Properties

Label 1035.2.a.q.1.3
Level 10351035
Weight 22
Character 1035.1
Self dual yes
Analytic conductor 8.2658.265
Analytic rank 00
Dimension 66
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1035,2,Mod(1,1035)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1035, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1035.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1035=32523 1035 = 3^{2} \cdot 5 \cdot 23
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1035.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 8.264516609208.26451660920
Analytic rank: 00
Dimension: 66
Coefficient field: 6.6.98838128.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6x510x4x3+16x2+5x1 x^{6} - x^{5} - 10x^{4} - x^{3} + 16x^{2} + 5x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 22 2^{2}
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.3
Root 0.493507-0.493507 of defining polynomial
Character χ\chi == 1035.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q0.810417q21.34322q4+1.00000q54.60617q7+2.70941q80.810417q105.35375q11+5.51982q13+3.73292q14+0.490703q161.17660q171.73292q191.34322q20+4.33877q221.00000q23+1.00000q254.47336q26+6.18712q28+3.08635q29+4.34322q315.81648q32+0.953534q344.60617q35+8.81926q37+1.40438q38+2.70941q40+7.27347q41+8.52038q43+7.19129q44+0.810417q469.69252q47+14.2168q490.810417q507.41436q5210.2018q535.35375q5512.4800q562.50123q58+11.7468q59+1.33270q613.51982q62+3.73237q64+5.51982q656.01391q67+1.58043q68+3.73292q70+11.3991q711.51982q737.14728q74+2.32770q76+24.6603q77+1.26764q79+0.490703q805.89454q821.15555q831.17660q856.90506q8614.5055q88+5.40223q8925.4252q91+1.34322q92+7.85498q941.73292q95+16.4440q9711.5215q98+O(q100)q-0.810417 q^{2} -1.34322 q^{4} +1.00000 q^{5} -4.60617 q^{7} +2.70941 q^{8} -0.810417 q^{10} -5.35375 q^{11} +5.51982 q^{13} +3.73292 q^{14} +0.490703 q^{16} -1.17660 q^{17} -1.73292 q^{19} -1.34322 q^{20} +4.33877 q^{22} -1.00000 q^{23} +1.00000 q^{25} -4.47336 q^{26} +6.18712 q^{28} +3.08635 q^{29} +4.34322 q^{31} -5.81648 q^{32} +0.953534 q^{34} -4.60617 q^{35} +8.81926 q^{37} +1.40438 q^{38} +2.70941 q^{40} +7.27347 q^{41} +8.52038 q^{43} +7.19129 q^{44} +0.810417 q^{46} -9.69252 q^{47} +14.2168 q^{49} -0.810417 q^{50} -7.41436 q^{52} -10.2018 q^{53} -5.35375 q^{55} -12.4800 q^{56} -2.50123 q^{58} +11.7468 q^{59} +1.33270 q^{61} -3.51982 q^{62} +3.73237 q^{64} +5.51982 q^{65} -6.01391 q^{67} +1.58043 q^{68} +3.73292 q^{70} +11.3991 q^{71} -1.51982 q^{73} -7.14728 q^{74} +2.32770 q^{76} +24.6603 q^{77} +1.26764 q^{79} +0.490703 q^{80} -5.89454 q^{82} -1.15555 q^{83} -1.17660 q^{85} -6.90506 q^{86} -14.5055 q^{88} +5.40223 q^{89} -25.4252 q^{91} +1.34322 q^{92} +7.85498 q^{94} -1.73292 q^{95} +16.4440 q^{97} -11.5215 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+10q4+6q5+6q74q11+12q13+4q14+14q164q17+8q19+10q20+8q226q23+6q25+12q26+24q28+6q29+8q3120q32++4q98+O(q100) 6 q + 10 q^{4} + 6 q^{5} + 6 q^{7} - 4 q^{11} + 12 q^{13} + 4 q^{14} + 14 q^{16} - 4 q^{17} + 8 q^{19} + 10 q^{20} + 8 q^{22} - 6 q^{23} + 6 q^{25} + 12 q^{26} + 24 q^{28} + 6 q^{29} + 8 q^{31} - 20 q^{32}+ \cdots + 4 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.810417 −0.573051 −0.286526 0.958073i 0.592500π-0.592500\pi
−0.286526 + 0.958073i 0.592500π0.592500\pi
33 0 0
44 −1.34322 −0.671612
55 1.00000 0.447214
66 0 0
77 −4.60617 −1.74097 −0.870484 0.492196i 0.836194π-0.836194\pi
−0.870484 + 0.492196i 0.836194π0.836194\pi
88 2.70941 0.957919
99 0 0
1010 −0.810417 −0.256276
1111 −5.35375 −1.61422 −0.807108 0.590404i 0.798969π-0.798969\pi
−0.807108 + 0.590404i 0.798969π0.798969\pi
1212 0 0
1313 5.51982 1.53092 0.765462 0.643482i 0.222511π-0.222511\pi
0.765462 + 0.643482i 0.222511π0.222511\pi
1414 3.73292 0.997664
1515 0 0
1616 0.490703 0.122676
1717 −1.17660 −0.285367 −0.142683 0.989768i 0.545573π-0.545573\pi
−0.142683 + 0.989768i 0.545573π0.545573\pi
1818 0 0
1919 −1.73292 −0.397558 −0.198779 0.980044i 0.563698π-0.563698\pi
−0.198779 + 0.980044i 0.563698π0.563698\pi
2020 −1.34322 −0.300354
2121 0 0
2222 4.33877 0.925028
2323 −1.00000 −0.208514
2424 0 0
2525 1.00000 0.200000
2626 −4.47336 −0.877297
2727 0 0
2828 6.18712 1.16926
2929 3.08635 0.573120 0.286560 0.958062i 0.407488π-0.407488\pi
0.286560 + 0.958062i 0.407488π0.407488\pi
3030 0 0
3131 4.34322 0.780066 0.390033 0.920801i 0.372464π-0.372464\pi
0.390033 + 0.920801i 0.372464π0.372464\pi
3232 −5.81648 −1.02822
3333 0 0
3434 0.953534 0.163530
3535 −4.60617 −0.778585
3636 0 0
3737 8.81926 1.44988 0.724939 0.688813i 0.241868π-0.241868\pi
0.724939 + 0.688813i 0.241868π0.241868\pi
3838 1.40438 0.227821
3939 0 0
4040 2.70941 0.428395
4141 7.27347 1.13593 0.567963 0.823054i 0.307732π-0.307732\pi
0.567963 + 0.823054i 0.307732π0.307732\pi
4242 0 0
4343 8.52038 1.29935 0.649673 0.760214i 0.274906π-0.274906\pi
0.649673 + 0.760214i 0.274906π0.274906\pi
4444 7.19129 1.08413
4545 0 0
4646 0.810417 0.119489
4747 −9.69252 −1.41380 −0.706899 0.707314i 0.749907π-0.749907\pi
−0.706899 + 0.707314i 0.749907π0.749907\pi
4848 0 0
4949 14.2168 2.03097
5050 −0.810417 −0.114610
5151 0 0
5252 −7.41436 −1.02819
5353 −10.2018 −1.40133 −0.700663 0.713492i 0.747113π-0.747113\pi
−0.700663 + 0.713492i 0.747113π0.747113\pi
5454 0 0
5555 −5.35375 −0.721899
5656 −12.4800 −1.66771
5757 0 0
5858 −2.50123 −0.328427
5959 11.7468 1.52931 0.764653 0.644442i 0.222910π-0.222910\pi
0.764653 + 0.644442i 0.222910π0.222910\pi
6060 0 0
6161 1.33270 0.170635 0.0853174 0.996354i 0.472810π-0.472810\pi
0.0853174 + 0.996354i 0.472810π0.472810\pi
6262 −3.51982 −0.447018
6363 0 0
6464 3.73237 0.466546
6565 5.51982 0.684650
6666 0 0
6767 −6.01391 −0.734716 −0.367358 0.930080i 0.619738π-0.619738\pi
−0.367358 + 0.930080i 0.619738π0.619738\pi
6868 1.58043 0.191656
6969 0 0
7070 3.73292 0.446169
7171 11.3991 1.35283 0.676415 0.736521i 0.263533π-0.263533\pi
0.676415 + 0.736521i 0.263533π0.263533\pi
7272 0 0
7373 −1.51982 −0.177882 −0.0889408 0.996037i 0.528348π-0.528348\pi
−0.0889408 + 0.996037i 0.528348π0.528348\pi
7474 −7.14728 −0.830854
7575 0 0
7676 2.32770 0.267005
7777 24.6603 2.81030
7878 0 0
7979 1.26764 0.142621 0.0713103 0.997454i 0.477282π-0.477282\pi
0.0713103 + 0.997454i 0.477282π0.477282\pi
8080 0.490703 0.0548623
8181 0 0
8282 −5.89454 −0.650943
8383 −1.15555 −0.126838 −0.0634189 0.997987i 0.520200π-0.520200\pi
−0.0634189 + 0.997987i 0.520200π0.520200\pi
8484 0 0
8585 −1.17660 −0.127620
8686 −6.90506 −0.744591
8787 0 0
8888 −14.5055 −1.54629
8989 5.40223 0.572635 0.286317 0.958135i 0.407569π-0.407569\pi
0.286317 + 0.958135i 0.407569π0.407569\pi
9090 0 0
9191 −25.4252 −2.66529
9292 1.34322 0.140041
9393 0 0
9494 7.85498 0.810179
9595 −1.73292 −0.177793
9696 0 0
9797 16.4440 1.66964 0.834819 0.550524i 0.185572π-0.185572\pi
0.834819 + 0.550524i 0.185572π0.185572\pi
9898 −11.5215 −1.16385
9999 0 0
100100 −1.34322 −0.134322
101101 3.43403 0.341699 0.170849 0.985297i 0.445349π-0.445349\pi
0.170849 + 0.985297i 0.445349π0.445349\pi
102102 0 0
103103 9.42879 0.929046 0.464523 0.885561i 0.346226π-0.346226\pi
0.464523 + 0.885561i 0.346226π0.346226\pi
104104 14.9554 1.46650
105105 0 0
106106 8.26772 0.803032
107107 14.9093 1.44134 0.720669 0.693279i 0.243835π-0.243835\pi
0.720669 + 0.693279i 0.243835π0.243835\pi
108108 0 0
109109 8.26216 0.791371 0.395686 0.918386i 0.370507π-0.370507\pi
0.395686 + 0.918386i 0.370507π0.370507\pi
110110 4.33877 0.413685
111111 0 0
112112 −2.26026 −0.213575
113113 −10.6280 −0.999798 −0.499899 0.866084i 0.666630π-0.666630\pi
−0.499899 + 0.866084i 0.666630π0.666630\pi
114114 0 0
115115 −1.00000 −0.0932505
116116 −4.14566 −0.384915
117117 0 0
118118 −9.51982 −0.876371
119119 5.41960 0.496814
120120 0 0
121121 17.6626 1.60569
122122 −1.08004 −0.0977825
123123 0 0
124124 −5.83393 −0.523902
125125 1.00000 0.0894427
126126 0 0
127127 −2.23560 −0.198377 −0.0991887 0.995069i 0.531625π-0.531625\pi
−0.0991887 + 0.995069i 0.531625π0.531625\pi
128128 8.60819 0.760864
129129 0 0
130130 −4.47336 −0.392339
131131 −10.6831 −0.933386 −0.466693 0.884419i 0.654555π-0.654555\pi
−0.466693 + 0.884419i 0.654555π0.654555\pi
132132 0 0
133133 7.98211 0.692136
134134 4.87377 0.421030
135135 0 0
136136 −3.18788 −0.273358
137137 −0.326633 −0.0279061 −0.0139531 0.999903i 0.504442π-0.504442\pi
−0.0139531 + 0.999903i 0.504442π0.504442\pi
138138 0 0
139139 9.54894 0.809931 0.404965 0.914332i 0.367284π-0.367284\pi
0.404965 + 0.914332i 0.367284π0.367284\pi
140140 6.18712 0.522907
141141 0 0
142142 −9.23805 −0.775240
143143 −29.5517 −2.47124
144144 0 0
145145 3.08635 0.256307
146146 1.23169 0.101935
147147 0 0
148148 −11.8463 −0.973756
149149 −22.5368 −1.84628 −0.923142 0.384460i 0.874388π-0.874388\pi
−0.923142 + 0.384460i 0.874388π0.874388\pi
150150 0 0
151151 16.3305 1.32896 0.664478 0.747308i 0.268654π-0.268654\pi
0.664478 + 0.747308i 0.268654π0.268654\pi
152152 −4.69517 −0.380829
153153 0 0
154154 −19.9851 −1.61045
155155 4.34322 0.348856
156156 0 0
157157 −13.2666 −1.05879 −0.529397 0.848374i 0.677582π-0.677582\pi
−0.529397 + 0.848374i 0.677582π0.677582\pi
158158 −1.02732 −0.0817289
159159 0 0
160160 −5.81648 −0.459833
161161 4.60617 0.363017
162162 0 0
163163 −15.7261 −1.23176 −0.615881 0.787839i 0.711200π-0.711200\pi
−0.615881 + 0.787839i 0.711200π0.711200\pi
164164 −9.76990 −0.762901
165165 0 0
166166 0.936475 0.0726846
167167 −1.59282 −0.123256 −0.0616279 0.998099i 0.519629π-0.519629\pi
−0.0616279 + 0.998099i 0.519629π0.519629\pi
168168 0 0
169169 17.4684 1.34373
170170 0.953534 0.0731327
171171 0 0
172172 −11.4448 −0.872657
173173 6.90506 0.524982 0.262491 0.964934i 0.415456π-0.415456\pi
0.262491 + 0.964934i 0.415456π0.415456\pi
174174 0 0
175175 −4.60617 −0.348194
176176 −2.62710 −0.198025
177177 0 0
178178 −4.37805 −0.328149
179179 25.1515 1.87991 0.939957 0.341294i 0.110865π-0.110865\pi
0.939957 + 0.341294i 0.110865π0.110865\pi
180180 0 0
181181 −12.9678 −0.963886 −0.481943 0.876203i 0.660069π-0.660069\pi
−0.481943 + 0.876203i 0.660069π0.660069\pi
182182 20.6050 1.52735
183183 0 0
184184 −2.70941 −0.199740
185185 8.81926 0.648405
186186 0 0
187187 6.29920 0.460643
188188 13.0192 0.949525
189189 0 0
190190 1.40438 0.101885
191191 −3.90897 −0.282843 −0.141421 0.989949i 0.545167π-0.545167\pi
−0.141421 + 0.989949i 0.545167π0.545167\pi
192192 0 0
193193 −2.68645 −0.193375 −0.0966874 0.995315i 0.530825π-0.530825\pi
−0.0966874 + 0.995315i 0.530825π0.530825\pi
194194 −13.3265 −0.956788
195195 0 0
196196 −19.0964 −1.36403
197197 −9.78139 −0.696895 −0.348448 0.937328i 0.613291π-0.613291\pi
−0.348448 + 0.937328i 0.613291π0.613291\pi
198198 0 0
199199 −19.0867 −1.35302 −0.676509 0.736434i 0.736508π-0.736508\pi
−0.676509 + 0.736434i 0.736508π0.736508\pi
200200 2.70941 0.191584
201201 0 0
202202 −2.78299 −0.195811
203203 −14.2162 −0.997784
204204 0 0
205205 7.27347 0.508001
206206 −7.64125 −0.532391
207207 0 0
208208 2.70859 0.187807
209209 9.27760 0.641745
210210 0 0
211211 −8.09524 −0.557299 −0.278650 0.960393i 0.589887π-0.589887\pi
−0.278650 + 0.960393i 0.589887π0.589887\pi
212212 13.7033 0.941149
213213 0 0
214214 −12.0828 −0.825960
215215 8.52038 0.581085
216216 0 0
217217 −20.0056 −1.35807
218218 −6.69579 −0.453496
219219 0 0
220220 7.19129 0.484837
221221 −6.49460 −0.436874
222222 0 0
223223 14.2094 0.951534 0.475767 0.879571i 0.342171π-0.342171\pi
0.475767 + 0.879571i 0.342171π0.342171\pi
224224 26.7917 1.79010
225225 0 0
226226 8.61311 0.572936
227227 −16.6256 −1.10348 −0.551740 0.834016i 0.686036π-0.686036\pi
−0.551740 + 0.834016i 0.686036π0.686036\pi
228228 0 0
229229 15.3640 1.01528 0.507640 0.861569i 0.330518π-0.330518\pi
0.507640 + 0.861569i 0.330518π0.330518\pi
230230 0.810417 0.0534373
231231 0 0
232232 8.36217 0.549003
233233 −15.0878 −0.988433 −0.494217 0.869339i 0.664545π-0.664545\pi
−0.494217 + 0.869339i 0.664545π0.664545\pi
234234 0 0
235235 −9.69252 −0.632270
236236 −15.7786 −1.02710
237237 0 0
238238 −4.39214 −0.284700
239239 −1.42847 −0.0924000 −0.0462000 0.998932i 0.514711π-0.514711\pi
−0.0462000 + 0.998932i 0.514711π0.514711\pi
240240 0 0
241241 10.5954 0.682511 0.341255 0.939971i 0.389148π-0.389148\pi
0.341255 + 0.939971i 0.389148π0.389148\pi
242242 −14.3141 −0.920145
243243 0 0
244244 −1.79012 −0.114600
245245 14.2168 0.908278
246246 0 0
247247 −9.56539 −0.608631
248248 11.7676 0.747241
249249 0 0
250250 −0.810417 −0.0512552
251251 15.3939 0.971657 0.485829 0.874054i 0.338518π-0.338518\pi
0.485829 + 0.874054i 0.338518π0.338518\pi
252252 0 0
253253 5.35375 0.336587
254254 1.81177 0.113680
255255 0 0
256256 −14.4410 −0.902560
257257 −7.92004 −0.494038 −0.247019 0.969011i 0.579451π-0.579451\pi
−0.247019 + 0.969011i 0.579451π0.579451\pi
258258 0 0
259259 −40.6230 −2.52419
260260 −7.41436 −0.459819
261261 0 0
262262 8.65776 0.534878
263263 −17.7857 −1.09671 −0.548355 0.836246i 0.684746π-0.684746\pi
−0.548355 + 0.836246i 0.684746π0.684746\pi
264264 0 0
265265 −10.2018 −0.626692
266266 −6.46883 −0.396629
267267 0 0
268268 8.07803 0.493444
269269 −0.155319 −0.00946996 −0.00473498 0.999989i 0.501507π-0.501507\pi
−0.00473498 + 0.999989i 0.501507π0.501507\pi
270270 0 0
271271 26.1967 1.59134 0.795668 0.605733i 0.207120π-0.207120\pi
0.795668 + 0.605733i 0.207120π0.207120\pi
272272 −0.577359 −0.0350076
273273 0 0
274274 0.264709 0.0159916
275275 −5.35375 −0.322843
276276 0 0
277277 −17.6542 −1.06074 −0.530369 0.847767i 0.677947π-0.677947\pi
−0.530369 + 0.847767i 0.677947π0.677947\pi
278278 −7.73862 −0.464132
279279 0 0
280280 −12.4800 −0.745821
281281 −18.7534 −1.11873 −0.559366 0.828921i 0.688955π-0.688955\pi
−0.559366 + 0.828921i 0.688955π0.688955\pi
282282 0 0
283283 16.3826 0.973847 0.486923 0.873445i 0.338119π-0.338119\pi
0.486923 + 0.873445i 0.338119π0.338119\pi
284284 −15.3116 −0.908577
285285 0 0
286286 23.9492 1.41615
287287 −33.5028 −1.97761
288288 0 0
289289 −15.6156 −0.918566
290290 −2.50123 −0.146877
291291 0 0
292292 2.04146 0.119468
293293 16.5506 0.966897 0.483448 0.875373i 0.339384π-0.339384\pi
0.483448 + 0.875373i 0.339384π0.339384\pi
294294 0 0
295295 11.7468 0.683927
296296 23.8950 1.38887
297297 0 0
298298 18.2642 1.05801
299299 −5.51982 −0.319220
300300 0 0
301301 −39.2463 −2.26212
302302 −13.2345 −0.761560
303303 0 0
304304 −0.850347 −0.0487707
305305 1.33270 0.0763102
306306 0 0
307307 17.3084 0.987844 0.493922 0.869506i 0.335563π-0.335563\pi
0.493922 + 0.869506i 0.335563π0.335563\pi
308308 −33.1243 −1.88743
309309 0 0
310310 −3.51982 −0.199912
311311 16.8210 0.953834 0.476917 0.878948i 0.341754π-0.341754\pi
0.476917 + 0.878948i 0.341754π0.341754\pi
312312 0 0
313313 −8.44566 −0.477377 −0.238688 0.971096i 0.576717π-0.576717\pi
−0.238688 + 0.971096i 0.576717π0.576717\pi
314314 10.7515 0.606743
315315 0 0
316316 −1.70273 −0.0957858
317317 −32.7283 −1.83821 −0.919104 0.394016i 0.871085π-0.871085\pi
−0.919104 + 0.394016i 0.871085π0.871085\pi
318318 0 0
319319 −16.5235 −0.925140
320320 3.73237 0.208646
321321 0 0
322322 −3.73292 −0.208027
323323 2.03894 0.113450
324324 0 0
325325 5.51982 0.306185
326326 12.7447 0.705863
327327 0 0
328328 19.7068 1.08812
329329 44.6454 2.46138
330330 0 0
331331 −15.2008 −0.835512 −0.417756 0.908559i 0.637183π-0.637183\pi
−0.417756 + 0.908559i 0.637183π0.637183\pi
332332 1.55216 0.0851859
333333 0 0
334334 1.29085 0.0706319
335335 −6.01391 −0.328575
336336 0 0
337337 11.9751 0.652327 0.326164 0.945313i 0.394244π-0.394244\pi
0.326164 + 0.945313i 0.394244π0.394244\pi
338338 −14.1567 −0.770023
339339 0 0
340340 1.58043 0.0857111
341341 −23.2525 −1.25920
342342 0 0
343343 −33.2418 −1.79489
344344 23.0852 1.24467
345345 0 0
346346 −5.59597 −0.300841
347347 15.6679 0.841095 0.420547 0.907271i 0.361838π-0.361838\pi
0.420547 + 0.907271i 0.361838π0.361838\pi
348348 0 0
349349 24.0603 1.28792 0.643958 0.765061i 0.277291π-0.277291\pi
0.643958 + 0.765061i 0.277291π0.277291\pi
350350 3.73292 0.199533
351351 0 0
352352 31.1400 1.65977
353353 22.5772 1.20166 0.600830 0.799376i 0.294837π-0.294837\pi
0.600830 + 0.799376i 0.294837π0.294837\pi
354354 0 0
355355 11.3991 0.605004
356356 −7.25641 −0.384589
357357 0 0
358358 −20.3832 −1.07729
359359 24.3132 1.28320 0.641602 0.767038i 0.278270π-0.278270\pi
0.641602 + 0.767038i 0.278270π0.278270\pi
360360 0 0
361361 −15.9970 −0.841947
362362 10.5093 0.552356
363363 0 0
364364 34.1518 1.79004
365365 −1.51982 −0.0795511
366366 0 0
367367 16.0482 0.837708 0.418854 0.908053i 0.362432π-0.362432\pi
0.418854 + 0.908053i 0.362432π0.362432\pi
368368 −0.490703 −0.0255797
369369 0 0
370370 −7.14728 −0.371569
371371 46.9913 2.43967
372372 0 0
373373 14.8470 0.768747 0.384373 0.923178i 0.374418π-0.374418\pi
0.384373 + 0.923178i 0.374418π0.374418\pi
374374 −5.10498 −0.263972
375375 0 0
376376 −26.2610 −1.35431
377377 17.0361 0.877403
378378 0 0
379379 21.8303 1.12135 0.560673 0.828038i 0.310543π-0.310543\pi
0.560673 + 0.828038i 0.310543π0.310543\pi
380380 2.32770 0.119408
381381 0 0
382382 3.16789 0.162083
383383 11.4590 0.585528 0.292764 0.956185i 0.405425π-0.405425\pi
0.292764 + 0.956185i 0.405425π0.405425\pi
384384 0 0
385385 24.6603 1.25680
386386 2.17714 0.110814
387387 0 0
388388 −22.0880 −1.12135
389389 −30.7060 −1.55686 −0.778428 0.627734i 0.783982π-0.783982\pi
−0.778428 + 0.627734i 0.783982π0.783982\pi
390390 0 0
391391 1.17660 0.0595031
392392 38.5191 1.94551
393393 0 0
394394 7.92700 0.399357
395395 1.26764 0.0637819
396396 0 0
397397 −36.3445 −1.82408 −0.912039 0.410102i 0.865493π-0.865493\pi
−0.912039 + 0.410102i 0.865493π0.865493\pi
398398 15.4682 0.775348
399399 0 0
400400 0.490703 0.0245351
401401 7.23228 0.361163 0.180581 0.983560i 0.442202π-0.442202\pi
0.180581 + 0.983560i 0.442202π0.442202\pi
402402 0 0
403403 23.9738 1.19422
404404 −4.61267 −0.229489
405405 0 0
406406 11.5211 0.571781
407407 −47.2161 −2.34042
408408 0 0
409409 −13.2289 −0.654129 −0.327064 0.945002i 0.606059π-0.606059\pi
−0.327064 + 0.945002i 0.606059π0.606059\pi
410410 −5.89454 −0.291111
411411 0 0
412412 −12.6650 −0.623959
413413 −54.1079 −2.66247
414414 0 0
415415 −1.15555 −0.0567236
416416 −32.1060 −1.57412
417417 0 0
418418 −7.51872 −0.367753
419419 18.3115 0.894574 0.447287 0.894390i 0.352390π-0.352390\pi
0.447287 + 0.894390i 0.352390π0.352390\pi
420420 0 0
421421 14.1996 0.692049 0.346024 0.938226i 0.387531π-0.387531\pi
0.346024 + 0.938226i 0.387531π0.387531\pi
422422 6.56052 0.319361
423423 0 0
424424 −27.6408 −1.34236
425425 −1.17660 −0.0570733
426426 0 0
427427 −6.13864 −0.297070
428428 −20.0266 −0.968020
429429 0 0
430430 −6.90506 −0.332991
431431 35.0475 1.68818 0.844090 0.536202i 0.180141π-0.180141\pi
0.844090 + 0.536202i 0.180141π0.180141\pi
432432 0 0
433433 3.14590 0.151182 0.0755911 0.997139i 0.475916π-0.475916\pi
0.0755911 + 0.997139i 0.475916π0.475916\pi
434434 16.2129 0.778244
435435 0 0
436436 −11.0979 −0.531495
437437 1.73292 0.0828966
438438 0 0
439439 1.95513 0.0933135 0.0466567 0.998911i 0.485143π-0.485143\pi
0.0466567 + 0.998911i 0.485143π0.485143\pi
440440 −14.5055 −0.691521
441441 0 0
442442 5.26334 0.250351
443443 27.4890 1.30604 0.653020 0.757340i 0.273502π-0.273502\pi
0.653020 + 0.757340i 0.273502π0.273502\pi
444444 0 0
445445 5.40223 0.256090
446446 −11.5156 −0.545277
447447 0 0
448448 −17.1919 −0.812242
449449 −2.83238 −0.133668 −0.0668341 0.997764i 0.521290π-0.521290\pi
−0.0668341 + 0.997764i 0.521290π0.521290\pi
450450 0 0
451451 −38.9403 −1.83363
452452 14.2758 0.671477
453453 0 0
454454 13.4737 0.632350
455455 −25.4252 −1.19195
456456 0 0
457457 −2.97045 −0.138952 −0.0694760 0.997584i 0.522133π-0.522133\pi
−0.0694760 + 0.997584i 0.522133π0.522133\pi
458458 −12.4512 −0.581808
459459 0 0
460460 1.34322 0.0626282
461461 −16.1855 −0.753832 −0.376916 0.926247i 0.623016π-0.623016\pi
−0.376916 + 0.926247i 0.623016π0.623016\pi
462462 0 0
463463 −2.40718 −0.111871 −0.0559356 0.998434i 0.517814π-0.517814\pi
−0.0559356 + 0.998434i 0.517814π0.517814\pi
464464 1.51448 0.0703080
465465 0 0
466466 12.2274 0.566423
467467 −10.0639 −0.465700 −0.232850 0.972513i 0.574805π-0.574805\pi
−0.232850 + 0.972513i 0.574805π0.574805\pi
468468 0 0
469469 27.7011 1.27912
470470 7.85498 0.362323
471471 0 0
472472 31.8269 1.46495
473473 −45.6160 −2.09742
474474 0 0
475475 −1.73292 −0.0795116
476476 −7.27975 −0.333667
477477 0 0
478478 1.15766 0.0529499
479479 26.0812 1.19168 0.595841 0.803102i 0.296819π-0.296819\pi
0.595841 + 0.803102i 0.296819π0.296819\pi
480480 0 0
481481 48.6808 2.21965
482482 −8.58670 −0.391114
483483 0 0
484484 −23.7249 −1.07840
485485 16.4440 0.746685
486486 0 0
487487 23.7436 1.07592 0.537962 0.842969i 0.319194π-0.319194\pi
0.537962 + 0.842969i 0.319194π0.319194\pi
488488 3.61082 0.163454
489489 0 0
490490 −11.5215 −0.520490
491491 2.79506 0.126139 0.0630696 0.998009i 0.479911π-0.479911\pi
0.0630696 + 0.998009i 0.479911π0.479911\pi
492492 0 0
493493 −3.63139 −0.163549
494494 7.75195 0.348777
495495 0 0
496496 2.13123 0.0956952
497497 −52.5064 −2.35523
498498 0 0
499499 −8.35214 −0.373893 −0.186947 0.982370i 0.559859π-0.559859\pi
−0.186947 + 0.982370i 0.559859π0.559859\pi
500500 −1.34322 −0.0600708
501501 0 0
502502 −12.4755 −0.556809
503503 19.8111 0.883333 0.441667 0.897179i 0.354387π-0.354387\pi
0.441667 + 0.897179i 0.354387π0.354387\pi
504504 0 0
505505 3.43403 0.152812
506506 −4.33877 −0.192882
507507 0 0
508508 3.00291 0.133233
509509 29.1471 1.29192 0.645961 0.763371i 0.276457π-0.276457\pi
0.645961 + 0.763371i 0.276457π0.276457\pi
510510 0 0
511511 7.00056 0.309686
512512 −5.51319 −0.243651
513513 0 0
514514 6.41853 0.283109
515515 9.42879 0.415482
516516 0 0
517517 51.8913 2.28218
518518 32.9216 1.44649
519519 0 0
520520 14.9554 0.655839
521521 3.73563 0.163661 0.0818306 0.996646i 0.473923π-0.473923\pi
0.0818306 + 0.996646i 0.473923π0.473923\pi
522522 0 0
523523 −28.4551 −1.24425 −0.622127 0.782916i 0.713731π-0.713731\pi
−0.622127 + 0.782916i 0.713731π0.713731\pi
524524 14.3498 0.626874
525525 0 0
526526 14.4138 0.628471
527527 −5.11022 −0.222605
528528 0 0
529529 1.00000 0.0434783
530530 8.26772 0.359127
531531 0 0
532532 −10.7218 −0.464847
533533 40.1483 1.73901
534534 0 0
535535 14.9093 0.644586
536536 −16.2941 −0.703798
537537 0 0
538538 0.125873 0.00542677
539539 −76.1132 −3.27843
540540 0 0
541541 37.3591 1.60619 0.803097 0.595849i 0.203184π-0.203184\pi
0.803097 + 0.595849i 0.203184π0.203184\pi
542542 −21.2302 −0.911917
543543 0 0
544544 6.84366 0.293419
545545 8.26216 0.353912
546546 0 0
547547 −38.4683 −1.64479 −0.822394 0.568919i 0.807362π-0.807362\pi
−0.822394 + 0.568919i 0.807362π0.807362\pi
548548 0.438742 0.0187421
549549 0 0
550550 4.33877 0.185006
551551 −5.34838 −0.227849
552552 0 0
553553 −5.83896 −0.248298
554554 14.3073 0.607857
555555 0 0
556556 −12.8264 −0.543959
557557 29.8981 1.26682 0.633412 0.773815i 0.281654π-0.281654\pi
0.633412 + 0.773815i 0.281654π0.281654\pi
558558 0 0
559559 47.0310 1.98920
560560 −2.26026 −0.0955134
561561 0 0
562562 15.1980 0.641090
563563 36.7777 1.54999 0.774997 0.631965i 0.217751π-0.217751\pi
0.774997 + 0.631965i 0.217751π0.217751\pi
564564 0 0
565565 −10.6280 −0.447123
566566 −13.2768 −0.558064
567567 0 0
568568 30.8849 1.29590
569569 19.0192 0.797328 0.398664 0.917097i 0.369474π-0.369474\pi
0.398664 + 0.917097i 0.369474π0.369474\pi
570570 0 0
571571 41.8743 1.75238 0.876192 0.481962i 0.160076π-0.160076\pi
0.876192 + 0.481962i 0.160076π0.160076\pi
572572 39.6946 1.65972
573573 0 0
574574 27.1513 1.13327
575575 −1.00000 −0.0417029
576576 0 0
577577 30.6755 1.27704 0.638520 0.769605i 0.279547π-0.279547\pi
0.638520 + 0.769605i 0.279547π0.279547\pi
578578 12.6552 0.526385
579579 0 0
580580 −4.14566 −0.172139
581581 5.32265 0.220821
582582 0 0
583583 54.6180 2.26204
584584 −4.11781 −0.170396
585585 0 0
586586 −13.4129 −0.554081
587587 1.52558 0.0629675 0.0314837 0.999504i 0.489977π-0.489977\pi
0.0314837 + 0.999504i 0.489977π0.489977\pi
588588 0 0
589589 −7.52644 −0.310122
590590 −9.51982 −0.391925
591591 0 0
592592 4.32764 0.177865
593593 5.12072 0.210283 0.105141 0.994457i 0.466471π-0.466471\pi
0.105141 + 0.994457i 0.466471π0.466471\pi
594594 0 0
595595 5.41960 0.222182
596596 30.2719 1.23999
597597 0 0
598598 4.47336 0.182929
599599 −18.5010 −0.755931 −0.377966 0.925820i 0.623376π-0.623376\pi
−0.377966 + 0.925820i 0.623376π0.623376\pi
600600 0 0
601601 −30.5128 −1.24464 −0.622322 0.782761i 0.713811π-0.713811\pi
−0.622322 + 0.782761i 0.713811π0.713811\pi
602602 31.8059 1.29631
603603 0 0
604604 −21.9355 −0.892544
605605 17.6626 0.718088
606606 0 0
607607 −20.6414 −0.837808 −0.418904 0.908031i 0.637586π-0.637586\pi
−0.418904 + 0.908031i 0.637586π0.637586\pi
608608 10.0795 0.408777
609609 0 0
610610 −1.08004 −0.0437296
611611 −53.5010 −2.16442
612612 0 0
613613 −11.4793 −0.463643 −0.231822 0.972758i 0.574469π-0.574469\pi
−0.231822 + 0.972758i 0.574469π0.574469\pi
614614 −14.0270 −0.566085
615615 0 0
616616 66.8147 2.69204
617617 19.8055 0.797340 0.398670 0.917095i 0.369472π-0.369472\pi
0.398670 + 0.917095i 0.369472π0.369472\pi
618618 0 0
619619 −24.4491 −0.982692 −0.491346 0.870965i 0.663495π-0.663495\pi
−0.491346 + 0.870965i 0.663495π0.663495\pi
620620 −5.83393 −0.234296
621621 0 0
622622 −13.6320 −0.546595
623623 −24.8836 −0.996939
624624 0 0
625625 1.00000 0.0400000
626626 6.84450 0.273561
627627 0 0
628628 17.8201 0.711099
629629 −10.3767 −0.413747
630630 0 0
631631 46.5829 1.85444 0.927218 0.374522i 0.122193π-0.122193\pi
0.927218 + 0.374522i 0.122193π0.122193\pi
632632 3.43455 0.136619
633633 0 0
634634 26.5236 1.05339
635635 −2.23560 −0.0887171
636636 0 0
637637 78.4742 3.10926
638638 13.3909 0.530153
639639 0 0
640640 8.60819 0.340269
641641 −18.8170 −0.743226 −0.371613 0.928388i 0.621195π-0.621195\pi
−0.371613 + 0.928388i 0.621195π0.621195\pi
642642 0 0
643643 −17.1868 −0.677783 −0.338891 0.940826i 0.610052π-0.610052\pi
−0.338891 + 0.940826i 0.610052π0.610052\pi
644644 −6.18712 −0.243807
645645 0 0
646646 −1.65239 −0.0650126
647647 16.6153 0.653214 0.326607 0.945160i 0.394095π-0.394095\pi
0.326607 + 0.945160i 0.394095π0.394095\pi
648648 0 0
649649 −62.8896 −2.46863
650650 −4.47336 −0.175459
651651 0 0
652652 21.1237 0.827267
653653 8.71155 0.340909 0.170455 0.985366i 0.445476π-0.445476\pi
0.170455 + 0.985366i 0.445476π0.445476\pi
654654 0 0
655655 −10.6831 −0.417423
656656 3.56911 0.139350
657657 0 0
658658 −36.1814 −1.41050
659659 −24.1116 −0.939256 −0.469628 0.882865i 0.655612π-0.655612\pi
−0.469628 + 0.882865i 0.655612π0.655612\pi
660660 0 0
661661 39.6144 1.54082 0.770411 0.637548i 0.220051π-0.220051\pi
0.770411 + 0.637548i 0.220051π0.220051\pi
662662 12.3190 0.478791
663663 0 0
664664 −3.13085 −0.121500
665665 7.98211 0.309533
666666 0 0
667667 −3.08635 −0.119504
668668 2.13951 0.0827802
669669 0 0
670670 4.87377 0.188290
671671 −7.13494 −0.275441
672672 0 0
673673 20.0269 0.771980 0.385990 0.922503i 0.373860π-0.373860\pi
0.385990 + 0.922503i 0.373860π0.373860\pi
674674 −9.70485 −0.373817
675675 0 0
676676 −23.4640 −0.902463
677677 51.3624 1.97402 0.987010 0.160662i 0.0513629π-0.0513629\pi
0.987010 + 0.160662i 0.0513629π0.0513629\pi
678678 0 0
679679 −75.7440 −2.90679
680680 −3.18788 −0.122250
681681 0 0
682682 18.8442 0.721583
683683 1.78656 0.0683609 0.0341804 0.999416i 0.489118π-0.489118\pi
0.0341804 + 0.999416i 0.489118π0.489118\pi
684684 0 0
685685 −0.326633 −0.0124800
686686 26.9397 1.02856
687687 0 0
688688 4.18097 0.159398
689689 −56.3122 −2.14532
690690 0 0
691691 −51.7197 −1.96751 −0.983755 0.179515i 0.942547π-0.942547\pi
−0.983755 + 0.179515i 0.942547π0.942547\pi
692692 −9.27504 −0.352584
693693 0 0
694694 −12.6975 −0.481990
695695 9.54894 0.362212
696696 0 0
697697 −8.55794 −0.324155
698698 −19.4988 −0.738042
699699 0 0
700700 6.18712 0.233851
701701 −33.4929 −1.26501 −0.632504 0.774557i 0.717973π-0.717973\pi
−0.632504 + 0.774557i 0.717973π0.717973\pi
702702 0 0
703703 −15.2830 −0.576411
704704 −19.9822 −0.753106
705705 0 0
706706 −18.2969 −0.688613
707707 −15.8177 −0.594887
708708 0 0
709709 −15.8720 −0.596085 −0.298043 0.954553i 0.596334π-0.596334\pi
−0.298043 + 0.954553i 0.596334π0.596334\pi
710710 −9.23805 −0.346698
711711 0 0
712712 14.6368 0.548538
713713 −4.34322 −0.162655
714714 0 0
715715 −29.5517 −1.10517
716716 −33.7842 −1.26257
717717 0 0
718718 −19.7038 −0.735341
719719 15.3345 0.571881 0.285941 0.958247i 0.407694π-0.407694\pi
0.285941 + 0.958247i 0.407694π0.407694\pi
720720 0 0
721721 −43.4306 −1.61744
722722 12.9642 0.482479
723723 0 0
724724 17.4186 0.647358
725725 3.08635 0.114624
726726 0 0
727727 27.1804 1.00806 0.504032 0.863685i 0.331849π-0.331849\pi
0.504032 + 0.863685i 0.331849π0.331849\pi
728728 −68.8873 −2.55313
729729 0 0
730730 1.23169 0.0455868
731731 −10.0250 −0.370790
732732 0 0
733733 −4.70308 −0.173712 −0.0868560 0.996221i 0.527682π-0.527682\pi
−0.0868560 + 0.996221i 0.527682π0.527682\pi
734734 −13.0057 −0.480050
735735 0 0
736736 5.81648 0.214398
737737 32.1970 1.18599
738738 0 0
739739 1.19298 0.0438845 0.0219422 0.999759i 0.493015π-0.493015\pi
0.0219422 + 0.999759i 0.493015π0.493015\pi
740740 −11.8463 −0.435477
741741 0 0
742742 −38.0825 −1.39805
743743 −10.0273 −0.367867 −0.183934 0.982939i 0.558883π-0.558883\pi
−0.183934 + 0.982939i 0.558883π0.558883\pi
744744 0 0
745745 −22.5368 −0.825683
746746 −12.0322 −0.440531
747747 0 0
748748 −8.46125 −0.309374
749749 −68.6748 −2.50932
750750 0 0
751751 −19.2248 −0.701524 −0.350762 0.936465i 0.614077π-0.614077\pi
−0.350762 + 0.936465i 0.614077π0.614077\pi
752752 −4.75615 −0.173439
753753 0 0
754754 −13.8063 −0.502797
755755 16.3305 0.594327
756756 0 0
757757 −29.0674 −1.05647 −0.528236 0.849098i 0.677146π-0.677146\pi
−0.528236 + 0.849098i 0.677146π0.677146\pi
758758 −17.6916 −0.642588
759759 0 0
760760 −4.69517 −0.170312
761761 34.9604 1.26731 0.633657 0.773614i 0.281553π-0.281553\pi
0.633657 + 0.773614i 0.281553π0.281553\pi
762762 0 0
763763 −38.0569 −1.37775
764764 5.25062 0.189961
765765 0 0
766766 −9.28658 −0.335538
767767 64.8404 2.34125
768768 0 0
769769 8.00084 0.288518 0.144259 0.989540i 0.453920π-0.453920\pi
0.144259 + 0.989540i 0.453920π0.453920\pi
770770 −19.9851 −0.720213
771771 0 0
772772 3.60851 0.129873
773773 25.3463 0.911644 0.455822 0.890071i 0.349345π-0.349345\pi
0.455822 + 0.890071i 0.349345π0.349345\pi
774774 0 0
775775 4.34322 0.156013
776776 44.5535 1.59938
777777 0 0
778778 24.8846 0.892158
779779 −12.6043 −0.451596
780780 0 0
781781 −61.0282 −2.18376
782782 −0.953534 −0.0340983
783783 0 0
784784 6.97622 0.249151
785785 −13.2666 −0.473507
786786 0 0
787787 −5.10486 −0.181969 −0.0909843 0.995852i 0.529001π-0.529001\pi
−0.0909843 + 0.995852i 0.529001π0.529001\pi
788788 13.1386 0.468044
789789 0 0
790790 −1.02732 −0.0365503
791791 48.9544 1.74062
792792 0 0
793793 7.35627 0.261229
794794 29.4542 1.04529
795795 0 0
796796 25.6377 0.908704
797797 −44.0182 −1.55921 −0.779603 0.626274i 0.784579π-0.784579\pi
−0.779603 + 0.626274i 0.784579π0.784579\pi
798798 0 0
799799 11.4042 0.403451
800800 −5.81648 −0.205644
801801 0 0
802802 −5.86116 −0.206965
803803 8.13674 0.287139
804804 0 0
805805 4.60617 0.162346
806806 −19.4288 −0.684350
807807 0 0
808808 9.30418 0.327320
809809 −6.15978 −0.216566 −0.108283 0.994120i 0.534535π-0.534535\pi
−0.108283 + 0.994120i 0.534535π0.534535\pi
810810 0 0
811811 −2.23801 −0.0785873 −0.0392936 0.999228i 0.512511π-0.512511\pi
−0.0392936 + 0.999228i 0.512511π0.512511\pi
812812 19.0956 0.670124
813813 0 0
814814 38.2647 1.34118
815815 −15.7261 −0.550861
816816 0 0
817817 −14.7651 −0.516565
818818 10.7209 0.374849
819819 0 0
820820 −9.76990 −0.341180
821821 39.9914 1.39571 0.697855 0.716239i 0.254138π-0.254138\pi
0.697855 + 0.716239i 0.254138π0.254138\pi
822822 0 0
823823 23.3116 0.812590 0.406295 0.913742i 0.366821π-0.366821\pi
0.406295 + 0.913742i 0.366821π0.366821\pi
824824 25.5464 0.889951
825825 0 0
826826 43.8499 1.52573
827827 −43.4988 −1.51260 −0.756301 0.654224i 0.772995π-0.772995\pi
−0.756301 + 0.654224i 0.772995π0.772995\pi
828828 0 0
829829 33.1090 1.14992 0.574961 0.818181i 0.305017π-0.305017\pi
0.574961 + 0.818181i 0.305017π0.305017\pi
830830 0.936475 0.0325055
831831 0 0
832832 20.6020 0.714246
833833 −16.7274 −0.579571
834834 0 0
835835 −1.59282 −0.0551217
836836 −12.4619 −0.431004
837837 0 0
838838 −14.8399 −0.512637
839839 −52.5227 −1.81329 −0.906643 0.421899i 0.861364π-0.861364\pi
−0.906643 + 0.421899i 0.861364π0.861364\pi
840840 0 0
841841 −19.4745 −0.671533
842842 −11.5076 −0.396579
843843 0 0
844844 10.8737 0.374289
845845 17.4684 0.600932
846846 0 0
847847 −81.3571 −2.79546
848848 −5.00606 −0.171909
849849 0 0
850850 0.953534 0.0327059
851851 −8.81926 −0.302320
852852 0 0
853853 22.9673 0.786385 0.393192 0.919456i 0.371371π-0.371371\pi
0.393192 + 0.919456i 0.371371π0.371371\pi
854854 4.97486 0.170236
855855 0 0
856856 40.3954 1.38069
857857 −55.1228 −1.88296 −0.941480 0.337069i 0.890564π-0.890564\pi
−0.941480 + 0.337069i 0.890564π0.890564\pi
858858 0 0
859859 −49.9526 −1.70436 −0.852180 0.523249i 0.824720π-0.824720\pi
−0.852180 + 0.523249i 0.824720π0.824720\pi
860860 −11.4448 −0.390264
861861 0 0
862862 −28.4031 −0.967413
863863 12.0802 0.411214 0.205607 0.978635i 0.434083π-0.434083\pi
0.205607 + 0.978635i 0.434083π0.434083\pi
864864 0 0
865865 6.90506 0.234779
866866 −2.54949 −0.0866351
867867 0 0
868868 26.8721 0.912097
869869 −6.78663 −0.230221
870870 0 0
871871 −33.1957 −1.12479
872872 22.3855 0.758070
873873 0 0
874874 −1.40438 −0.0475040
875875 −4.60617 −0.155717
876876 0 0
877877 45.5573 1.53836 0.769180 0.639033i 0.220665π-0.220665\pi
0.769180 + 0.639033i 0.220665π0.220665\pi
878878 −1.58447 −0.0534734
879879 0 0
880880 −2.62710 −0.0885595
881881 −6.57232 −0.221427 −0.110714 0.993852i 0.535314π-0.535314\pi
−0.110714 + 0.993852i 0.535314π0.535314\pi
882882 0 0
883883 5.51200 0.185494 0.0927468 0.995690i 0.470435π-0.470435\pi
0.0927468 + 0.995690i 0.470435π0.470435\pi
884884 8.72371 0.293410
885885 0 0
886886 −22.2775 −0.748428
887887 −31.2681 −1.04988 −0.524941 0.851139i 0.675913π-0.675913\pi
−0.524941 + 0.851139i 0.675913π0.675913\pi
888888 0 0
889889 10.2975 0.345369
890890 −4.37805 −0.146753
891891 0 0
892892 −19.0865 −0.639062
893893 16.7963 0.562067
894894 0 0
895895 25.1515 0.840723
896896 −39.6508 −1.32464
897897 0 0
898898 2.29541 0.0765987
899899 13.4047 0.447072
900900 0 0
901901 12.0034 0.399892
902902 31.5579 1.05076
903903 0 0
904904 −28.7956 −0.957726
905905 −12.9678 −0.431063
906906 0 0
907907 −12.7989 −0.424982 −0.212491 0.977163i 0.568158π-0.568158\pi
−0.212491 + 0.977163i 0.568158π0.568158\pi
908908 22.3319 0.741110
909909 0 0
910910 20.6050 0.683050
911911 −31.6963 −1.05015 −0.525073 0.851057i 0.675962π-0.675962\pi
−0.525073 + 0.851057i 0.675962π0.675962\pi
912912 0 0
913913 6.18651 0.204744
914914 2.40730 0.0796265
915915 0 0
916916 −20.6373 −0.681875
917917 49.2081 1.62500
918918 0 0
919919 7.63249 0.251773 0.125886 0.992045i 0.459823π-0.459823\pi
0.125886 + 0.992045i 0.459823π0.459823\pi
920920 −2.70941 −0.0893264
921921 0 0
922922 13.1170 0.431984
923923 62.9212 2.07108
924924 0 0
925925 8.81926 0.289976
926926 1.95082 0.0641080
927927 0 0
928928 −17.9517 −0.589293
929929 17.2979 0.567525 0.283763 0.958895i 0.408417π-0.408417\pi
0.283763 + 0.958895i 0.408417π0.408417\pi
930930 0 0
931931 −24.6365 −0.807429
932932 20.2663 0.663844
933933 0 0
934934 8.15593 0.266870
935935 6.29920 0.206006
936936 0 0
937937 12.5967 0.411517 0.205759 0.978603i 0.434034π-0.434034\pi
0.205759 + 0.978603i 0.434034π0.434034\pi
938938 −22.4494 −0.732999
939939 0 0
940940 13.0192 0.424640
941941 −19.7213 −0.642895 −0.321448 0.946927i 0.604169π-0.604169\pi
−0.321448 + 0.946927i 0.604169π0.604169\pi
942942 0 0
943943 −7.27347 −0.236857
944944 5.76420 0.187609
945945 0 0
946946 36.9679 1.20193
947947 −24.8824 −0.808569 −0.404285 0.914633i 0.632479π-0.632479\pi
−0.404285 + 0.914633i 0.632479π0.632479\pi
948948 0 0
949949 −8.38914 −0.272323
950950 1.40438 0.0455642
951951 0 0
952952 14.6839 0.475908
953953 −24.9095 −0.806899 −0.403449 0.915002i 0.632189π-0.632189\pi
−0.403449 + 0.915002i 0.632189π0.632189\pi
954954 0 0
955955 −3.90897 −0.126491
956956 1.91876 0.0620570
957957 0 0
958958 −21.1367 −0.682895
959959 1.50453 0.0485837
960960 0 0
961961 −12.1364 −0.391497
962962 −39.4517 −1.27197
963963 0 0
964964 −14.2320 −0.458383
965965 −2.68645 −0.0864799
966966 0 0
967967 −29.4706 −0.947709 −0.473855 0.880603i 0.657138π-0.657138\pi
−0.473855 + 0.880603i 0.657138π0.657138\pi
968968 47.8552 1.53813
969969 0 0
970970 −13.3265 −0.427889
971971 36.7868 1.18054 0.590272 0.807204i 0.299020π-0.299020\pi
0.590272 + 0.807204i 0.299020π0.299020\pi
972972 0 0
973973 −43.9840 −1.41006
974974 −19.2422 −0.616560
975975 0 0
976976 0.653960 0.0209327
977977 14.6435 0.468488 0.234244 0.972178i 0.424738π-0.424738\pi
0.234244 + 0.972178i 0.424738π0.424738\pi
978978 0 0
979979 −28.9222 −0.924357
980980 −19.0964 −0.610011
981981 0 0
982982 −2.26516 −0.0722843
983983 1.10622 0.0352831 0.0176415 0.999844i 0.494384π-0.494384\pi
0.0176415 + 0.999844i 0.494384π0.494384\pi
984984 0 0
985985 −9.78139 −0.311661
986986 2.94294 0.0937222
987987 0 0
988988 12.8485 0.408764
989989 −8.52038 −0.270932
990990 0 0
991991 −42.7058 −1.35659 −0.678297 0.734788i 0.737282π-0.737282\pi
−0.678297 + 0.734788i 0.737282π0.737282\pi
992992 −25.2623 −0.802079
993993 0 0
994994 42.5520 1.34967
995995 −19.0867 −0.605088
996996 0 0
997997 30.0771 0.952553 0.476276 0.879296i 0.341986π-0.341986\pi
0.476276 + 0.879296i 0.341986π0.341986\pi
998998 6.76871 0.214260
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1035.2.a.q.1.3 yes 6
3.2 odd 2 1035.2.a.p.1.4 6
5.4 even 2 5175.2.a.by.1.4 6
15.14 odd 2 5175.2.a.bz.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1035.2.a.p.1.4 6 3.2 odd 2
1035.2.a.q.1.3 yes 6 1.1 even 1 trivial
5175.2.a.by.1.4 6 5.4 even 2
5175.2.a.bz.1.3 6 15.14 odd 2