Properties

Label 5175.2.a.bz.1.3
Level $5175$
Weight $2$
Character 5175.1
Self dual yes
Analytic conductor $41.323$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5175,2,Mod(1,5175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5175.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5175 = 3^{2} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.3225830460\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.98838128.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 10x^{4} - x^{3} + 16x^{2} + 5x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 1035)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.493507\) of defining polynomial
Character \(\chi\) \(=\) 5175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.810417 q^{2} -1.34322 q^{4} +4.60617 q^{7} +2.70941 q^{8} +5.35375 q^{11} -5.51982 q^{13} -3.73292 q^{14} +0.490703 q^{16} -1.17660 q^{17} -1.73292 q^{19} -4.33877 q^{22} -1.00000 q^{23} +4.47336 q^{26} -6.18712 q^{28} -3.08635 q^{29} +4.34322 q^{31} -5.81648 q^{32} +0.953534 q^{34} -8.81926 q^{37} +1.40438 q^{38} -7.27347 q^{41} -8.52038 q^{43} -7.19129 q^{44} +0.810417 q^{46} -9.69252 q^{47} +14.2168 q^{49} +7.41436 q^{52} -10.2018 q^{53} +12.4800 q^{56} +2.50123 q^{58} -11.7468 q^{59} +1.33270 q^{61} -3.51982 q^{62} +3.73237 q^{64} +6.01391 q^{67} +1.58043 q^{68} -11.3991 q^{71} +1.51982 q^{73} +7.14728 q^{74} +2.32770 q^{76} +24.6603 q^{77} +1.26764 q^{79} +5.89454 q^{82} -1.15555 q^{83} +6.90506 q^{86} +14.5055 q^{88} -5.40223 q^{89} -25.4252 q^{91} +1.34322 q^{92} +7.85498 q^{94} -16.4440 q^{97} -11.5215 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 10 q^{4} - 6 q^{7} + 4 q^{11} - 12 q^{13} - 4 q^{14} + 14 q^{16} - 4 q^{17} + 8 q^{19} - 8 q^{22} - 6 q^{23} - 12 q^{26} - 24 q^{28} - 6 q^{29} + 8 q^{31} - 20 q^{32} - 12 q^{34} - 22 q^{37} - 36 q^{38}+ \cdots + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.810417 −0.573051 −0.286526 0.958073i \(-0.592500\pi\)
−0.286526 + 0.958073i \(0.592500\pi\)
\(3\) 0 0
\(4\) −1.34322 −0.671612
\(5\) 0 0
\(6\) 0 0
\(7\) 4.60617 1.74097 0.870484 0.492196i \(-0.163806\pi\)
0.870484 + 0.492196i \(0.163806\pi\)
\(8\) 2.70941 0.957919
\(9\) 0 0
\(10\) 0 0
\(11\) 5.35375 1.61422 0.807108 0.590404i \(-0.201031\pi\)
0.807108 + 0.590404i \(0.201031\pi\)
\(12\) 0 0
\(13\) −5.51982 −1.53092 −0.765462 0.643482i \(-0.777489\pi\)
−0.765462 + 0.643482i \(0.777489\pi\)
\(14\) −3.73292 −0.997664
\(15\) 0 0
\(16\) 0.490703 0.122676
\(17\) −1.17660 −0.285367 −0.142683 0.989768i \(-0.545573\pi\)
−0.142683 + 0.989768i \(0.545573\pi\)
\(18\) 0 0
\(19\) −1.73292 −0.397558 −0.198779 0.980044i \(-0.563698\pi\)
−0.198779 + 0.980044i \(0.563698\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −4.33877 −0.925028
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) 0 0
\(26\) 4.47336 0.877297
\(27\) 0 0
\(28\) −6.18712 −1.16926
\(29\) −3.08635 −0.573120 −0.286560 0.958062i \(-0.592512\pi\)
−0.286560 + 0.958062i \(0.592512\pi\)
\(30\) 0 0
\(31\) 4.34322 0.780066 0.390033 0.920801i \(-0.372464\pi\)
0.390033 + 0.920801i \(0.372464\pi\)
\(32\) −5.81648 −1.02822
\(33\) 0 0
\(34\) 0.953534 0.163530
\(35\) 0 0
\(36\) 0 0
\(37\) −8.81926 −1.44988 −0.724939 0.688813i \(-0.758132\pi\)
−0.724939 + 0.688813i \(0.758132\pi\)
\(38\) 1.40438 0.227821
\(39\) 0 0
\(40\) 0 0
\(41\) −7.27347 −1.13593 −0.567963 0.823054i \(-0.692268\pi\)
−0.567963 + 0.823054i \(0.692268\pi\)
\(42\) 0 0
\(43\) −8.52038 −1.29935 −0.649673 0.760214i \(-0.725094\pi\)
−0.649673 + 0.760214i \(0.725094\pi\)
\(44\) −7.19129 −1.08413
\(45\) 0 0
\(46\) 0.810417 0.119489
\(47\) −9.69252 −1.41380 −0.706899 0.707314i \(-0.749907\pi\)
−0.706899 + 0.707314i \(0.749907\pi\)
\(48\) 0 0
\(49\) 14.2168 2.03097
\(50\) 0 0
\(51\) 0 0
\(52\) 7.41436 1.02819
\(53\) −10.2018 −1.40133 −0.700663 0.713492i \(-0.747113\pi\)
−0.700663 + 0.713492i \(0.747113\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 12.4800 1.66771
\(57\) 0 0
\(58\) 2.50123 0.328427
\(59\) −11.7468 −1.52931 −0.764653 0.644442i \(-0.777090\pi\)
−0.764653 + 0.644442i \(0.777090\pi\)
\(60\) 0 0
\(61\) 1.33270 0.170635 0.0853174 0.996354i \(-0.472810\pi\)
0.0853174 + 0.996354i \(0.472810\pi\)
\(62\) −3.51982 −0.447018
\(63\) 0 0
\(64\) 3.73237 0.466546
\(65\) 0 0
\(66\) 0 0
\(67\) 6.01391 0.734716 0.367358 0.930080i \(-0.380262\pi\)
0.367358 + 0.930080i \(0.380262\pi\)
\(68\) 1.58043 0.191656
\(69\) 0 0
\(70\) 0 0
\(71\) −11.3991 −1.35283 −0.676415 0.736521i \(-0.736467\pi\)
−0.676415 + 0.736521i \(0.736467\pi\)
\(72\) 0 0
\(73\) 1.51982 0.177882 0.0889408 0.996037i \(-0.471652\pi\)
0.0889408 + 0.996037i \(0.471652\pi\)
\(74\) 7.14728 0.830854
\(75\) 0 0
\(76\) 2.32770 0.267005
\(77\) 24.6603 2.81030
\(78\) 0 0
\(79\) 1.26764 0.142621 0.0713103 0.997454i \(-0.477282\pi\)
0.0713103 + 0.997454i \(0.477282\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 5.89454 0.650943
\(83\) −1.15555 −0.126838 −0.0634189 0.997987i \(-0.520200\pi\)
−0.0634189 + 0.997987i \(0.520200\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 6.90506 0.744591
\(87\) 0 0
\(88\) 14.5055 1.54629
\(89\) −5.40223 −0.572635 −0.286317 0.958135i \(-0.592431\pi\)
−0.286317 + 0.958135i \(0.592431\pi\)
\(90\) 0 0
\(91\) −25.4252 −2.66529
\(92\) 1.34322 0.140041
\(93\) 0 0
\(94\) 7.85498 0.810179
\(95\) 0 0
\(96\) 0 0
\(97\) −16.4440 −1.66964 −0.834819 0.550524i \(-0.814428\pi\)
−0.834819 + 0.550524i \(0.814428\pi\)
\(98\) −11.5215 −1.16385
\(99\) 0 0
\(100\) 0 0
\(101\) −3.43403 −0.341699 −0.170849 0.985297i \(-0.554651\pi\)
−0.170849 + 0.985297i \(0.554651\pi\)
\(102\) 0 0
\(103\) −9.42879 −0.929046 −0.464523 0.885561i \(-0.653774\pi\)
−0.464523 + 0.885561i \(0.653774\pi\)
\(104\) −14.9554 −1.46650
\(105\) 0 0
\(106\) 8.26772 0.803032
\(107\) 14.9093 1.44134 0.720669 0.693279i \(-0.243835\pi\)
0.720669 + 0.693279i \(0.243835\pi\)
\(108\) 0 0
\(109\) 8.26216 0.791371 0.395686 0.918386i \(-0.370507\pi\)
0.395686 + 0.918386i \(0.370507\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2.26026 0.213575
\(113\) −10.6280 −0.999798 −0.499899 0.866084i \(-0.666630\pi\)
−0.499899 + 0.866084i \(0.666630\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 4.14566 0.384915
\(117\) 0 0
\(118\) 9.51982 0.876371
\(119\) −5.41960 −0.496814
\(120\) 0 0
\(121\) 17.6626 1.60569
\(122\) −1.08004 −0.0977825
\(123\) 0 0
\(124\) −5.83393 −0.523902
\(125\) 0 0
\(126\) 0 0
\(127\) 2.23560 0.198377 0.0991887 0.995069i \(-0.468375\pi\)
0.0991887 + 0.995069i \(0.468375\pi\)
\(128\) 8.60819 0.760864
\(129\) 0 0
\(130\) 0 0
\(131\) 10.6831 0.933386 0.466693 0.884419i \(-0.345445\pi\)
0.466693 + 0.884419i \(0.345445\pi\)
\(132\) 0 0
\(133\) −7.98211 −0.692136
\(134\) −4.87377 −0.421030
\(135\) 0 0
\(136\) −3.18788 −0.273358
\(137\) −0.326633 −0.0279061 −0.0139531 0.999903i \(-0.504442\pi\)
−0.0139531 + 0.999903i \(0.504442\pi\)
\(138\) 0 0
\(139\) 9.54894 0.809931 0.404965 0.914332i \(-0.367284\pi\)
0.404965 + 0.914332i \(0.367284\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 9.23805 0.775240
\(143\) −29.5517 −2.47124
\(144\) 0 0
\(145\) 0 0
\(146\) −1.23169 −0.101935
\(147\) 0 0
\(148\) 11.8463 0.973756
\(149\) 22.5368 1.84628 0.923142 0.384460i \(-0.125612\pi\)
0.923142 + 0.384460i \(0.125612\pi\)
\(150\) 0 0
\(151\) 16.3305 1.32896 0.664478 0.747308i \(-0.268654\pi\)
0.664478 + 0.747308i \(0.268654\pi\)
\(152\) −4.69517 −0.380829
\(153\) 0 0
\(154\) −19.9851 −1.61045
\(155\) 0 0
\(156\) 0 0
\(157\) 13.2666 1.05879 0.529397 0.848374i \(-0.322418\pi\)
0.529397 + 0.848374i \(0.322418\pi\)
\(158\) −1.02732 −0.0817289
\(159\) 0 0
\(160\) 0 0
\(161\) −4.60617 −0.363017
\(162\) 0 0
\(163\) 15.7261 1.23176 0.615881 0.787839i \(-0.288800\pi\)
0.615881 + 0.787839i \(0.288800\pi\)
\(164\) 9.76990 0.762901
\(165\) 0 0
\(166\) 0.936475 0.0726846
\(167\) −1.59282 −0.123256 −0.0616279 0.998099i \(-0.519629\pi\)
−0.0616279 + 0.998099i \(0.519629\pi\)
\(168\) 0 0
\(169\) 17.4684 1.34373
\(170\) 0 0
\(171\) 0 0
\(172\) 11.4448 0.872657
\(173\) 6.90506 0.524982 0.262491 0.964934i \(-0.415456\pi\)
0.262491 + 0.964934i \(0.415456\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 2.62710 0.198025
\(177\) 0 0
\(178\) 4.37805 0.328149
\(179\) −25.1515 −1.87991 −0.939957 0.341294i \(-0.889135\pi\)
−0.939957 + 0.341294i \(0.889135\pi\)
\(180\) 0 0
\(181\) −12.9678 −0.963886 −0.481943 0.876203i \(-0.660069\pi\)
−0.481943 + 0.876203i \(0.660069\pi\)
\(182\) 20.6050 1.52735
\(183\) 0 0
\(184\) −2.70941 −0.199740
\(185\) 0 0
\(186\) 0 0
\(187\) −6.29920 −0.460643
\(188\) 13.0192 0.949525
\(189\) 0 0
\(190\) 0 0
\(191\) 3.90897 0.282843 0.141421 0.989949i \(-0.454833\pi\)
0.141421 + 0.989949i \(0.454833\pi\)
\(192\) 0 0
\(193\) 2.68645 0.193375 0.0966874 0.995315i \(-0.469175\pi\)
0.0966874 + 0.995315i \(0.469175\pi\)
\(194\) 13.3265 0.956788
\(195\) 0 0
\(196\) −19.0964 −1.36403
\(197\) −9.78139 −0.696895 −0.348448 0.937328i \(-0.613291\pi\)
−0.348448 + 0.937328i \(0.613291\pi\)
\(198\) 0 0
\(199\) −19.0867 −1.35302 −0.676509 0.736434i \(-0.736508\pi\)
−0.676509 + 0.736434i \(0.736508\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 2.78299 0.195811
\(203\) −14.2162 −0.997784
\(204\) 0 0
\(205\) 0 0
\(206\) 7.64125 0.532391
\(207\) 0 0
\(208\) −2.70859 −0.187807
\(209\) −9.27760 −0.641745
\(210\) 0 0
\(211\) −8.09524 −0.557299 −0.278650 0.960393i \(-0.589887\pi\)
−0.278650 + 0.960393i \(0.589887\pi\)
\(212\) 13.7033 0.941149
\(213\) 0 0
\(214\) −12.0828 −0.825960
\(215\) 0 0
\(216\) 0 0
\(217\) 20.0056 1.35807
\(218\) −6.69579 −0.453496
\(219\) 0 0
\(220\) 0 0
\(221\) 6.49460 0.436874
\(222\) 0 0
\(223\) −14.2094 −0.951534 −0.475767 0.879571i \(-0.657829\pi\)
−0.475767 + 0.879571i \(0.657829\pi\)
\(224\) −26.7917 −1.79010
\(225\) 0 0
\(226\) 8.61311 0.572936
\(227\) −16.6256 −1.10348 −0.551740 0.834016i \(-0.686036\pi\)
−0.551740 + 0.834016i \(0.686036\pi\)
\(228\) 0 0
\(229\) 15.3640 1.01528 0.507640 0.861569i \(-0.330518\pi\)
0.507640 + 0.861569i \(0.330518\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −8.36217 −0.549003
\(233\) −15.0878 −0.988433 −0.494217 0.869339i \(-0.664545\pi\)
−0.494217 + 0.869339i \(0.664545\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 15.7786 1.02710
\(237\) 0 0
\(238\) 4.39214 0.284700
\(239\) 1.42847 0.0924000 0.0462000 0.998932i \(-0.485289\pi\)
0.0462000 + 0.998932i \(0.485289\pi\)
\(240\) 0 0
\(241\) 10.5954 0.682511 0.341255 0.939971i \(-0.389148\pi\)
0.341255 + 0.939971i \(0.389148\pi\)
\(242\) −14.3141 −0.920145
\(243\) 0 0
\(244\) −1.79012 −0.114600
\(245\) 0 0
\(246\) 0 0
\(247\) 9.56539 0.608631
\(248\) 11.7676 0.747241
\(249\) 0 0
\(250\) 0 0
\(251\) −15.3939 −0.971657 −0.485829 0.874054i \(-0.661482\pi\)
−0.485829 + 0.874054i \(0.661482\pi\)
\(252\) 0 0
\(253\) −5.35375 −0.336587
\(254\) −1.81177 −0.113680
\(255\) 0 0
\(256\) −14.4410 −0.902560
\(257\) −7.92004 −0.494038 −0.247019 0.969011i \(-0.579451\pi\)
−0.247019 + 0.969011i \(0.579451\pi\)
\(258\) 0 0
\(259\) −40.6230 −2.52419
\(260\) 0 0
\(261\) 0 0
\(262\) −8.65776 −0.534878
\(263\) −17.7857 −1.09671 −0.548355 0.836246i \(-0.684746\pi\)
−0.548355 + 0.836246i \(0.684746\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 6.46883 0.396629
\(267\) 0 0
\(268\) −8.07803 −0.493444
\(269\) 0.155319 0.00946996 0.00473498 0.999989i \(-0.498493\pi\)
0.00473498 + 0.999989i \(0.498493\pi\)
\(270\) 0 0
\(271\) 26.1967 1.59134 0.795668 0.605733i \(-0.207120\pi\)
0.795668 + 0.605733i \(0.207120\pi\)
\(272\) −0.577359 −0.0350076
\(273\) 0 0
\(274\) 0.264709 0.0159916
\(275\) 0 0
\(276\) 0 0
\(277\) 17.6542 1.06074 0.530369 0.847767i \(-0.322053\pi\)
0.530369 + 0.847767i \(0.322053\pi\)
\(278\) −7.73862 −0.464132
\(279\) 0 0
\(280\) 0 0
\(281\) 18.7534 1.11873 0.559366 0.828921i \(-0.311045\pi\)
0.559366 + 0.828921i \(0.311045\pi\)
\(282\) 0 0
\(283\) −16.3826 −0.973847 −0.486923 0.873445i \(-0.661881\pi\)
−0.486923 + 0.873445i \(0.661881\pi\)
\(284\) 15.3116 0.908577
\(285\) 0 0
\(286\) 23.9492 1.41615
\(287\) −33.5028 −1.97761
\(288\) 0 0
\(289\) −15.6156 −0.918566
\(290\) 0 0
\(291\) 0 0
\(292\) −2.04146 −0.119468
\(293\) 16.5506 0.966897 0.483448 0.875373i \(-0.339384\pi\)
0.483448 + 0.875373i \(0.339384\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −23.8950 −1.38887
\(297\) 0 0
\(298\) −18.2642 −1.05801
\(299\) 5.51982 0.319220
\(300\) 0 0
\(301\) −39.2463 −2.26212
\(302\) −13.2345 −0.761560
\(303\) 0 0
\(304\) −0.850347 −0.0487707
\(305\) 0 0
\(306\) 0 0
\(307\) −17.3084 −0.987844 −0.493922 0.869506i \(-0.664437\pi\)
−0.493922 + 0.869506i \(0.664437\pi\)
\(308\) −33.1243 −1.88743
\(309\) 0 0
\(310\) 0 0
\(311\) −16.8210 −0.953834 −0.476917 0.878948i \(-0.658246\pi\)
−0.476917 + 0.878948i \(0.658246\pi\)
\(312\) 0 0
\(313\) 8.44566 0.477377 0.238688 0.971096i \(-0.423283\pi\)
0.238688 + 0.971096i \(0.423283\pi\)
\(314\) −10.7515 −0.606743
\(315\) 0 0
\(316\) −1.70273 −0.0957858
\(317\) −32.7283 −1.83821 −0.919104 0.394016i \(-0.871085\pi\)
−0.919104 + 0.394016i \(0.871085\pi\)
\(318\) 0 0
\(319\) −16.5235 −0.925140
\(320\) 0 0
\(321\) 0 0
\(322\) 3.73292 0.208027
\(323\) 2.03894 0.113450
\(324\) 0 0
\(325\) 0 0
\(326\) −12.7447 −0.705863
\(327\) 0 0
\(328\) −19.7068 −1.08812
\(329\) −44.6454 −2.46138
\(330\) 0 0
\(331\) −15.2008 −0.835512 −0.417756 0.908559i \(-0.637183\pi\)
−0.417756 + 0.908559i \(0.637183\pi\)
\(332\) 1.55216 0.0851859
\(333\) 0 0
\(334\) 1.29085 0.0706319
\(335\) 0 0
\(336\) 0 0
\(337\) −11.9751 −0.652327 −0.326164 0.945313i \(-0.605756\pi\)
−0.326164 + 0.945313i \(0.605756\pi\)
\(338\) −14.1567 −0.770023
\(339\) 0 0
\(340\) 0 0
\(341\) 23.2525 1.25920
\(342\) 0 0
\(343\) 33.2418 1.79489
\(344\) −23.0852 −1.24467
\(345\) 0 0
\(346\) −5.59597 −0.300841
\(347\) 15.6679 0.841095 0.420547 0.907271i \(-0.361838\pi\)
0.420547 + 0.907271i \(0.361838\pi\)
\(348\) 0 0
\(349\) 24.0603 1.28792 0.643958 0.765061i \(-0.277291\pi\)
0.643958 + 0.765061i \(0.277291\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −31.1400 −1.65977
\(353\) 22.5772 1.20166 0.600830 0.799376i \(-0.294837\pi\)
0.600830 + 0.799376i \(0.294837\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 7.25641 0.384589
\(357\) 0 0
\(358\) 20.3832 1.07729
\(359\) −24.3132 −1.28320 −0.641602 0.767038i \(-0.721730\pi\)
−0.641602 + 0.767038i \(0.721730\pi\)
\(360\) 0 0
\(361\) −15.9970 −0.841947
\(362\) 10.5093 0.552356
\(363\) 0 0
\(364\) 34.1518 1.79004
\(365\) 0 0
\(366\) 0 0
\(367\) −16.0482 −0.837708 −0.418854 0.908053i \(-0.637568\pi\)
−0.418854 + 0.908053i \(0.637568\pi\)
\(368\) −0.490703 −0.0255797
\(369\) 0 0
\(370\) 0 0
\(371\) −46.9913 −2.43967
\(372\) 0 0
\(373\) −14.8470 −0.768747 −0.384373 0.923178i \(-0.625582\pi\)
−0.384373 + 0.923178i \(0.625582\pi\)
\(374\) 5.10498 0.263972
\(375\) 0 0
\(376\) −26.2610 −1.35431
\(377\) 17.0361 0.877403
\(378\) 0 0
\(379\) 21.8303 1.12135 0.560673 0.828038i \(-0.310543\pi\)
0.560673 + 0.828038i \(0.310543\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −3.16789 −0.162083
\(383\) 11.4590 0.585528 0.292764 0.956185i \(-0.405425\pi\)
0.292764 + 0.956185i \(0.405425\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −2.17714 −0.110814
\(387\) 0 0
\(388\) 22.0880 1.12135
\(389\) 30.7060 1.55686 0.778428 0.627734i \(-0.216018\pi\)
0.778428 + 0.627734i \(0.216018\pi\)
\(390\) 0 0
\(391\) 1.17660 0.0595031
\(392\) 38.5191 1.94551
\(393\) 0 0
\(394\) 7.92700 0.399357
\(395\) 0 0
\(396\) 0 0
\(397\) 36.3445 1.82408 0.912039 0.410102i \(-0.134507\pi\)
0.912039 + 0.410102i \(0.134507\pi\)
\(398\) 15.4682 0.775348
\(399\) 0 0
\(400\) 0 0
\(401\) −7.23228 −0.361163 −0.180581 0.983560i \(-0.557798\pi\)
−0.180581 + 0.983560i \(0.557798\pi\)
\(402\) 0 0
\(403\) −23.9738 −1.19422
\(404\) 4.61267 0.229489
\(405\) 0 0
\(406\) 11.5211 0.571781
\(407\) −47.2161 −2.34042
\(408\) 0 0
\(409\) −13.2289 −0.654129 −0.327064 0.945002i \(-0.606059\pi\)
−0.327064 + 0.945002i \(0.606059\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 12.6650 0.623959
\(413\) −54.1079 −2.66247
\(414\) 0 0
\(415\) 0 0
\(416\) 32.1060 1.57412
\(417\) 0 0
\(418\) 7.51872 0.367753
\(419\) −18.3115 −0.894574 −0.447287 0.894390i \(-0.647610\pi\)
−0.447287 + 0.894390i \(0.647610\pi\)
\(420\) 0 0
\(421\) 14.1996 0.692049 0.346024 0.938226i \(-0.387531\pi\)
0.346024 + 0.938226i \(0.387531\pi\)
\(422\) 6.56052 0.319361
\(423\) 0 0
\(424\) −27.6408 −1.34236
\(425\) 0 0
\(426\) 0 0
\(427\) 6.13864 0.297070
\(428\) −20.0266 −0.968020
\(429\) 0 0
\(430\) 0 0
\(431\) −35.0475 −1.68818 −0.844090 0.536202i \(-0.819859\pi\)
−0.844090 + 0.536202i \(0.819859\pi\)
\(432\) 0 0
\(433\) −3.14590 −0.151182 −0.0755911 0.997139i \(-0.524084\pi\)
−0.0755911 + 0.997139i \(0.524084\pi\)
\(434\) −16.2129 −0.778244
\(435\) 0 0
\(436\) −11.0979 −0.531495
\(437\) 1.73292 0.0828966
\(438\) 0 0
\(439\) 1.95513 0.0933135 0.0466567 0.998911i \(-0.485143\pi\)
0.0466567 + 0.998911i \(0.485143\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −5.26334 −0.250351
\(443\) 27.4890 1.30604 0.653020 0.757340i \(-0.273502\pi\)
0.653020 + 0.757340i \(0.273502\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 11.5156 0.545277
\(447\) 0 0
\(448\) 17.1919 0.812242
\(449\) 2.83238 0.133668 0.0668341 0.997764i \(-0.478710\pi\)
0.0668341 + 0.997764i \(0.478710\pi\)
\(450\) 0 0
\(451\) −38.9403 −1.83363
\(452\) 14.2758 0.671477
\(453\) 0 0
\(454\) 13.4737 0.632350
\(455\) 0 0
\(456\) 0 0
\(457\) 2.97045 0.138952 0.0694760 0.997584i \(-0.477867\pi\)
0.0694760 + 0.997584i \(0.477867\pi\)
\(458\) −12.4512 −0.581808
\(459\) 0 0
\(460\) 0 0
\(461\) 16.1855 0.753832 0.376916 0.926247i \(-0.376984\pi\)
0.376916 + 0.926247i \(0.376984\pi\)
\(462\) 0 0
\(463\) 2.40718 0.111871 0.0559356 0.998434i \(-0.482186\pi\)
0.0559356 + 0.998434i \(0.482186\pi\)
\(464\) −1.51448 −0.0703080
\(465\) 0 0
\(466\) 12.2274 0.566423
\(467\) −10.0639 −0.465700 −0.232850 0.972513i \(-0.574805\pi\)
−0.232850 + 0.972513i \(0.574805\pi\)
\(468\) 0 0
\(469\) 27.7011 1.27912
\(470\) 0 0
\(471\) 0 0
\(472\) −31.8269 −1.46495
\(473\) −45.6160 −2.09742
\(474\) 0 0
\(475\) 0 0
\(476\) 7.27975 0.333667
\(477\) 0 0
\(478\) −1.15766 −0.0529499
\(479\) −26.0812 −1.19168 −0.595841 0.803102i \(-0.703181\pi\)
−0.595841 + 0.803102i \(0.703181\pi\)
\(480\) 0 0
\(481\) 48.6808 2.21965
\(482\) −8.58670 −0.391114
\(483\) 0 0
\(484\) −23.7249 −1.07840
\(485\) 0 0
\(486\) 0 0
\(487\) −23.7436 −1.07592 −0.537962 0.842969i \(-0.680806\pi\)
−0.537962 + 0.842969i \(0.680806\pi\)
\(488\) 3.61082 0.163454
\(489\) 0 0
\(490\) 0 0
\(491\) −2.79506 −0.126139 −0.0630696 0.998009i \(-0.520089\pi\)
−0.0630696 + 0.998009i \(0.520089\pi\)
\(492\) 0 0
\(493\) 3.63139 0.163549
\(494\) −7.75195 −0.348777
\(495\) 0 0
\(496\) 2.13123 0.0956952
\(497\) −52.5064 −2.35523
\(498\) 0 0
\(499\) −8.35214 −0.373893 −0.186947 0.982370i \(-0.559859\pi\)
−0.186947 + 0.982370i \(0.559859\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 12.4755 0.556809
\(503\) 19.8111 0.883333 0.441667 0.897179i \(-0.354387\pi\)
0.441667 + 0.897179i \(0.354387\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 4.33877 0.192882
\(507\) 0 0
\(508\) −3.00291 −0.133233
\(509\) −29.1471 −1.29192 −0.645961 0.763371i \(-0.723543\pi\)
−0.645961 + 0.763371i \(0.723543\pi\)
\(510\) 0 0
\(511\) 7.00056 0.309686
\(512\) −5.51319 −0.243651
\(513\) 0 0
\(514\) 6.41853 0.283109
\(515\) 0 0
\(516\) 0 0
\(517\) −51.8913 −2.28218
\(518\) 32.9216 1.44649
\(519\) 0 0
\(520\) 0 0
\(521\) −3.73563 −0.163661 −0.0818306 0.996646i \(-0.526077\pi\)
−0.0818306 + 0.996646i \(0.526077\pi\)
\(522\) 0 0
\(523\) 28.4551 1.24425 0.622127 0.782916i \(-0.286269\pi\)
0.622127 + 0.782916i \(0.286269\pi\)
\(524\) −14.3498 −0.626874
\(525\) 0 0
\(526\) 14.4138 0.628471
\(527\) −5.11022 −0.222605
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 0 0
\(532\) 10.7218 0.464847
\(533\) 40.1483 1.73901
\(534\) 0 0
\(535\) 0 0
\(536\) 16.2941 0.703798
\(537\) 0 0
\(538\) −0.125873 −0.00542677
\(539\) 76.1132 3.27843
\(540\) 0 0
\(541\) 37.3591 1.60619 0.803097 0.595849i \(-0.203184\pi\)
0.803097 + 0.595849i \(0.203184\pi\)
\(542\) −21.2302 −0.911917
\(543\) 0 0
\(544\) 6.84366 0.293419
\(545\) 0 0
\(546\) 0 0
\(547\) 38.4683 1.64479 0.822394 0.568919i \(-0.192638\pi\)
0.822394 + 0.568919i \(0.192638\pi\)
\(548\) 0.438742 0.0187421
\(549\) 0 0
\(550\) 0 0
\(551\) 5.34838 0.227849
\(552\) 0 0
\(553\) 5.83896 0.248298
\(554\) −14.3073 −0.607857
\(555\) 0 0
\(556\) −12.8264 −0.543959
\(557\) 29.8981 1.26682 0.633412 0.773815i \(-0.281654\pi\)
0.633412 + 0.773815i \(0.281654\pi\)
\(558\) 0 0
\(559\) 47.0310 1.98920
\(560\) 0 0
\(561\) 0 0
\(562\) −15.1980 −0.641090
\(563\) 36.7777 1.54999 0.774997 0.631965i \(-0.217751\pi\)
0.774997 + 0.631965i \(0.217751\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 13.2768 0.558064
\(567\) 0 0
\(568\) −30.8849 −1.29590
\(569\) −19.0192 −0.797328 −0.398664 0.917097i \(-0.630526\pi\)
−0.398664 + 0.917097i \(0.630526\pi\)
\(570\) 0 0
\(571\) 41.8743 1.75238 0.876192 0.481962i \(-0.160076\pi\)
0.876192 + 0.481962i \(0.160076\pi\)
\(572\) 39.6946 1.65972
\(573\) 0 0
\(574\) 27.1513 1.13327
\(575\) 0 0
\(576\) 0 0
\(577\) −30.6755 −1.27704 −0.638520 0.769605i \(-0.720453\pi\)
−0.638520 + 0.769605i \(0.720453\pi\)
\(578\) 12.6552 0.526385
\(579\) 0 0
\(580\) 0 0
\(581\) −5.32265 −0.220821
\(582\) 0 0
\(583\) −54.6180 −2.26204
\(584\) 4.11781 0.170396
\(585\) 0 0
\(586\) −13.4129 −0.554081
\(587\) 1.52558 0.0629675 0.0314837 0.999504i \(-0.489977\pi\)
0.0314837 + 0.999504i \(0.489977\pi\)
\(588\) 0 0
\(589\) −7.52644 −0.310122
\(590\) 0 0
\(591\) 0 0
\(592\) −4.32764 −0.177865
\(593\) 5.12072 0.210283 0.105141 0.994457i \(-0.466471\pi\)
0.105141 + 0.994457i \(0.466471\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −30.2719 −1.23999
\(597\) 0 0
\(598\) −4.47336 −0.182929
\(599\) 18.5010 0.755931 0.377966 0.925820i \(-0.376624\pi\)
0.377966 + 0.925820i \(0.376624\pi\)
\(600\) 0 0
\(601\) −30.5128 −1.24464 −0.622322 0.782761i \(-0.713811\pi\)
−0.622322 + 0.782761i \(0.713811\pi\)
\(602\) 31.8059 1.29631
\(603\) 0 0
\(604\) −21.9355 −0.892544
\(605\) 0 0
\(606\) 0 0
\(607\) 20.6414 0.837808 0.418904 0.908031i \(-0.362414\pi\)
0.418904 + 0.908031i \(0.362414\pi\)
\(608\) 10.0795 0.408777
\(609\) 0 0
\(610\) 0 0
\(611\) 53.5010 2.16442
\(612\) 0 0
\(613\) 11.4793 0.463643 0.231822 0.972758i \(-0.425531\pi\)
0.231822 + 0.972758i \(0.425531\pi\)
\(614\) 14.0270 0.566085
\(615\) 0 0
\(616\) 66.8147 2.69204
\(617\) 19.8055 0.797340 0.398670 0.917095i \(-0.369472\pi\)
0.398670 + 0.917095i \(0.369472\pi\)
\(618\) 0 0
\(619\) −24.4491 −0.982692 −0.491346 0.870965i \(-0.663495\pi\)
−0.491346 + 0.870965i \(0.663495\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 13.6320 0.546595
\(623\) −24.8836 −0.996939
\(624\) 0 0
\(625\) 0 0
\(626\) −6.84450 −0.273561
\(627\) 0 0
\(628\) −17.8201 −0.711099
\(629\) 10.3767 0.413747
\(630\) 0 0
\(631\) 46.5829 1.85444 0.927218 0.374522i \(-0.122193\pi\)
0.927218 + 0.374522i \(0.122193\pi\)
\(632\) 3.43455 0.136619
\(633\) 0 0
\(634\) 26.5236 1.05339
\(635\) 0 0
\(636\) 0 0
\(637\) −78.4742 −3.10926
\(638\) 13.3909 0.530153
\(639\) 0 0
\(640\) 0 0
\(641\) 18.8170 0.743226 0.371613 0.928388i \(-0.378805\pi\)
0.371613 + 0.928388i \(0.378805\pi\)
\(642\) 0 0
\(643\) 17.1868 0.677783 0.338891 0.940826i \(-0.389948\pi\)
0.338891 + 0.940826i \(0.389948\pi\)
\(644\) 6.18712 0.243807
\(645\) 0 0
\(646\) −1.65239 −0.0650126
\(647\) 16.6153 0.653214 0.326607 0.945160i \(-0.394095\pi\)
0.326607 + 0.945160i \(0.394095\pi\)
\(648\) 0 0
\(649\) −62.8896 −2.46863
\(650\) 0 0
\(651\) 0 0
\(652\) −21.1237 −0.827267
\(653\) 8.71155 0.340909 0.170455 0.985366i \(-0.445476\pi\)
0.170455 + 0.985366i \(0.445476\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −3.56911 −0.139350
\(657\) 0 0
\(658\) 36.1814 1.41050
\(659\) 24.1116 0.939256 0.469628 0.882865i \(-0.344388\pi\)
0.469628 + 0.882865i \(0.344388\pi\)
\(660\) 0 0
\(661\) 39.6144 1.54082 0.770411 0.637548i \(-0.220051\pi\)
0.770411 + 0.637548i \(0.220051\pi\)
\(662\) 12.3190 0.478791
\(663\) 0 0
\(664\) −3.13085 −0.121500
\(665\) 0 0
\(666\) 0 0
\(667\) 3.08635 0.119504
\(668\) 2.13951 0.0827802
\(669\) 0 0
\(670\) 0 0
\(671\) 7.13494 0.275441
\(672\) 0 0
\(673\) −20.0269 −0.771980 −0.385990 0.922503i \(-0.626140\pi\)
−0.385990 + 0.922503i \(0.626140\pi\)
\(674\) 9.70485 0.373817
\(675\) 0 0
\(676\) −23.4640 −0.902463
\(677\) 51.3624 1.97402 0.987010 0.160662i \(-0.0513629\pi\)
0.987010 + 0.160662i \(0.0513629\pi\)
\(678\) 0 0
\(679\) −75.7440 −2.90679
\(680\) 0 0
\(681\) 0 0
\(682\) −18.8442 −0.721583
\(683\) 1.78656 0.0683609 0.0341804 0.999416i \(-0.489118\pi\)
0.0341804 + 0.999416i \(0.489118\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −26.9397 −1.02856
\(687\) 0 0
\(688\) −4.18097 −0.159398
\(689\) 56.3122 2.14532
\(690\) 0 0
\(691\) −51.7197 −1.96751 −0.983755 0.179515i \(-0.942547\pi\)
−0.983755 + 0.179515i \(0.942547\pi\)
\(692\) −9.27504 −0.352584
\(693\) 0 0
\(694\) −12.6975 −0.481990
\(695\) 0 0
\(696\) 0 0
\(697\) 8.55794 0.324155
\(698\) −19.4988 −0.738042
\(699\) 0 0
\(700\) 0 0
\(701\) 33.4929 1.26501 0.632504 0.774557i \(-0.282027\pi\)
0.632504 + 0.774557i \(0.282027\pi\)
\(702\) 0 0
\(703\) 15.2830 0.576411
\(704\) 19.9822 0.753106
\(705\) 0 0
\(706\) −18.2969 −0.688613
\(707\) −15.8177 −0.594887
\(708\) 0 0
\(709\) −15.8720 −0.596085 −0.298043 0.954553i \(-0.596334\pi\)
−0.298043 + 0.954553i \(0.596334\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −14.6368 −0.548538
\(713\) −4.34322 −0.162655
\(714\) 0 0
\(715\) 0 0
\(716\) 33.7842 1.26257
\(717\) 0 0
\(718\) 19.7038 0.735341
\(719\) −15.3345 −0.571881 −0.285941 0.958247i \(-0.592306\pi\)
−0.285941 + 0.958247i \(0.592306\pi\)
\(720\) 0 0
\(721\) −43.4306 −1.61744
\(722\) 12.9642 0.482479
\(723\) 0 0
\(724\) 17.4186 0.647358
\(725\) 0 0
\(726\) 0 0
\(727\) −27.1804 −1.00806 −0.504032 0.863685i \(-0.668151\pi\)
−0.504032 + 0.863685i \(0.668151\pi\)
\(728\) −68.8873 −2.55313
\(729\) 0 0
\(730\) 0 0
\(731\) 10.0250 0.370790
\(732\) 0 0
\(733\) 4.70308 0.173712 0.0868560 0.996221i \(-0.472318\pi\)
0.0868560 + 0.996221i \(0.472318\pi\)
\(734\) 13.0057 0.480050
\(735\) 0 0
\(736\) 5.81648 0.214398
\(737\) 32.1970 1.18599
\(738\) 0 0
\(739\) 1.19298 0.0438845 0.0219422 0.999759i \(-0.493015\pi\)
0.0219422 + 0.999759i \(0.493015\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 38.0825 1.39805
\(743\) −10.0273 −0.367867 −0.183934 0.982939i \(-0.558883\pi\)
−0.183934 + 0.982939i \(0.558883\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 12.0322 0.440531
\(747\) 0 0
\(748\) 8.46125 0.309374
\(749\) 68.6748 2.50932
\(750\) 0 0
\(751\) −19.2248 −0.701524 −0.350762 0.936465i \(-0.614077\pi\)
−0.350762 + 0.936465i \(0.614077\pi\)
\(752\) −4.75615 −0.173439
\(753\) 0 0
\(754\) −13.8063 −0.502797
\(755\) 0 0
\(756\) 0 0
\(757\) 29.0674 1.05647 0.528236 0.849098i \(-0.322854\pi\)
0.528236 + 0.849098i \(0.322854\pi\)
\(758\) −17.6916 −0.642588
\(759\) 0 0
\(760\) 0 0
\(761\) −34.9604 −1.26731 −0.633657 0.773614i \(-0.718447\pi\)
−0.633657 + 0.773614i \(0.718447\pi\)
\(762\) 0 0
\(763\) 38.0569 1.37775
\(764\) −5.25062 −0.189961
\(765\) 0 0
\(766\) −9.28658 −0.335538
\(767\) 64.8404 2.34125
\(768\) 0 0
\(769\) 8.00084 0.288518 0.144259 0.989540i \(-0.453920\pi\)
0.144259 + 0.989540i \(0.453920\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −3.60851 −0.129873
\(773\) 25.3463 0.911644 0.455822 0.890071i \(-0.349345\pi\)
0.455822 + 0.890071i \(0.349345\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −44.5535 −1.59938
\(777\) 0 0
\(778\) −24.8846 −0.892158
\(779\) 12.6043 0.451596
\(780\) 0 0
\(781\) −61.0282 −2.18376
\(782\) −0.953534 −0.0340983
\(783\) 0 0
\(784\) 6.97622 0.249151
\(785\) 0 0
\(786\) 0 0
\(787\) 5.10486 0.181969 0.0909843 0.995852i \(-0.470999\pi\)
0.0909843 + 0.995852i \(0.470999\pi\)
\(788\) 13.1386 0.468044
\(789\) 0 0
\(790\) 0 0
\(791\) −48.9544 −1.74062
\(792\) 0 0
\(793\) −7.35627 −0.261229
\(794\) −29.4542 −1.04529
\(795\) 0 0
\(796\) 25.6377 0.908704
\(797\) −44.0182 −1.55921 −0.779603 0.626274i \(-0.784579\pi\)
−0.779603 + 0.626274i \(0.784579\pi\)
\(798\) 0 0
\(799\) 11.4042 0.403451
\(800\) 0 0
\(801\) 0 0
\(802\) 5.86116 0.206965
\(803\) 8.13674 0.287139
\(804\) 0 0
\(805\) 0 0
\(806\) 19.4288 0.684350
\(807\) 0 0
\(808\) −9.30418 −0.327320
\(809\) 6.15978 0.216566 0.108283 0.994120i \(-0.465465\pi\)
0.108283 + 0.994120i \(0.465465\pi\)
\(810\) 0 0
\(811\) −2.23801 −0.0785873 −0.0392936 0.999228i \(-0.512511\pi\)
−0.0392936 + 0.999228i \(0.512511\pi\)
\(812\) 19.0956 0.670124
\(813\) 0 0
\(814\) 38.2647 1.34118
\(815\) 0 0
\(816\) 0 0
\(817\) 14.7651 0.516565
\(818\) 10.7209 0.374849
\(819\) 0 0
\(820\) 0 0
\(821\) −39.9914 −1.39571 −0.697855 0.716239i \(-0.745862\pi\)
−0.697855 + 0.716239i \(0.745862\pi\)
\(822\) 0 0
\(823\) −23.3116 −0.812590 −0.406295 0.913742i \(-0.633179\pi\)
−0.406295 + 0.913742i \(0.633179\pi\)
\(824\) −25.5464 −0.889951
\(825\) 0 0
\(826\) 43.8499 1.52573
\(827\) −43.4988 −1.51260 −0.756301 0.654224i \(-0.772995\pi\)
−0.756301 + 0.654224i \(0.772995\pi\)
\(828\) 0 0
\(829\) 33.1090 1.14992 0.574961 0.818181i \(-0.305017\pi\)
0.574961 + 0.818181i \(0.305017\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −20.6020 −0.714246
\(833\) −16.7274 −0.579571
\(834\) 0 0
\(835\) 0 0
\(836\) 12.4619 0.431004
\(837\) 0 0
\(838\) 14.8399 0.512637
\(839\) 52.5227 1.81329 0.906643 0.421899i \(-0.138636\pi\)
0.906643 + 0.421899i \(0.138636\pi\)
\(840\) 0 0
\(841\) −19.4745 −0.671533
\(842\) −11.5076 −0.396579
\(843\) 0 0
\(844\) 10.8737 0.374289
\(845\) 0 0
\(846\) 0 0
\(847\) 81.3571 2.79546
\(848\) −5.00606 −0.171909
\(849\) 0 0
\(850\) 0 0
\(851\) 8.81926 0.302320
\(852\) 0 0
\(853\) −22.9673 −0.786385 −0.393192 0.919456i \(-0.628629\pi\)
−0.393192 + 0.919456i \(0.628629\pi\)
\(854\) −4.97486 −0.170236
\(855\) 0 0
\(856\) 40.3954 1.38069
\(857\) −55.1228 −1.88296 −0.941480 0.337069i \(-0.890564\pi\)
−0.941480 + 0.337069i \(0.890564\pi\)
\(858\) 0 0
\(859\) −49.9526 −1.70436 −0.852180 0.523249i \(-0.824720\pi\)
−0.852180 + 0.523249i \(0.824720\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 28.4031 0.967413
\(863\) 12.0802 0.411214 0.205607 0.978635i \(-0.434083\pi\)
0.205607 + 0.978635i \(0.434083\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 2.54949 0.0866351
\(867\) 0 0
\(868\) −26.8721 −0.912097
\(869\) 6.78663 0.230221
\(870\) 0 0
\(871\) −33.1957 −1.12479
\(872\) 22.3855 0.758070
\(873\) 0 0
\(874\) −1.40438 −0.0475040
\(875\) 0 0
\(876\) 0 0
\(877\) −45.5573 −1.53836 −0.769180 0.639033i \(-0.779335\pi\)
−0.769180 + 0.639033i \(0.779335\pi\)
\(878\) −1.58447 −0.0534734
\(879\) 0 0
\(880\) 0 0
\(881\) 6.57232 0.221427 0.110714 0.993852i \(-0.464686\pi\)
0.110714 + 0.993852i \(0.464686\pi\)
\(882\) 0 0
\(883\) −5.51200 −0.185494 −0.0927468 0.995690i \(-0.529565\pi\)
−0.0927468 + 0.995690i \(0.529565\pi\)
\(884\) −8.72371 −0.293410
\(885\) 0 0
\(886\) −22.2775 −0.748428
\(887\) −31.2681 −1.04988 −0.524941 0.851139i \(-0.675913\pi\)
−0.524941 + 0.851139i \(0.675913\pi\)
\(888\) 0 0
\(889\) 10.2975 0.345369
\(890\) 0 0
\(891\) 0 0
\(892\) 19.0865 0.639062
\(893\) 16.7963 0.562067
\(894\) 0 0
\(895\) 0 0
\(896\) 39.6508 1.32464
\(897\) 0 0
\(898\) −2.29541 −0.0765987
\(899\) −13.4047 −0.447072
\(900\) 0 0
\(901\) 12.0034 0.399892
\(902\) 31.5579 1.05076
\(903\) 0 0
\(904\) −28.7956 −0.957726
\(905\) 0 0
\(906\) 0 0
\(907\) 12.7989 0.424982 0.212491 0.977163i \(-0.431842\pi\)
0.212491 + 0.977163i \(0.431842\pi\)
\(908\) 22.3319 0.741110
\(909\) 0 0
\(910\) 0 0
\(911\) 31.6963 1.05015 0.525073 0.851057i \(-0.324038\pi\)
0.525073 + 0.851057i \(0.324038\pi\)
\(912\) 0 0
\(913\) −6.18651 −0.204744
\(914\) −2.40730 −0.0796265
\(915\) 0 0
\(916\) −20.6373 −0.681875
\(917\) 49.2081 1.62500
\(918\) 0 0
\(919\) 7.63249 0.251773 0.125886 0.992045i \(-0.459823\pi\)
0.125886 + 0.992045i \(0.459823\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −13.1170 −0.431984
\(923\) 62.9212 2.07108
\(924\) 0 0
\(925\) 0 0
\(926\) −1.95082 −0.0641080
\(927\) 0 0
\(928\) 17.9517 0.589293
\(929\) −17.2979 −0.567525 −0.283763 0.958895i \(-0.591583\pi\)
−0.283763 + 0.958895i \(0.591583\pi\)
\(930\) 0 0
\(931\) −24.6365 −0.807429
\(932\) 20.2663 0.663844
\(933\) 0 0
\(934\) 8.15593 0.266870
\(935\) 0 0
\(936\) 0 0
\(937\) −12.5967 −0.411517 −0.205759 0.978603i \(-0.565966\pi\)
−0.205759 + 0.978603i \(0.565966\pi\)
\(938\) −22.4494 −0.732999
\(939\) 0 0
\(940\) 0 0
\(941\) 19.7213 0.642895 0.321448 0.946927i \(-0.395831\pi\)
0.321448 + 0.946927i \(0.395831\pi\)
\(942\) 0 0
\(943\) 7.27347 0.236857
\(944\) −5.76420 −0.187609
\(945\) 0 0
\(946\) 36.9679 1.20193
\(947\) −24.8824 −0.808569 −0.404285 0.914633i \(-0.632479\pi\)
−0.404285 + 0.914633i \(0.632479\pi\)
\(948\) 0 0
\(949\) −8.38914 −0.272323
\(950\) 0 0
\(951\) 0 0
\(952\) −14.6839 −0.475908
\(953\) −24.9095 −0.806899 −0.403449 0.915002i \(-0.632189\pi\)
−0.403449 + 0.915002i \(0.632189\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −1.91876 −0.0620570
\(957\) 0 0
\(958\) 21.1367 0.682895
\(959\) −1.50453 −0.0485837
\(960\) 0 0
\(961\) −12.1364 −0.391497
\(962\) −39.4517 −1.27197
\(963\) 0 0
\(964\) −14.2320 −0.458383
\(965\) 0 0
\(966\) 0 0
\(967\) 29.4706 0.947709 0.473855 0.880603i \(-0.342862\pi\)
0.473855 + 0.880603i \(0.342862\pi\)
\(968\) 47.8552 1.53813
\(969\) 0 0
\(970\) 0 0
\(971\) −36.7868 −1.18054 −0.590272 0.807204i \(-0.700980\pi\)
−0.590272 + 0.807204i \(0.700980\pi\)
\(972\) 0 0
\(973\) 43.9840 1.41006
\(974\) 19.2422 0.616560
\(975\) 0 0
\(976\) 0.653960 0.0209327
\(977\) 14.6435 0.468488 0.234244 0.972178i \(-0.424738\pi\)
0.234244 + 0.972178i \(0.424738\pi\)
\(978\) 0 0
\(979\) −28.9222 −0.924357
\(980\) 0 0
\(981\) 0 0
\(982\) 2.26516 0.0722843
\(983\) 1.10622 0.0352831 0.0176415 0.999844i \(-0.494384\pi\)
0.0176415 + 0.999844i \(0.494384\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −2.94294 −0.0937222
\(987\) 0 0
\(988\) −12.8485 −0.408764
\(989\) 8.52038 0.270932
\(990\) 0 0
\(991\) −42.7058 −1.35659 −0.678297 0.734788i \(-0.737282\pi\)
−0.678297 + 0.734788i \(0.737282\pi\)
\(992\) −25.2623 −0.802079
\(993\) 0 0
\(994\) 42.5520 1.34967
\(995\) 0 0
\(996\) 0 0
\(997\) −30.0771 −0.952553 −0.476276 0.879296i \(-0.658014\pi\)
−0.476276 + 0.879296i \(0.658014\pi\)
\(998\) 6.76871 0.214260
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5175.2.a.bz.1.3 6
3.2 odd 2 5175.2.a.by.1.4 6
5.4 even 2 1035.2.a.p.1.4 6
15.14 odd 2 1035.2.a.q.1.3 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1035.2.a.p.1.4 6 5.4 even 2
1035.2.a.q.1.3 yes 6 15.14 odd 2
5175.2.a.by.1.4 6 3.2 odd 2
5175.2.a.bz.1.3 6 1.1 even 1 trivial