Properties

Label 1040.6.a.ba.1.1
Level $1040$
Weight $6$
Character 1040.1
Self dual yes
Analytic conductor $166.799$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1040,6,Mod(1,1040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1040, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1040.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1040.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(166.799172605\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 1384x^{6} + 3672x^{5} + 603912x^{4} - 998448x^{3} - 83285728x^{2} + 113377312x + 442451152 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{15} \)
Twist minimal: no (minimal twist has level 520)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(26.7009\) of defining polynomial
Character \(\chi\) \(=\) 1040.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-22.7009 q^{3} +25.0000 q^{5} +147.624 q^{7} +272.331 q^{9} -137.651 q^{11} -169.000 q^{13} -567.523 q^{15} -1513.08 q^{17} +1627.36 q^{19} -3351.20 q^{21} -1653.47 q^{23} +625.000 q^{25} -665.847 q^{27} +2688.57 q^{29} +7589.65 q^{31} +3124.79 q^{33} +3690.60 q^{35} +5167.18 q^{37} +3836.45 q^{39} +3198.33 q^{41} +8182.03 q^{43} +6808.28 q^{45} +11704.4 q^{47} +4985.90 q^{49} +34348.3 q^{51} -40150.5 q^{53} -3441.27 q^{55} -36942.4 q^{57} -7504.29 q^{59} -25223.5 q^{61} +40202.7 q^{63} -4225.00 q^{65} +47087.0 q^{67} +37535.2 q^{69} -82033.3 q^{71} -27624.5 q^{73} -14188.1 q^{75} -20320.6 q^{77} +57175.9 q^{79} -51061.2 q^{81} -72698.2 q^{83} -37827.0 q^{85} -61032.9 q^{87} +68283.8 q^{89} -24948.5 q^{91} -172292. q^{93} +40683.9 q^{95} +29166.2 q^{97} -37486.6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 28 q^{3} + 200 q^{5} - 80 q^{7} + 936 q^{9} + 444 q^{11} - 1352 q^{13} + 700 q^{15} - 3400 q^{17} + 1668 q^{19} - 3816 q^{21} + 2964 q^{23} + 5000 q^{25} + 14464 q^{27} - 8272 q^{29} + 8684 q^{31}+ \cdots + 535828 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −22.7009 −1.45626 −0.728132 0.685437i \(-0.759611\pi\)
−0.728132 + 0.685437i \(0.759611\pi\)
\(4\) 0 0
\(5\) 25.0000 0.447214
\(6\) 0 0
\(7\) 147.624 1.13871 0.569354 0.822092i \(-0.307193\pi\)
0.569354 + 0.822092i \(0.307193\pi\)
\(8\) 0 0
\(9\) 272.331 1.12070
\(10\) 0 0
\(11\) −137.651 −0.343002 −0.171501 0.985184i \(-0.554862\pi\)
−0.171501 + 0.985184i \(0.554862\pi\)
\(12\) 0 0
\(13\) −169.000 −0.277350
\(14\) 0 0
\(15\) −567.523 −0.651261
\(16\) 0 0
\(17\) −1513.08 −1.26981 −0.634906 0.772589i \(-0.718961\pi\)
−0.634906 + 0.772589i \(0.718961\pi\)
\(18\) 0 0
\(19\) 1627.36 1.03419 0.517093 0.855929i \(-0.327014\pi\)
0.517093 + 0.855929i \(0.327014\pi\)
\(20\) 0 0
\(21\) −3351.20 −1.65826
\(22\) 0 0
\(23\) −1653.47 −0.651742 −0.325871 0.945414i \(-0.605658\pi\)
−0.325871 + 0.945414i \(0.605658\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 0 0
\(27\) −665.847 −0.175778
\(28\) 0 0
\(29\) 2688.57 0.593644 0.296822 0.954933i \(-0.404073\pi\)
0.296822 + 0.954933i \(0.404073\pi\)
\(30\) 0 0
\(31\) 7589.65 1.41846 0.709231 0.704977i \(-0.249043\pi\)
0.709231 + 0.704977i \(0.249043\pi\)
\(32\) 0 0
\(33\) 3124.79 0.499501
\(34\) 0 0
\(35\) 3690.60 0.509246
\(36\) 0 0
\(37\) 5167.18 0.620510 0.310255 0.950653i \(-0.399586\pi\)
0.310255 + 0.950653i \(0.399586\pi\)
\(38\) 0 0
\(39\) 3836.45 0.403895
\(40\) 0 0
\(41\) 3198.33 0.297142 0.148571 0.988902i \(-0.452533\pi\)
0.148571 + 0.988902i \(0.452533\pi\)
\(42\) 0 0
\(43\) 8182.03 0.674823 0.337411 0.941357i \(-0.390449\pi\)
0.337411 + 0.941357i \(0.390449\pi\)
\(44\) 0 0
\(45\) 6808.28 0.501194
\(46\) 0 0
\(47\) 11704.4 0.772865 0.386433 0.922318i \(-0.373707\pi\)
0.386433 + 0.922318i \(0.373707\pi\)
\(48\) 0 0
\(49\) 4985.90 0.296656
\(50\) 0 0
\(51\) 34348.3 1.84918
\(52\) 0 0
\(53\) −40150.5 −1.96337 −0.981684 0.190516i \(-0.938984\pi\)
−0.981684 + 0.190516i \(0.938984\pi\)
\(54\) 0 0
\(55\) −3441.27 −0.153395
\(56\) 0 0
\(57\) −36942.4 −1.50605
\(58\) 0 0
\(59\) −7504.29 −0.280659 −0.140330 0.990105i \(-0.544816\pi\)
−0.140330 + 0.990105i \(0.544816\pi\)
\(60\) 0 0
\(61\) −25223.5 −0.867921 −0.433961 0.900932i \(-0.642884\pi\)
−0.433961 + 0.900932i \(0.642884\pi\)
\(62\) 0 0
\(63\) 40202.7 1.27616
\(64\) 0 0
\(65\) −4225.00 −0.124035
\(66\) 0 0
\(67\) 47087.0 1.28149 0.640743 0.767756i \(-0.278627\pi\)
0.640743 + 0.767756i \(0.278627\pi\)
\(68\) 0 0
\(69\) 37535.2 0.949109
\(70\) 0 0
\(71\) −82033.3 −1.93128 −0.965638 0.259892i \(-0.916313\pi\)
−0.965638 + 0.259892i \(0.916313\pi\)
\(72\) 0 0
\(73\) −27624.5 −0.606719 −0.303360 0.952876i \(-0.598108\pi\)
−0.303360 + 0.952876i \(0.598108\pi\)
\(74\) 0 0
\(75\) −14188.1 −0.291253
\(76\) 0 0
\(77\) −20320.6 −0.390579
\(78\) 0 0
\(79\) 57175.9 1.03073 0.515366 0.856970i \(-0.327656\pi\)
0.515366 + 0.856970i \(0.327656\pi\)
\(80\) 0 0
\(81\) −51061.2 −0.864725
\(82\) 0 0
\(83\) −72698.2 −1.15832 −0.579160 0.815214i \(-0.696619\pi\)
−0.579160 + 0.815214i \(0.696619\pi\)
\(84\) 0 0
\(85\) −37827.0 −0.567877
\(86\) 0 0
\(87\) −61032.9 −0.864502
\(88\) 0 0
\(89\) 68283.8 0.913782 0.456891 0.889523i \(-0.348963\pi\)
0.456891 + 0.889523i \(0.348963\pi\)
\(90\) 0 0
\(91\) −24948.5 −0.315821
\(92\) 0 0
\(93\) −172292. −2.06565
\(94\) 0 0
\(95\) 40683.9 0.462502
\(96\) 0 0
\(97\) 29166.2 0.314739 0.157369 0.987540i \(-0.449699\pi\)
0.157369 + 0.987540i \(0.449699\pi\)
\(98\) 0 0
\(99\) −37486.6 −0.384404
\(100\) 0 0
\(101\) −54468.8 −0.531306 −0.265653 0.964069i \(-0.585587\pi\)
−0.265653 + 0.964069i \(0.585587\pi\)
\(102\) 0 0
\(103\) −44395.2 −0.412328 −0.206164 0.978517i \(-0.566098\pi\)
−0.206164 + 0.978517i \(0.566098\pi\)
\(104\) 0 0
\(105\) −83780.1 −0.741596
\(106\) 0 0
\(107\) 109705. 0.926337 0.463168 0.886270i \(-0.346713\pi\)
0.463168 + 0.886270i \(0.346713\pi\)
\(108\) 0 0
\(109\) 164919. 1.32955 0.664773 0.747045i \(-0.268528\pi\)
0.664773 + 0.747045i \(0.268528\pi\)
\(110\) 0 0
\(111\) −117300. −0.903627
\(112\) 0 0
\(113\) 26715.3 0.196818 0.0984089 0.995146i \(-0.468625\pi\)
0.0984089 + 0.995146i \(0.468625\pi\)
\(114\) 0 0
\(115\) −41336.7 −0.291468
\(116\) 0 0
\(117\) −46024.0 −0.310828
\(118\) 0 0
\(119\) −223367. −1.44595
\(120\) 0 0
\(121\) −142103. −0.882350
\(122\) 0 0
\(123\) −72605.1 −0.432717
\(124\) 0 0
\(125\) 15625.0 0.0894427
\(126\) 0 0
\(127\) −78433.4 −0.431511 −0.215755 0.976447i \(-0.569221\pi\)
−0.215755 + 0.976447i \(0.569221\pi\)
\(128\) 0 0
\(129\) −185739. −0.982720
\(130\) 0 0
\(131\) 110286. 0.561491 0.280746 0.959782i \(-0.409418\pi\)
0.280746 + 0.959782i \(0.409418\pi\)
\(132\) 0 0
\(133\) 240237. 1.17764
\(134\) 0 0
\(135\) −16646.2 −0.0786104
\(136\) 0 0
\(137\) −314670. −1.43236 −0.716182 0.697913i \(-0.754112\pi\)
−0.716182 + 0.697913i \(0.754112\pi\)
\(138\) 0 0
\(139\) −42243.6 −0.185449 −0.0927244 0.995692i \(-0.529558\pi\)
−0.0927244 + 0.995692i \(0.529558\pi\)
\(140\) 0 0
\(141\) −265700. −1.12550
\(142\) 0 0
\(143\) 23263.0 0.0951316
\(144\) 0 0
\(145\) 67214.2 0.265485
\(146\) 0 0
\(147\) −113184. −0.432009
\(148\) 0 0
\(149\) 336810. 1.24285 0.621425 0.783473i \(-0.286554\pi\)
0.621425 + 0.783473i \(0.286554\pi\)
\(150\) 0 0
\(151\) 541317. 1.93201 0.966005 0.258524i \(-0.0832363\pi\)
0.966005 + 0.258524i \(0.0832363\pi\)
\(152\) 0 0
\(153\) −412059. −1.42309
\(154\) 0 0
\(155\) 189741. 0.634355
\(156\) 0 0
\(157\) 139742. 0.452459 0.226230 0.974074i \(-0.427360\pi\)
0.226230 + 0.974074i \(0.427360\pi\)
\(158\) 0 0
\(159\) 911454. 2.85918
\(160\) 0 0
\(161\) −244092. −0.742144
\(162\) 0 0
\(163\) 466661. 1.37573 0.687864 0.725840i \(-0.258549\pi\)
0.687864 + 0.725840i \(0.258549\pi\)
\(164\) 0 0
\(165\) 78119.9 0.223384
\(166\) 0 0
\(167\) −521176. −1.44608 −0.723041 0.690805i \(-0.757256\pi\)
−0.723041 + 0.690805i \(0.757256\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 443180. 1.15902
\(172\) 0 0
\(173\) 301291. 0.765369 0.382684 0.923879i \(-0.375000\pi\)
0.382684 + 0.923879i \(0.375000\pi\)
\(174\) 0 0
\(175\) 92265.1 0.227742
\(176\) 0 0
\(177\) 170354. 0.408714
\(178\) 0 0
\(179\) −614256. −1.43290 −0.716452 0.697636i \(-0.754235\pi\)
−0.716452 + 0.697636i \(0.754235\pi\)
\(180\) 0 0
\(181\) 37018.5 0.0839889 0.0419945 0.999118i \(-0.486629\pi\)
0.0419945 + 0.999118i \(0.486629\pi\)
\(182\) 0 0
\(183\) 572596. 1.26392
\(184\) 0 0
\(185\) 129179. 0.277501
\(186\) 0 0
\(187\) 208276. 0.435548
\(188\) 0 0
\(189\) −98295.2 −0.200160
\(190\) 0 0
\(191\) −598128. −1.18634 −0.593172 0.805076i \(-0.702125\pi\)
−0.593172 + 0.805076i \(0.702125\pi\)
\(192\) 0 0
\(193\) −677994. −1.31018 −0.655092 0.755549i \(-0.727370\pi\)
−0.655092 + 0.755549i \(0.727370\pi\)
\(194\) 0 0
\(195\) 95911.3 0.180627
\(196\) 0 0
\(197\) 455876. 0.836915 0.418458 0.908236i \(-0.362571\pi\)
0.418458 + 0.908236i \(0.362571\pi\)
\(198\) 0 0
\(199\) 194307. 0.347822 0.173911 0.984761i \(-0.444360\pi\)
0.173911 + 0.984761i \(0.444360\pi\)
\(200\) 0 0
\(201\) −1.06892e6 −1.86618
\(202\) 0 0
\(203\) 396897. 0.675987
\(204\) 0 0
\(205\) 79958.4 0.132886
\(206\) 0 0
\(207\) −450291. −0.730411
\(208\) 0 0
\(209\) −224007. −0.354728
\(210\) 0 0
\(211\) 829362. 1.28244 0.641221 0.767356i \(-0.278428\pi\)
0.641221 + 0.767356i \(0.278428\pi\)
\(212\) 0 0
\(213\) 1.86223e6 2.81245
\(214\) 0 0
\(215\) 204551. 0.301790
\(216\) 0 0
\(217\) 1.12042e6 1.61521
\(218\) 0 0
\(219\) 627102. 0.883544
\(220\) 0 0
\(221\) 255711. 0.352183
\(222\) 0 0
\(223\) 31821.4 0.0428506 0.0214253 0.999770i \(-0.493180\pi\)
0.0214253 + 0.999770i \(0.493180\pi\)
\(224\) 0 0
\(225\) 170207. 0.224141
\(226\) 0 0
\(227\) 223867. 0.288354 0.144177 0.989552i \(-0.453947\pi\)
0.144177 + 0.989552i \(0.453947\pi\)
\(228\) 0 0
\(229\) −192513. −0.242590 −0.121295 0.992617i \(-0.538705\pi\)
−0.121295 + 0.992617i \(0.538705\pi\)
\(230\) 0 0
\(231\) 461295. 0.568786
\(232\) 0 0
\(233\) −600613. −0.724778 −0.362389 0.932027i \(-0.618039\pi\)
−0.362389 + 0.932027i \(0.618039\pi\)
\(234\) 0 0
\(235\) 292609. 0.345636
\(236\) 0 0
\(237\) −1.29795e6 −1.50102
\(238\) 0 0
\(239\) 511423. 0.579143 0.289571 0.957156i \(-0.406487\pi\)
0.289571 + 0.957156i \(0.406487\pi\)
\(240\) 0 0
\(241\) −1.11145e6 −1.23268 −0.616338 0.787482i \(-0.711385\pi\)
−0.616338 + 0.787482i \(0.711385\pi\)
\(242\) 0 0
\(243\) 1.32094e6 1.43505
\(244\) 0 0
\(245\) 124647. 0.132669
\(246\) 0 0
\(247\) −275023. −0.286831
\(248\) 0 0
\(249\) 1.65031e6 1.68682
\(250\) 0 0
\(251\) 480575. 0.481478 0.240739 0.970590i \(-0.422610\pi\)
0.240739 + 0.970590i \(0.422610\pi\)
\(252\) 0 0
\(253\) 227601. 0.223549
\(254\) 0 0
\(255\) 858707. 0.826979
\(256\) 0 0
\(257\) −119512. −0.112870 −0.0564349 0.998406i \(-0.517973\pi\)
−0.0564349 + 0.998406i \(0.517973\pi\)
\(258\) 0 0
\(259\) 762800. 0.706580
\(260\) 0 0
\(261\) 732181. 0.665299
\(262\) 0 0
\(263\) 913483. 0.814350 0.407175 0.913350i \(-0.366514\pi\)
0.407175 + 0.913350i \(0.366514\pi\)
\(264\) 0 0
\(265\) −1.00376e6 −0.878045
\(266\) 0 0
\(267\) −1.55010e6 −1.33071
\(268\) 0 0
\(269\) −405994. −0.342089 −0.171044 0.985263i \(-0.554714\pi\)
−0.171044 + 0.985263i \(0.554714\pi\)
\(270\) 0 0
\(271\) 1.65395e6 1.36804 0.684020 0.729463i \(-0.260230\pi\)
0.684020 + 0.729463i \(0.260230\pi\)
\(272\) 0 0
\(273\) 566353. 0.459918
\(274\) 0 0
\(275\) −86031.6 −0.0686004
\(276\) 0 0
\(277\) 198753. 0.155637 0.0778186 0.996968i \(-0.475205\pi\)
0.0778186 + 0.996968i \(0.475205\pi\)
\(278\) 0 0
\(279\) 2.06690e6 1.58968
\(280\) 0 0
\(281\) 1.93766e6 1.46390 0.731949 0.681359i \(-0.238611\pi\)
0.731949 + 0.681359i \(0.238611\pi\)
\(282\) 0 0
\(283\) 511264. 0.379471 0.189736 0.981835i \(-0.439237\pi\)
0.189736 + 0.981835i \(0.439237\pi\)
\(284\) 0 0
\(285\) −923561. −0.673525
\(286\) 0 0
\(287\) 472151. 0.338358
\(288\) 0 0
\(289\) 869554. 0.612424
\(290\) 0 0
\(291\) −662099. −0.458343
\(292\) 0 0
\(293\) 1.50838e6 1.02646 0.513228 0.858252i \(-0.328449\pi\)
0.513228 + 0.858252i \(0.328449\pi\)
\(294\) 0 0
\(295\) −187607. −0.125515
\(296\) 0 0
\(297\) 91654.3 0.0602923
\(298\) 0 0
\(299\) 279436. 0.180761
\(300\) 0 0
\(301\) 1.20786e6 0.768426
\(302\) 0 0
\(303\) 1.23649e6 0.773721
\(304\) 0 0
\(305\) −630587. −0.388146
\(306\) 0 0
\(307\) −584805. −0.354132 −0.177066 0.984199i \(-0.556661\pi\)
−0.177066 + 0.984199i \(0.556661\pi\)
\(308\) 0 0
\(309\) 1.00781e6 0.600458
\(310\) 0 0
\(311\) −921513. −0.540257 −0.270129 0.962824i \(-0.587066\pi\)
−0.270129 + 0.962824i \(0.587066\pi\)
\(312\) 0 0
\(313\) 1.53958e6 0.888263 0.444131 0.895962i \(-0.353512\pi\)
0.444131 + 0.895962i \(0.353512\pi\)
\(314\) 0 0
\(315\) 1.00507e6 0.570714
\(316\) 0 0
\(317\) 2.54339e6 1.42156 0.710779 0.703416i \(-0.248343\pi\)
0.710779 + 0.703416i \(0.248343\pi\)
\(318\) 0 0
\(319\) −370083. −0.203621
\(320\) 0 0
\(321\) −2.49041e6 −1.34899
\(322\) 0 0
\(323\) −2.46232e6 −1.31322
\(324\) 0 0
\(325\) −105625. −0.0554700
\(326\) 0 0
\(327\) −3.74380e6 −1.93617
\(328\) 0 0
\(329\) 1.72785e6 0.880068
\(330\) 0 0
\(331\) −247483. −0.124158 −0.0620790 0.998071i \(-0.519773\pi\)
−0.0620790 + 0.998071i \(0.519773\pi\)
\(332\) 0 0
\(333\) 1.40718e6 0.695409
\(334\) 0 0
\(335\) 1.17717e6 0.573098
\(336\) 0 0
\(337\) 1.06392e6 0.510312 0.255156 0.966900i \(-0.417873\pi\)
0.255156 + 0.966900i \(0.417873\pi\)
\(338\) 0 0
\(339\) −606462. −0.286619
\(340\) 0 0
\(341\) −1.04472e6 −0.486535
\(342\) 0 0
\(343\) −1.74508e6 −0.800904
\(344\) 0 0
\(345\) 938380. 0.424454
\(346\) 0 0
\(347\) −947067. −0.422238 −0.211119 0.977460i \(-0.567711\pi\)
−0.211119 + 0.977460i \(0.567711\pi\)
\(348\) 0 0
\(349\) 3.33542e6 1.46584 0.732921 0.680314i \(-0.238156\pi\)
0.732921 + 0.680314i \(0.238156\pi\)
\(350\) 0 0
\(351\) 112528. 0.0487521
\(352\) 0 0
\(353\) 2.27052e6 0.969812 0.484906 0.874566i \(-0.338854\pi\)
0.484906 + 0.874566i \(0.338854\pi\)
\(354\) 0 0
\(355\) −2.05083e6 −0.863693
\(356\) 0 0
\(357\) 5.07064e6 2.10568
\(358\) 0 0
\(359\) 4.41146e6 1.80654 0.903268 0.429077i \(-0.141161\pi\)
0.903268 + 0.429077i \(0.141161\pi\)
\(360\) 0 0
\(361\) 172187. 0.0695396
\(362\) 0 0
\(363\) 3.22587e6 1.28493
\(364\) 0 0
\(365\) −690614. −0.271333
\(366\) 0 0
\(367\) 1.14080e6 0.442123 0.221062 0.975260i \(-0.429048\pi\)
0.221062 + 0.975260i \(0.429048\pi\)
\(368\) 0 0
\(369\) 871007. 0.333009
\(370\) 0 0
\(371\) −5.92719e6 −2.23570
\(372\) 0 0
\(373\) 3.71773e6 1.38358 0.691792 0.722097i \(-0.256822\pi\)
0.691792 + 0.722097i \(0.256822\pi\)
\(374\) 0 0
\(375\) −354702. −0.130252
\(376\) 0 0
\(377\) −454368. −0.164647
\(378\) 0 0
\(379\) −4.85248e6 −1.73526 −0.867631 0.497208i \(-0.834359\pi\)
−0.867631 + 0.497208i \(0.834359\pi\)
\(380\) 0 0
\(381\) 1.78051e6 0.628394
\(382\) 0 0
\(383\) −1.33616e6 −0.465436 −0.232718 0.972544i \(-0.574762\pi\)
−0.232718 + 0.972544i \(0.574762\pi\)
\(384\) 0 0
\(385\) −508014. −0.174672
\(386\) 0 0
\(387\) 2.22822e6 0.756277
\(388\) 0 0
\(389\) 2.27174e6 0.761176 0.380588 0.924745i \(-0.375722\pi\)
0.380588 + 0.924745i \(0.375722\pi\)
\(390\) 0 0
\(391\) 2.50183e6 0.827590
\(392\) 0 0
\(393\) −2.50360e6 −0.817679
\(394\) 0 0
\(395\) 1.42940e6 0.460957
\(396\) 0 0
\(397\) −3.35406e6 −1.06806 −0.534029 0.845466i \(-0.679323\pi\)
−0.534029 + 0.845466i \(0.679323\pi\)
\(398\) 0 0
\(399\) −5.45360e6 −1.71495
\(400\) 0 0
\(401\) 403581. 0.125334 0.0626671 0.998034i \(-0.480039\pi\)
0.0626671 + 0.998034i \(0.480039\pi\)
\(402\) 0 0
\(403\) −1.28265e6 −0.393410
\(404\) 0 0
\(405\) −1.27653e6 −0.386717
\(406\) 0 0
\(407\) −711265. −0.212836
\(408\) 0 0
\(409\) 1.13451e6 0.335351 0.167676 0.985842i \(-0.446374\pi\)
0.167676 + 0.985842i \(0.446374\pi\)
\(410\) 0 0
\(411\) 7.14329e6 2.08590
\(412\) 0 0
\(413\) −1.10781e6 −0.319589
\(414\) 0 0
\(415\) −1.81745e6 −0.518016
\(416\) 0 0
\(417\) 958968. 0.270062
\(418\) 0 0
\(419\) −4.83882e6 −1.34649 −0.673247 0.739418i \(-0.735101\pi\)
−0.673247 + 0.739418i \(0.735101\pi\)
\(420\) 0 0
\(421\) 6.42204e6 1.76591 0.882953 0.469462i \(-0.155552\pi\)
0.882953 + 0.469462i \(0.155552\pi\)
\(422\) 0 0
\(423\) 3.18747e6 0.866154
\(424\) 0 0
\(425\) −945675. −0.253963
\(426\) 0 0
\(427\) −3.72359e6 −0.988309
\(428\) 0 0
\(429\) −528090. −0.138537
\(430\) 0 0
\(431\) 4.27098e6 1.10747 0.553737 0.832691i \(-0.313201\pi\)
0.553737 + 0.832691i \(0.313201\pi\)
\(432\) 0 0
\(433\) −2.39291e6 −0.613347 −0.306673 0.951815i \(-0.599216\pi\)
−0.306673 + 0.951815i \(0.599216\pi\)
\(434\) 0 0
\(435\) −1.52582e6 −0.386617
\(436\) 0 0
\(437\) −2.69078e6 −0.674022
\(438\) 0 0
\(439\) 4.46618e6 1.10605 0.553025 0.833165i \(-0.313473\pi\)
0.553025 + 0.833165i \(0.313473\pi\)
\(440\) 0 0
\(441\) 1.35782e6 0.332464
\(442\) 0 0
\(443\) 3.43498e6 0.831601 0.415801 0.909456i \(-0.363501\pi\)
0.415801 + 0.909456i \(0.363501\pi\)
\(444\) 0 0
\(445\) 1.70709e6 0.408656
\(446\) 0 0
\(447\) −7.64589e6 −1.80992
\(448\) 0 0
\(449\) 527773. 0.123547 0.0617733 0.998090i \(-0.480324\pi\)
0.0617733 + 0.998090i \(0.480324\pi\)
\(450\) 0 0
\(451\) −440253. −0.101920
\(452\) 0 0
\(453\) −1.22884e7 −2.81352
\(454\) 0 0
\(455\) −623712. −0.141239
\(456\) 0 0
\(457\) −1.69933e6 −0.380616 −0.190308 0.981724i \(-0.560949\pi\)
−0.190308 + 0.981724i \(0.560949\pi\)
\(458\) 0 0
\(459\) 1.00748e6 0.223205
\(460\) 0 0
\(461\) 4.81607e6 1.05546 0.527729 0.849413i \(-0.323044\pi\)
0.527729 + 0.849413i \(0.323044\pi\)
\(462\) 0 0
\(463\) −2.59596e6 −0.562790 −0.281395 0.959592i \(-0.590797\pi\)
−0.281395 + 0.959592i \(0.590797\pi\)
\(464\) 0 0
\(465\) −4.30730e6 −0.923789
\(466\) 0 0
\(467\) 2.17723e6 0.461968 0.230984 0.972958i \(-0.425806\pi\)
0.230984 + 0.972958i \(0.425806\pi\)
\(468\) 0 0
\(469\) 6.95117e6 1.45924
\(470\) 0 0
\(471\) −3.17228e6 −0.658900
\(472\) 0 0
\(473\) −1.12626e6 −0.231465
\(474\) 0 0
\(475\) 1.01710e6 0.206837
\(476\) 0 0
\(477\) −1.09342e7 −2.20036
\(478\) 0 0
\(479\) −589971. −0.117488 −0.0587438 0.998273i \(-0.518709\pi\)
−0.0587438 + 0.998273i \(0.518709\pi\)
\(480\) 0 0
\(481\) −873253. −0.172099
\(482\) 0 0
\(483\) 5.54110e6 1.08076
\(484\) 0 0
\(485\) 729154. 0.140755
\(486\) 0 0
\(487\) −5.54614e6 −1.05966 −0.529832 0.848103i \(-0.677745\pi\)
−0.529832 + 0.848103i \(0.677745\pi\)
\(488\) 0 0
\(489\) −1.05936e7 −2.00342
\(490\) 0 0
\(491\) 1.72697e6 0.323282 0.161641 0.986850i \(-0.448321\pi\)
0.161641 + 0.986850i \(0.448321\pi\)
\(492\) 0 0
\(493\) −4.06802e6 −0.753816
\(494\) 0 0
\(495\) −937164. −0.171911
\(496\) 0 0
\(497\) −1.21101e7 −2.19916
\(498\) 0 0
\(499\) 4.21295e6 0.757416 0.378708 0.925516i \(-0.376368\pi\)
0.378708 + 0.925516i \(0.376368\pi\)
\(500\) 0 0
\(501\) 1.18312e7 2.10588
\(502\) 0 0
\(503\) 7.74311e6 1.36457 0.682285 0.731087i \(-0.260986\pi\)
0.682285 + 0.731087i \(0.260986\pi\)
\(504\) 0 0
\(505\) −1.36172e6 −0.237607
\(506\) 0 0
\(507\) −648361. −0.112020
\(508\) 0 0
\(509\) 6.55567e6 1.12156 0.560780 0.827965i \(-0.310501\pi\)
0.560780 + 0.827965i \(0.310501\pi\)
\(510\) 0 0
\(511\) −4.07805e6 −0.690876
\(512\) 0 0
\(513\) −1.08357e6 −0.181787
\(514\) 0 0
\(515\) −1.10988e6 −0.184399
\(516\) 0 0
\(517\) −1.61111e6 −0.265094
\(518\) 0 0
\(519\) −6.83958e6 −1.11458
\(520\) 0 0
\(521\) 6.32460e6 1.02079 0.510397 0.859939i \(-0.329498\pi\)
0.510397 + 0.859939i \(0.329498\pi\)
\(522\) 0 0
\(523\) 3.89046e6 0.621938 0.310969 0.950420i \(-0.399347\pi\)
0.310969 + 0.950420i \(0.399347\pi\)
\(524\) 0 0
\(525\) −2.09450e6 −0.331652
\(526\) 0 0
\(527\) −1.14837e7 −1.80118
\(528\) 0 0
\(529\) −3.70239e6 −0.575232
\(530\) 0 0
\(531\) −2.04365e6 −0.314536
\(532\) 0 0
\(533\) −540518. −0.0824124
\(534\) 0 0
\(535\) 2.74264e6 0.414270
\(536\) 0 0
\(537\) 1.39442e7 2.08669
\(538\) 0 0
\(539\) −686312. −0.101754
\(540\) 0 0
\(541\) 986681. 0.144938 0.0724692 0.997371i \(-0.476912\pi\)
0.0724692 + 0.997371i \(0.476912\pi\)
\(542\) 0 0
\(543\) −840353. −0.122310
\(544\) 0 0
\(545\) 4.12296e6 0.594591
\(546\) 0 0
\(547\) 8.88626e6 1.26985 0.634923 0.772576i \(-0.281032\pi\)
0.634923 + 0.772576i \(0.281032\pi\)
\(548\) 0 0
\(549\) −6.86914e6 −0.972684
\(550\) 0 0
\(551\) 4.37525e6 0.613938
\(552\) 0 0
\(553\) 8.44055e6 1.17370
\(554\) 0 0
\(555\) −2.93249e6 −0.404114
\(556\) 0 0
\(557\) 290968. 0.0397381 0.0198691 0.999803i \(-0.493675\pi\)
0.0198691 + 0.999803i \(0.493675\pi\)
\(558\) 0 0
\(559\) −1.38276e6 −0.187162
\(560\) 0 0
\(561\) −4.72806e6 −0.634273
\(562\) 0 0
\(563\) −6.66482e6 −0.886171 −0.443086 0.896479i \(-0.646116\pi\)
−0.443086 + 0.896479i \(0.646116\pi\)
\(564\) 0 0
\(565\) 667883. 0.0880196
\(566\) 0 0
\(567\) −7.53786e6 −0.984670
\(568\) 0 0
\(569\) 3.61160e6 0.467648 0.233824 0.972279i \(-0.424876\pi\)
0.233824 + 0.972279i \(0.424876\pi\)
\(570\) 0 0
\(571\) 4.60236e6 0.590731 0.295366 0.955384i \(-0.404559\pi\)
0.295366 + 0.955384i \(0.404559\pi\)
\(572\) 0 0
\(573\) 1.35781e7 1.72763
\(574\) 0 0
\(575\) −1.03342e6 −0.130348
\(576\) 0 0
\(577\) −5.43584e6 −0.679715 −0.339858 0.940477i \(-0.610379\pi\)
−0.339858 + 0.940477i \(0.610379\pi\)
\(578\) 0 0
\(579\) 1.53911e7 1.90797
\(580\) 0 0
\(581\) −1.07320e7 −1.31899
\(582\) 0 0
\(583\) 5.52675e6 0.673439
\(584\) 0 0
\(585\) −1.15060e6 −0.139006
\(586\) 0 0
\(587\) 1.04917e7 1.25676 0.628379 0.777907i \(-0.283719\pi\)
0.628379 + 0.777907i \(0.283719\pi\)
\(588\) 0 0
\(589\) 1.23511e7 1.46695
\(590\) 0 0
\(591\) −1.03488e7 −1.21877
\(592\) 0 0
\(593\) −1.31698e7 −1.53795 −0.768974 0.639280i \(-0.779233\pi\)
−0.768974 + 0.639280i \(0.779233\pi\)
\(594\) 0 0
\(595\) −5.58418e6 −0.646647
\(596\) 0 0
\(597\) −4.41095e6 −0.506520
\(598\) 0 0
\(599\) 1.40030e7 1.59461 0.797306 0.603576i \(-0.206258\pi\)
0.797306 + 0.603576i \(0.206258\pi\)
\(600\) 0 0
\(601\) 1.68332e7 1.90099 0.950494 0.310743i \(-0.100578\pi\)
0.950494 + 0.310743i \(0.100578\pi\)
\(602\) 0 0
\(603\) 1.28233e7 1.43617
\(604\) 0 0
\(605\) −3.55258e6 −0.394599
\(606\) 0 0
\(607\) −6.67520e6 −0.735347 −0.367674 0.929955i \(-0.619846\pi\)
−0.367674 + 0.929955i \(0.619846\pi\)
\(608\) 0 0
\(609\) −9.00993e6 −0.984415
\(610\) 0 0
\(611\) −1.97804e6 −0.214354
\(612\) 0 0
\(613\) −1.63152e6 −0.175364 −0.0876819 0.996149i \(-0.527946\pi\)
−0.0876819 + 0.996149i \(0.527946\pi\)
\(614\) 0 0
\(615\) −1.81513e6 −0.193517
\(616\) 0 0
\(617\) −2.44624e6 −0.258694 −0.129347 0.991599i \(-0.541288\pi\)
−0.129347 + 0.991599i \(0.541288\pi\)
\(618\) 0 0
\(619\) 1.50386e7 1.57754 0.788772 0.614686i \(-0.210717\pi\)
0.788772 + 0.614686i \(0.210717\pi\)
\(620\) 0 0
\(621\) 1.10096e6 0.114562
\(622\) 0 0
\(623\) 1.00803e7 1.04053
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 0 0
\(627\) 5.08515e6 0.516577
\(628\) 0 0
\(629\) −7.81835e6 −0.787932
\(630\) 0 0
\(631\) −1.03549e7 −1.03532 −0.517659 0.855587i \(-0.673196\pi\)
−0.517659 + 0.855587i \(0.673196\pi\)
\(632\) 0 0
\(633\) −1.88273e7 −1.86758
\(634\) 0 0
\(635\) −1.96084e6 −0.192978
\(636\) 0 0
\(637\) −842616. −0.0822775
\(638\) 0 0
\(639\) −2.23402e7 −2.16439
\(640\) 0 0
\(641\) 7.97904e6 0.767018 0.383509 0.923537i \(-0.374716\pi\)
0.383509 + 0.923537i \(0.374716\pi\)
\(642\) 0 0
\(643\) 3.41189e6 0.325437 0.162719 0.986672i \(-0.447974\pi\)
0.162719 + 0.986672i \(0.447974\pi\)
\(644\) 0 0
\(645\) −4.64349e6 −0.439486
\(646\) 0 0
\(647\) −2.15098e6 −0.202011 −0.101006 0.994886i \(-0.532206\pi\)
−0.101006 + 0.994886i \(0.532206\pi\)
\(648\) 0 0
\(649\) 1.03297e6 0.0962666
\(650\) 0 0
\(651\) −2.54345e7 −2.35218
\(652\) 0 0
\(653\) −4.06049e6 −0.372645 −0.186322 0.982489i \(-0.559657\pi\)
−0.186322 + 0.982489i \(0.559657\pi\)
\(654\) 0 0
\(655\) 2.75715e6 0.251106
\(656\) 0 0
\(657\) −7.52303e6 −0.679954
\(658\) 0 0
\(659\) 1.12408e7 1.00828 0.504142 0.863621i \(-0.331809\pi\)
0.504142 + 0.863621i \(0.331809\pi\)
\(660\) 0 0
\(661\) 1.59322e7 1.41831 0.709155 0.705053i \(-0.249077\pi\)
0.709155 + 0.705053i \(0.249077\pi\)
\(662\) 0 0
\(663\) −5.80486e6 −0.512871
\(664\) 0 0
\(665\) 6.00592e6 0.526654
\(666\) 0 0
\(667\) −4.44545e6 −0.386903
\(668\) 0 0
\(669\) −722375. −0.0624018
\(670\) 0 0
\(671\) 3.47203e6 0.297699
\(672\) 0 0
\(673\) −663601. −0.0564767 −0.0282383 0.999601i \(-0.508990\pi\)
−0.0282383 + 0.999601i \(0.508990\pi\)
\(674\) 0 0
\(675\) −416155. −0.0351557
\(676\) 0 0
\(677\) 6.74152e6 0.565309 0.282654 0.959222i \(-0.408785\pi\)
0.282654 + 0.959222i \(0.408785\pi\)
\(678\) 0 0
\(679\) 4.30563e6 0.358395
\(680\) 0 0
\(681\) −5.08198e6 −0.419919
\(682\) 0 0
\(683\) −1.81453e7 −1.48838 −0.744188 0.667971i \(-0.767163\pi\)
−0.744188 + 0.667971i \(0.767163\pi\)
\(684\) 0 0
\(685\) −7.86674e6 −0.640573
\(686\) 0 0
\(687\) 4.37023e6 0.353275
\(688\) 0 0
\(689\) 6.78544e6 0.544540
\(690\) 0 0
\(691\) −1.81716e7 −1.44776 −0.723881 0.689925i \(-0.757644\pi\)
−0.723881 + 0.689925i \(0.757644\pi\)
\(692\) 0 0
\(693\) −5.53392e6 −0.437724
\(694\) 0 0
\(695\) −1.05609e6 −0.0829352
\(696\) 0 0
\(697\) −4.83934e6 −0.377315
\(698\) 0 0
\(699\) 1.36345e7 1.05547
\(700\) 0 0
\(701\) 2.27659e7 1.74981 0.874904 0.484296i \(-0.160924\pi\)
0.874904 + 0.484296i \(0.160924\pi\)
\(702\) 0 0
\(703\) 8.40883e6 0.641723
\(704\) 0 0
\(705\) −6.64250e6 −0.503337
\(706\) 0 0
\(707\) −8.04091e6 −0.605002
\(708\) 0 0
\(709\) 1.78660e7 1.33479 0.667394 0.744705i \(-0.267410\pi\)
0.667394 + 0.744705i \(0.267410\pi\)
\(710\) 0 0
\(711\) 1.55708e7 1.15515
\(712\) 0 0
\(713\) −1.25492e7 −0.924471
\(714\) 0 0
\(715\) 581574. 0.0425441
\(716\) 0 0
\(717\) −1.16098e7 −0.843385
\(718\) 0 0
\(719\) 2.02589e7 1.46148 0.730741 0.682655i \(-0.239175\pi\)
0.730741 + 0.682655i \(0.239175\pi\)
\(720\) 0 0
\(721\) −6.55380e6 −0.469521
\(722\) 0 0
\(723\) 2.52310e7 1.79510
\(724\) 0 0
\(725\) 1.68035e6 0.118729
\(726\) 0 0
\(727\) −3.97292e6 −0.278788 −0.139394 0.990237i \(-0.544515\pi\)
−0.139394 + 0.990237i \(0.544515\pi\)
\(728\) 0 0
\(729\) −1.75786e7 −1.22508
\(730\) 0 0
\(731\) −1.23801e7 −0.856898
\(732\) 0 0
\(733\) 7.73407e6 0.531677 0.265839 0.964018i \(-0.414351\pi\)
0.265839 + 0.964018i \(0.414351\pi\)
\(734\) 0 0
\(735\) −2.82961e6 −0.193200
\(736\) 0 0
\(737\) −6.48155e6 −0.439552
\(738\) 0 0
\(739\) 1.05854e7 0.713009 0.356504 0.934294i \(-0.383968\pi\)
0.356504 + 0.934294i \(0.383968\pi\)
\(740\) 0 0
\(741\) 6.24327e6 0.417702
\(742\) 0 0
\(743\) 6.43652e6 0.427739 0.213870 0.976862i \(-0.431393\pi\)
0.213870 + 0.976862i \(0.431393\pi\)
\(744\) 0 0
\(745\) 8.42024e6 0.555820
\(746\) 0 0
\(747\) −1.97980e7 −1.29813
\(748\) 0 0
\(749\) 1.61952e7 1.05483
\(750\) 0 0
\(751\) −1.15224e7 −0.745493 −0.372747 0.927933i \(-0.621584\pi\)
−0.372747 + 0.927933i \(0.621584\pi\)
\(752\) 0 0
\(753\) −1.09095e7 −0.701159
\(754\) 0 0
\(755\) 1.35329e7 0.864021
\(756\) 0 0
\(757\) −2.37710e7 −1.50768 −0.753838 0.657061i \(-0.771799\pi\)
−0.753838 + 0.657061i \(0.771799\pi\)
\(758\) 0 0
\(759\) −5.16674e6 −0.325546
\(760\) 0 0
\(761\) 1.04140e7 0.651861 0.325930 0.945394i \(-0.394323\pi\)
0.325930 + 0.945394i \(0.394323\pi\)
\(762\) 0 0
\(763\) 2.43460e7 1.51396
\(764\) 0 0
\(765\) −1.03015e7 −0.636423
\(766\) 0 0
\(767\) 1.26822e6 0.0778409
\(768\) 0 0
\(769\) 1.62159e7 0.988840 0.494420 0.869223i \(-0.335380\pi\)
0.494420 + 0.869223i \(0.335380\pi\)
\(770\) 0 0
\(771\) 2.71302e6 0.164368
\(772\) 0 0
\(773\) −1.81491e7 −1.09246 −0.546232 0.837634i \(-0.683938\pi\)
−0.546232 + 0.837634i \(0.683938\pi\)
\(774\) 0 0
\(775\) 4.74353e6 0.283692
\(776\) 0 0
\(777\) −1.73163e7 −1.02897
\(778\) 0 0
\(779\) 5.20483e6 0.307300
\(780\) 0 0
\(781\) 1.12919e7 0.662431
\(782\) 0 0
\(783\) −1.79017e6 −0.104350
\(784\) 0 0
\(785\) 3.49356e6 0.202346
\(786\) 0 0
\(787\) 5.88857e6 0.338901 0.169451 0.985539i \(-0.445801\pi\)
0.169451 + 0.985539i \(0.445801\pi\)
\(788\) 0 0
\(789\) −2.07369e7 −1.18591
\(790\) 0 0
\(791\) 3.94383e6 0.224118
\(792\) 0 0
\(793\) 4.26277e6 0.240718
\(794\) 0 0
\(795\) 2.27863e7 1.27867
\(796\) 0 0
\(797\) −288198. −0.0160711 −0.00803553 0.999968i \(-0.502558\pi\)
−0.00803553 + 0.999968i \(0.502558\pi\)
\(798\) 0 0
\(799\) −1.77097e7 −0.981394
\(800\) 0 0
\(801\) 1.85958e7 1.02408
\(802\) 0 0
\(803\) 3.80254e6 0.208106
\(804\) 0 0
\(805\) −6.10229e6 −0.331897
\(806\) 0 0
\(807\) 9.21643e6 0.498171
\(808\) 0 0
\(809\) 3.20143e6 0.171978 0.0859890 0.996296i \(-0.472595\pi\)
0.0859890 + 0.996296i \(0.472595\pi\)
\(810\) 0 0
\(811\) 4.36938e6 0.233275 0.116637 0.993175i \(-0.462788\pi\)
0.116637 + 0.993175i \(0.462788\pi\)
\(812\) 0 0
\(813\) −3.75462e7 −1.99223
\(814\) 0 0
\(815\) 1.16665e7 0.615244
\(816\) 0 0
\(817\) 1.33151e7 0.697892
\(818\) 0 0
\(819\) −6.79425e6 −0.353942
\(820\) 0 0
\(821\) −2.60548e7 −1.34906 −0.674528 0.738250i \(-0.735653\pi\)
−0.674528 + 0.738250i \(0.735653\pi\)
\(822\) 0 0
\(823\) −6.18846e6 −0.318480 −0.159240 0.987240i \(-0.550904\pi\)
−0.159240 + 0.987240i \(0.550904\pi\)
\(824\) 0 0
\(825\) 1.95300e6 0.0999003
\(826\) 0 0
\(827\) 2.87318e7 1.46083 0.730415 0.683004i \(-0.239327\pi\)
0.730415 + 0.683004i \(0.239327\pi\)
\(828\) 0 0
\(829\) −1.25204e7 −0.632747 −0.316374 0.948635i \(-0.602465\pi\)
−0.316374 + 0.948635i \(0.602465\pi\)
\(830\) 0 0
\(831\) −4.51186e6 −0.226649
\(832\) 0 0
\(833\) −7.54406e6 −0.376697
\(834\) 0 0
\(835\) −1.30294e7 −0.646708
\(836\) 0 0
\(837\) −5.05355e6 −0.249335
\(838\) 0 0
\(839\) −3.18538e7 −1.56227 −0.781135 0.624362i \(-0.785359\pi\)
−0.781135 + 0.624362i \(0.785359\pi\)
\(840\) 0 0
\(841\) −1.32828e7 −0.647587
\(842\) 0 0
\(843\) −4.39865e7 −2.13182
\(844\) 0 0
\(845\) 714025. 0.0344010
\(846\) 0 0
\(847\) −2.09779e7 −1.00474
\(848\) 0 0
\(849\) −1.16062e7 −0.552610
\(850\) 0 0
\(851\) −8.54375e6 −0.404413
\(852\) 0 0
\(853\) −3.85797e7 −1.81546 −0.907728 0.419559i \(-0.862185\pi\)
−0.907728 + 0.419559i \(0.862185\pi\)
\(854\) 0 0
\(855\) 1.10795e7 0.518328
\(856\) 0 0
\(857\) −1.88205e7 −0.875343 −0.437671 0.899135i \(-0.644197\pi\)
−0.437671 + 0.899135i \(0.644197\pi\)
\(858\) 0 0
\(859\) 1.70447e7 0.788144 0.394072 0.919080i \(-0.371066\pi\)
0.394072 + 0.919080i \(0.371066\pi\)
\(860\) 0 0
\(861\) −1.07183e7 −0.492739
\(862\) 0 0
\(863\) −2.59489e7 −1.18602 −0.593011 0.805194i \(-0.702061\pi\)
−0.593011 + 0.805194i \(0.702061\pi\)
\(864\) 0 0
\(865\) 7.53227e6 0.342283
\(866\) 0 0
\(867\) −1.97397e7 −0.891851
\(868\) 0 0
\(869\) −7.87030e6 −0.353543
\(870\) 0 0
\(871\) −7.95770e6 −0.355420
\(872\) 0 0
\(873\) 7.94286e6 0.352729
\(874\) 0 0
\(875\) 2.30663e6 0.101849
\(876\) 0 0
\(877\) −1.89248e7 −0.830868 −0.415434 0.909623i \(-0.636370\pi\)
−0.415434 + 0.909623i \(0.636370\pi\)
\(878\) 0 0
\(879\) −3.42415e7 −1.49479
\(880\) 0 0
\(881\) −1.33947e7 −0.581425 −0.290713 0.956810i \(-0.593892\pi\)
−0.290713 + 0.956810i \(0.593892\pi\)
\(882\) 0 0
\(883\) 2.31251e6 0.0998117 0.0499059 0.998754i \(-0.484108\pi\)
0.0499059 + 0.998754i \(0.484108\pi\)
\(884\) 0 0
\(885\) 4.25885e6 0.182782
\(886\) 0 0
\(887\) 2.16186e7 0.922611 0.461306 0.887241i \(-0.347381\pi\)
0.461306 + 0.887241i \(0.347381\pi\)
\(888\) 0 0
\(889\) −1.15787e7 −0.491365
\(890\) 0 0
\(891\) 7.02860e6 0.296602
\(892\) 0 0
\(893\) 1.90472e7 0.799286
\(894\) 0 0
\(895\) −1.53564e7 −0.640814
\(896\) 0 0
\(897\) −6.34345e6 −0.263235
\(898\) 0 0
\(899\) 2.04053e7 0.842060
\(900\) 0 0
\(901\) 6.07510e7 2.49311
\(902\) 0 0
\(903\) −2.74196e7 −1.11903
\(904\) 0 0
\(905\) 925461. 0.0375610
\(906\) 0 0
\(907\) −2.52097e7 −1.01753 −0.508767 0.860904i \(-0.669898\pi\)
−0.508767 + 0.860904i \(0.669898\pi\)
\(908\) 0 0
\(909\) −1.48336e7 −0.595437
\(910\) 0 0
\(911\) 1.76590e7 0.704968 0.352484 0.935818i \(-0.385337\pi\)
0.352484 + 0.935818i \(0.385337\pi\)
\(912\) 0 0
\(913\) 1.00069e7 0.397306
\(914\) 0 0
\(915\) 1.43149e7 0.565243
\(916\) 0 0
\(917\) 1.62809e7 0.639374
\(918\) 0 0
\(919\) 1.60007e7 0.624958 0.312479 0.949925i \(-0.398841\pi\)
0.312479 + 0.949925i \(0.398841\pi\)
\(920\) 0 0
\(921\) 1.32756e7 0.515710
\(922\) 0 0
\(923\) 1.38636e7 0.535639
\(924\) 0 0
\(925\) 3.22949e6 0.124102
\(926\) 0 0
\(927\) −1.20902e7 −0.462098
\(928\) 0 0
\(929\) −3.95210e7 −1.50241 −0.751204 0.660070i \(-0.770527\pi\)
−0.751204 + 0.660070i \(0.770527\pi\)
\(930\) 0 0
\(931\) 8.11382e6 0.306797
\(932\) 0 0
\(933\) 2.09192e7 0.786757
\(934\) 0 0
\(935\) 5.20691e6 0.194783
\(936\) 0 0
\(937\) −2.98037e7 −1.10897 −0.554487 0.832192i \(-0.687086\pi\)
−0.554487 + 0.832192i \(0.687086\pi\)
\(938\) 0 0
\(939\) −3.49499e7 −1.29354
\(940\) 0 0
\(941\) −2.02939e7 −0.747120 −0.373560 0.927606i \(-0.621863\pi\)
−0.373560 + 0.927606i \(0.621863\pi\)
\(942\) 0 0
\(943\) −5.28834e6 −0.193660
\(944\) 0 0
\(945\) −2.45738e6 −0.0895143
\(946\) 0 0
\(947\) −2.42851e7 −0.879963 −0.439982 0.898007i \(-0.645015\pi\)
−0.439982 + 0.898007i \(0.645015\pi\)
\(948\) 0 0
\(949\) 4.66855e6 0.168274
\(950\) 0 0
\(951\) −5.77372e7 −2.07016
\(952\) 0 0
\(953\) −2.78038e7 −0.991679 −0.495840 0.868414i \(-0.665140\pi\)
−0.495840 + 0.868414i \(0.665140\pi\)
\(954\) 0 0
\(955\) −1.49532e7 −0.530549
\(956\) 0 0
\(957\) 8.40122e6 0.296526
\(958\) 0 0
\(959\) −4.64529e7 −1.63105
\(960\) 0 0
\(961\) 2.89736e7 1.01203
\(962\) 0 0
\(963\) 2.98762e7 1.03815
\(964\) 0 0
\(965\) −1.69498e7 −0.585932
\(966\) 0 0
\(967\) −4.14481e7 −1.42541 −0.712704 0.701465i \(-0.752530\pi\)
−0.712704 + 0.701465i \(0.752530\pi\)
\(968\) 0 0
\(969\) 5.58969e7 1.91240
\(970\) 0 0
\(971\) 5.41023e7 1.84148 0.920742 0.390172i \(-0.127585\pi\)
0.920742 + 0.390172i \(0.127585\pi\)
\(972\) 0 0
\(973\) −6.23617e6 −0.211172
\(974\) 0 0
\(975\) 2.39778e6 0.0807790
\(976\) 0 0
\(977\) 5.24528e7 1.75805 0.879027 0.476771i \(-0.158193\pi\)
0.879027 + 0.476771i \(0.158193\pi\)
\(978\) 0 0
\(979\) −9.39930e6 −0.313429
\(980\) 0 0
\(981\) 4.49125e7 1.49003
\(982\) 0 0
\(983\) 1.07316e7 0.354227 0.177114 0.984190i \(-0.443324\pi\)
0.177114 + 0.984190i \(0.443324\pi\)
\(984\) 0 0
\(985\) 1.13969e7 0.374280
\(986\) 0 0
\(987\) −3.92237e7 −1.28161
\(988\) 0 0
\(989\) −1.35287e7 −0.439810
\(990\) 0 0
\(991\) −1.29690e7 −0.419490 −0.209745 0.977756i \(-0.567263\pi\)
−0.209745 + 0.977756i \(0.567263\pi\)
\(992\) 0 0
\(993\) 5.61808e6 0.180807
\(994\) 0 0
\(995\) 4.85768e6 0.155551
\(996\) 0 0
\(997\) −1.02028e7 −0.325074 −0.162537 0.986702i \(-0.551968\pi\)
−0.162537 + 0.986702i \(0.551968\pi\)
\(998\) 0 0
\(999\) −3.44055e6 −0.109072
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.6.a.ba.1.1 8
4.3 odd 2 520.6.a.d.1.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
520.6.a.d.1.8 8 4.3 odd 2
1040.6.a.ba.1.1 8 1.1 even 1 trivial