.8284 0.409862
699699 0 0
700700 −22.4853 −0.849864
701701 −23.5147 −0.888139 −0.444069 0.895992i 0.646466π-0.646466\pi
−0.444069 + 0.895992i 0.646466π0.646466\pi
702702 0 0
703703 −15.3137 −0.577567
704704 −4.00000 −0.150756
705705 0 0
706706 12.6274 0.475239
707707 −24.9706 −0.939115
708708 0 0
709709 −33.3553 −1.25269 −0.626343 0.779548i 0.715449π-0.715449\pi
−0.626343 + 0.779548i 0.715449π0.715449\pi
710710 3.79899 0.142574
711711 0 0
712712 0 0
713713 2.62742 0.0983975
714714 0 0
715715 6.62742 0.247851
716716 12.9706 0.484733
717717 0 0
718718 −16.0000 −0.597115
719719 −10.2010 −0.380433 −0.190217 0.981742i 0.560919π-0.560919\pi
−0.190217 + 0.981742i 0.560919π0.560919\pi
720720 0 0
721721 71.5980 2.66645
722722 −27.6274 −1.02819
723723 0 0
724724 7.89949 0.293582
725725 −2.72792 −0.101312
726726 0 0
727727 10.3431 0.383606 0.191803 0.981433i 0.438567π-0.438567\pi
0.191803 + 0.981433i 0.438567π0.438567\pi
728728 −13.6569 −0.506157
729729 0 0
730730 5.51472 0.204109
731731 0 0
732732 0 0
733733 41.4558 1.53121 0.765603 0.643313i 0.222441π-0.222441\pi
0.765603 + 0.643313i 0.222441π0.222441\pi
734734 17.5147 0.646480
735735 0 0
736736 3.17157 0.116906
737737 −4.68629 −0.172622
738738 0 0
739739 −9.17157 −0.337382 −0.168691 0.985669i 0.553954π-0.553954\pi
−0.168691 + 0.985669i 0.553954π0.553954\pi
740740 −1.31371 −0.0482929
741741 0 0
742742 13.6569 0.501359
743743 31.4558 1.15400 0.577001 0.816743i 0.304223π-0.304223\pi
0.577001 + 0.816743i 0.304223π0.304223\pi
744744 0 0
745745 −5.85786 −0.214616
746746 −19.7990 −0.724893
747747 0 0
748748 0 0
749749 −65.9411 −2.40944
750750 0 0
751751 −11.4558 −0.418030 −0.209015 0.977912i 0.567026π-0.567026\pi
−0.209015 + 0.977912i 0.567026π0.567026\pi
752752 12.4853 0.455291
753753 0 0
754754 −1.65685 −0.0603391
755755 −8.00000 −0.291150
756756 0 0
757757 −6.00000 −0.218074 −0.109037 0.994038i 0.534777π-0.534777\pi
−0.109037 + 0.994038i 0.534777π0.534777\pi
758758 −24.9706 −0.906972
759759 0 0
760760 −4.00000 −0.145095
761761 1.65685 0.0600609 0.0300305 0.999549i 0.490440π-0.490440\pi
0.0300305 + 0.999549i 0.490440π0.490440\pi
762762 0 0
763763 −18.8284 −0.681635
764764 1.17157 0.0423860
765765 0 0
766766 23.7990 0.859892
767767 35.3137 1.27510
768768 0 0
769769 −40.9706 −1.47744 −0.738718 0.674014i 0.764569π-0.764569\pi
−0.738718 + 0.674014i 0.764569π0.764569\pi
770770 −11.3137 −0.407718
771771 0 0
772772 5.89949 0.212327
773773 44.6274 1.60514 0.802568 0.596560i 0.203466π-0.203466\pi
0.802568 + 0.596560i 0.203466π0.203466\pi
774774 0 0
775775 3.85786 0.138579
776776 13.4142 0.481542
777777 0 0
778778 −36.6274 −1.31316
779779 −20.9706 −0.751348
780780 0 0
781781 −25.9411 −0.928246
782782 0 0
783783 0 0
784784 16.3137 0.582632
785785 3.51472 0.125446
786786 0 0
787787 −21.9411 −0.782117 −0.391058 0.920366i 0.627891π-0.627891\pi
−0.391058 + 0.920366i 0.627891π0.627891\pi
788788 10.2426 0.364879
789789 0 0
790790 8.48528 0.301893
791791 61.4558 2.18512
792792 0 0
793793 3.02944 0.107578
794794 33.0711 1.17365
795795 0 0
796796 −0.828427 −0.0293628
797797 −21.1716 −0.749936 −0.374968 0.927038i 0.622346π-0.622346\pi
−0.374968 + 0.927038i 0.622346π0.622346\pi
798798 0 0
799799 0 0
800800 4.65685 0.164645
801801 0 0
802802 −8.72792 −0.308194
803803 −37.6569 −1.32888
804804 0 0
805805 8.97056 0.316171
806806 2.34315 0.0825338
807807 0 0
808808 5.17157 0.181935
809809 44.5269 1.56548 0.782741 0.622347i 0.213821π-0.213821\pi
0.782741 + 0.622347i 0.213821π0.213821\pi
810810 0 0
811811 28.9706 1.01729 0.508647 0.860975i 0.330146π-0.330146\pi
0.508647 + 0.860975i 0.330146π0.330146\pi
812812 2.82843 0.0992583
813813 0 0
814814 8.97056 0.314418
815815 −1.37258 −0.0480795
816816 0 0
817817 −11.3137 −0.395817
818818 14.0000 0.489499
819819 0 0
820820 −1.79899 −0.0628235
821821 −13.7574 −0.480135 −0.240068 0.970756i 0.577170π-0.577170\pi
−0.240068 + 0.970756i 0.577170π0.577170\pi
822822 0 0
823823 31.1716 1.08657 0.543286 0.839547i 0.317180π-0.317180\pi
0.543286 + 0.839547i 0.317180π0.317180\pi
824824 −14.8284 −0.516573
825825 0 0
826826 −60.2843 −2.09756
827827 −37.9411 −1.31934 −0.659671 0.751554i 0.729304π-0.729304\pi
−0.659671 + 0.751554i 0.729304π0.729304\pi
828828 0 0
829829 27.9411 0.970435 0.485218 0.874393i 0.338740π-0.338740\pi
0.485218 + 0.874393i 0.338740π0.338740\pi
830830 −2.62742 −0.0911990
831831 0 0
832832 2.82843 0.0980581
833833 0 0
834834 0 0
835835 12.7696 0.441909
836836 27.3137 0.944664
837837 0 0
838838 −1.65685 −0.0572351
839839 2.48528 0.0858014 0.0429007 0.999079i 0.486340π-0.486340\pi
0.0429007 + 0.999079i 0.486340π0.486340\pi
840840 0 0
841841 −28.6569 −0.988167
842842 −15.5147 −0.534673
843843 0 0
844844 −28.9706 −0.997208
845845 2.92893 0.100758
846846 0 0
847847 24.1421 0.829534
848848 −2.82843 −0.0971286
849849 0 0
850850 0 0
851851 −7.11270 −0.243820
852852 0 0
853853 −48.3848 −1.65666 −0.828332 0.560238i 0.810710π-0.810710\pi
−0.828332 + 0.560238i 0.810710π0.810710\pi
854854 −5.17157 −0.176968
855855 0 0
856856 13.6569 0.466782
857857 15.7574 0.538261 0.269131 0.963104i 0.413264π-0.413264\pi
0.269131 + 0.963104i 0.413264π0.413264\pi
858858 0 0
859859 −1.65685 −0.0565311 −0.0282656 0.999600i 0.508998π-0.508998\pi
−0.0282656 + 0.999600i 0.508998π0.508998\pi
860860 −0.970563 −0.0330959
861861 0 0
862862 20.1421 0.686044
863863 5.65685 0.192562 0.0962808 0.995354i 0.469305π-0.469305\pi
0.0962808 + 0.995354i 0.469305π0.469305\pi
864864 0 0
865865 −2.40202 −0.0816711
866866 16.6274 0.565023
867867 0 0
868868 −4.00000 −0.135769
869869 −57.9411 −1.96552
870870 0 0
871871 3.31371 0.112281
872872 3.89949 0.132054
873873 0 0
874874 −21.6569 −0.732554
875875 27.3137 0.923372
876876 0 0
877877 12.1005 0.408605 0.204303 0.978908i 0.434507π-0.434507\pi
0.204303 + 0.978908i 0.434507π0.434507\pi
878878 −13.5147 −0.456100
879879 0 0
880880 2.34315 0.0789874
881881 29.2132 0.984218 0.492109 0.870534i 0.336226π-0.336226\pi
0.492109 + 0.870534i 0.336226π0.336226\pi
882882 0 0
883883 −48.7696 −1.64123 −0.820613 0.571484i 0.806368π-0.806368\pi
−0.820613 + 0.571484i 0.806368π0.806368\pi
884884 0 0
885885 0 0
886886 −28.9706 −0.973285
887887 −1.79899 −0.0604042 −0.0302021 0.999544i 0.509615π-0.509615\pi
−0.0302021 + 0.999544i 0.509615π0.509615\pi
888888 0 0
889889 65.9411 2.21159
890890 0 0
891891 0 0
892892 6.82843 0.228633
893893 −85.2548 −2.85294
894894 0 0
895895 −7.59798 −0.253972
896896 −4.82843 −0.161306
897897 0 0
898898 12.0416 0.401834
899899 −0.485281 −0.0161850
900900 0 0
901901 0 0
902902 12.2843 0.409021
903903 0 0
904904 −12.7279 −0.423324
905905 −4.62742 −0.153821
906906 0 0
907907 12.6863 0.421241 0.210621 0.977568i 0.432452π-0.432452\pi
0.210621 + 0.977568i 0.432452π0.432452\pi
908908 −17.6569 −0.585963
909909 0 0
910910 8.00000 0.265197
911911 −29.1127 −0.964547 −0.482273 0.876021i 0.660189π-0.660189\pi
−0.482273 + 0.876021i 0.660189π0.660189\pi
912912 0 0
913913 17.9411 0.593765
914914 2.68629 0.0888546
915915 0 0
916916 −14.0000 −0.462573
917917 93.2548 3.07955
918918 0 0
919919 −18.3431 −0.605085 −0.302542 0.953136i 0.597835π-0.597835\pi
−0.302542 + 0.953136i 0.597835π0.597835\pi
920920 −1.85786 −0.0612520
921921 0 0
922922 25.4558 0.838344
923923 18.3431 0.603772
924924 0 0
925925 −10.4437 −0.343385
926926 6.82843 0.224396
927927 0 0
928928 −0.585786 −0.0192294
929929 42.5858 1.39719 0.698597 0.715515i 0.253808π-0.253808\pi
0.698597 + 0.715515i 0.253808π0.253808\pi
930930 0 0
931931 −111.397 −3.65089
932932 −12.7279 −0.416917
933933 0 0
934934 −28.0000 −0.916188
935935 0 0
936936 0 0
937937 −4.00000 −0.130674 −0.0653372 0.997863i 0.520812π-0.520812\pi
−0.0653372 + 0.997863i 0.520812π0.520812\pi
938938 −5.65685 −0.184703
939939 0 0
940940 −7.31371 −0.238547
941941 −34.2426 −1.11628 −0.558139 0.829747i 0.688484π-0.688484\pi
−0.558139 + 0.829747i 0.688484π0.688484\pi
942942 0 0
943943 −9.74012 −0.317182
944944 12.4853 0.406361
945945 0 0
946946 6.62742 0.215476
947947 21.9411 0.712991 0.356495 0.934297i 0.383972π-0.383972\pi
0.356495 + 0.934297i 0.383972π0.383972\pi
948948 0 0
949949 26.6274 0.864363
950950 −31.7990 −1.03170
951951 0 0
952952 0 0
953953 −7.02944 −0.227706 −0.113853 0.993498i 0.536319π-0.536319\pi
−0.113853 + 0.993498i 0.536319π0.536319\pi
954954 0 0
955955 −0.686292 −0.0222079
956956 −12.4853 −0.403803
957957 0 0
958958 7.17157 0.231703
959959 85.2548 2.75302
960960 0 0
961961 −30.3137 −0.977862
962962 −6.34315 −0.204511
963963 0 0
964964 8.24264 0.265478
965965 −3.45584 −0.111248
966966 0 0
967967 −18.1421 −0.583412 −0.291706 0.956508i 0.594223π-0.594223\pi
−0.291706 + 0.956508i 0.594223π0.594223\pi
968968 −5.00000 −0.160706
969969 0 0
970970 −7.85786 −0.252301
971971 20.4853 0.657404 0.328702 0.944434i 0.393389π-0.393389\pi
0.328702 + 0.944434i 0.393389π0.393389\pi
972972 0 0
973973 −30.6274 −0.981870
974974 41.1127 1.31734
975975 0 0
976976 1.07107 0.0342840
977977 0.284271 0.00909464 0.00454732 0.999990i 0.498553π-0.498553\pi
0.00454732 + 0.999990i 0.498553π0.498553\pi
978978 0 0
979979 0 0
980980 −9.55635 −0.305266
981981 0 0
982982 −16.2843 −0.519652
983983 4.82843 0.154003 0.0770015 0.997031i 0.475465π-0.475465\pi
0.0770015 + 0.997031i 0.475465π0.475465\pi
984984 0 0
985985 −6.00000 −0.191176
986986 0 0
987987 0 0
988988 −19.3137 −0.614451
989989 −5.25483 −0.167094
990990 0 0
991991 54.4853 1.73078 0.865391 0.501097i 0.167070π-0.167070\pi
0.865391 + 0.501097i 0.167070π0.167070\pi
992992 0.828427 0.0263026
993993 0 0
994994 −31.3137 −0.993211
995995 0.485281 0.0153845
996996 0 0
997997 −46.5269 −1.47352 −0.736761 0.676153i 0.763646π-0.763646\pi
−0.736761 + 0.676153i 0.763646π0.763646\pi
998998 −24.9706 −0.790429
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5202.2.a.o.1.2 2
3.2 odd 2 1734.2.a.n.1.1 2
17.8 even 8 306.2.g.g.217.1 4
17.15 even 8 306.2.g.g.55.1 4
17.16 even 2 5202.2.a.x.1.1 2
51.2 odd 8 1734.2.f.i.1483.1 4
51.8 odd 8 102.2.f.a.13.2 4
51.26 odd 8 1734.2.f.i.829.1 4
51.32 odd 8 102.2.f.a.55.2 yes 4
51.38 odd 4 1734.2.b.h.577.4 4
51.47 odd 4 1734.2.b.h.577.1 4
51.50 odd 2 1734.2.a.o.1.2 2
68.15 odd 8 2448.2.be.t.1585.1 4
68.59 odd 8 2448.2.be.t.1441.1 4
204.59 even 8 816.2.bd.a.625.1 4
204.83 even 8 816.2.bd.a.769.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
102.2.f.a.13.2 4 51.8 odd 8
102.2.f.a.55.2 yes 4 51.32 odd 8
306.2.g.g.55.1 4 17.15 even 8
306.2.g.g.217.1 4 17.8 even 8
816.2.bd.a.625.1 4 204.59 even 8
816.2.bd.a.769.1 4 204.83 even 8
1734.2.a.n.1.1 2 3.2 odd 2
1734.2.a.o.1.2 2 51.50 odd 2
1734.2.b.h.577.1 4 51.47 odd 4
1734.2.b.h.577.4 4 51.38 odd 4
1734.2.f.i.829.1 4 51.26 odd 8
1734.2.f.i.1483.1 4 51.2 odd 8
2448.2.be.t.1441.1 4 68.59 odd 8
2448.2.be.t.1585.1 4 68.15 odd 8
5202.2.a.o.1.2 2 1.1 even 1 trivial
5202.2.a.x.1.1 2 17.16 even 2