Properties

Label 1035.1.bd.a.424.1
Level $1035$
Weight $1$
Character 1035.424
Analytic conductor $0.517$
Analytic rank $0$
Dimension $10$
Projective image $D_{22}$
CM discriminant -15
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1035,1,Mod(19,1035)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1035, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 11, 15]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1035.19");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1035 = 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1035.bd (of order \(22\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.516532288075\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{22}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{22} - \cdots)\)

Embedding invariants

Embedding label 424.1
Root \(0.142315 - 0.989821i\) of defining polynomial
Character \(\chi\) \(=\) 1035.424
Dual form 1035.1.bd.a.559.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.817178 + 0.708089i) q^{2} +(0.0240754 - 0.167448i) q^{4} +(0.415415 - 0.909632i) q^{5} +(-0.485691 - 0.755750i) q^{8} +(0.304632 + 1.03748i) q^{10} +(1.09435 + 0.321330i) q^{16} +(-0.0405070 - 0.281733i) q^{17} +(0.557730 + 0.0801894i) q^{19} +(-0.142315 - 0.0914602i) q^{20} +(0.654861 - 0.755750i) q^{23} +(-0.654861 - 0.755750i) q^{25} +(1.61435 - 1.03748i) q^{31} +(-0.304632 + 0.139121i) q^{32} +(0.232593 + 0.201543i) q^{34} +(-0.512546 + 0.329393i) q^{38} +(-0.889217 + 0.127850i) q^{40} +1.08128i q^{46} +1.51150i q^{47} +(-0.841254 - 0.540641i) q^{49} +(1.07028 + 0.153882i) q^{50} +(1.25667 + 0.368991i) q^{53} +(-0.817178 - 1.27155i) q^{61} +(-0.584585 + 1.99091i) q^{62} +(-0.323373 + 0.708089i) q^{64} -0.0481508 q^{68} +(0.0268551 - 0.0914602i) q^{76} +(0.512546 + 1.74557i) q^{79} +(0.746902 - 0.861971i) q^{80} +(0.698939 + 1.53046i) q^{83} +(-0.273100 - 0.0801894i) q^{85} +(-0.110783 - 0.127850i) q^{92} +(-1.07028 - 1.23516i) q^{94} +(0.304632 - 0.474017i) q^{95} +(1.07028 - 0.153882i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - q^{4} - q^{5} + 11 q^{8} - q^{16} - 9 q^{17} - q^{20} + q^{23} - q^{25} + 2 q^{31} - 11 q^{34} - 11 q^{40} + q^{49} - 2 q^{53} - 11 q^{62} + 10 q^{64} + 2 q^{68} + 11 q^{76} + 10 q^{80} - 2 q^{83}+ \cdots + q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1035\mathbb{Z}\right)^\times\).

\(n\) \(461\) \(622\) \(856\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{3}{22}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.817178 + 0.708089i −0.817178 + 0.708089i −0.959493 0.281733i \(-0.909091\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(3\) 0 0
\(4\) 0.0240754 0.167448i 0.0240754 0.167448i
\(5\) 0.415415 0.909632i 0.415415 0.909632i
\(6\) 0 0
\(7\) 0 0 0.281733 0.959493i \(-0.409091\pi\)
−0.281733 + 0.959493i \(0.590909\pi\)
\(8\) −0.485691 0.755750i −0.485691 0.755750i
\(9\) 0 0
\(10\) 0.304632 + 1.03748i 0.304632 + 1.03748i
\(11\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(12\) 0 0
\(13\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.09435 + 0.321330i 1.09435 + 0.321330i
\(17\) −0.0405070 0.281733i −0.0405070 0.281733i 0.959493 0.281733i \(-0.0909091\pi\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 0.557730 + 0.0801894i 0.557730 + 0.0801894i 0.415415 0.909632i \(-0.363636\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(20\) −0.142315 0.0914602i −0.142315 0.0914602i
\(21\) 0 0
\(22\) 0 0
\(23\) 0.654861 0.755750i 0.654861 0.755750i
\(24\) 0 0
\(25\) −0.654861 0.755750i −0.654861 0.755750i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 0.989821 0.142315i \(-0.0454545\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(30\) 0 0
\(31\) 1.61435 1.03748i 1.61435 1.03748i 0.654861 0.755750i \(-0.272727\pi\)
0.959493 0.281733i \(-0.0909091\pi\)
\(32\) −0.304632 + 0.139121i −0.304632 + 0.139121i
\(33\) 0 0
\(34\) 0.232593 + 0.201543i 0.232593 + 0.201543i
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 0.909632 0.415415i \(-0.136364\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(38\) −0.512546 + 0.329393i −0.512546 + 0.329393i
\(39\) 0 0
\(40\) −0.889217 + 0.127850i −0.889217 + 0.127850i
\(41\) 0 0 −0.909632 0.415415i \(-0.863636\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(42\) 0 0
\(43\) 0 0 0.540641 0.841254i \(-0.318182\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 1.08128i 1.08128i
\(47\) 1.51150i 1.51150i 0.654861 + 0.755750i \(0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(48\) 0 0
\(49\) −0.841254 0.540641i −0.841254 0.540641i
\(50\) 1.07028 + 0.153882i 1.07028 + 0.153882i
\(51\) 0 0
\(52\) 0 0
\(53\) 1.25667 + 0.368991i 1.25667 + 0.368991i 0.841254 0.540641i \(-0.181818\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 −0.281733 0.959493i \(-0.590909\pi\)
0.281733 + 0.959493i \(0.409091\pi\)
\(60\) 0 0
\(61\) −0.817178 1.27155i −0.817178 1.27155i −0.959493 0.281733i \(-0.909091\pi\)
0.142315 0.989821i \(-0.454545\pi\)
\(62\) −0.584585 + 1.99091i −0.584585 + 1.99091i
\(63\) 0 0
\(64\) −0.323373 + 0.708089i −0.323373 + 0.708089i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 0.755750 0.654861i \(-0.227273\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(68\) −0.0481508 −0.0481508
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.755750 0.654861i \(-0.227273\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(72\) 0 0
\(73\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0.0268551 0.0914602i 0.0268551 0.0914602i
\(77\) 0 0
\(78\) 0 0
\(79\) 0.512546 + 1.74557i 0.512546 + 1.74557i 0.654861 + 0.755750i \(0.272727\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(80\) 0.746902 0.861971i 0.746902 0.861971i
\(81\) 0 0
\(82\) 0 0
\(83\) 0.698939 + 1.53046i 0.698939 + 1.53046i 0.841254 + 0.540641i \(0.181818\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(84\) 0 0
\(85\) −0.273100 0.0801894i −0.273100 0.0801894i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −0.110783 0.127850i −0.110783 0.127850i
\(93\) 0 0
\(94\) −1.07028 1.23516i −1.07028 1.23516i
\(95\) 0.304632 0.474017i 0.304632 0.474017i
\(96\) 0 0
\(97\) 0 0 −0.909632 0.415415i \(-0.863636\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(98\) 1.07028 0.153882i 1.07028 0.153882i
\(99\) 0 0
\(100\) −0.142315 + 0.0914602i −0.142315 + 0.0914602i
\(101\) 0 0 0.909632 0.415415i \(-0.136364\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(102\) 0 0
\(103\) 0 0 −0.755750 0.654861i \(-0.772727\pi\)
0.755750 + 0.654861i \(0.227273\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −1.28820 + 0.588302i −1.28820 + 0.588302i
\(107\) −0.698939 + 0.449181i −0.698939 + 0.449181i −0.841254 0.540641i \(-0.818182\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(108\) 0 0
\(109\) −1.80075 + 0.258908i −1.80075 + 0.258908i −0.959493 0.281733i \(-0.909091\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.10181 1.27155i −1.10181 1.27155i −0.959493 0.281733i \(-0.909091\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(114\) 0 0
\(115\) −0.415415 0.909632i −0.415415 0.909632i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.142315 0.989821i −0.142315 0.989821i
\(122\) 1.56815 + 0.460451i 1.56815 + 0.460451i
\(123\) 0 0
\(124\) −0.134858 0.295298i −0.134858 0.295298i
\(125\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(126\) 0 0
\(127\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(128\) −0.331487 1.12894i −0.331487 1.12894i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.281733 0.959493i \(-0.409091\pi\)
−0.281733 + 0.959493i \(0.590909\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −0.193245 + 0.167448i −0.193245 + 0.167448i
\(137\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(138\) 0 0
\(139\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(150\) 0 0
\(151\) −0.273100 + 0.0801894i −0.273100 + 0.0801894i −0.415415 0.909632i \(-0.636364\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(152\) −0.210281 0.460451i −0.210281 0.460451i
\(153\) 0 0
\(154\) 0 0
\(155\) −0.273100 1.89945i −0.273100 1.89945i
\(156\) 0 0
\(157\) 0 0 −0.989821 0.142315i \(-0.954545\pi\)
0.989821 + 0.142315i \(0.0454545\pi\)
\(158\) −1.65486 1.06351i −1.65486 1.06351i
\(159\) 0 0
\(160\) 0.334896i 0.334896i
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −1.65486 0.755750i −1.65486 0.755750i
\(167\) −1.80075 + 0.258908i −1.80075 + 0.258908i −0.959493 0.281733i \(-0.909091\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(168\) 0 0
\(169\) 0.841254 0.540641i 0.841254 0.540641i
\(170\) 0.279953 0.127850i 0.279953 0.127850i
\(171\) 0 0
\(172\) 0 0
\(173\) 1.14231 + 0.989821i 1.14231 + 0.989821i 1.00000 \(0\)
0.142315 + 0.989821i \(0.454545\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.909632 0.415415i \(-0.863636\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(180\) 0 0
\(181\) −1.07028 + 1.66538i −1.07028 + 1.66538i −0.415415 + 0.909632i \(0.636364\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −0.889217 0.127850i −0.889217 0.127850i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0.253098 + 0.0363899i 0.253098 + 0.0363899i
\(189\) 0 0
\(190\) 0.0867074 + 0.603063i 0.0867074 + 0.603063i
\(191\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(192\) 0 0
\(193\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −0.110783 + 0.127850i −0.110783 + 0.127850i
\(197\) −0.512546 1.74557i −0.512546 1.74557i −0.654861 0.755750i \(-0.727273\pi\)
0.142315 0.989821i \(-0.454545\pi\)
\(198\) 0 0
\(199\) −0.584585 0.909632i −0.584585 0.909632i 0.415415 0.909632i \(-0.363636\pi\)
−1.00000 \(\pi\)
\(200\) −0.253098 + 0.861971i −0.253098 + 0.861971i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −0.0405070 + 0.281733i −0.0405070 + 0.281733i 0.959493 + 0.281733i \(0.0909091\pi\)
−1.00000 \(1.00000\pi\)
\(212\) 0.0920417 0.201543i 0.0920417 0.201543i
\(213\) 0 0
\(214\) 0.253098 0.861971i 0.253098 0.861971i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 1.28820 1.48666i 1.28820 1.48666i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 1.80075 + 0.258908i 1.80075 + 0.258908i
\(227\) −1.10181 0.708089i −1.10181 0.708089i −0.142315 0.989821i \(-0.545455\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(228\) 0 0
\(229\) 1.08128i 1.08128i 0.841254 + 0.540641i \(0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(230\) 0.983568 + 0.449181i 0.983568 + 0.449181i
\(231\) 0 0
\(232\) 0 0
\(233\) −0.983568 + 1.53046i −0.983568 + 1.53046i −0.142315 + 0.989821i \(0.545455\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(234\) 0 0
\(235\) 1.37491 + 0.627899i 1.37491 + 0.627899i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.909632 0.415415i \(-0.136364\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(240\) 0 0
\(241\) −1.49611 1.29639i −1.49611 1.29639i −0.841254 0.540641i \(-0.818182\pi\)
−0.654861 0.755750i \(-0.727273\pi\)
\(242\) 0.817178 + 0.708089i 0.817178 + 0.708089i
\(243\) 0 0
\(244\) −0.232593 + 0.106222i −0.232593 + 0.106222i
\(245\) −0.841254 + 0.540641i −0.841254 + 0.540641i
\(246\) 0 0
\(247\) 0 0
\(248\) −1.56815 0.716152i −1.56815 0.716152i
\(249\) 0 0
\(250\) 0.584585 0.909632i 0.584585 0.909632i
\(251\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0.415415 + 0.266971i 0.415415 + 0.266971i
\(257\) 1.95949 + 0.281733i 1.95949 + 0.281733i 1.00000 \(0\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.84125 0.540641i 1.84125 0.540641i 0.841254 0.540641i \(-0.181818\pi\)
1.00000 \(0\)
\(264\) 0 0
\(265\) 0.857685 0.989821i 0.857685 0.989821i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 0.281733 0.959493i \(-0.409091\pi\)
−0.281733 + 0.959493i \(0.590909\pi\)
\(270\) 0 0
\(271\) −0.544078 + 1.19136i −0.544078 + 1.19136i 0.415415 + 0.909632i \(0.363636\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(272\) 0.0462003 0.321330i 0.0462003 0.321330i
\(273\) 0 0
\(274\) 0.678936 0.588302i 0.678936 0.588302i
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) −1.07028 + 0.927399i −1.07028 + 0.927399i
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(282\) 0 0
\(283\) 0 0 0.281733 0.959493i \(-0.409091\pi\)
−0.281733 + 0.959493i \(0.590909\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 0.881761 0.258908i 0.881761 0.258908i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0.239446 + 1.66538i 0.239446 + 1.66538i 0.654861 + 0.755750i \(0.272727\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0.166390 0.258908i 0.166390 0.258908i
\(303\) 0 0
\(304\) 0.584585 + 0.266971i 0.584585 + 0.266971i
\(305\) −1.49611 + 0.215109i −1.49611 + 0.215109i
\(306\) 0 0
\(307\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 1.56815 + 1.35881i 1.56815 + 1.35881i
\(311\) 0 0 −0.755750 0.654861i \(-0.772727\pi\)
0.755750 + 0.654861i \(0.227273\pi\)
\(312\) 0 0
\(313\) 0 0 0.909632 0.415415i \(-0.136364\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0.304632 0.0437995i 0.304632 0.0437995i
\(317\) 1.80075 + 0.822373i 1.80075 + 0.822373i 0.959493 + 0.281733i \(0.0909091\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0.509766 + 0.588302i 0.509766 + 0.588302i
\(321\) 0 0
\(322\) 0 0
\(323\) 0.160379i 0.160379i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.698939 + 1.53046i 0.698939 + 1.53046i 0.841254 + 0.540641i \(0.181818\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(332\) 0.273100 0.0801894i 0.273100 0.0801894i
\(333\) 0 0
\(334\) 1.28820 1.48666i 1.28820 1.48666i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 −0.540641 0.841254i \(-0.681818\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(338\) −0.304632 + 1.03748i −0.304632 + 1.03748i
\(339\) 0 0
\(340\) −0.0200026 + 0.0437995i −0.0200026 + 0.0437995i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −1.63436 −1.63436
\(347\) −0.425839 + 0.368991i −0.425839 + 0.368991i −0.841254 0.540641i \(-0.818182\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(348\) 0 0
\(349\) −0.239446 + 1.66538i −0.239446 + 1.66538i 0.415415 + 0.909632i \(0.363636\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.304632 0.474017i −0.304632 0.474017i 0.654861 0.755750i \(-0.272727\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(360\) 0 0
\(361\) −0.654861 0.192284i −0.654861 0.192284i
\(362\) −0.304632 2.11876i −0.304632 2.11876i
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0.959493 0.616629i 0.959493 0.616629i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.909632 0.415415i \(-0.863636\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 1.14231 0.734121i 1.14231 0.734121i
\(377\) 0 0
\(378\) 0 0
\(379\) 0.817178 + 0.708089i 0.817178 + 0.708089i 0.959493 0.281733i \(-0.0909091\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(380\) −0.0720391 0.0624222i −0.0720391 0.0624222i
\(381\) 0 0
\(382\) 0 0
\(383\) −1.41542 + 0.909632i −1.41542 + 0.909632i −0.415415 + 0.909632i \(0.636364\pi\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(390\) 0 0
\(391\) −0.239446 0.153882i −0.239446 0.153882i
\(392\) 0.898361i 0.898361i
\(393\) 0 0
\(394\) 1.65486 + 1.06351i 1.65486 + 1.06351i
\(395\) 1.80075 + 0.258908i 1.80075 + 0.258908i
\(396\) 0 0
\(397\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(398\) 1.12181 + 0.329393i 1.12181 + 0.329393i
\(399\) 0 0
\(400\) −0.473802 1.03748i −0.473802 1.03748i
\(401\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0.118239 0.258908i 0.118239 0.258908i −0.841254 0.540641i \(-0.818182\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 1.68251 1.68251
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(420\) 0 0
\(421\) −0.158746 + 0.540641i −0.158746 + 0.540641i 0.841254 + 0.540641i \(0.181818\pi\)
−1.00000 \(\pi\)
\(422\) −0.166390 0.258908i −0.166390 0.258908i
\(423\) 0 0
\(424\) −0.331487 1.12894i −0.331487 1.12894i
\(425\) −0.186393 + 0.215109i −0.186393 + 0.215109i
\(426\) 0 0
\(427\) 0 0
\(428\) 0.0583872 + 0.127850i 0.0583872 + 0.127850i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(432\) 0 0
\(433\) 0 0 −0.989821 0.142315i \(-0.954545\pi\)
0.989821 + 0.142315i \(0.0454545\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.307765i 0.307765i
\(437\) 0.425839 0.368991i 0.425839 0.368991i
\(438\) 0 0
\(439\) 1.10181 + 1.27155i 1.10181 + 1.27155i 0.959493 + 0.281733i \(0.0909091\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.95949 0.281733i 1.95949 0.281733i 0.959493 0.281733i \(-0.0909091\pi\)
1.00000 \(0\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 −0.755750 0.654861i \(-0.772727\pi\)
0.755750 + 0.654861i \(0.227273\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −0.239446 + 0.153882i −0.239446 + 0.153882i
\(453\) 0 0
\(454\) 1.40176 0.201543i 1.40176 0.201543i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.540641 0.841254i \(-0.318182\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(458\) −0.765644 0.883600i −0.765644 0.883600i
\(459\) 0 0
\(460\) −0.162317 + 0.0476607i −0.162317 + 0.0476607i
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −0.279953 1.94711i −0.279953 1.94711i
\(467\) 0.273100 + 0.0801894i 0.273100 + 0.0801894i 0.415415 0.909632i \(-0.363636\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −1.56815 + 0.460451i −1.56815 + 0.460451i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −0.304632 0.474017i −0.304632 0.474017i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 2.14055 2.14055
\(483\) 0 0
\(484\) −0.169170 −0.169170
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(488\) −0.564081 + 1.23516i −0.564081 + 1.23516i
\(489\) 0 0
\(490\) 0.304632 1.03748i 0.304632 1.03748i
\(491\) 0 0 −0.540641 0.841254i \(-0.681818\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 2.10004 0.616629i 2.10004 0.616629i
\(497\) 0 0
\(498\) 0 0
\(499\) −0.797176 0.234072i −0.797176 0.234072i −0.142315 0.989821i \(-0.545455\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(500\) 0.0240754 + 0.167448i 0.0240754 + 0.167448i
\(501\) 0 0
\(502\) 0 0
\(503\) −1.61435 1.03748i −1.61435 1.03748i −0.959493 0.281733i \(-0.909091\pi\)
−0.654861 0.755750i \(-0.727273\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 0.540641 0.841254i \(-0.318182\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.636120 0.0914602i 0.636120 0.0914602i
\(513\) 0 0
\(514\) −1.80075 + 1.15727i −1.80075 + 1.15727i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(522\) 0 0
\(523\) 0 0 0.989821 0.142315i \(-0.0454545\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −1.12181 + 1.74557i −1.12181 + 1.74557i
\(527\) −0.357685 0.412791i −0.357685 0.412791i
\(528\) 0 0
\(529\) −0.142315 0.989821i −0.142315 0.989821i
\(530\) 1.41618i 1.41618i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0.118239 + 0.822373i 0.118239 + 0.822373i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −1.25667 + 1.45027i −1.25667 + 1.45027i −0.415415 + 0.909632i \(0.636364\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(542\) −0.398983 1.35881i −0.398983 1.35881i
\(543\) 0 0
\(544\) 0.0515346 + 0.0801894i 0.0515346 + 0.0801894i
\(545\) −0.512546 + 1.74557i −0.512546 + 1.74557i
\(546\) 0 0
\(547\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(548\) −0.0200026 + 0.139121i −0.0200026 + 0.139121i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0.0315321 0.219310i 0.0315321 0.219310i
\(557\) 0.797176 1.74557i 0.797176 1.74557i 0.142315 0.989821i \(-0.454545\pi\)
0.654861 0.755750i \(-0.272727\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −0.857685 + 0.989821i −0.857685 + 0.989821i 0.142315 + 0.989821i \(0.454545\pi\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) −1.61435 + 0.474017i −1.61435 + 0.474017i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(570\) 0 0
\(571\) 1.49611 + 0.215109i 1.49611 + 0.215109i 0.841254 0.540641i \(-0.181818\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.00000 −1.00000
\(576\) 0 0
\(577\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(578\) −0.537225 + 0.835939i −0.537225 + 0.835939i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −1.37491 1.19136i −1.37491 1.19136i
\(587\) −0.425839 0.368991i −0.425839 0.368991i 0.415415 0.909632i \(-0.363636\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(588\) 0 0
\(589\) 0.983568 0.449181i 0.983568 0.449181i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0.512546 + 0.234072i 0.512546 + 0.234072i 0.654861 0.755750i \(-0.272727\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 0.698939 + 0.449181i 0.698939 + 0.449181i 0.841254 0.540641i \(-0.181818\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0.00685257 + 0.0476607i 0.00685257 + 0.0476607i
\(605\) −0.959493 0.281733i −0.959493 0.281733i
\(606\) 0 0
\(607\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(608\) −0.181059 + 0.0531636i −0.181059 + 0.0531636i
\(609\) 0 0
\(610\) 1.07028 1.23516i 1.07028 1.23516i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.540641 0.841254i \(-0.681818\pi\)
0.540641 + 0.841254i \(0.318182\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0.186393 1.29639i 0.186393 1.29639i −0.654861 0.755750i \(-0.727273\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(618\) 0 0
\(619\) −1.37491 + 1.19136i −1.37491 + 1.19136i −0.415415 + 0.909632i \(0.636364\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(620\) −0.324635 −0.324635
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −0.557730 1.89945i −0.557730 1.89945i −0.415415 0.909632i \(-0.636364\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(632\) 1.07028 1.23516i 1.07028 1.23516i
\(633\) 0 0
\(634\) −2.05384 + 0.603063i −2.05384 + 0.603063i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) −1.16463 0.167448i −1.16463 0.167448i
\(641\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0.113563 + 0.131058i 0.113563 + 0.131058i
\(647\) 1.07028 1.66538i 1.07028 1.66538i 0.415415 0.909632i \(-0.363636\pi\)
0.654861 0.755750i \(-0.272727\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.65486 + 0.755750i −1.65486 + 0.755750i −0.654861 + 0.755750i \(0.727273\pi\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(660\) 0 0
\(661\) 0.557730 0.0801894i 0.557730 0.0801894i 0.142315 0.989821i \(-0.454545\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(662\) −1.65486 0.755750i −1.65486 0.755750i
\(663\) 0 0
\(664\) 0.817178 1.27155i 0.817178 1.27155i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0.307765i 0.307765i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −0.0702757 0.153882i −0.0702757 0.153882i
\(677\) −0.797176 + 0.234072i −0.797176 + 0.234072i −0.654861 0.755750i \(-0.727273\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0.0720391 + 0.245343i 0.0720391 + 0.245343i
\(681\) 0 0
\(682\) 0 0
\(683\) 0.425839 1.45027i 0.425839 1.45027i −0.415415 0.909632i \(-0.636364\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(684\) 0 0
\(685\) −0.345139 + 0.755750i −0.345139 + 0.755750i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(692\) 0.193245 0.167448i 0.193245 0.167448i
\(693\) 0 0
\(694\) 0.0867074 0.603063i 0.0867074 0.603063i
\(695\) 0.544078 1.19136i 0.544078 1.19136i
\(696\) 0 0
\(697\) 0 0
\(698\) −0.983568 1.53046i −0.983568 1.53046i
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0.584585 + 0.171650i 0.584585 + 0.171650i
\(707\) 0 0
\(708\) 0 0
\(709\) −1.95949 0.281733i −1.95949 0.281733i −0.959493 0.281733i \(-0.909091\pi\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.273100 1.89945i 0.273100 1.89945i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.989821 0.142315i \(-0.0454545\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0.671292 0.306569i 0.671292 0.306569i
\(723\) 0 0
\(724\) 0.253098 + 0.219310i 0.253098 + 0.219310i
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 0.909632 0.415415i \(-0.136364\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.540641 0.841254i \(-0.318182\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −0.0943511 + 0.321330i −0.0943511 + 0.321330i
\(737\) 0 0
\(738\) 0 0
\(739\) −1.41542 0.909632i −1.41542 0.909632i −0.415415 0.909632i \(-0.636364\pi\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.61435 + 0.474017i 1.61435 + 0.474017i 0.959493 0.281733i \(-0.0909091\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.07028 + 1.66538i 1.07028 + 1.66538i 0.654861 + 0.755750i \(0.272727\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(752\) −0.485691 + 1.65411i −0.485691 + 1.65411i
\(753\) 0 0
\(754\) 0 0
\(755\) −0.0405070 + 0.281733i −0.0405070 + 0.281733i
\(756\) 0 0
\(757\) 0 0 0.755750 0.654861i \(-0.227273\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(758\) −1.16917 −1.16917
\(759\) 0 0
\(760\) −0.506195 −0.506195
\(761\) 0 0 0.755750 0.654861i \(-0.227273\pi\)
−0.755750 + 0.654861i \(0.772727\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0.512546 1.74557i 0.512546 1.74557i
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0.797176 + 1.74557i 0.797176 + 1.74557i 0.654861 + 0.755750i \(0.272727\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(774\) 0 0
\(775\) −1.84125 0.540641i −1.84125 0.540641i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0.304632 0.0437995i 0.304632 0.0437995i
\(783\) 0 0
\(784\) −0.746902 0.861971i −0.746902 0.861971i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 −0.909632 0.415415i \(-0.863636\pi\)
0.909632 + 0.415415i \(0.136364\pi\)
\(788\) −0.304632 + 0.0437995i −0.304632 + 0.0437995i
\(789\) 0 0
\(790\) −1.65486 + 1.06351i −1.65486 + 1.06351i
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) −0.166390 + 0.0759879i −0.166390 + 0.0759879i
\(797\) 1.61435 1.03748i 1.61435 1.03748i 0.654861 0.755750i \(-0.272727\pi\)
0.959493 0.281733i \(-0.0909091\pi\)
\(798\) 0 0
\(799\) 0.425839 0.0612263i 0.425839 0.0612263i
\(800\) 0.304632 + 0.139121i 0.304632 + 0.139121i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.989821 0.142315i \(-0.954545\pi\)
0.989821 + 0.142315i \(0.0454545\pi\)
\(810\) 0 0
\(811\) −0.118239 0.822373i −0.118239 0.822373i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0.0867074 + 0.295298i 0.0867074 + 0.295298i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.281733 0.959493i \(-0.409091\pi\)
−0.281733 + 0.959493i \(0.590909\pi\)
\(822\) 0 0
\(823\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(828\) 0 0
\(829\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(830\) −1.37491 + 1.19136i −1.37491 + 1.19136i
\(831\) 0 0
\(832\) 0 0
\(833\) −0.118239 + 0.258908i −0.118239 + 0.258908i
\(834\) 0 0
\(835\) −0.512546 + 1.74557i −0.512546 + 1.74557i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(840\) 0 0
\(841\) 0.959493 0.281733i 0.959493 0.281733i
\(842\) −0.253098 0.554206i −0.253098 0.554206i
\(843\) 0 0
\(844\) 0.0462003 + 0.0135656i 0.0462003 + 0.0135656i
\(845\) −0.142315 0.989821i −0.142315 0.989821i
\(846\) 0 0
\(847\) 0 0
\(848\) 1.25667 + 0.807612i 1.25667 + 0.807612i
\(849\) 0 0
\(850\) 0.307765i 0.307765i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0.678936 + 0.310060i 0.678936 + 0.310060i
\(857\) 0.557730 0.0801894i 0.557730 0.0801894i 0.142315 0.989821i \(-0.454545\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(858\) 0 0
\(859\) −0.239446 + 0.153882i −0.239446 + 0.153882i −0.654861 0.755750i \(-0.727273\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.37491 + 1.19136i 1.37491 + 1.19136i 0.959493 + 0.281733i \(0.0909091\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(864\) 0 0
\(865\) 1.37491 0.627899i 1.37491 0.627899i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 1.07028 + 1.23516i 1.07028 + 1.23516i
\(873\) 0 0
\(874\) −0.0867074 + 0.603063i −0.0867074 + 0.603063i
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(878\) −1.80075 0.258908i −1.80075 0.258908i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(882\) 0 0
\(883\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −1.40176 + 1.61772i −1.40176 + 1.61772i
\(887\) 0.557730 + 1.89945i 0.557730 + 1.89945i 0.415415 + 0.909632i \(0.363636\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −0.121206 + 0.843008i −0.121206 + 0.843008i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0.0530529 0.368991i 0.0530529 0.368991i
\(902\) 0 0
\(903\) 0 0
\(904\) −0.425839 + 1.45027i −0.425839 + 1.45027i
\(905\) 1.07028 + 1.66538i 1.07028 + 1.66538i
\(906\) 0 0
\(907\) 0 0 −0.281733 0.959493i \(-0.590909\pi\)
0.281733 + 0.959493i \(0.409091\pi\)
\(908\) −0.145095 + 0.167448i −0.145095 + 0.167448i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0.181059 + 0.0260323i 0.181059 + 0.0260323i
\(917\) 0 0
\(918\) 0 0
\(919\) 1.97964i 1.97964i −0.142315 0.989821i \(-0.545455\pi\)
0.142315 0.989821i \(-0.454545\pi\)
\(920\) −0.485691 + 0.755750i −0.485691 + 0.755750i
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 0.909632 0.415415i \(-0.136364\pi\)
−0.909632 + 0.415415i \(0.863636\pi\)
\(930\) 0 0
\(931\) −0.425839 0.368991i −0.425839 0.368991i
\(932\) 0.232593 + 0.201543i 0.232593 + 0.201543i
\(933\) 0 0
\(934\) −0.279953 + 0.127850i −0.279953 + 0.127850i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.989821 0.142315i \(-0.0454545\pi\)
−0.989821 + 0.142315i \(0.954545\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0.138242 0.215109i 0.138242 0.215109i
\(941\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.49611 + 0.215109i 1.49611 + 0.215109i 0.841254 0.540641i \(-0.181818\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0.584585 + 0.171650i 0.584585 + 0.171650i
\(951\) 0 0
\(952\) 0 0
\(953\) 1.25667 0.368991i 1.25667 0.368991i 0.415415 0.909632i \(-0.363636\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1.11435 2.44009i 1.11435 2.44009i
\(962\) 0 0
\(963\) 0 0
\(964\) −0.253098 + 0.219310i −0.253098 + 0.219310i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) −0.678936 + 0.588302i −0.678936 + 0.588302i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −0.485691 1.65411i −0.485691 1.65411i
\(977\) 0.544078 0.627899i 0.544078 0.627899i −0.415415 0.909632i \(-0.636364\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0.0702757 + 0.153882i 0.0702757 + 0.153882i
\(981\) 0 0
\(982\) 0 0
\(983\) 0.118239 + 0.822373i 0.118239 + 0.822373i 0.959493 + 0.281733i \(0.0909091\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(984\) 0 0
\(985\) −1.80075 0.258908i −1.80075 0.258908i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0.544078 + 0.627899i 0.544078 + 0.627899i 0.959493 0.281733i \(-0.0909091\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(992\) −0.347449 + 0.540641i −0.347449 + 0.540641i
\(993\) 0 0
\(994\) 0 0
\(995\) −1.07028 + 0.153882i −1.07028 + 0.153882i
\(996\) 0 0
\(997\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(998\) 0.817178 0.373193i 0.817178 0.373193i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1035.1.bd.a.424.1 10
3.2 odd 2 1035.1.bd.b.424.1 yes 10
5.4 even 2 1035.1.bd.b.424.1 yes 10
15.14 odd 2 CM 1035.1.bd.a.424.1 10
23.7 odd 22 1035.1.bd.b.559.1 yes 10
69.53 even 22 inner 1035.1.bd.a.559.1 yes 10
115.99 odd 22 inner 1035.1.bd.a.559.1 yes 10
345.329 even 22 1035.1.bd.b.559.1 yes 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1035.1.bd.a.424.1 10 1.1 even 1 trivial
1035.1.bd.a.424.1 10 15.14 odd 2 CM
1035.1.bd.a.559.1 yes 10 69.53 even 22 inner
1035.1.bd.a.559.1 yes 10 115.99 odd 22 inner
1035.1.bd.b.424.1 yes 10 3.2 odd 2
1035.1.bd.b.424.1 yes 10 5.4 even 2
1035.1.bd.b.559.1 yes 10 23.7 odd 22
1035.1.bd.b.559.1 yes 10 345.329 even 22