Properties

Label 1035.2.a.q.1.3
Level $1035$
Weight $2$
Character 1035.1
Self dual yes
Analytic conductor $8.265$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1035,2,Mod(1,1035)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1035, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1035.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1035 = 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1035.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.26451660920\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.98838128.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 10x^{4} - x^{3} + 16x^{2} + 5x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.493507\) of defining polynomial
Character \(\chi\) \(=\) 1035.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.810417 q^{2} -1.34322 q^{4} +1.00000 q^{5} -4.60617 q^{7} +2.70941 q^{8} -0.810417 q^{10} -5.35375 q^{11} +5.51982 q^{13} +3.73292 q^{14} +0.490703 q^{16} -1.17660 q^{17} -1.73292 q^{19} -1.34322 q^{20} +4.33877 q^{22} -1.00000 q^{23} +1.00000 q^{25} -4.47336 q^{26} +6.18712 q^{28} +3.08635 q^{29} +4.34322 q^{31} -5.81648 q^{32} +0.953534 q^{34} -4.60617 q^{35} +8.81926 q^{37} +1.40438 q^{38} +2.70941 q^{40} +7.27347 q^{41} +8.52038 q^{43} +7.19129 q^{44} +0.810417 q^{46} -9.69252 q^{47} +14.2168 q^{49} -0.810417 q^{50} -7.41436 q^{52} -10.2018 q^{53} -5.35375 q^{55} -12.4800 q^{56} -2.50123 q^{58} +11.7468 q^{59} +1.33270 q^{61} -3.51982 q^{62} +3.73237 q^{64} +5.51982 q^{65} -6.01391 q^{67} +1.58043 q^{68} +3.73292 q^{70} +11.3991 q^{71} -1.51982 q^{73} -7.14728 q^{74} +2.32770 q^{76} +24.6603 q^{77} +1.26764 q^{79} +0.490703 q^{80} -5.89454 q^{82} -1.15555 q^{83} -1.17660 q^{85} -6.90506 q^{86} -14.5055 q^{88} +5.40223 q^{89} -25.4252 q^{91} +1.34322 q^{92} +7.85498 q^{94} -1.73292 q^{95} +16.4440 q^{97} -11.5215 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 10 q^{4} + 6 q^{5} + 6 q^{7} - 4 q^{11} + 12 q^{13} + 4 q^{14} + 14 q^{16} - 4 q^{17} + 8 q^{19} + 10 q^{20} + 8 q^{22} - 6 q^{23} + 6 q^{25} + 12 q^{26} + 24 q^{28} + 6 q^{29} + 8 q^{31} - 20 q^{32}+ \cdots + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.810417 −0.573051 −0.286526 0.958073i \(-0.592500\pi\)
−0.286526 + 0.958073i \(0.592500\pi\)
\(3\) 0 0
\(4\) −1.34322 −0.671612
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −4.60617 −1.74097 −0.870484 0.492196i \(-0.836194\pi\)
−0.870484 + 0.492196i \(0.836194\pi\)
\(8\) 2.70941 0.957919
\(9\) 0 0
\(10\) −0.810417 −0.256276
\(11\) −5.35375 −1.61422 −0.807108 0.590404i \(-0.798969\pi\)
−0.807108 + 0.590404i \(0.798969\pi\)
\(12\) 0 0
\(13\) 5.51982 1.53092 0.765462 0.643482i \(-0.222511\pi\)
0.765462 + 0.643482i \(0.222511\pi\)
\(14\) 3.73292 0.997664
\(15\) 0 0
\(16\) 0.490703 0.122676
\(17\) −1.17660 −0.285367 −0.142683 0.989768i \(-0.545573\pi\)
−0.142683 + 0.989768i \(0.545573\pi\)
\(18\) 0 0
\(19\) −1.73292 −0.397558 −0.198779 0.980044i \(-0.563698\pi\)
−0.198779 + 0.980044i \(0.563698\pi\)
\(20\) −1.34322 −0.300354
\(21\) 0 0
\(22\) 4.33877 0.925028
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −4.47336 −0.877297
\(27\) 0 0
\(28\) 6.18712 1.16926
\(29\) 3.08635 0.573120 0.286560 0.958062i \(-0.407488\pi\)
0.286560 + 0.958062i \(0.407488\pi\)
\(30\) 0 0
\(31\) 4.34322 0.780066 0.390033 0.920801i \(-0.372464\pi\)
0.390033 + 0.920801i \(0.372464\pi\)
\(32\) −5.81648 −1.02822
\(33\) 0 0
\(34\) 0.953534 0.163530
\(35\) −4.60617 −0.778585
\(36\) 0 0
\(37\) 8.81926 1.44988 0.724939 0.688813i \(-0.241868\pi\)
0.724939 + 0.688813i \(0.241868\pi\)
\(38\) 1.40438 0.227821
\(39\) 0 0
\(40\) 2.70941 0.428395
\(41\) 7.27347 1.13593 0.567963 0.823054i \(-0.307732\pi\)
0.567963 + 0.823054i \(0.307732\pi\)
\(42\) 0 0
\(43\) 8.52038 1.29935 0.649673 0.760214i \(-0.274906\pi\)
0.649673 + 0.760214i \(0.274906\pi\)
\(44\) 7.19129 1.08413
\(45\) 0 0
\(46\) 0.810417 0.119489
\(47\) −9.69252 −1.41380 −0.706899 0.707314i \(-0.749907\pi\)
−0.706899 + 0.707314i \(0.749907\pi\)
\(48\) 0 0
\(49\) 14.2168 2.03097
\(50\) −0.810417 −0.114610
\(51\) 0 0
\(52\) −7.41436 −1.02819
\(53\) −10.2018 −1.40133 −0.700663 0.713492i \(-0.747113\pi\)
−0.700663 + 0.713492i \(0.747113\pi\)
\(54\) 0 0
\(55\) −5.35375 −0.721899
\(56\) −12.4800 −1.66771
\(57\) 0 0
\(58\) −2.50123 −0.328427
\(59\) 11.7468 1.52931 0.764653 0.644442i \(-0.222910\pi\)
0.764653 + 0.644442i \(0.222910\pi\)
\(60\) 0 0
\(61\) 1.33270 0.170635 0.0853174 0.996354i \(-0.472810\pi\)
0.0853174 + 0.996354i \(0.472810\pi\)
\(62\) −3.51982 −0.447018
\(63\) 0 0
\(64\) 3.73237 0.466546
\(65\) 5.51982 0.684650
\(66\) 0 0
\(67\) −6.01391 −0.734716 −0.367358 0.930080i \(-0.619738\pi\)
−0.367358 + 0.930080i \(0.619738\pi\)
\(68\) 1.58043 0.191656
\(69\) 0 0
\(70\) 3.73292 0.446169
\(71\) 11.3991 1.35283 0.676415 0.736521i \(-0.263533\pi\)
0.676415 + 0.736521i \(0.263533\pi\)
\(72\) 0 0
\(73\) −1.51982 −0.177882 −0.0889408 0.996037i \(-0.528348\pi\)
−0.0889408 + 0.996037i \(0.528348\pi\)
\(74\) −7.14728 −0.830854
\(75\) 0 0
\(76\) 2.32770 0.267005
\(77\) 24.6603 2.81030
\(78\) 0 0
\(79\) 1.26764 0.142621 0.0713103 0.997454i \(-0.477282\pi\)
0.0713103 + 0.997454i \(0.477282\pi\)
\(80\) 0.490703 0.0548623
\(81\) 0 0
\(82\) −5.89454 −0.650943
\(83\) −1.15555 −0.126838 −0.0634189 0.997987i \(-0.520200\pi\)
−0.0634189 + 0.997987i \(0.520200\pi\)
\(84\) 0 0
\(85\) −1.17660 −0.127620
\(86\) −6.90506 −0.744591
\(87\) 0 0
\(88\) −14.5055 −1.54629
\(89\) 5.40223 0.572635 0.286317 0.958135i \(-0.407569\pi\)
0.286317 + 0.958135i \(0.407569\pi\)
\(90\) 0 0
\(91\) −25.4252 −2.66529
\(92\) 1.34322 0.140041
\(93\) 0 0
\(94\) 7.85498 0.810179
\(95\) −1.73292 −0.177793
\(96\) 0 0
\(97\) 16.4440 1.66964 0.834819 0.550524i \(-0.185572\pi\)
0.834819 + 0.550524i \(0.185572\pi\)
\(98\) −11.5215 −1.16385
\(99\) 0 0
\(100\) −1.34322 −0.134322
\(101\) 3.43403 0.341699 0.170849 0.985297i \(-0.445349\pi\)
0.170849 + 0.985297i \(0.445349\pi\)
\(102\) 0 0
\(103\) 9.42879 0.929046 0.464523 0.885561i \(-0.346226\pi\)
0.464523 + 0.885561i \(0.346226\pi\)
\(104\) 14.9554 1.46650
\(105\) 0 0
\(106\) 8.26772 0.803032
\(107\) 14.9093 1.44134 0.720669 0.693279i \(-0.243835\pi\)
0.720669 + 0.693279i \(0.243835\pi\)
\(108\) 0 0
\(109\) 8.26216 0.791371 0.395686 0.918386i \(-0.370507\pi\)
0.395686 + 0.918386i \(0.370507\pi\)
\(110\) 4.33877 0.413685
\(111\) 0 0
\(112\) −2.26026 −0.213575
\(113\) −10.6280 −0.999798 −0.499899 0.866084i \(-0.666630\pi\)
−0.499899 + 0.866084i \(0.666630\pi\)
\(114\) 0 0
\(115\) −1.00000 −0.0932505
\(116\) −4.14566 −0.384915
\(117\) 0 0
\(118\) −9.51982 −0.876371
\(119\) 5.41960 0.496814
\(120\) 0 0
\(121\) 17.6626 1.60569
\(122\) −1.08004 −0.0977825
\(123\) 0 0
\(124\) −5.83393 −0.523902
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −2.23560 −0.198377 −0.0991887 0.995069i \(-0.531625\pi\)
−0.0991887 + 0.995069i \(0.531625\pi\)
\(128\) 8.60819 0.760864
\(129\) 0 0
\(130\) −4.47336 −0.392339
\(131\) −10.6831 −0.933386 −0.466693 0.884419i \(-0.654555\pi\)
−0.466693 + 0.884419i \(0.654555\pi\)
\(132\) 0 0
\(133\) 7.98211 0.692136
\(134\) 4.87377 0.421030
\(135\) 0 0
\(136\) −3.18788 −0.273358
\(137\) −0.326633 −0.0279061 −0.0139531 0.999903i \(-0.504442\pi\)
−0.0139531 + 0.999903i \(0.504442\pi\)
\(138\) 0 0
\(139\) 9.54894 0.809931 0.404965 0.914332i \(-0.367284\pi\)
0.404965 + 0.914332i \(0.367284\pi\)
\(140\) 6.18712 0.522907
\(141\) 0 0
\(142\) −9.23805 −0.775240
\(143\) −29.5517 −2.47124
\(144\) 0 0
\(145\) 3.08635 0.256307
\(146\) 1.23169 0.101935
\(147\) 0 0
\(148\) −11.8463 −0.973756
\(149\) −22.5368 −1.84628 −0.923142 0.384460i \(-0.874388\pi\)
−0.923142 + 0.384460i \(0.874388\pi\)
\(150\) 0 0
\(151\) 16.3305 1.32896 0.664478 0.747308i \(-0.268654\pi\)
0.664478 + 0.747308i \(0.268654\pi\)
\(152\) −4.69517 −0.380829
\(153\) 0 0
\(154\) −19.9851 −1.61045
\(155\) 4.34322 0.348856
\(156\) 0 0
\(157\) −13.2666 −1.05879 −0.529397 0.848374i \(-0.677582\pi\)
−0.529397 + 0.848374i \(0.677582\pi\)
\(158\) −1.02732 −0.0817289
\(159\) 0 0
\(160\) −5.81648 −0.459833
\(161\) 4.60617 0.363017
\(162\) 0 0
\(163\) −15.7261 −1.23176 −0.615881 0.787839i \(-0.711200\pi\)
−0.615881 + 0.787839i \(0.711200\pi\)
\(164\) −9.76990 −0.762901
\(165\) 0 0
\(166\) 0.936475 0.0726846
\(167\) −1.59282 −0.123256 −0.0616279 0.998099i \(-0.519629\pi\)
−0.0616279 + 0.998099i \(0.519629\pi\)
\(168\) 0 0
\(169\) 17.4684 1.34373
\(170\) 0.953534 0.0731327
\(171\) 0 0
\(172\) −11.4448 −0.872657
\(173\) 6.90506 0.524982 0.262491 0.964934i \(-0.415456\pi\)
0.262491 + 0.964934i \(0.415456\pi\)
\(174\) 0 0
\(175\) −4.60617 −0.348194
\(176\) −2.62710 −0.198025
\(177\) 0 0
\(178\) −4.37805 −0.328149
\(179\) 25.1515 1.87991 0.939957 0.341294i \(-0.110865\pi\)
0.939957 + 0.341294i \(0.110865\pi\)
\(180\) 0 0
\(181\) −12.9678 −0.963886 −0.481943 0.876203i \(-0.660069\pi\)
−0.481943 + 0.876203i \(0.660069\pi\)
\(182\) 20.6050 1.52735
\(183\) 0 0
\(184\) −2.70941 −0.199740
\(185\) 8.81926 0.648405
\(186\) 0 0
\(187\) 6.29920 0.460643
\(188\) 13.0192 0.949525
\(189\) 0 0
\(190\) 1.40438 0.101885
\(191\) −3.90897 −0.282843 −0.141421 0.989949i \(-0.545167\pi\)
−0.141421 + 0.989949i \(0.545167\pi\)
\(192\) 0 0
\(193\) −2.68645 −0.193375 −0.0966874 0.995315i \(-0.530825\pi\)
−0.0966874 + 0.995315i \(0.530825\pi\)
\(194\) −13.3265 −0.956788
\(195\) 0 0
\(196\) −19.0964 −1.36403
\(197\) −9.78139 −0.696895 −0.348448 0.937328i \(-0.613291\pi\)
−0.348448 + 0.937328i \(0.613291\pi\)
\(198\) 0 0
\(199\) −19.0867 −1.35302 −0.676509 0.736434i \(-0.736508\pi\)
−0.676509 + 0.736434i \(0.736508\pi\)
\(200\) 2.70941 0.191584
\(201\) 0 0
\(202\) −2.78299 −0.195811
\(203\) −14.2162 −0.997784
\(204\) 0 0
\(205\) 7.27347 0.508001
\(206\) −7.64125 −0.532391
\(207\) 0 0
\(208\) 2.70859 0.187807
\(209\) 9.27760 0.641745
\(210\) 0 0
\(211\) −8.09524 −0.557299 −0.278650 0.960393i \(-0.589887\pi\)
−0.278650 + 0.960393i \(0.589887\pi\)
\(212\) 13.7033 0.941149
\(213\) 0 0
\(214\) −12.0828 −0.825960
\(215\) 8.52038 0.581085
\(216\) 0 0
\(217\) −20.0056 −1.35807
\(218\) −6.69579 −0.453496
\(219\) 0 0
\(220\) 7.19129 0.484837
\(221\) −6.49460 −0.436874
\(222\) 0 0
\(223\) 14.2094 0.951534 0.475767 0.879571i \(-0.342171\pi\)
0.475767 + 0.879571i \(0.342171\pi\)
\(224\) 26.7917 1.79010
\(225\) 0 0
\(226\) 8.61311 0.572936
\(227\) −16.6256 −1.10348 −0.551740 0.834016i \(-0.686036\pi\)
−0.551740 + 0.834016i \(0.686036\pi\)
\(228\) 0 0
\(229\) 15.3640 1.01528 0.507640 0.861569i \(-0.330518\pi\)
0.507640 + 0.861569i \(0.330518\pi\)
\(230\) 0.810417 0.0534373
\(231\) 0 0
\(232\) 8.36217 0.549003
\(233\) −15.0878 −0.988433 −0.494217 0.869339i \(-0.664545\pi\)
−0.494217 + 0.869339i \(0.664545\pi\)
\(234\) 0 0
\(235\) −9.69252 −0.632270
\(236\) −15.7786 −1.02710
\(237\) 0 0
\(238\) −4.39214 −0.284700
\(239\) −1.42847 −0.0924000 −0.0462000 0.998932i \(-0.514711\pi\)
−0.0462000 + 0.998932i \(0.514711\pi\)
\(240\) 0 0
\(241\) 10.5954 0.682511 0.341255 0.939971i \(-0.389148\pi\)
0.341255 + 0.939971i \(0.389148\pi\)
\(242\) −14.3141 −0.920145
\(243\) 0 0
\(244\) −1.79012 −0.114600
\(245\) 14.2168 0.908278
\(246\) 0 0
\(247\) −9.56539 −0.608631
\(248\) 11.7676 0.747241
\(249\) 0 0
\(250\) −0.810417 −0.0512552
\(251\) 15.3939 0.971657 0.485829 0.874054i \(-0.338518\pi\)
0.485829 + 0.874054i \(0.338518\pi\)
\(252\) 0 0
\(253\) 5.35375 0.336587
\(254\) 1.81177 0.113680
\(255\) 0 0
\(256\) −14.4410 −0.902560
\(257\) −7.92004 −0.494038 −0.247019 0.969011i \(-0.579451\pi\)
−0.247019 + 0.969011i \(0.579451\pi\)
\(258\) 0 0
\(259\) −40.6230 −2.52419
\(260\) −7.41436 −0.459819
\(261\) 0 0
\(262\) 8.65776 0.534878
\(263\) −17.7857 −1.09671 −0.548355 0.836246i \(-0.684746\pi\)
−0.548355 + 0.836246i \(0.684746\pi\)
\(264\) 0 0
\(265\) −10.2018 −0.626692
\(266\) −6.46883 −0.396629
\(267\) 0 0
\(268\) 8.07803 0.493444
\(269\) −0.155319 −0.00946996 −0.00473498 0.999989i \(-0.501507\pi\)
−0.00473498 + 0.999989i \(0.501507\pi\)
\(270\) 0 0
\(271\) 26.1967 1.59134 0.795668 0.605733i \(-0.207120\pi\)
0.795668 + 0.605733i \(0.207120\pi\)
\(272\) −0.577359 −0.0350076
\(273\) 0 0
\(274\) 0.264709 0.0159916
\(275\) −5.35375 −0.322843
\(276\) 0 0
\(277\) −17.6542 −1.06074 −0.530369 0.847767i \(-0.677947\pi\)
−0.530369 + 0.847767i \(0.677947\pi\)
\(278\) −7.73862 −0.464132
\(279\) 0 0
\(280\) −12.4800 −0.745821
\(281\) −18.7534 −1.11873 −0.559366 0.828921i \(-0.688955\pi\)
−0.559366 + 0.828921i \(0.688955\pi\)
\(282\) 0 0
\(283\) 16.3826 0.973847 0.486923 0.873445i \(-0.338119\pi\)
0.486923 + 0.873445i \(0.338119\pi\)
\(284\) −15.3116 −0.908577
\(285\) 0 0
\(286\) 23.9492 1.41615
\(287\) −33.5028 −1.97761
\(288\) 0 0
\(289\) −15.6156 −0.918566
\(290\) −2.50123 −0.146877
\(291\) 0 0
\(292\) 2.04146 0.119468
\(293\) 16.5506 0.966897 0.483448 0.875373i \(-0.339384\pi\)
0.483448 + 0.875373i \(0.339384\pi\)
\(294\) 0 0
\(295\) 11.7468 0.683927
\(296\) 23.8950 1.38887
\(297\) 0 0
\(298\) 18.2642 1.05801
\(299\) −5.51982 −0.319220
\(300\) 0 0
\(301\) −39.2463 −2.26212
\(302\) −13.2345 −0.761560
\(303\) 0 0
\(304\) −0.850347 −0.0487707
\(305\) 1.33270 0.0763102
\(306\) 0 0
\(307\) 17.3084 0.987844 0.493922 0.869506i \(-0.335563\pi\)
0.493922 + 0.869506i \(0.335563\pi\)
\(308\) −33.1243 −1.88743
\(309\) 0 0
\(310\) −3.51982 −0.199912
\(311\) 16.8210 0.953834 0.476917 0.878948i \(-0.341754\pi\)
0.476917 + 0.878948i \(0.341754\pi\)
\(312\) 0 0
\(313\) −8.44566 −0.477377 −0.238688 0.971096i \(-0.576717\pi\)
−0.238688 + 0.971096i \(0.576717\pi\)
\(314\) 10.7515 0.606743
\(315\) 0 0
\(316\) −1.70273 −0.0957858
\(317\) −32.7283 −1.83821 −0.919104 0.394016i \(-0.871085\pi\)
−0.919104 + 0.394016i \(0.871085\pi\)
\(318\) 0 0
\(319\) −16.5235 −0.925140
\(320\) 3.73237 0.208646
\(321\) 0 0
\(322\) −3.73292 −0.208027
\(323\) 2.03894 0.113450
\(324\) 0 0
\(325\) 5.51982 0.306185
\(326\) 12.7447 0.705863
\(327\) 0 0
\(328\) 19.7068 1.08812
\(329\) 44.6454 2.46138
\(330\) 0 0
\(331\) −15.2008 −0.835512 −0.417756 0.908559i \(-0.637183\pi\)
−0.417756 + 0.908559i \(0.637183\pi\)
\(332\) 1.55216 0.0851859
\(333\) 0 0
\(334\) 1.29085 0.0706319
\(335\) −6.01391 −0.328575
\(336\) 0 0
\(337\) 11.9751 0.652327 0.326164 0.945313i \(-0.394244\pi\)
0.326164 + 0.945313i \(0.394244\pi\)
\(338\) −14.1567 −0.770023
\(339\) 0 0
\(340\) 1.58043 0.0857111
\(341\) −23.2525 −1.25920
\(342\) 0 0
\(343\) −33.2418 −1.79489
\(344\) 23.0852 1.24467
\(345\) 0 0
\(346\) −5.59597 −0.300841
\(347\) 15.6679 0.841095 0.420547 0.907271i \(-0.361838\pi\)
0.420547 + 0.907271i \(0.361838\pi\)
\(348\) 0 0
\(349\) 24.0603 1.28792 0.643958 0.765061i \(-0.277291\pi\)
0.643958 + 0.765061i \(0.277291\pi\)
\(350\) 3.73292 0.199533
\(351\) 0 0
\(352\) 31.1400 1.65977
\(353\) 22.5772 1.20166 0.600830 0.799376i \(-0.294837\pi\)
0.600830 + 0.799376i \(0.294837\pi\)
\(354\) 0 0
\(355\) 11.3991 0.605004
\(356\) −7.25641 −0.384589
\(357\) 0 0
\(358\) −20.3832 −1.07729
\(359\) 24.3132 1.28320 0.641602 0.767038i \(-0.278270\pi\)
0.641602 + 0.767038i \(0.278270\pi\)
\(360\) 0 0
\(361\) −15.9970 −0.841947
\(362\) 10.5093 0.552356
\(363\) 0 0
\(364\) 34.1518 1.79004
\(365\) −1.51982 −0.0795511
\(366\) 0 0
\(367\) 16.0482 0.837708 0.418854 0.908053i \(-0.362432\pi\)
0.418854 + 0.908053i \(0.362432\pi\)
\(368\) −0.490703 −0.0255797
\(369\) 0 0
\(370\) −7.14728 −0.371569
\(371\) 46.9913 2.43967
\(372\) 0 0
\(373\) 14.8470 0.768747 0.384373 0.923178i \(-0.374418\pi\)
0.384373 + 0.923178i \(0.374418\pi\)
\(374\) −5.10498 −0.263972
\(375\) 0 0
\(376\) −26.2610 −1.35431
\(377\) 17.0361 0.877403
\(378\) 0 0
\(379\) 21.8303 1.12135 0.560673 0.828038i \(-0.310543\pi\)
0.560673 + 0.828038i \(0.310543\pi\)
\(380\) 2.32770 0.119408
\(381\) 0 0
\(382\) 3.16789 0.162083
\(383\) 11.4590 0.585528 0.292764 0.956185i \(-0.405425\pi\)
0.292764 + 0.956185i \(0.405425\pi\)
\(384\) 0 0
\(385\) 24.6603 1.25680
\(386\) 2.17714 0.110814
\(387\) 0 0
\(388\) −22.0880 −1.12135
\(389\) −30.7060 −1.55686 −0.778428 0.627734i \(-0.783982\pi\)
−0.778428 + 0.627734i \(0.783982\pi\)
\(390\) 0 0
\(391\) 1.17660 0.0595031
\(392\) 38.5191 1.94551
\(393\) 0 0
\(394\) 7.92700 0.399357
\(395\) 1.26764 0.0637819
\(396\) 0 0
\(397\) −36.3445 −1.82408 −0.912039 0.410102i \(-0.865493\pi\)
−0.912039 + 0.410102i \(0.865493\pi\)
\(398\) 15.4682 0.775348
\(399\) 0 0
\(400\) 0.490703 0.0245351
\(401\) 7.23228 0.361163 0.180581 0.983560i \(-0.442202\pi\)
0.180581 + 0.983560i \(0.442202\pi\)
\(402\) 0 0
\(403\) 23.9738 1.19422
\(404\) −4.61267 −0.229489
\(405\) 0 0
\(406\) 11.5211 0.571781
\(407\) −47.2161 −2.34042
\(408\) 0 0
\(409\) −13.2289 −0.654129 −0.327064 0.945002i \(-0.606059\pi\)
−0.327064 + 0.945002i \(0.606059\pi\)
\(410\) −5.89454 −0.291111
\(411\) 0 0
\(412\) −12.6650 −0.623959
\(413\) −54.1079 −2.66247
\(414\) 0 0
\(415\) −1.15555 −0.0567236
\(416\) −32.1060 −1.57412
\(417\) 0 0
\(418\) −7.51872 −0.367753
\(419\) 18.3115 0.894574 0.447287 0.894390i \(-0.352390\pi\)
0.447287 + 0.894390i \(0.352390\pi\)
\(420\) 0 0
\(421\) 14.1996 0.692049 0.346024 0.938226i \(-0.387531\pi\)
0.346024 + 0.938226i \(0.387531\pi\)
\(422\) 6.56052 0.319361
\(423\) 0 0
\(424\) −27.6408 −1.34236
\(425\) −1.17660 −0.0570733
\(426\) 0 0
\(427\) −6.13864 −0.297070
\(428\) −20.0266 −0.968020
\(429\) 0 0
\(430\) −6.90506 −0.332991
\(431\) 35.0475 1.68818 0.844090 0.536202i \(-0.180141\pi\)
0.844090 + 0.536202i \(0.180141\pi\)
\(432\) 0 0
\(433\) 3.14590 0.151182 0.0755911 0.997139i \(-0.475916\pi\)
0.0755911 + 0.997139i \(0.475916\pi\)
\(434\) 16.2129 0.778244
\(435\) 0 0
\(436\) −11.0979 −0.531495
\(437\) 1.73292 0.0828966
\(438\) 0 0
\(439\) 1.95513 0.0933135 0.0466567 0.998911i \(-0.485143\pi\)
0.0466567 + 0.998911i \(0.485143\pi\)
\(440\) −14.5055 −0.691521
\(441\) 0 0
\(442\) 5.26334 0.250351
\(443\) 27.4890 1.30604 0.653020 0.757340i \(-0.273502\pi\)
0.653020 + 0.757340i \(0.273502\pi\)
\(444\) 0 0
\(445\) 5.40223 0.256090
\(446\) −11.5156 −0.545277
\(447\) 0 0
\(448\) −17.1919 −0.812242
\(449\) −2.83238 −0.133668 −0.0668341 0.997764i \(-0.521290\pi\)
−0.0668341 + 0.997764i \(0.521290\pi\)
\(450\) 0 0
\(451\) −38.9403 −1.83363
\(452\) 14.2758 0.671477
\(453\) 0 0
\(454\) 13.4737 0.632350
\(455\) −25.4252 −1.19195
\(456\) 0 0
\(457\) −2.97045 −0.138952 −0.0694760 0.997584i \(-0.522133\pi\)
−0.0694760 + 0.997584i \(0.522133\pi\)
\(458\) −12.4512 −0.581808
\(459\) 0 0
\(460\) 1.34322 0.0626282
\(461\) −16.1855 −0.753832 −0.376916 0.926247i \(-0.623016\pi\)
−0.376916 + 0.926247i \(0.623016\pi\)
\(462\) 0 0
\(463\) −2.40718 −0.111871 −0.0559356 0.998434i \(-0.517814\pi\)
−0.0559356 + 0.998434i \(0.517814\pi\)
\(464\) 1.51448 0.0703080
\(465\) 0 0
\(466\) 12.2274 0.566423
\(467\) −10.0639 −0.465700 −0.232850 0.972513i \(-0.574805\pi\)
−0.232850 + 0.972513i \(0.574805\pi\)
\(468\) 0 0
\(469\) 27.7011 1.27912
\(470\) 7.85498 0.362323
\(471\) 0 0
\(472\) 31.8269 1.46495
\(473\) −45.6160 −2.09742
\(474\) 0 0
\(475\) −1.73292 −0.0795116
\(476\) −7.27975 −0.333667
\(477\) 0 0
\(478\) 1.15766 0.0529499
\(479\) 26.0812 1.19168 0.595841 0.803102i \(-0.296819\pi\)
0.595841 + 0.803102i \(0.296819\pi\)
\(480\) 0 0
\(481\) 48.6808 2.21965
\(482\) −8.58670 −0.391114
\(483\) 0 0
\(484\) −23.7249 −1.07840
\(485\) 16.4440 0.746685
\(486\) 0 0
\(487\) 23.7436 1.07592 0.537962 0.842969i \(-0.319194\pi\)
0.537962 + 0.842969i \(0.319194\pi\)
\(488\) 3.61082 0.163454
\(489\) 0 0
\(490\) −11.5215 −0.520490
\(491\) 2.79506 0.126139 0.0630696 0.998009i \(-0.479911\pi\)
0.0630696 + 0.998009i \(0.479911\pi\)
\(492\) 0 0
\(493\) −3.63139 −0.163549
\(494\) 7.75195 0.348777
\(495\) 0 0
\(496\) 2.13123 0.0956952
\(497\) −52.5064 −2.35523
\(498\) 0 0
\(499\) −8.35214 −0.373893 −0.186947 0.982370i \(-0.559859\pi\)
−0.186947 + 0.982370i \(0.559859\pi\)
\(500\) −1.34322 −0.0600708
\(501\) 0 0
\(502\) −12.4755 −0.556809
\(503\) 19.8111 0.883333 0.441667 0.897179i \(-0.354387\pi\)
0.441667 + 0.897179i \(0.354387\pi\)
\(504\) 0 0
\(505\) 3.43403 0.152812
\(506\) −4.33877 −0.192882
\(507\) 0 0
\(508\) 3.00291 0.133233
\(509\) 29.1471 1.29192 0.645961 0.763371i \(-0.276457\pi\)
0.645961 + 0.763371i \(0.276457\pi\)
\(510\) 0 0
\(511\) 7.00056 0.309686
\(512\) −5.51319 −0.243651
\(513\) 0 0
\(514\) 6.41853 0.283109
\(515\) 9.42879 0.415482
\(516\) 0 0
\(517\) 51.8913 2.28218
\(518\) 32.9216 1.44649
\(519\) 0 0
\(520\) 14.9554 0.655839
\(521\) 3.73563 0.163661 0.0818306 0.996646i \(-0.473923\pi\)
0.0818306 + 0.996646i \(0.473923\pi\)
\(522\) 0 0
\(523\) −28.4551 −1.24425 −0.622127 0.782916i \(-0.713731\pi\)
−0.622127 + 0.782916i \(0.713731\pi\)
\(524\) 14.3498 0.626874
\(525\) 0 0
\(526\) 14.4138 0.628471
\(527\) −5.11022 −0.222605
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 8.26772 0.359127
\(531\) 0 0
\(532\) −10.7218 −0.464847
\(533\) 40.1483 1.73901
\(534\) 0 0
\(535\) 14.9093 0.644586
\(536\) −16.2941 −0.703798
\(537\) 0 0
\(538\) 0.125873 0.00542677
\(539\) −76.1132 −3.27843
\(540\) 0 0
\(541\) 37.3591 1.60619 0.803097 0.595849i \(-0.203184\pi\)
0.803097 + 0.595849i \(0.203184\pi\)
\(542\) −21.2302 −0.911917
\(543\) 0 0
\(544\) 6.84366 0.293419
\(545\) 8.26216 0.353912
\(546\) 0 0
\(547\) −38.4683 −1.64479 −0.822394 0.568919i \(-0.807362\pi\)
−0.822394 + 0.568919i \(0.807362\pi\)
\(548\) 0.438742 0.0187421
\(549\) 0 0
\(550\) 4.33877 0.185006
\(551\) −5.34838 −0.227849
\(552\) 0 0
\(553\) −5.83896 −0.248298
\(554\) 14.3073 0.607857
\(555\) 0 0
\(556\) −12.8264 −0.543959
\(557\) 29.8981 1.26682 0.633412 0.773815i \(-0.281654\pi\)
0.633412 + 0.773815i \(0.281654\pi\)
\(558\) 0 0
\(559\) 47.0310 1.98920
\(560\) −2.26026 −0.0955134
\(561\) 0 0
\(562\) 15.1980 0.641090
\(563\) 36.7777 1.54999 0.774997 0.631965i \(-0.217751\pi\)
0.774997 + 0.631965i \(0.217751\pi\)
\(564\) 0 0
\(565\) −10.6280 −0.447123
\(566\) −13.2768 −0.558064
\(567\) 0 0
\(568\) 30.8849 1.29590
\(569\) 19.0192 0.797328 0.398664 0.917097i \(-0.369474\pi\)
0.398664 + 0.917097i \(0.369474\pi\)
\(570\) 0 0
\(571\) 41.8743 1.75238 0.876192 0.481962i \(-0.160076\pi\)
0.876192 + 0.481962i \(0.160076\pi\)
\(572\) 39.6946 1.65972
\(573\) 0 0
\(574\) 27.1513 1.13327
\(575\) −1.00000 −0.0417029
\(576\) 0 0
\(577\) 30.6755 1.27704 0.638520 0.769605i \(-0.279547\pi\)
0.638520 + 0.769605i \(0.279547\pi\)
\(578\) 12.6552 0.526385
\(579\) 0 0
\(580\) −4.14566 −0.172139
\(581\) 5.32265 0.220821
\(582\) 0 0
\(583\) 54.6180 2.26204
\(584\) −4.11781 −0.170396
\(585\) 0 0
\(586\) −13.4129 −0.554081
\(587\) 1.52558 0.0629675 0.0314837 0.999504i \(-0.489977\pi\)
0.0314837 + 0.999504i \(0.489977\pi\)
\(588\) 0 0
\(589\) −7.52644 −0.310122
\(590\) −9.51982 −0.391925
\(591\) 0 0
\(592\) 4.32764 0.177865
\(593\) 5.12072 0.210283 0.105141 0.994457i \(-0.466471\pi\)
0.105141 + 0.994457i \(0.466471\pi\)
\(594\) 0 0
\(595\) 5.41960 0.222182
\(596\) 30.2719 1.23999
\(597\) 0 0
\(598\) 4.47336 0.182929
\(599\) −18.5010 −0.755931 −0.377966 0.925820i \(-0.623376\pi\)
−0.377966 + 0.925820i \(0.623376\pi\)
\(600\) 0 0
\(601\) −30.5128 −1.24464 −0.622322 0.782761i \(-0.713811\pi\)
−0.622322 + 0.782761i \(0.713811\pi\)
\(602\) 31.8059 1.29631
\(603\) 0 0
\(604\) −21.9355 −0.892544
\(605\) 17.6626 0.718088
\(606\) 0 0
\(607\) −20.6414 −0.837808 −0.418904 0.908031i \(-0.637586\pi\)
−0.418904 + 0.908031i \(0.637586\pi\)
\(608\) 10.0795 0.408777
\(609\) 0 0
\(610\) −1.08004 −0.0437296
\(611\) −53.5010 −2.16442
\(612\) 0 0
\(613\) −11.4793 −0.463643 −0.231822 0.972758i \(-0.574469\pi\)
−0.231822 + 0.972758i \(0.574469\pi\)
\(614\) −14.0270 −0.566085
\(615\) 0 0
\(616\) 66.8147 2.69204
\(617\) 19.8055 0.797340 0.398670 0.917095i \(-0.369472\pi\)
0.398670 + 0.917095i \(0.369472\pi\)
\(618\) 0 0
\(619\) −24.4491 −0.982692 −0.491346 0.870965i \(-0.663495\pi\)
−0.491346 + 0.870965i \(0.663495\pi\)
\(620\) −5.83393 −0.234296
\(621\) 0 0
\(622\) −13.6320 −0.546595
\(623\) −24.8836 −0.996939
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 6.84450 0.273561
\(627\) 0 0
\(628\) 17.8201 0.711099
\(629\) −10.3767 −0.413747
\(630\) 0 0
\(631\) 46.5829 1.85444 0.927218 0.374522i \(-0.122193\pi\)
0.927218 + 0.374522i \(0.122193\pi\)
\(632\) 3.43455 0.136619
\(633\) 0 0
\(634\) 26.5236 1.05339
\(635\) −2.23560 −0.0887171
\(636\) 0 0
\(637\) 78.4742 3.10926
\(638\) 13.3909 0.530153
\(639\) 0 0
\(640\) 8.60819 0.340269
\(641\) −18.8170 −0.743226 −0.371613 0.928388i \(-0.621195\pi\)
−0.371613 + 0.928388i \(0.621195\pi\)
\(642\) 0 0
\(643\) −17.1868 −0.677783 −0.338891 0.940826i \(-0.610052\pi\)
−0.338891 + 0.940826i \(0.610052\pi\)
\(644\) −6.18712 −0.243807
\(645\) 0 0
\(646\) −1.65239 −0.0650126
\(647\) 16.6153 0.653214 0.326607 0.945160i \(-0.394095\pi\)
0.326607 + 0.945160i \(0.394095\pi\)
\(648\) 0 0
\(649\) −62.8896 −2.46863
\(650\) −4.47336 −0.175459
\(651\) 0 0
\(652\) 21.1237 0.827267
\(653\) 8.71155 0.340909 0.170455 0.985366i \(-0.445476\pi\)
0.170455 + 0.985366i \(0.445476\pi\)
\(654\) 0 0
\(655\) −10.6831 −0.417423
\(656\) 3.56911 0.139350
\(657\) 0 0
\(658\) −36.1814 −1.41050
\(659\) −24.1116 −0.939256 −0.469628 0.882865i \(-0.655612\pi\)
−0.469628 + 0.882865i \(0.655612\pi\)
\(660\) 0 0
\(661\) 39.6144 1.54082 0.770411 0.637548i \(-0.220051\pi\)
0.770411 + 0.637548i \(0.220051\pi\)
\(662\) 12.3190 0.478791
\(663\) 0 0
\(664\) −3.13085 −0.121500
\(665\) 7.98211 0.309533
\(666\) 0 0
\(667\) −3.08635 −0.119504
\(668\) 2.13951 0.0827802
\(669\) 0 0
\(670\) 4.87377 0.188290
\(671\) −7.13494 −0.275441
\(672\) 0 0
\(673\) 20.0269 0.771980 0.385990 0.922503i \(-0.373860\pi\)
0.385990 + 0.922503i \(0.373860\pi\)
\(674\) −9.70485 −0.373817
\(675\) 0 0
\(676\) −23.4640 −0.902463
\(677\) 51.3624 1.97402 0.987010 0.160662i \(-0.0513629\pi\)
0.987010 + 0.160662i \(0.0513629\pi\)
\(678\) 0 0
\(679\) −75.7440 −2.90679
\(680\) −3.18788 −0.122250
\(681\) 0 0
\(682\) 18.8442 0.721583
\(683\) 1.78656 0.0683609 0.0341804 0.999416i \(-0.489118\pi\)
0.0341804 + 0.999416i \(0.489118\pi\)
\(684\) 0 0
\(685\) −0.326633 −0.0124800
\(686\) 26.9397 1.02856
\(687\) 0 0
\(688\) 4.18097 0.159398
\(689\) −56.3122 −2.14532
\(690\) 0 0
\(691\) −51.7197 −1.96751 −0.983755 0.179515i \(-0.942547\pi\)
−0.983755 + 0.179515i \(0.942547\pi\)
\(692\) −9.27504 −0.352584
\(693\) 0 0
\(694\) −12.6975 −0.481990
\(695\) 9.54894 0.362212
\(696\) 0 0
\(697\) −8.55794 −0.324155
\(698\) −19.4988 −0.738042
\(699\) 0 0
\(700\) 6.18712 0.233851
\(701\) −33.4929 −1.26501 −0.632504 0.774557i \(-0.717973\pi\)
−0.632504 + 0.774557i \(0.717973\pi\)
\(702\) 0 0
\(703\) −15.2830 −0.576411
\(704\) −19.9822 −0.753106
\(705\) 0 0
\(706\) −18.2969 −0.688613
\(707\) −15.8177 −0.594887
\(708\) 0 0
\(709\) −15.8720 −0.596085 −0.298043 0.954553i \(-0.596334\pi\)
−0.298043 + 0.954553i \(0.596334\pi\)
\(710\) −9.23805 −0.346698
\(711\) 0 0
\(712\) 14.6368 0.548538
\(713\) −4.34322 −0.162655
\(714\) 0 0
\(715\) −29.5517 −1.10517
\(716\) −33.7842 −1.26257
\(717\) 0 0
\(718\) −19.7038 −0.735341
\(719\) 15.3345 0.571881 0.285941 0.958247i \(-0.407694\pi\)
0.285941 + 0.958247i \(0.407694\pi\)
\(720\) 0 0
\(721\) −43.4306 −1.61744
\(722\) 12.9642 0.482479
\(723\) 0 0
\(724\) 17.4186 0.647358
\(725\) 3.08635 0.114624
\(726\) 0 0
\(727\) 27.1804 1.00806 0.504032 0.863685i \(-0.331849\pi\)
0.504032 + 0.863685i \(0.331849\pi\)
\(728\) −68.8873 −2.55313
\(729\) 0 0
\(730\) 1.23169 0.0455868
\(731\) −10.0250 −0.370790
\(732\) 0 0
\(733\) −4.70308 −0.173712 −0.0868560 0.996221i \(-0.527682\pi\)
−0.0868560 + 0.996221i \(0.527682\pi\)
\(734\) −13.0057 −0.480050
\(735\) 0 0
\(736\) 5.81648 0.214398
\(737\) 32.1970 1.18599
\(738\) 0 0
\(739\) 1.19298 0.0438845 0.0219422 0.999759i \(-0.493015\pi\)
0.0219422 + 0.999759i \(0.493015\pi\)
\(740\) −11.8463 −0.435477
\(741\) 0 0
\(742\) −38.0825 −1.39805
\(743\) −10.0273 −0.367867 −0.183934 0.982939i \(-0.558883\pi\)
−0.183934 + 0.982939i \(0.558883\pi\)
\(744\) 0 0
\(745\) −22.5368 −0.825683
\(746\) −12.0322 −0.440531
\(747\) 0 0
\(748\) −8.46125 −0.309374
\(749\) −68.6748 −2.50932
\(750\) 0 0
\(751\) −19.2248 −0.701524 −0.350762 0.936465i \(-0.614077\pi\)
−0.350762 + 0.936465i \(0.614077\pi\)
\(752\) −4.75615 −0.173439
\(753\) 0 0
\(754\) −13.8063 −0.502797
\(755\) 16.3305 0.594327
\(756\) 0 0
\(757\) −29.0674 −1.05647 −0.528236 0.849098i \(-0.677146\pi\)
−0.528236 + 0.849098i \(0.677146\pi\)
\(758\) −17.6916 −0.642588
\(759\) 0 0
\(760\) −4.69517 −0.170312
\(761\) 34.9604 1.26731 0.633657 0.773614i \(-0.281553\pi\)
0.633657 + 0.773614i \(0.281553\pi\)
\(762\) 0 0
\(763\) −38.0569 −1.37775
\(764\) 5.25062 0.189961
\(765\) 0 0
\(766\) −9.28658 −0.335538
\(767\) 64.8404 2.34125
\(768\) 0 0
\(769\) 8.00084 0.288518 0.144259 0.989540i \(-0.453920\pi\)
0.144259 + 0.989540i \(0.453920\pi\)
\(770\) −19.9851 −0.720213
\(771\) 0 0
\(772\) 3.60851 0.129873
\(773\) 25.3463 0.911644 0.455822 0.890071i \(-0.349345\pi\)
0.455822 + 0.890071i \(0.349345\pi\)
\(774\) 0 0
\(775\) 4.34322 0.156013
\(776\) 44.5535 1.59938
\(777\) 0 0
\(778\) 24.8846 0.892158
\(779\) −12.6043 −0.451596
\(780\) 0 0
\(781\) −61.0282 −2.18376
\(782\) −0.953534 −0.0340983
\(783\) 0 0
\(784\) 6.97622 0.249151
\(785\) −13.2666 −0.473507
\(786\) 0 0
\(787\) −5.10486 −0.181969 −0.0909843 0.995852i \(-0.529001\pi\)
−0.0909843 + 0.995852i \(0.529001\pi\)
\(788\) 13.1386 0.468044
\(789\) 0 0
\(790\) −1.02732 −0.0365503
\(791\) 48.9544 1.74062
\(792\) 0 0
\(793\) 7.35627 0.261229
\(794\) 29.4542 1.04529
\(795\) 0 0
\(796\) 25.6377 0.908704
\(797\) −44.0182 −1.55921 −0.779603 0.626274i \(-0.784579\pi\)
−0.779603 + 0.626274i \(0.784579\pi\)
\(798\) 0 0
\(799\) 11.4042 0.403451
\(800\) −5.81648 −0.205644
\(801\) 0 0
\(802\) −5.86116 −0.206965
\(803\) 8.13674 0.287139
\(804\) 0 0
\(805\) 4.60617 0.162346
\(806\) −19.4288 −0.684350
\(807\) 0 0
\(808\) 9.30418 0.327320
\(809\) −6.15978 −0.216566 −0.108283 0.994120i \(-0.534535\pi\)
−0.108283 + 0.994120i \(0.534535\pi\)
\(810\) 0 0
\(811\) −2.23801 −0.0785873 −0.0392936 0.999228i \(-0.512511\pi\)
−0.0392936 + 0.999228i \(0.512511\pi\)
\(812\) 19.0956 0.670124
\(813\) 0 0
\(814\) 38.2647 1.34118
\(815\) −15.7261 −0.550861
\(816\) 0 0
\(817\) −14.7651 −0.516565
\(818\) 10.7209 0.374849
\(819\) 0 0
\(820\) −9.76990 −0.341180
\(821\) 39.9914 1.39571 0.697855 0.716239i \(-0.254138\pi\)
0.697855 + 0.716239i \(0.254138\pi\)
\(822\) 0 0
\(823\) 23.3116 0.812590 0.406295 0.913742i \(-0.366821\pi\)
0.406295 + 0.913742i \(0.366821\pi\)
\(824\) 25.5464 0.889951
\(825\) 0 0
\(826\) 43.8499 1.52573
\(827\) −43.4988 −1.51260 −0.756301 0.654224i \(-0.772995\pi\)
−0.756301 + 0.654224i \(0.772995\pi\)
\(828\) 0 0
\(829\) 33.1090 1.14992 0.574961 0.818181i \(-0.305017\pi\)
0.574961 + 0.818181i \(0.305017\pi\)
\(830\) 0.936475 0.0325055
\(831\) 0 0
\(832\) 20.6020 0.714246
\(833\) −16.7274 −0.579571
\(834\) 0 0
\(835\) −1.59282 −0.0551217
\(836\) −12.4619 −0.431004
\(837\) 0 0
\(838\) −14.8399 −0.512637
\(839\) −52.5227 −1.81329 −0.906643 0.421899i \(-0.861364\pi\)
−0.906643 + 0.421899i \(0.861364\pi\)
\(840\) 0 0
\(841\) −19.4745 −0.671533
\(842\) −11.5076 −0.396579
\(843\) 0 0
\(844\) 10.8737 0.374289
\(845\) 17.4684 0.600932
\(846\) 0 0
\(847\) −81.3571 −2.79546
\(848\) −5.00606 −0.171909
\(849\) 0 0
\(850\) 0.953534 0.0327059
\(851\) −8.81926 −0.302320
\(852\) 0 0
\(853\) 22.9673 0.786385 0.393192 0.919456i \(-0.371371\pi\)
0.393192 + 0.919456i \(0.371371\pi\)
\(854\) 4.97486 0.170236
\(855\) 0 0
\(856\) 40.3954 1.38069
\(857\) −55.1228 −1.88296 −0.941480 0.337069i \(-0.890564\pi\)
−0.941480 + 0.337069i \(0.890564\pi\)
\(858\) 0 0
\(859\) −49.9526 −1.70436 −0.852180 0.523249i \(-0.824720\pi\)
−0.852180 + 0.523249i \(0.824720\pi\)
\(860\) −11.4448 −0.390264
\(861\) 0 0
\(862\) −28.4031 −0.967413
\(863\) 12.0802 0.411214 0.205607 0.978635i \(-0.434083\pi\)
0.205607 + 0.978635i \(0.434083\pi\)
\(864\) 0 0
\(865\) 6.90506 0.234779
\(866\) −2.54949 −0.0866351
\(867\) 0 0
\(868\) 26.8721 0.912097
\(869\) −6.78663 −0.230221
\(870\) 0 0
\(871\) −33.1957 −1.12479
\(872\) 22.3855 0.758070
\(873\) 0 0
\(874\) −1.40438 −0.0475040
\(875\) −4.60617 −0.155717
\(876\) 0 0
\(877\) 45.5573 1.53836 0.769180 0.639033i \(-0.220665\pi\)
0.769180 + 0.639033i \(0.220665\pi\)
\(878\) −1.58447 −0.0534734
\(879\) 0 0
\(880\) −2.62710 −0.0885595
\(881\) −6.57232 −0.221427 −0.110714 0.993852i \(-0.535314\pi\)
−0.110714 + 0.993852i \(0.535314\pi\)
\(882\) 0 0
\(883\) 5.51200 0.185494 0.0927468 0.995690i \(-0.470435\pi\)
0.0927468 + 0.995690i \(0.470435\pi\)
\(884\) 8.72371 0.293410
\(885\) 0 0
\(886\) −22.2775 −0.748428
\(887\) −31.2681 −1.04988 −0.524941 0.851139i \(-0.675913\pi\)
−0.524941 + 0.851139i \(0.675913\pi\)
\(888\) 0 0
\(889\) 10.2975 0.345369
\(890\) −4.37805 −0.146753
\(891\) 0 0
\(892\) −19.0865 −0.639062
\(893\) 16.7963 0.562067
\(894\) 0 0
\(895\) 25.1515 0.840723
\(896\) −39.6508 −1.32464
\(897\) 0 0
\(898\) 2.29541 0.0765987
\(899\) 13.4047 0.447072
\(900\) 0 0
\(901\) 12.0034 0.399892
\(902\) 31.5579 1.05076
\(903\) 0 0
\(904\) −28.7956 −0.957726
\(905\) −12.9678 −0.431063
\(906\) 0 0
\(907\) −12.7989 −0.424982 −0.212491 0.977163i \(-0.568158\pi\)
−0.212491 + 0.977163i \(0.568158\pi\)
\(908\) 22.3319 0.741110
\(909\) 0 0
\(910\) 20.6050 0.683050
\(911\) −31.6963 −1.05015 −0.525073 0.851057i \(-0.675962\pi\)
−0.525073 + 0.851057i \(0.675962\pi\)
\(912\) 0 0
\(913\) 6.18651 0.204744
\(914\) 2.40730 0.0796265
\(915\) 0 0
\(916\) −20.6373 −0.681875
\(917\) 49.2081 1.62500
\(918\) 0 0
\(919\) 7.63249 0.251773 0.125886 0.992045i \(-0.459823\pi\)
0.125886 + 0.992045i \(0.459823\pi\)
\(920\) −2.70941 −0.0893264
\(921\) 0 0
\(922\) 13.1170 0.431984
\(923\) 62.9212 2.07108
\(924\) 0 0
\(925\) 8.81926 0.289976
\(926\) 1.95082 0.0641080
\(927\) 0 0
\(928\) −17.9517 −0.589293
\(929\) 17.2979 0.567525 0.283763 0.958895i \(-0.408417\pi\)
0.283763 + 0.958895i \(0.408417\pi\)
\(930\) 0 0
\(931\) −24.6365 −0.807429
\(932\) 20.2663 0.663844
\(933\) 0 0
\(934\) 8.15593 0.266870
\(935\) 6.29920 0.206006
\(936\) 0 0
\(937\) 12.5967 0.411517 0.205759 0.978603i \(-0.434034\pi\)
0.205759 + 0.978603i \(0.434034\pi\)
\(938\) −22.4494 −0.732999
\(939\) 0 0
\(940\) 13.0192 0.424640
\(941\) −19.7213 −0.642895 −0.321448 0.946927i \(-0.604169\pi\)
−0.321448 + 0.946927i \(0.604169\pi\)
\(942\) 0 0
\(943\) −7.27347 −0.236857
\(944\) 5.76420 0.187609
\(945\) 0 0
\(946\) 36.9679 1.20193
\(947\) −24.8824 −0.808569 −0.404285 0.914633i \(-0.632479\pi\)
−0.404285 + 0.914633i \(0.632479\pi\)
\(948\) 0 0
\(949\) −8.38914 −0.272323
\(950\) 1.40438 0.0455642
\(951\) 0 0
\(952\) 14.6839 0.475908
\(953\) −24.9095 −0.806899 −0.403449 0.915002i \(-0.632189\pi\)
−0.403449 + 0.915002i \(0.632189\pi\)
\(954\) 0 0
\(955\) −3.90897 −0.126491
\(956\) 1.91876 0.0620570
\(957\) 0 0
\(958\) −21.1367 −0.682895
\(959\) 1.50453 0.0485837
\(960\) 0 0
\(961\) −12.1364 −0.391497
\(962\) −39.4517 −1.27197
\(963\) 0 0
\(964\) −14.2320 −0.458383
\(965\) −2.68645 −0.0864799
\(966\) 0 0
\(967\) −29.4706 −0.947709 −0.473855 0.880603i \(-0.657138\pi\)
−0.473855 + 0.880603i \(0.657138\pi\)
\(968\) 47.8552 1.53813
\(969\) 0 0
\(970\) −13.3265 −0.427889
\(971\) 36.7868 1.18054 0.590272 0.807204i \(-0.299020\pi\)
0.590272 + 0.807204i \(0.299020\pi\)
\(972\) 0 0
\(973\) −43.9840 −1.41006
\(974\) −19.2422 −0.616560
\(975\) 0 0
\(976\) 0.653960 0.0209327
\(977\) 14.6435 0.468488 0.234244 0.972178i \(-0.424738\pi\)
0.234244 + 0.972178i \(0.424738\pi\)
\(978\) 0 0
\(979\) −28.9222 −0.924357
\(980\) −19.0964 −0.610011
\(981\) 0 0
\(982\) −2.26516 −0.0722843
\(983\) 1.10622 0.0352831 0.0176415 0.999844i \(-0.494384\pi\)
0.0176415 + 0.999844i \(0.494384\pi\)
\(984\) 0 0
\(985\) −9.78139 −0.311661
\(986\) 2.94294 0.0937222
\(987\) 0 0
\(988\) 12.8485 0.408764
\(989\) −8.52038 −0.270932
\(990\) 0 0
\(991\) −42.7058 −1.35659 −0.678297 0.734788i \(-0.737282\pi\)
−0.678297 + 0.734788i \(0.737282\pi\)
\(992\) −25.2623 −0.802079
\(993\) 0 0
\(994\) 42.5520 1.34967
\(995\) −19.0867 −0.605088
\(996\) 0 0
\(997\) 30.0771 0.952553 0.476276 0.879296i \(-0.341986\pi\)
0.476276 + 0.879296i \(0.341986\pi\)
\(998\) 6.76871 0.214260
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1035.2.a.q.1.3 yes 6
3.2 odd 2 1035.2.a.p.1.4 6
5.4 even 2 5175.2.a.by.1.4 6
15.14 odd 2 5175.2.a.bz.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1035.2.a.p.1.4 6 3.2 odd 2
1035.2.a.q.1.3 yes 6 1.1 even 1 trivial
5175.2.a.by.1.4 6 5.4 even 2
5175.2.a.bz.1.3 6 15.14 odd 2