Properties

Label 1024.2.e.l.257.2
Level $1024$
Weight $2$
Character 1024.257
Analytic conductor $8.177$
Analytic rank $0$
Dimension $4$
CM discriminant -8
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1024,2,Mod(257,1024)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1024, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1024.257");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1024 = 2^{10} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1024.e (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.17668116698\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 64)
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 257.2
Root \(0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1024.257
Dual form 1024.2.e.l.769.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.41421 + 1.41421i) q^{3} +1.00000i q^{9} +(4.24264 - 4.24264i) q^{11} +6.00000 q^{17} +(-1.41421 - 1.41421i) q^{19} +5.00000i q^{25} +(2.82843 - 2.82843i) q^{27} +12.0000 q^{33} +6.00000i q^{41} +(-7.07107 + 7.07107i) q^{43} +7.00000 q^{49} +(8.48528 + 8.48528i) q^{51} -4.00000i q^{57} +(-4.24264 + 4.24264i) q^{59} +(-9.89949 - 9.89949i) q^{67} -2.00000i q^{73} +(-7.07107 + 7.07107i) q^{75} +11.0000 q^{81} +(-12.7279 - 12.7279i) q^{83} +18.0000i q^{89} +10.0000 q^{97} +(4.24264 + 4.24264i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 24 q^{17} + 48 q^{33} + 28 q^{49} + 44 q^{81} + 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1024\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(1023\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.41421 + 1.41421i 0.816497 + 0.816497i 0.985599 0.169102i \(-0.0540867\pi\)
−0.169102 + 0.985599i \(0.554087\pi\)
\(4\) 0 0
\(5\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 4.24264 4.24264i 1.27920 1.27920i 0.338091 0.941113i \(-0.390219\pi\)
0.941113 0.338091i \(-0.109781\pi\)
\(12\) 0 0
\(13\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.00000 1.45521 0.727607 0.685994i \(-0.240633\pi\)
0.727607 + 0.685994i \(0.240633\pi\)
\(18\) 0 0
\(19\) −1.41421 1.41421i −0.324443 0.324443i 0.526026 0.850469i \(-0.323682\pi\)
−0.850469 + 0.526026i \(0.823682\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 5.00000i 1.00000i
\(26\) 0 0
\(27\) 2.82843 2.82843i 0.544331 0.544331i
\(28\) 0 0
\(29\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 12.0000 2.08893
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.00000i 0.937043i 0.883452 + 0.468521i \(0.155213\pi\)
−0.883452 + 0.468521i \(0.844787\pi\)
\(42\) 0 0
\(43\) −7.07107 + 7.07107i −1.07833 + 1.07833i −0.0816682 + 0.996660i \(0.526025\pi\)
−0.996660 + 0.0816682i \(0.973975\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) 8.48528 + 8.48528i 1.18818 + 1.18818i
\(52\) 0 0
\(53\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 4.00000i 0.529813i
\(58\) 0 0
\(59\) −4.24264 + 4.24264i −0.552345 + 0.552345i −0.927117 0.374772i \(-0.877721\pi\)
0.374772 + 0.927117i \(0.377721\pi\)
\(60\) 0 0
\(61\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −9.89949 9.89949i −1.20942 1.20942i −0.971216 0.238200i \(-0.923443\pi\)
−0.238200 0.971216i \(-0.576557\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 2.00000i 0.234082i −0.993127 0.117041i \(-0.962659\pi\)
0.993127 0.117041i \(-0.0373409\pi\)
\(74\) 0 0
\(75\) −7.07107 + 7.07107i −0.816497 + 0.816497i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 11.0000 1.22222
\(82\) 0 0
\(83\) −12.7279 12.7279i −1.39707 1.39707i −0.808300 0.588771i \(-0.799612\pi\)
−0.588771 0.808300i \(-0.700388\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 18.0000i 1.90800i 0.299813 + 0.953998i \(0.403076\pi\)
−0.299813 + 0.953998i \(0.596924\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 0 0
\(99\) 4.24264 + 4.24264i 0.426401 + 0.426401i
\(100\) 0 0
\(101\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.24264 4.24264i 0.410152 0.410152i −0.471640 0.881791i \(-0.656338\pi\)
0.881791 + 0.471640i \(0.156338\pi\)
\(108\) 0 0
\(109\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −18.0000 −1.69330 −0.846649 0.532152i \(-0.821383\pi\)
−0.846649 + 0.532152i \(0.821383\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 25.0000i 2.27273i
\(122\) 0 0
\(123\) −8.48528 + 8.48528i −0.765092 + 0.765092i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) −20.0000 −1.76090
\(130\) 0 0
\(131\) 12.7279 + 12.7279i 1.11204 + 1.11204i 0.992874 + 0.119170i \(0.0380233\pi\)
0.119170 + 0.992874i \(0.461977\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.00000i 0.512615i 0.966595 + 0.256307i \(0.0825059\pi\)
−0.966595 + 0.256307i \(0.917494\pi\)
\(138\) 0 0
\(139\) 15.5563 15.5563i 1.31947 1.31947i 0.405279 0.914193i \(-0.367174\pi\)
0.914193 0.405279i \(-0.132826\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 9.89949 + 9.89949i 0.816497 + 0.816497i
\(148\) 0 0
\(149\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 6.00000i 0.485071i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 1.41421 + 1.41421i 0.110770 + 0.110770i 0.760319 0.649550i \(-0.225042\pi\)
−0.649550 + 0.760319i \(0.725042\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 13.0000i 1.00000i
\(170\) 0 0
\(171\) 1.41421 1.41421i 0.108148 0.108148i
\(172\) 0 0
\(173\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −12.0000 −0.901975
\(178\) 0 0
\(179\) −12.7279 12.7279i −0.951330 0.951330i 0.0475398 0.998869i \(-0.484862\pi\)
−0.998869 + 0.0475398i \(0.984862\pi\)
\(180\) 0 0
\(181\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 25.4558 25.4558i 1.86152 1.86152i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −22.0000 −1.58359 −0.791797 0.610784i \(-0.790854\pi\)
−0.791797 + 0.610784i \(0.790854\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 28.0000i 1.97497i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −12.0000 −0.830057
\(210\) 0 0
\(211\) 9.89949 + 9.89949i 0.681509 + 0.681509i 0.960340 0.278831i \(-0.0899469\pi\)
−0.278831 + 0.960340i \(0.589947\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 2.82843 2.82843i 0.191127 0.191127i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) −5.00000 −0.333333
\(226\) 0 0
\(227\) −21.2132 21.2132i −1.40797 1.40797i −0.770357 0.637613i \(-0.779922\pi\)
−0.637613 0.770357i \(-0.720078\pi\)
\(228\) 0 0
\(229\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 30.0000i 1.96537i 0.185296 + 0.982683i \(0.440675\pi\)
−0.185296 + 0.982683i \(0.559325\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −26.0000 −1.67481 −0.837404 0.546585i \(-0.815928\pi\)
−0.837404 + 0.546585i \(0.815928\pi\)
\(242\) 0 0
\(243\) 7.07107 + 7.07107i 0.453609 + 0.453609i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 36.0000i 2.28141i
\(250\) 0 0
\(251\) −4.24264 + 4.24264i −0.267793 + 0.267793i −0.828210 0.560417i \(-0.810641\pi\)
0.560417 + 0.828210i \(0.310641\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −30.0000 −1.87135 −0.935674 0.352865i \(-0.885208\pi\)
−0.935674 + 0.352865i \(0.885208\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −25.4558 + 25.4558i −1.55787 + 1.55787i
\(268\) 0 0
\(269\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 21.2132 + 21.2132i 1.27920 + 1.27920i
\(276\) 0 0
\(277\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 18.0000i 1.07379i 0.843649 + 0.536895i \(0.180403\pi\)
−0.843649 + 0.536895i \(0.819597\pi\)
\(282\) 0 0
\(283\) −15.5563 + 15.5563i −0.924729 + 0.924729i −0.997359 0.0726300i \(-0.976861\pi\)
0.0726300 + 0.997359i \(0.476861\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) 14.1421 + 14.1421i 0.829027 + 0.829027i
\(292\) 0 0
\(293\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 24.0000i 1.39262i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −24.0416 24.0416i −1.37213 1.37213i −0.857283 0.514845i \(-0.827849\pi\)
−0.514845 0.857283i \(-0.672151\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 10.0000i 0.565233i 0.959233 + 0.282617i \(0.0912024\pi\)
−0.959233 + 0.282617i \(0.908798\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 12.0000 0.669775
\(322\) 0 0
\(323\) −8.48528 8.48528i −0.472134 0.472134i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −18.3848 + 18.3848i −1.01052 + 1.01052i −0.0105746 + 0.999944i \(0.503366\pi\)
−0.999944 + 0.0105746i \(0.996634\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) 0 0
\(339\) −25.4558 25.4558i −1.38257 1.38257i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −4.24264 + 4.24264i −0.227757 + 0.227757i −0.811755 0.583998i \(-0.801488\pi\)
0.583998 + 0.811755i \(0.301488\pi\)
\(348\) 0 0
\(349\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −30.0000 −1.59674 −0.798369 0.602168i \(-0.794304\pi\)
−0.798369 + 0.602168i \(0.794304\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 15.0000i 0.789474i
\(362\) 0 0
\(363\) 35.3553 35.3553i 1.85567 1.85567i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −26.8701 + 26.8701i −1.38022 + 1.38022i −0.536011 + 0.844211i \(0.680070\pi\)
−0.844211 + 0.536011i \(0.819930\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −7.07107 7.07107i −0.359443 0.359443i
\(388\) 0 0
\(389\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 36.0000i 1.81596i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6.00000 0.299626 0.149813 0.988714i \(-0.452133\pi\)
0.149813 + 0.988714i \(0.452133\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 22.0000i 1.08783i −0.839140 0.543915i \(-0.816941\pi\)
0.839140 0.543915i \(-0.183059\pi\)
\(410\) 0 0
\(411\) −8.48528 + 8.48528i −0.418548 + 0.418548i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 44.0000 2.15469
\(418\) 0 0
\(419\) 12.7279 + 12.7279i 0.621800 + 0.621800i 0.945991 0.324192i \(-0.105092\pi\)
−0.324192 + 0.945991i \(0.605092\pi\)
\(420\) 0 0
\(421\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 30.0000i 1.45521i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 38.0000 1.82616 0.913082 0.407777i \(-0.133696\pi\)
0.913082 + 0.407777i \(0.133696\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 7.00000i 0.333333i
\(442\) 0 0
\(443\) 29.6985 29.6985i 1.41102 1.41102i 0.657997 0.753020i \(-0.271404\pi\)
0.753020 0.657997i \(-0.228596\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 42.0000 1.98210 0.991051 0.133482i \(-0.0426157\pi\)
0.991051 + 0.133482i \(0.0426157\pi\)
\(450\) 0 0
\(451\) 25.4558 + 25.4558i 1.19867 + 1.19867i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 26.0000i 1.21623i −0.793849 0.608114i \(-0.791926\pi\)
0.793849 0.608114i \(-0.208074\pi\)
\(458\) 0 0
\(459\) 16.9706 16.9706i 0.792118 0.792118i
\(460\) 0 0
\(461\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 21.2132 + 21.2132i 0.981630 + 0.981630i 0.999834 0.0182043i \(-0.00579493\pi\)
−0.0182043 + 0.999834i \(0.505795\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 60.0000i 2.75880i
\(474\) 0 0
\(475\) 7.07107 7.07107i 0.324443 0.324443i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 4.00000i 0.180886i
\(490\) 0 0
\(491\) −29.6985 + 29.6985i −1.34027 + 1.34027i −0.444490 + 0.895784i \(0.646615\pi\)
−0.895784 + 0.444490i \(0.853385\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 9.89949 + 9.89949i 0.443162 + 0.443162i 0.893073 0.449911i \(-0.148544\pi\)
−0.449911 + 0.893073i \(0.648544\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 18.3848 18.3848i 0.816497 0.816497i
\(508\) 0 0
\(509\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −8.00000 −0.353209
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 6.00000i 0.262865i 0.991325 + 0.131432i \(0.0419576\pi\)
−0.991325 + 0.131432i \(0.958042\pi\)
\(522\) 0 0
\(523\) 26.8701 26.8701i 1.17495 1.17495i 0.193930 0.981015i \(-0.437876\pi\)
0.981015 0.193930i \(-0.0621236\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) −4.24264 4.24264i −0.184115 0.184115i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 36.0000i 1.55351i
\(538\) 0 0
\(539\) 29.6985 29.6985i 1.27920 1.27920i
\(540\) 0 0
\(541\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −32.5269 32.5269i −1.39075 1.39075i −0.823646 0.567104i \(-0.808064\pi\)
−0.567104 0.823646i \(-0.691936\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 72.0000 3.03984
\(562\) 0 0
\(563\) 21.2132 + 21.2132i 0.894030 + 0.894030i 0.994900 0.100870i \(-0.0321625\pi\)
−0.100870 + 0.994900i \(0.532163\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 42.0000i 1.76073i 0.474295 + 0.880366i \(0.342703\pi\)
−0.474295 + 0.880366i \(0.657297\pi\)
\(570\) 0 0
\(571\) −15.5563 + 15.5563i −0.651013 + 0.651013i −0.953237 0.302224i \(-0.902271\pi\)
0.302224 + 0.953237i \(0.402271\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 34.0000 1.41544 0.707719 0.706494i \(-0.249724\pi\)
0.707719 + 0.706494i \(0.249724\pi\)
\(578\) 0 0
\(579\) −31.1127 31.1127i −1.29300 1.29300i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4.24264 4.24264i 0.175113 0.175113i −0.614109 0.789221i \(-0.710484\pi\)
0.789221 + 0.614109i \(0.210484\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −18.0000 −0.739171 −0.369586 0.929197i \(-0.620500\pi\)
−0.369586 + 0.929197i \(0.620500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 46.0000i 1.87638i −0.346122 0.938190i \(-0.612502\pi\)
0.346122 0.938190i \(-0.387498\pi\)
\(602\) 0 0
\(603\) 9.89949 9.89949i 0.403139 0.403139i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 30.0000i 1.20775i 0.797077 + 0.603877i \(0.206378\pi\)
−0.797077 + 0.603877i \(0.793622\pi\)
\(618\) 0 0
\(619\) −18.3848 + 18.3848i −0.738947 + 0.738947i −0.972374 0.233428i \(-0.925006\pi\)
0.233428 + 0.972374i \(0.425006\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −25.0000 −1.00000
\(626\) 0 0
\(627\) −16.9706 16.9706i −0.677739 0.677739i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 28.0000i 1.11290i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 42.0000 1.65890 0.829450 0.558581i \(-0.188654\pi\)
0.829450 + 0.558581i \(0.188654\pi\)
\(642\) 0 0
\(643\) 35.3553 + 35.3553i 1.39428 + 1.39428i 0.815448 + 0.578831i \(0.196491\pi\)
0.578831 + 0.815448i \(0.303509\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0 0
\(649\) 36.0000i 1.41312i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 2.00000 0.0780274
\(658\) 0 0
\(659\) −12.7279 12.7279i −0.495809 0.495809i 0.414321 0.910131i \(-0.364019\pi\)
−0.910131 + 0.414321i \(0.864019\pi\)
\(660\) 0 0
\(661\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 10.0000 0.385472 0.192736 0.981251i \(-0.438264\pi\)
0.192736 + 0.981251i \(0.438264\pi\)
\(674\) 0 0
\(675\) 14.1421 + 14.1421i 0.544331 + 0.544331i
\(676\) 0 0
\(677\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 60.0000i 2.29920i
\(682\) 0 0
\(683\) −29.6985 + 29.6985i −1.13638 + 1.13638i −0.147287 + 0.989094i \(0.547054\pi\)
−0.989094 + 0.147287i \(0.952946\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 32.5269 + 32.5269i 1.23738 + 1.23738i 0.961067 + 0.276315i \(0.0891133\pi\)
0.276315 + 0.961067i \(0.410887\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 36.0000i 1.36360i
\(698\) 0 0
\(699\) −42.4264 + 42.4264i −1.60471 + 1.60471i
\(700\) 0 0
\(701\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −36.7696 36.7696i −1.36747 1.36747i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 13.0000i 0.481481i
\(730\) 0 0
\(731\) −42.4264 + 42.4264i −1.56920 + 1.56920i
\(732\) 0 0
\(733\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −84.0000 −3.09418
\(738\) 0 0
\(739\) 24.0416 + 24.0416i 0.884386 + 0.884386i 0.993977 0.109591i \(-0.0349541\pi\)
−0.109591 + 0.993977i \(0.534954\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 12.7279 12.7279i 0.465690 0.465690i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) −12.0000 −0.437304
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 54.0000i 1.95750i −0.205061 0.978749i \(-0.565739\pi\)
0.205061 0.978749i \(-0.434261\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −22.0000 −0.793340 −0.396670 0.917961i \(-0.629834\pi\)
−0.396670 + 0.917961i \(0.629834\pi\)
\(770\) 0 0
\(771\) −42.4264 42.4264i −1.52795 1.52795i
\(772\) 0 0
\(773\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 8.48528 8.48528i 0.304017 0.304017i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −35.3553 35.3553i −1.26028 1.26028i −0.950956 0.309326i \(-0.899897\pi\)
−0.309326 0.950956i \(-0.600103\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −18.0000 −0.635999
\(802\) 0 0
\(803\) −8.48528 8.48528i −0.299439 0.299439i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 6.00000i 0.210949i 0.994422 + 0.105474i \(0.0336361\pi\)
−0.994422 + 0.105474i \(0.966364\pi\)
\(810\) 0 0
\(811\) 26.8701 26.8701i 0.943535 0.943535i −0.0549536 0.998489i \(-0.517501\pi\)
0.998489 + 0.0549536i \(0.0175011\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 20.0000 0.699711
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 60.0000i 2.08893i
\(826\) 0 0
\(827\) −38.1838 + 38.1838i −1.32778 + 1.32778i −0.420476 + 0.907304i \(0.638137\pi\)
−0.907304 + 0.420476i \(0.861863\pi\)
\(828\) 0 0
\(829\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 42.0000 1.45521
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 29.0000i 1.00000i
\(842\) 0 0
\(843\) −25.4558 + 25.4558i −0.876746 + 0.876746i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −44.0000 −1.51008
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 54.0000i 1.84460i −0.386469 0.922302i \(-0.626305\pi\)
0.386469 0.922302i \(-0.373695\pi\)
\(858\) 0 0
\(859\) 41.0122 41.0122i 1.39932 1.39932i 0.597300 0.802018i \(-0.296240\pi\)
0.802018 0.597300i \(-0.203760\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 26.8701 + 26.8701i 0.912555 + 0.912555i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 10.0000i 0.338449i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 0 0
\(883\) −1.41421 1.41421i −0.0475921 0.0475921i 0.682910 0.730502i \(-0.260714\pi\)
−0.730502 + 0.682910i \(0.760714\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 46.6690 46.6690i 1.56347 1.56347i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −7.07107 + 7.07107i −0.234791 + 0.234791i −0.814689 0.579898i \(-0.803092\pi\)
0.579898 + 0.814689i \(0.303092\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) −108.000 −3.57428
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 68.0000i 2.24068i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −54.0000 −1.77168 −0.885841 0.463988i \(-0.846418\pi\)
−0.885841 + 0.463988i \(0.846418\pi\)
\(930\) 0 0
\(931\) −9.89949 9.89949i −0.324443 0.324443i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 34.0000i 1.11073i −0.831606 0.555366i \(-0.812578\pi\)
0.831606 0.555366i \(-0.187422\pi\)
\(938\) 0 0
\(939\) −14.1421 + 14.1421i −0.461511 + 0.461511i
\(940\) 0 0
\(941\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 21.2132 + 21.2132i 0.689336 + 0.689336i 0.962085 0.272749i \(-0.0879328\pi\)
−0.272749 + 0.962085i \(0.587933\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 42.0000i 1.36051i 0.732974 + 0.680257i \(0.238132\pi\)
−0.732974 + 0.680257i \(0.761868\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 4.24264 + 4.24264i 0.136717 + 0.136717i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 24.0000i 0.770991i
\(970\) 0 0
\(971\) 38.1838 38.1838i 1.22538 1.22538i 0.259681 0.965694i \(-0.416383\pi\)
0.965694 0.259681i \(-0.0836174\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 6.00000 0.191957 0.0959785 0.995383i \(-0.469402\pi\)
0.0959785 + 0.995383i \(0.469402\pi\)
\(978\) 0 0
\(979\) 76.3675 + 76.3675i 2.44072 + 2.44072i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) −52.0000 −1.65017
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1024.2.e.l.257.2 4
4.3 odd 2 inner 1024.2.e.l.257.1 4
8.3 odd 2 CM 1024.2.e.l.257.2 4
8.5 even 2 inner 1024.2.e.l.257.1 4
16.3 odd 4 inner 1024.2.e.l.769.2 4
16.5 even 4 inner 1024.2.e.l.769.2 4
16.11 odd 4 inner 1024.2.e.l.769.1 4
16.13 even 4 inner 1024.2.e.l.769.1 4
32.3 odd 8 64.2.b.a.33.1 2
32.5 even 8 256.2.a.a.1.1 1
32.11 odd 8 256.2.a.a.1.1 1
32.13 even 8 64.2.b.a.33.1 2
32.19 odd 8 64.2.b.a.33.2 yes 2
32.21 even 8 256.2.a.d.1.1 1
32.27 odd 8 256.2.a.d.1.1 1
32.29 even 8 64.2.b.a.33.2 yes 2
96.5 odd 8 2304.2.a.i.1.1 1
96.11 even 8 2304.2.a.i.1.1 1
96.29 odd 8 576.2.d.a.289.2 2
96.35 even 8 576.2.d.a.289.1 2
96.53 odd 8 2304.2.a.h.1.1 1
96.59 even 8 2304.2.a.h.1.1 1
96.77 odd 8 576.2.d.a.289.1 2
96.83 even 8 576.2.d.a.289.2 2
160.3 even 8 1600.2.f.b.1249.2 2
160.13 odd 8 1600.2.f.b.1249.2 2
160.19 odd 8 1600.2.d.a.801.1 2
160.29 even 8 1600.2.d.a.801.1 2
160.59 odd 8 6400.2.a.a.1.1 1
160.67 even 8 1600.2.f.a.1249.2 2
160.69 even 8 6400.2.a.x.1.1 1
160.77 odd 8 1600.2.f.a.1249.2 2
160.83 even 8 1600.2.f.a.1249.1 2
160.93 odd 8 1600.2.f.a.1249.1 2
160.99 odd 8 1600.2.d.a.801.2 2
160.109 even 8 1600.2.d.a.801.2 2
160.139 odd 8 6400.2.a.x.1.1 1
160.147 even 8 1600.2.f.b.1249.1 2
160.149 even 8 6400.2.a.a.1.1 1
160.157 odd 8 1600.2.f.b.1249.1 2
224.13 odd 8 3136.2.b.b.1569.2 2
224.83 even 8 3136.2.b.b.1569.1 2
224.125 odd 8 3136.2.b.b.1569.1 2
224.195 even 8 3136.2.b.b.1569.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
64.2.b.a.33.1 2 32.3 odd 8
64.2.b.a.33.1 2 32.13 even 8
64.2.b.a.33.2 yes 2 32.19 odd 8
64.2.b.a.33.2 yes 2 32.29 even 8
256.2.a.a.1.1 1 32.5 even 8
256.2.a.a.1.1 1 32.11 odd 8
256.2.a.d.1.1 1 32.21 even 8
256.2.a.d.1.1 1 32.27 odd 8
576.2.d.a.289.1 2 96.35 even 8
576.2.d.a.289.1 2 96.77 odd 8
576.2.d.a.289.2 2 96.29 odd 8
576.2.d.a.289.2 2 96.83 even 8
1024.2.e.l.257.1 4 4.3 odd 2 inner
1024.2.e.l.257.1 4 8.5 even 2 inner
1024.2.e.l.257.2 4 1.1 even 1 trivial
1024.2.e.l.257.2 4 8.3 odd 2 CM
1024.2.e.l.769.1 4 16.11 odd 4 inner
1024.2.e.l.769.1 4 16.13 even 4 inner
1024.2.e.l.769.2 4 16.3 odd 4 inner
1024.2.e.l.769.2 4 16.5 even 4 inner
1600.2.d.a.801.1 2 160.19 odd 8
1600.2.d.a.801.1 2 160.29 even 8
1600.2.d.a.801.2 2 160.99 odd 8
1600.2.d.a.801.2 2 160.109 even 8
1600.2.f.a.1249.1 2 160.83 even 8
1600.2.f.a.1249.1 2 160.93 odd 8
1600.2.f.a.1249.2 2 160.67 even 8
1600.2.f.a.1249.2 2 160.77 odd 8
1600.2.f.b.1249.1 2 160.147 even 8
1600.2.f.b.1249.1 2 160.157 odd 8
1600.2.f.b.1249.2 2 160.3 even 8
1600.2.f.b.1249.2 2 160.13 odd 8
2304.2.a.h.1.1 1 96.53 odd 8
2304.2.a.h.1.1 1 96.59 even 8
2304.2.a.i.1.1 1 96.5 odd 8
2304.2.a.i.1.1 1 96.11 even 8
3136.2.b.b.1569.1 2 224.83 even 8
3136.2.b.b.1569.1 2 224.125 odd 8
3136.2.b.b.1569.2 2 224.13 odd 8
3136.2.b.b.1569.2 2 224.195 even 8
6400.2.a.a.1.1 1 160.59 odd 8
6400.2.a.a.1.1 1 160.149 even 8
6400.2.a.x.1.1 1 160.69 even 8
6400.2.a.x.1.1 1 160.139 odd 8