Properties

Label 1035.1.bd.a.424.1
Level 10351035
Weight 11
Character 1035.424
Analytic conductor 0.5170.517
Analytic rank 00
Dimension 1010
Projective image D22D_{22}
CM discriminant -15
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1035,1,Mod(19,1035)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1035, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 11, 15]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1035.19");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1035=32523 1035 = 3^{2} \cdot 5 \cdot 23
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1035.bd (of order 2222, degree 1010, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.5165322880750.516532288075
Analytic rank: 00
Dimension: 1010
Coefficient field: Q(ζ22)\Q(\zeta_{22})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x10x9+x8x7+x6x5+x4x3+x2x+1 x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D22D_{22}
Projective field: Galois closure of Q[x]/(x22)\mathbb{Q}[x]/(x^{22} - \cdots)

Embedding invariants

Embedding label 424.1
Root 0.1423150.989821i0.142315 - 0.989821i of defining polynomial
Character χ\chi == 1035.424
Dual form 1035.1.bd.a.559.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.817178+0.708089i)q2+(0.02407540.167448i)q4+(0.4154150.909632i)q5+(0.4856910.755750i)q8+(0.304632+1.03748i)q10+(1.09435+0.321330i)q16+(0.04050700.281733i)q17+(0.557730+0.0801894i)q19+(0.1423150.0914602i)q20+(0.6548610.755750i)q23+(0.6548610.755750i)q25+(1.614351.03748i)q31+(0.304632+0.139121i)q32+(0.232593+0.201543i)q34+(0.512546+0.329393i)q38+(0.889217+0.127850i)q40+1.08128iq46+1.51150iq47+(0.8412540.540641i)q49+(1.07028+0.153882i)q50+(1.25667+0.368991i)q53+(0.8171781.27155i)q61+(0.584585+1.99091i)q62+(0.323373+0.708089i)q640.0481508q68+(0.02685510.0914602i)q76+(0.512546+1.74557i)q79+(0.7469020.861971i)q80+(0.698939+1.53046i)q83+(0.2731000.0801894i)q85+(0.1107830.127850i)q92+(1.070281.23516i)q94+(0.3046320.474017i)q95+(1.070280.153882i)q98+O(q100)q+(-0.817178 + 0.708089i) q^{2} +(0.0240754 - 0.167448i) q^{4} +(0.415415 - 0.909632i) q^{5} +(-0.485691 - 0.755750i) q^{8} +(0.304632 + 1.03748i) q^{10} +(1.09435 + 0.321330i) q^{16} +(-0.0405070 - 0.281733i) q^{17} +(0.557730 + 0.0801894i) q^{19} +(-0.142315 - 0.0914602i) q^{20} +(0.654861 - 0.755750i) q^{23} +(-0.654861 - 0.755750i) q^{25} +(1.61435 - 1.03748i) q^{31} +(-0.304632 + 0.139121i) q^{32} +(0.232593 + 0.201543i) q^{34} +(-0.512546 + 0.329393i) q^{38} +(-0.889217 + 0.127850i) q^{40} +1.08128i q^{46} +1.51150i q^{47} +(-0.841254 - 0.540641i) q^{49} +(1.07028 + 0.153882i) q^{50} +(1.25667 + 0.368991i) q^{53} +(-0.817178 - 1.27155i) q^{61} +(-0.584585 + 1.99091i) q^{62} +(-0.323373 + 0.708089i) q^{64} -0.0481508 q^{68} +(0.0268551 - 0.0914602i) q^{76} +(0.512546 + 1.74557i) q^{79} +(0.746902 - 0.861971i) q^{80} +(0.698939 + 1.53046i) q^{83} +(-0.273100 - 0.0801894i) q^{85} +(-0.110783 - 0.127850i) q^{92} +(-1.07028 - 1.23516i) q^{94} +(0.304632 - 0.474017i) q^{95} +(1.07028 - 0.153882i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 10qq4q5+11q8q169q17q20+q23q25+2q3111q3411q40+q492q5311q62+10q64+2q68+11q76+10q802q83++q92+O(q100) 10 q - q^{4} - q^{5} + 11 q^{8} - q^{16} - 9 q^{17} - q^{20} + q^{23} - q^{25} + 2 q^{31} - 11 q^{34} - 11 q^{40} + q^{49} - 2 q^{53} - 11 q^{62} + 10 q^{64} + 2 q^{68} + 11 q^{76} + 10 q^{80} - 2 q^{83}+ \cdots + q^{92}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1035Z)×\left(\mathbb{Z}/1035\mathbb{Z}\right)^\times.

nn 461461 622622 856856
χ(n)\chi(n) 11 1-1 e(322)e\left(\frac{3}{22}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.817178 + 0.708089i −0.817178 + 0.708089i −0.959493 0.281733i 0.909091π-0.909091\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
33 0 0
44 0.0240754 0.167448i 0.0240754 0.167448i
55 0.415415 0.909632i 0.415415 0.909632i
66 0 0
77 0 0 0.281733 0.959493i 0.409091π-0.409091\pi
−0.281733 + 0.959493i 0.590909π0.590909\pi
88 −0.485691 0.755750i −0.485691 0.755750i
99 0 0
1010 0.304632 + 1.03748i 0.304632 + 1.03748i
1111 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
1212 0 0
1313 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
1414 0 0
1515 0 0
1616 1.09435 + 0.321330i 1.09435 + 0.321330i
1717 −0.0405070 0.281733i −0.0405070 0.281733i 0.959493 0.281733i 0.0909091π-0.0909091\pi
−1.00000 π\pi
1818 0 0
1919 0.557730 + 0.0801894i 0.557730 + 0.0801894i 0.415415 0.909632i 0.363636π-0.363636\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
2020 −0.142315 0.0914602i −0.142315 0.0914602i
2121 0 0
2222 0 0
2323 0.654861 0.755750i 0.654861 0.755750i
2424 0 0
2525 −0.654861 0.755750i −0.654861 0.755750i
2626 0 0
2727 0 0
2828 0 0
2929 0 0 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
3030 0 0
3131 1.61435 1.03748i 1.61435 1.03748i 0.654861 0.755750i 0.272727π-0.272727\pi
0.959493 0.281733i 0.0909091π-0.0909091\pi
3232 −0.304632 + 0.139121i −0.304632 + 0.139121i
3333 0 0
3434 0.232593 + 0.201543i 0.232593 + 0.201543i
3535 0 0
3636 0 0
3737 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
3838 −0.512546 + 0.329393i −0.512546 + 0.329393i
3939 0 0
4040 −0.889217 + 0.127850i −0.889217 + 0.127850i
4141 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
4242 0 0
4343 0 0 0.540641 0.841254i 0.318182π-0.318182\pi
−0.540641 + 0.841254i 0.681818π0.681818\pi
4444 0 0
4545 0 0
4646 1.08128i 1.08128i
4747 1.51150i 1.51150i 0.654861 + 0.755750i 0.272727π0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
4848 0 0
4949 −0.841254 0.540641i −0.841254 0.540641i
5050 1.07028 + 0.153882i 1.07028 + 0.153882i
5151 0 0
5252 0 0
5353 1.25667 + 0.368991i 1.25667 + 0.368991i 0.841254 0.540641i 0.181818π-0.181818\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 −0.281733 0.959493i 0.590909π-0.590909\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
6060 0 0
6161 −0.817178 1.27155i −0.817178 1.27155i −0.959493 0.281733i 0.909091π-0.909091\pi
0.142315 0.989821i 0.454545π-0.454545\pi
6262 −0.584585 + 1.99091i −0.584585 + 1.99091i
6363 0 0
6464 −0.323373 + 0.708089i −0.323373 + 0.708089i
6565 0 0
6666 0 0
6767 0 0 0.755750 0.654861i 0.227273π-0.227273\pi
−0.755750 + 0.654861i 0.772727π0.772727\pi
6868 −0.0481508 −0.0481508
6969 0 0
7070 0 0
7171 0 0 0.755750 0.654861i 0.227273π-0.227273\pi
−0.755750 + 0.654861i 0.772727π0.772727\pi
7272 0 0
7373 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
7474 0 0
7575 0 0
7676 0.0268551 0.0914602i 0.0268551 0.0914602i
7777 0 0
7878 0 0
7979 0.512546 + 1.74557i 0.512546 + 1.74557i 0.654861 + 0.755750i 0.272727π0.272727\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
8080 0.746902 0.861971i 0.746902 0.861971i
8181 0 0
8282 0 0
8383 0.698939 + 1.53046i 0.698939 + 1.53046i 0.841254 + 0.540641i 0.181818π0.181818\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
8484 0 0
8585 −0.273100 0.0801894i −0.273100 0.0801894i
8686 0 0
8787 0 0
8888 0 0
8989 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
9090 0 0
9191 0 0
9292 −0.110783 0.127850i −0.110783 0.127850i
9393 0 0
9494 −1.07028 1.23516i −1.07028 1.23516i
9595 0.304632 0.474017i 0.304632 0.474017i
9696 0 0
9797 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
9898 1.07028 0.153882i 1.07028 0.153882i
9999 0 0
100100 −0.142315 + 0.0914602i −0.142315 + 0.0914602i
101101 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
102102 0 0
103103 0 0 −0.755750 0.654861i 0.772727π-0.772727\pi
0.755750 + 0.654861i 0.227273π0.227273\pi
104104 0 0
105105 0 0
106106 −1.28820 + 0.588302i −1.28820 + 0.588302i
107107 −0.698939 + 0.449181i −0.698939 + 0.449181i −0.841254 0.540641i 0.818182π-0.818182\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
108108 0 0
109109 −1.80075 + 0.258908i −1.80075 + 0.258908i −0.959493 0.281733i 0.909091π-0.909091\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
110110 0 0
111111 0 0
112112 0 0
113113 −1.10181 1.27155i −1.10181 1.27155i −0.959493 0.281733i 0.909091π-0.909091\pi
−0.142315 0.989821i 0.545455π-0.545455\pi
114114 0 0
115115 −0.415415 0.909632i −0.415415 0.909632i
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 −0.142315 0.989821i −0.142315 0.989821i
122122 1.56815 + 0.460451i 1.56815 + 0.460451i
123123 0 0
124124 −0.134858 0.295298i −0.134858 0.295298i
125125 −0.959493 + 0.281733i −0.959493 + 0.281733i
126126 0 0
127127 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
128128 −0.331487 1.12894i −0.331487 1.12894i
129129 0 0
130130 0 0
131131 0 0 0.281733 0.959493i 0.409091π-0.409091\pi
−0.281733 + 0.959493i 0.590909π0.590909\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 −0.193245 + 0.167448i −0.193245 + 0.167448i
137137 −0.830830 −0.830830 −0.415415 0.909632i 0.636364π-0.636364\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
138138 0 0
139139 1.30972 1.30972 0.654861 0.755750i 0.272727π-0.272727\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
150150 0 0
151151 −0.273100 + 0.0801894i −0.273100 + 0.0801894i −0.415415 0.909632i 0.636364π-0.636364\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
152152 −0.210281 0.460451i −0.210281 0.460451i
153153 0 0
154154 0 0
155155 −0.273100 1.89945i −0.273100 1.89945i
156156 0 0
157157 0 0 −0.989821 0.142315i 0.954545π-0.954545\pi
0.989821 + 0.142315i 0.0454545π0.0454545\pi
158158 −1.65486 1.06351i −1.65486 1.06351i
159159 0 0
160160 0.334896i 0.334896i
161161 0 0
162162 0 0
163163 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
164164 0 0
165165 0 0
166166 −1.65486 0.755750i −1.65486 0.755750i
167167 −1.80075 + 0.258908i −1.80075 + 0.258908i −0.959493 0.281733i 0.909091π-0.909091\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
168168 0 0
169169 0.841254 0.540641i 0.841254 0.540641i
170170 0.279953 0.127850i 0.279953 0.127850i
171171 0 0
172172 0 0
173173 1.14231 + 0.989821i 1.14231 + 0.989821i 1.00000 00
0.142315 + 0.989821i 0.454545π0.454545\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
180180 0 0
181181 −1.07028 + 1.66538i −1.07028 + 1.66538i −0.415415 + 0.909632i 0.636364π0.636364\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
182182 0 0
183183 0 0
184184 −0.889217 0.127850i −0.889217 0.127850i
185185 0 0
186186 0 0
187187 0 0
188188 0.253098 + 0.0363899i 0.253098 + 0.0363899i
189189 0 0
190190 0.0867074 + 0.603063i 0.0867074 + 0.603063i
191191 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
192192 0 0
193193 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
194194 0 0
195195 0 0
196196 −0.110783 + 0.127850i −0.110783 + 0.127850i
197197 −0.512546 1.74557i −0.512546 1.74557i −0.654861 0.755750i 0.727273π-0.727273\pi
0.142315 0.989821i 0.454545π-0.454545\pi
198198 0 0
199199 −0.584585 0.909632i −0.584585 0.909632i 0.415415 0.909632i 0.363636π-0.363636\pi
−1.00000 π\pi
200200 −0.253098 + 0.861971i −0.253098 + 0.861971i
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 −0.0405070 + 0.281733i −0.0405070 + 0.281733i 0.959493 + 0.281733i 0.0909091π0.0909091\pi
−1.00000 1.00000π1.00000\pi
212212 0.0920417 0.201543i 0.0920417 0.201543i
213213 0 0
214214 0.253098 0.861971i 0.253098 0.861971i
215215 0 0
216216 0 0
217217 0 0
218218 1.28820 1.48666i 1.28820 1.48666i
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
224224 0 0
225225 0 0
226226 1.80075 + 0.258908i 1.80075 + 0.258908i
227227 −1.10181 0.708089i −1.10181 0.708089i −0.142315 0.989821i 0.545455π-0.545455\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
228228 0 0
229229 1.08128i 1.08128i 0.841254 + 0.540641i 0.181818π0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
230230 0.983568 + 0.449181i 0.983568 + 0.449181i
231231 0 0
232232 0 0
233233 −0.983568 + 1.53046i −0.983568 + 1.53046i −0.142315 + 0.989821i 0.545455π0.545455\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
234234 0 0
235235 1.37491 + 0.627899i 1.37491 + 0.627899i
236236 0 0
237237 0 0
238238 0 0
239239 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
240240 0 0
241241 −1.49611 1.29639i −1.49611 1.29639i −0.841254 0.540641i 0.818182π-0.818182\pi
−0.654861 0.755750i 0.727273π-0.727273\pi
242242 0.817178 + 0.708089i 0.817178 + 0.708089i
243243 0 0
244244 −0.232593 + 0.106222i −0.232593 + 0.106222i
245245 −0.841254 + 0.540641i −0.841254 + 0.540641i
246246 0 0
247247 0 0
248248 −1.56815 0.716152i −1.56815 0.716152i
249249 0 0
250250 0.584585 0.909632i 0.584585 0.909632i
251251 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0.415415 + 0.266971i 0.415415 + 0.266971i
257257 1.95949 + 0.281733i 1.95949 + 0.281733i 1.00000 00
0.959493 + 0.281733i 0.0909091π0.0909091\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 1.84125 0.540641i 1.84125 0.540641i 0.841254 0.540641i 0.181818π-0.181818\pi
1.00000 00
264264 0 0
265265 0.857685 0.989821i 0.857685 0.989821i
266266 0 0
267267 0 0
268268 0 0
269269 0 0 0.281733 0.959493i 0.409091π-0.409091\pi
−0.281733 + 0.959493i 0.590909π0.590909\pi
270270 0 0
271271 −0.544078 + 1.19136i −0.544078 + 1.19136i 0.415415 + 0.909632i 0.363636π0.363636\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
272272 0.0462003 0.321330i 0.0462003 0.321330i
273273 0 0
274274 0.678936 0.588302i 0.678936 0.588302i
275275 0 0
276276 0 0
277277 0 0 1.00000 00
−1.00000 π\pi
278278 −1.07028 + 0.927399i −1.07028 + 0.927399i
279279 0 0
280280 0 0
281281 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
282282 0 0
283283 0 0 0.281733 0.959493i 0.409091π-0.409091\pi
−0.281733 + 0.959493i 0.590909π0.590909\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 0.881761 0.258908i 0.881761 0.258908i
290290 0 0
291291 0 0
292292 0 0
293293 0.239446 + 1.66538i 0.239446 + 1.66538i 0.654861 + 0.755750i 0.272727π0.272727\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0.166390 0.258908i 0.166390 0.258908i
303303 0 0
304304 0.584585 + 0.266971i 0.584585 + 0.266971i
305305 −1.49611 + 0.215109i −1.49611 + 0.215109i
306306 0 0
307307 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
308308 0 0
309309 0 0
310310 1.56815 + 1.35881i 1.56815 + 1.35881i
311311 0 0 −0.755750 0.654861i 0.772727π-0.772727\pi
0.755750 + 0.654861i 0.227273π0.227273\pi
312312 0 0
313313 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
314314 0 0
315315 0 0
316316 0.304632 0.0437995i 0.304632 0.0437995i
317317 1.80075 + 0.822373i 1.80075 + 0.822373i 0.959493 + 0.281733i 0.0909091π0.0909091\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
318318 0 0
319319 0 0
320320 0.509766 + 0.588302i 0.509766 + 0.588302i
321321 0 0
322322 0 0
323323 0.160379i 0.160379i
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0.698939 + 1.53046i 0.698939 + 1.53046i 0.841254 + 0.540641i 0.181818π0.181818\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
332332 0.273100 0.0801894i 0.273100 0.0801894i
333333 0 0
334334 1.28820 1.48666i 1.28820 1.48666i
335335 0 0
336336 0 0
337337 0 0 −0.540641 0.841254i 0.681818π-0.681818\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
338338 −0.304632 + 1.03748i −0.304632 + 1.03748i
339339 0 0
340340 −0.0200026 + 0.0437995i −0.0200026 + 0.0437995i
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 −1.63436 −1.63436
347347 −0.425839 + 0.368991i −0.425839 + 0.368991i −0.841254 0.540641i 0.818182π-0.818182\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
348348 0 0
349349 −0.239446 + 1.66538i −0.239446 + 1.66538i 0.415415 + 0.909632i 0.363636π0.363636\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
350350 0 0
351351 0 0
352352 0 0
353353 −0.304632 0.474017i −0.304632 0.474017i 0.654861 0.755750i 0.272727π-0.272727\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
360360 0 0
361361 −0.654861 0.192284i −0.654861 0.192284i
362362 −0.304632 2.11876i −0.304632 2.11876i
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
368368 0.959493 0.616629i 0.959493 0.616629i
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
374374 0 0
375375 0 0
376376 1.14231 0.734121i 1.14231 0.734121i
377377 0 0
378378 0 0
379379 0.817178 + 0.708089i 0.817178 + 0.708089i 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
380380 −0.0720391 0.0624222i −0.0720391 0.0624222i
381381 0 0
382382 0 0
383383 −1.41542 + 0.909632i −1.41542 + 0.909632i −0.415415 + 0.909632i 0.636364π0.636364\pi
−1.00000 π\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
390390 0 0
391391 −0.239446 0.153882i −0.239446 0.153882i
392392 0.898361i 0.898361i
393393 0 0
394394 1.65486 + 1.06351i 1.65486 + 1.06351i
395395 1.80075 + 0.258908i 1.80075 + 0.258908i
396396 0 0
397397 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
398398 1.12181 + 0.329393i 1.12181 + 0.329393i
399399 0 0
400400 −0.473802 1.03748i −0.473802 1.03748i
401401 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 0.118239 0.258908i 0.118239 0.258908i −0.841254 0.540641i 0.818182π-0.818182\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 1.68251 1.68251
416416 0 0
417417 0 0
418418 0 0
419419 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
420420 0 0
421421 −0.158746 + 0.540641i −0.158746 + 0.540641i 0.841254 + 0.540641i 0.181818π0.181818\pi
−1.00000 π\pi
422422 −0.166390 0.258908i −0.166390 0.258908i
423423 0 0
424424 −0.331487 1.12894i −0.331487 1.12894i
425425 −0.186393 + 0.215109i −0.186393 + 0.215109i
426426 0 0
427427 0 0
428428 0.0583872 + 0.127850i 0.0583872 + 0.127850i
429429 0 0
430430 0 0
431431 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
432432 0 0
433433 0 0 −0.989821 0.142315i 0.954545π-0.954545\pi
0.989821 + 0.142315i 0.0454545π0.0454545\pi
434434 0 0
435435 0 0
436436 0.307765i 0.307765i
437437 0.425839 0.368991i 0.425839 0.368991i
438438 0 0
439439 1.10181 + 1.27155i 1.10181 + 1.27155i 0.959493 + 0.281733i 0.0909091π0.0909091\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
440440 0 0
441441 0 0
442442 0 0
443443 1.95949 0.281733i 1.95949 0.281733i 0.959493 0.281733i 0.0909091π-0.0909091\pi
1.00000 00
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 0 0 −0.755750 0.654861i 0.772727π-0.772727\pi
0.755750 + 0.654861i 0.227273π0.227273\pi
450450 0 0
451451 0 0
452452 −0.239446 + 0.153882i −0.239446 + 0.153882i
453453 0 0
454454 1.40176 0.201543i 1.40176 0.201543i
455455 0 0
456456 0 0
457457 0 0 0.540641 0.841254i 0.318182π-0.318182\pi
−0.540641 + 0.841254i 0.681818π0.681818\pi
458458 −0.765644 0.883600i −0.765644 0.883600i
459459 0 0
460460 −0.162317 + 0.0476607i −0.162317 + 0.0476607i
461461 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
462462 0 0
463463 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
464464 0 0
465465 0 0
466466 −0.279953 1.94711i −0.279953 1.94711i
467467 0.273100 + 0.0801894i 0.273100 + 0.0801894i 0.415415 0.909632i 0.363636π-0.363636\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
468468 0 0
469469 0 0
470470 −1.56815 + 0.460451i −1.56815 + 0.460451i
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 −0.304632 0.474017i −0.304632 0.474017i
476476 0 0
477477 0 0
478478 0 0
479479 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
480480 0 0
481481 0 0
482482 2.14055 2.14055
483483 0 0
484484 −0.169170 −0.169170
485485 0 0
486486 0 0
487487 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
488488 −0.564081 + 1.23516i −0.564081 + 1.23516i
489489 0 0
490490 0.304632 1.03748i 0.304632 1.03748i
491491 0 0 −0.540641 0.841254i 0.681818π-0.681818\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 2.10004 0.616629i 2.10004 0.616629i
497497 0 0
498498 0 0
499499 −0.797176 0.234072i −0.797176 0.234072i −0.142315 0.989821i 0.545455π-0.545455\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
500500 0.0240754 + 0.167448i 0.0240754 + 0.167448i
501501 0 0
502502 0 0
503503 −1.61435 1.03748i −1.61435 1.03748i −0.959493 0.281733i 0.909091π-0.909091\pi
−0.654861 0.755750i 0.727273π-0.727273\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 0 0 0.540641 0.841254i 0.318182π-0.318182\pi
−0.540641 + 0.841254i 0.681818π0.681818\pi
510510 0 0
511511 0 0
512512 0.636120 0.0914602i 0.636120 0.0914602i
513513 0 0
514514 −1.80075 + 1.15727i −1.80075 + 1.15727i
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
522522 0 0
523523 0 0 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
524524 0 0
525525 0 0
526526 −1.12181 + 1.74557i −1.12181 + 1.74557i
527527 −0.357685 0.412791i −0.357685 0.412791i
528528 0 0
529529 −0.142315 0.989821i −0.142315 0.989821i
530530 1.41618i 1.41618i
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0.118239 + 0.822373i 0.118239 + 0.822373i
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 −1.25667 + 1.45027i −1.25667 + 1.45027i −0.415415 + 0.909632i 0.636364π0.636364\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
542542 −0.398983 1.35881i −0.398983 1.35881i
543543 0 0
544544 0.0515346 + 0.0801894i 0.0515346 + 0.0801894i
545545 −0.512546 + 1.74557i −0.512546 + 1.74557i
546546 0 0
547547 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
548548 −0.0200026 + 0.139121i −0.0200026 + 0.139121i
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0.0315321 0.219310i 0.0315321 0.219310i
557557 0.797176 1.74557i 0.797176 1.74557i 0.142315 0.989821i 0.454545π-0.454545\pi
0.654861 0.755750i 0.272727π-0.272727\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 −0.857685 + 0.989821i −0.857685 + 0.989821i 0.142315 + 0.989821i 0.454545π0.454545\pi
−1.00000 π\pi
564564 0 0
565565 −1.61435 + 0.474017i −1.61435 + 0.474017i
566566 0 0
567567 0 0
568568 0 0
569569 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
570570 0 0
571571 1.49611 + 0.215109i 1.49611 + 0.215109i 0.841254 0.540641i 0.181818π-0.181818\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
572572 0 0
573573 0 0
574574 0 0
575575 −1.00000 −1.00000
576576 0 0
577577 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
578578 −0.537225 + 0.835939i −0.537225 + 0.835939i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 −1.37491 1.19136i −1.37491 1.19136i
587587 −0.425839 0.368991i −0.425839 0.368991i 0.415415 0.909632i 0.363636π-0.363636\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
588588 0 0
589589 0.983568 0.449181i 0.983568 0.449181i
590590 0 0
591591 0 0
592592 0 0
593593 0.512546 + 0.234072i 0.512546 + 0.234072i 0.654861 0.755750i 0.272727π-0.272727\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
600600 0 0
601601 0.698939 + 0.449181i 0.698939 + 0.449181i 0.841254 0.540641i 0.181818π-0.181818\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
602602 0 0
603603 0 0
604604 0.00685257 + 0.0476607i 0.00685257 + 0.0476607i
605605 −0.959493 0.281733i −0.959493 0.281733i
606606 0 0
607607 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
608608 −0.181059 + 0.0531636i −0.181059 + 0.0531636i
609609 0 0
610610 1.07028 1.23516i 1.07028 1.23516i
611611 0 0
612612 0 0
613613 0 0 −0.540641 0.841254i 0.681818π-0.681818\pi
0.540641 + 0.841254i 0.318182π0.318182\pi
614614 0 0
615615 0 0
616616 0 0
617617 0.186393 1.29639i 0.186393 1.29639i −0.654861 0.755750i 0.727273π-0.727273\pi
0.841254 0.540641i 0.181818π-0.181818\pi
618618 0 0
619619 −1.37491 + 1.19136i −1.37491 + 1.19136i −0.415415 + 0.909632i 0.636364π0.636364\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
620620 −0.324635 −0.324635
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 −0.142315 + 0.989821i −0.142315 + 0.989821i
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 −0.557730 1.89945i −0.557730 1.89945i −0.415415 0.909632i 0.636364π-0.636364\pi
−0.142315 0.989821i 0.545455π-0.545455\pi
632632 1.07028 1.23516i 1.07028 1.23516i
633633 0 0
634634 −2.05384 + 0.603063i −2.05384 + 0.603063i
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 −1.16463 0.167448i −1.16463 0.167448i
641641 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
642642 0 0
643643 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
644644 0 0
645645 0 0
646646 0.113563 + 0.131058i 0.113563 + 0.131058i
647647 1.07028 1.66538i 1.07028 1.66538i 0.415415 0.909632i 0.363636π-0.363636\pi
0.654861 0.755750i 0.272727π-0.272727\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 −1.65486 + 0.755750i −1.65486 + 0.755750i −0.654861 + 0.755750i 0.727273π0.727273\pi
−1.00000 π\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
660660 0 0
661661 0.557730 0.0801894i 0.557730 0.0801894i 0.142315 0.989821i 0.454545π-0.454545\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
662662 −1.65486 0.755750i −1.65486 0.755750i
663663 0 0
664664 0.817178 1.27155i 0.817178 1.27155i
665665 0 0
666666 0 0
667667 0 0
668668 0.307765i 0.307765i
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
674674 0 0
675675 0 0
676676 −0.0702757 0.153882i −0.0702757 0.153882i
677677 −0.797176 + 0.234072i −0.797176 + 0.234072i −0.654861 0.755750i 0.727273π-0.727273\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
678678 0 0
679679 0 0
680680 0.0720391 + 0.245343i 0.0720391 + 0.245343i
681681 0 0
682682 0 0
683683 0.425839 1.45027i 0.425839 1.45027i −0.415415 0.909632i 0.636364π-0.636364\pi
0.841254 0.540641i 0.181818π-0.181818\pi
684684 0 0
685685 −0.345139 + 0.755750i −0.345139 + 0.755750i
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 −1.68251 −1.68251 −0.841254 0.540641i 0.818182π-0.818182\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
692692 0.193245 0.167448i 0.193245 0.167448i
693693 0 0
694694 0.0867074 0.603063i 0.0867074 0.603063i
695695 0.544078 1.19136i 0.544078 1.19136i
696696 0 0
697697 0 0
698698 −0.983568 1.53046i −0.983568 1.53046i
699699 0 0
700700 0 0
701701 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0.584585 + 0.171650i 0.584585 + 0.171650i
707707 0 0
708708 0 0
709709 −1.95949 0.281733i −1.95949 0.281733i −0.959493 0.281733i 0.909091π-0.909091\pi
−1.00000 π\pi
710710 0 0
711711 0 0
712712 0 0
713713 0.273100 1.89945i 0.273100 1.89945i
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
720720 0 0
721721 0 0
722722 0.671292 0.306569i 0.671292 0.306569i
723723 0 0
724724 0.253098 + 0.219310i 0.253098 + 0.219310i
725725 0 0
726726 0 0
727727 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
728728 0 0
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 0 0 0.540641 0.841254i 0.318182π-0.318182\pi
−0.540641 + 0.841254i 0.681818π0.681818\pi
734734 0 0
735735 0 0
736736 −0.0943511 + 0.321330i −0.0943511 + 0.321330i
737737 0 0
738738 0 0
739739 −1.41542 0.909632i −1.41542 0.909632i −0.415415 0.909632i 0.636364π-0.636364\pi
−1.00000 π\pi
740740 0 0
741741 0 0
742742 0 0
743743 1.61435 + 0.474017i 1.61435 + 0.474017i 0.959493 0.281733i 0.0909091π-0.0909091\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 1.07028 + 1.66538i 1.07028 + 1.66538i 0.654861 + 0.755750i 0.272727π0.272727\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
752752 −0.485691 + 1.65411i −0.485691 + 1.65411i
753753 0 0
754754 0 0
755755 −0.0405070 + 0.281733i −0.0405070 + 0.281733i
756756 0 0
757757 0 0 0.755750 0.654861i 0.227273π-0.227273\pi
−0.755750 + 0.654861i 0.772727π0.772727\pi
758758 −1.16917 −1.16917
759759 0 0
760760 −0.506195 −0.506195
761761 0 0 0.755750 0.654861i 0.227273π-0.227273\pi
−0.755750 + 0.654861i 0.772727π0.772727\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0.512546 1.74557i 0.512546 1.74557i
767767 0 0
768768 0 0
769769 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
770770 0 0
771771 0 0
772772 0 0
773773 0.797176 + 1.74557i 0.797176 + 1.74557i 0.654861 + 0.755750i 0.272727π0.272727\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
774774 0 0
775775 −1.84125 0.540641i −1.84125 0.540641i
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0.304632 0.0437995i 0.304632 0.0437995i
783783 0 0
784784 −0.746902 0.861971i −0.746902 0.861971i
785785 0 0
786786 0 0
787787 0 0 −0.909632 0.415415i 0.863636π-0.863636\pi
0.909632 + 0.415415i 0.136364π0.136364\pi
788788 −0.304632 + 0.0437995i −0.304632 + 0.0437995i
789789 0 0
790790 −1.65486 + 1.06351i −1.65486 + 1.06351i
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 −0.166390 + 0.0759879i −0.166390 + 0.0759879i
797797 1.61435 1.03748i 1.61435 1.03748i 0.654861 0.755750i 0.272727π-0.272727\pi
0.959493 0.281733i 0.0909091π-0.0909091\pi
798798 0 0
799799 0.425839 0.0612263i 0.425839 0.0612263i
800800 0.304632 + 0.139121i 0.304632 + 0.139121i
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 −0.989821 0.142315i 0.954545π-0.954545\pi
0.989821 + 0.142315i 0.0454545π0.0454545\pi
810810 0 0
811811 −0.118239 0.822373i −0.118239 0.822373i −0.959493 0.281733i 0.909091π-0.909091\pi
0.841254 0.540641i 0.181818π-0.181818\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0.0867074 + 0.295298i 0.0867074 + 0.295298i
819819 0 0
820820 0 0
821821 0 0 0.281733 0.959493i 0.409091π-0.409091\pi
−0.281733 + 0.959493i 0.590909π0.590909\pi
822822 0 0
823823 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
824824 0 0
825825 0 0
826826 0 0
827827 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
828828 0 0
829829 −0.830830 −0.830830 −0.415415 0.909632i 0.636364π-0.636364\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
830830 −1.37491 + 1.19136i −1.37491 + 1.19136i
831831 0 0
832832 0 0
833833 −0.118239 + 0.258908i −0.118239 + 0.258908i
834834 0 0
835835 −0.512546 + 1.74557i −0.512546 + 1.74557i
836836 0 0
837837 0 0
838838 0 0
839839 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
840840 0 0
841841 0.959493 0.281733i 0.959493 0.281733i
842842 −0.253098 0.554206i −0.253098 0.554206i
843843 0 0
844844 0.0462003 + 0.0135656i 0.0462003 + 0.0135656i
845845 −0.142315 0.989821i −0.142315 0.989821i
846846 0 0
847847 0 0
848848 1.25667 + 0.807612i 1.25667 + 0.807612i
849849 0 0
850850 0.307765i 0.307765i
851851 0 0
852852 0 0
853853 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
854854 0 0
855855 0 0
856856 0.678936 + 0.310060i 0.678936 + 0.310060i
857857 0.557730 0.0801894i 0.557730 0.0801894i 0.142315 0.989821i 0.454545π-0.454545\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
858858 0 0
859859 −0.239446 + 0.153882i −0.239446 + 0.153882i −0.654861 0.755750i 0.727273π-0.727273\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
860860 0 0
861861 0 0
862862 0 0
863863 1.37491 + 1.19136i 1.37491 + 1.19136i 0.959493 + 0.281733i 0.0909091π0.0909091\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
864864 0 0
865865 1.37491 0.627899i 1.37491 0.627899i
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 1.07028 + 1.23516i 1.07028 + 1.23516i
873873 0 0
874874 −0.0867074 + 0.603063i −0.0867074 + 0.603063i
875875 0 0
876876 0 0
877877 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
878878 −1.80075 0.258908i −1.80075 0.258908i
879879 0 0
880880 0 0
881881 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
882882 0 0
883883 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
884884 0 0
885885 0 0
886886 −1.40176 + 1.61772i −1.40176 + 1.61772i
887887 0.557730 + 1.89945i 0.557730 + 1.89945i 0.415415 + 0.909632i 0.363636π0.363636\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 −0.121206 + 0.843008i −0.121206 + 0.843008i
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0.0530529 0.368991i 0.0530529 0.368991i
902902 0 0
903903 0 0
904904 −0.425839 + 1.45027i −0.425839 + 1.45027i
905905 1.07028 + 1.66538i 1.07028 + 1.66538i
906906 0 0
907907 0 0 −0.281733 0.959493i 0.590909π-0.590909\pi
0.281733 + 0.959493i 0.409091π0.409091\pi
908908 −0.145095 + 0.167448i −0.145095 + 0.167448i
909909 0 0
910910 0 0
911911 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0.181059 + 0.0260323i 0.181059 + 0.0260323i
917917 0 0
918918 0 0
919919 1.97964i 1.97964i −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 0.989821i 0.454545π-0.454545\pi
920920 −0.485691 + 0.755750i −0.485691 + 0.755750i
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0 0 0.909632 0.415415i 0.136364π-0.136364\pi
−0.909632 + 0.415415i 0.863636π0.863636\pi
930930 0 0
931931 −0.425839 0.368991i −0.425839 0.368991i
932932 0.232593 + 0.201543i 0.232593 + 0.201543i
933933 0 0
934934 −0.279953 + 0.127850i −0.279953 + 0.127850i
935935 0 0
936936 0 0
937937 0 0 0.989821 0.142315i 0.0454545π-0.0454545\pi
−0.989821 + 0.142315i 0.954545π0.954545\pi
938938 0 0
939939 0 0
940940 0.138242 0.215109i 0.138242 0.215109i
941941 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 1.49611 + 0.215109i 1.49611 + 0.215109i 0.841254 0.540641i 0.181818π-0.181818\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
948948 0 0
949949 0 0
950950 0.584585 + 0.171650i 0.584585 + 0.171650i
951951 0 0
952952 0 0
953953 1.25667 0.368991i 1.25667 0.368991i 0.415415 0.909632i 0.363636π-0.363636\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 1.11435 2.44009i 1.11435 2.44009i
962962 0 0
963963 0 0
964964 −0.253098 + 0.219310i −0.253098 + 0.219310i
965965 0 0
966966 0 0
967967 0 0 1.00000 00
−1.00000 π\pi
968968 −0.678936 + 0.588302i −0.678936 + 0.588302i
969969 0 0
970970 0 0
971971 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 −0.485691 1.65411i −0.485691 1.65411i
977977 0.544078 0.627899i 0.544078 0.627899i −0.415415 0.909632i 0.636364π-0.636364\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
978978 0 0
979979 0 0
980980 0.0702757 + 0.153882i 0.0702757 + 0.153882i
981981 0 0
982982 0 0
983983 0.118239 + 0.822373i 0.118239 + 0.822373i 0.959493 + 0.281733i 0.0909091π0.0909091\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
984984 0 0
985985 −1.80075 0.258908i −1.80075 0.258908i
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0.544078 + 0.627899i 0.544078 + 0.627899i 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
992992 −0.347449 + 0.540641i −0.347449 + 0.540641i
993993 0 0
994994 0 0
995995 −1.07028 + 0.153882i −1.07028 + 0.153882i
996996 0 0
997997 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
998998 0.817178 0.373193i 0.817178 0.373193i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1035.1.bd.a.424.1 10
3.2 odd 2 1035.1.bd.b.424.1 yes 10
5.4 even 2 1035.1.bd.b.424.1 yes 10
15.14 odd 2 CM 1035.1.bd.a.424.1 10
23.7 odd 22 1035.1.bd.b.559.1 yes 10
69.53 even 22 inner 1035.1.bd.a.559.1 yes 10
115.99 odd 22 inner 1035.1.bd.a.559.1 yes 10
345.329 even 22 1035.1.bd.b.559.1 yes 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1035.1.bd.a.424.1 10 1.1 even 1 trivial
1035.1.bd.a.424.1 10 15.14 odd 2 CM
1035.1.bd.a.559.1 yes 10 69.53 even 22 inner
1035.1.bd.a.559.1 yes 10 115.99 odd 22 inner
1035.1.bd.b.424.1 yes 10 3.2 odd 2
1035.1.bd.b.424.1 yes 10 5.4 even 2
1035.1.bd.b.559.1 yes 10 23.7 odd 22
1035.1.bd.b.559.1 yes 10 345.329 even 22