Properties

Label 1040.6.a.ba.1.3
Level $1040$
Weight $6$
Character 1040.1
Self dual yes
Analytic conductor $166.799$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1040,6,Mod(1,1040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1040, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1040.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1040.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(166.799172605\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 1384x^{6} + 3672x^{5} + 603912x^{4} - 998448x^{3} - 83285728x^{2} + 113377312x + 442451152 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{15} \)
Twist minimal: no (minimal twist has level 520)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(15.6369\) of defining polynomial
Character \(\chi\) \(=\) 1040.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-11.6369 q^{3} +25.0000 q^{5} +99.8440 q^{7} -107.583 q^{9} -79.5242 q^{11} -169.000 q^{13} -290.922 q^{15} +297.235 q^{17} -2334.52 q^{19} -1161.87 q^{21} +1929.41 q^{23} +625.000 q^{25} +4079.69 q^{27} +1301.96 q^{29} -6959.16 q^{31} +925.412 q^{33} +2496.10 q^{35} -6365.45 q^{37} +1966.63 q^{39} -12767.4 q^{41} +14362.3 q^{43} -2689.59 q^{45} +29207.6 q^{47} -6838.17 q^{49} -3458.88 q^{51} +19699.8 q^{53} -1988.11 q^{55} +27166.4 q^{57} +20403.1 q^{59} -9434.91 q^{61} -10741.6 q^{63} -4225.00 q^{65} -4728.34 q^{67} -22452.3 q^{69} +36629.7 q^{71} -63544.1 q^{73} -7273.04 q^{75} -7940.02 q^{77} -70756.8 q^{79} -21332.0 q^{81} +80248.1 q^{83} +7430.88 q^{85} -15150.8 q^{87} -49045.6 q^{89} -16873.6 q^{91} +80982.8 q^{93} -58362.9 q^{95} -40294.0 q^{97} +8555.49 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 28 q^{3} + 200 q^{5} - 80 q^{7} + 936 q^{9} + 444 q^{11} - 1352 q^{13} + 700 q^{15} - 3400 q^{17} + 1668 q^{19} - 3816 q^{21} + 2964 q^{23} + 5000 q^{25} + 14464 q^{27} - 8272 q^{29} + 8684 q^{31}+ \cdots + 535828 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −11.6369 −0.746505 −0.373252 0.927730i \(-0.621757\pi\)
−0.373252 + 0.927730i \(0.621757\pi\)
\(4\) 0 0
\(5\) 25.0000 0.447214
\(6\) 0 0
\(7\) 99.8440 0.770153 0.385076 0.922885i \(-0.374175\pi\)
0.385076 + 0.922885i \(0.374175\pi\)
\(8\) 0 0
\(9\) −107.583 −0.442730
\(10\) 0 0
\(11\) −79.5242 −0.198161 −0.0990804 0.995079i \(-0.531590\pi\)
−0.0990804 + 0.995079i \(0.531590\pi\)
\(12\) 0 0
\(13\) −169.000 −0.277350
\(14\) 0 0
\(15\) −290.922 −0.333847
\(16\) 0 0
\(17\) 297.235 0.249447 0.124723 0.992192i \(-0.460196\pi\)
0.124723 + 0.992192i \(0.460196\pi\)
\(18\) 0 0
\(19\) −2334.52 −1.48359 −0.741793 0.670629i \(-0.766024\pi\)
−0.741793 + 0.670629i \(0.766024\pi\)
\(20\) 0 0
\(21\) −1161.87 −0.574923
\(22\) 0 0
\(23\) 1929.41 0.760510 0.380255 0.924882i \(-0.375836\pi\)
0.380255 + 0.924882i \(0.375836\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 0 0
\(27\) 4079.69 1.07701
\(28\) 0 0
\(29\) 1301.96 0.287478 0.143739 0.989616i \(-0.454087\pi\)
0.143739 + 0.989616i \(0.454087\pi\)
\(30\) 0 0
\(31\) −6959.16 −1.30063 −0.650313 0.759666i \(-0.725362\pi\)
−0.650313 + 0.759666i \(0.725362\pi\)
\(32\) 0 0
\(33\) 925.412 0.147928
\(34\) 0 0
\(35\) 2496.10 0.344423
\(36\) 0 0
\(37\) −6365.45 −0.764407 −0.382204 0.924078i \(-0.624835\pi\)
−0.382204 + 0.924078i \(0.624835\pi\)
\(38\) 0 0
\(39\) 1966.63 0.207043
\(40\) 0 0
\(41\) −12767.4 −1.18615 −0.593077 0.805146i \(-0.702087\pi\)
−0.593077 + 0.805146i \(0.702087\pi\)
\(42\) 0 0
\(43\) 14362.3 1.18455 0.592273 0.805738i \(-0.298231\pi\)
0.592273 + 0.805738i \(0.298231\pi\)
\(44\) 0 0
\(45\) −2689.59 −0.197995
\(46\) 0 0
\(47\) 29207.6 1.92864 0.964318 0.264745i \(-0.0852877\pi\)
0.964318 + 0.264745i \(0.0852877\pi\)
\(48\) 0 0
\(49\) −6838.17 −0.406865
\(50\) 0 0
\(51\) −3458.88 −0.186213
\(52\) 0 0
\(53\) 19699.8 0.963325 0.481663 0.876357i \(-0.340033\pi\)
0.481663 + 0.876357i \(0.340033\pi\)
\(54\) 0 0
\(55\) −1988.11 −0.0886202
\(56\) 0 0
\(57\) 27166.4 1.10750
\(58\) 0 0
\(59\) 20403.1 0.763074 0.381537 0.924354i \(-0.375395\pi\)
0.381537 + 0.924354i \(0.375395\pi\)
\(60\) 0 0
\(61\) −9434.91 −0.324648 −0.162324 0.986737i \(-0.551899\pi\)
−0.162324 + 0.986737i \(0.551899\pi\)
\(62\) 0 0
\(63\) −10741.6 −0.340970
\(64\) 0 0
\(65\) −4225.00 −0.124035
\(66\) 0 0
\(67\) −4728.34 −0.128683 −0.0643416 0.997928i \(-0.520495\pi\)
−0.0643416 + 0.997928i \(0.520495\pi\)
\(68\) 0 0
\(69\) −22452.3 −0.567725
\(70\) 0 0
\(71\) 36629.7 0.862358 0.431179 0.902266i \(-0.358098\pi\)
0.431179 + 0.902266i \(0.358098\pi\)
\(72\) 0 0
\(73\) −63544.1 −1.39562 −0.697812 0.716281i \(-0.745843\pi\)
−0.697812 + 0.716281i \(0.745843\pi\)
\(74\) 0 0
\(75\) −7273.04 −0.149301
\(76\) 0 0
\(77\) −7940.02 −0.152614
\(78\) 0 0
\(79\) −70756.8 −1.27556 −0.637779 0.770219i \(-0.720147\pi\)
−0.637779 + 0.770219i \(0.720147\pi\)
\(80\) 0 0
\(81\) −21332.0 −0.361259
\(82\) 0 0
\(83\) 80248.1 1.27861 0.639307 0.768951i \(-0.279221\pi\)
0.639307 + 0.768951i \(0.279221\pi\)
\(84\) 0 0
\(85\) 7430.88 0.111556
\(86\) 0 0
\(87\) −15150.8 −0.214604
\(88\) 0 0
\(89\) −49045.6 −0.656334 −0.328167 0.944620i \(-0.606431\pi\)
−0.328167 + 0.944620i \(0.606431\pi\)
\(90\) 0 0
\(91\) −16873.6 −0.213602
\(92\) 0 0
\(93\) 80982.8 0.970924
\(94\) 0 0
\(95\) −58362.9 −0.663480
\(96\) 0 0
\(97\) −40294.0 −0.434821 −0.217411 0.976080i \(-0.569761\pi\)
−0.217411 + 0.976080i \(0.569761\pi\)
\(98\) 0 0
\(99\) 8555.49 0.0877318
\(100\) 0 0
\(101\) 51176.6 0.499193 0.249596 0.968350i \(-0.419702\pi\)
0.249596 + 0.968350i \(0.419702\pi\)
\(102\) 0 0
\(103\) 136900. 1.27149 0.635743 0.771901i \(-0.280694\pi\)
0.635743 + 0.771901i \(0.280694\pi\)
\(104\) 0 0
\(105\) −29046.8 −0.257113
\(106\) 0 0
\(107\) −213659. −1.80411 −0.902053 0.431625i \(-0.857940\pi\)
−0.902053 + 0.431625i \(0.857940\pi\)
\(108\) 0 0
\(109\) 63847.0 0.514724 0.257362 0.966315i \(-0.417147\pi\)
0.257362 + 0.966315i \(0.417147\pi\)
\(110\) 0 0
\(111\) 74073.9 0.570634
\(112\) 0 0
\(113\) −44289.7 −0.326292 −0.163146 0.986602i \(-0.552164\pi\)
−0.163146 + 0.986602i \(0.552164\pi\)
\(114\) 0 0
\(115\) 48235.3 0.340111
\(116\) 0 0
\(117\) 18181.6 0.122791
\(118\) 0 0
\(119\) 29677.1 0.192112
\(120\) 0 0
\(121\) −154727. −0.960732
\(122\) 0 0
\(123\) 148572. 0.885470
\(124\) 0 0
\(125\) 15625.0 0.0894427
\(126\) 0 0
\(127\) 2513.86 0.0138303 0.00691516 0.999976i \(-0.497799\pi\)
0.00691516 + 0.999976i \(0.497799\pi\)
\(128\) 0 0
\(129\) −167132. −0.884269
\(130\) 0 0
\(131\) −4491.85 −0.0228690 −0.0114345 0.999935i \(-0.503640\pi\)
−0.0114345 + 0.999935i \(0.503640\pi\)
\(132\) 0 0
\(133\) −233087. −1.14259
\(134\) 0 0
\(135\) 101992. 0.481651
\(136\) 0 0
\(137\) 44888.6 0.204331 0.102166 0.994767i \(-0.467423\pi\)
0.102166 + 0.994767i \(0.467423\pi\)
\(138\) 0 0
\(139\) −168464. −0.739555 −0.369778 0.929120i \(-0.620566\pi\)
−0.369778 + 0.929120i \(0.620566\pi\)
\(140\) 0 0
\(141\) −339884. −1.43974
\(142\) 0 0
\(143\) 13439.6 0.0549599
\(144\) 0 0
\(145\) 32549.1 0.128564
\(146\) 0 0
\(147\) 79574.9 0.303726
\(148\) 0 0
\(149\) 37368.6 0.137893 0.0689463 0.997620i \(-0.478036\pi\)
0.0689463 + 0.997620i \(0.478036\pi\)
\(150\) 0 0
\(151\) 143539. 0.512302 0.256151 0.966637i \(-0.417546\pi\)
0.256151 + 0.966637i \(0.417546\pi\)
\(152\) 0 0
\(153\) −31977.6 −0.110438
\(154\) 0 0
\(155\) −173979. −0.581658
\(156\) 0 0
\(157\) −403810. −1.30746 −0.653729 0.756729i \(-0.726796\pi\)
−0.653729 + 0.756729i \(0.726796\pi\)
\(158\) 0 0
\(159\) −229244. −0.719127
\(160\) 0 0
\(161\) 192640. 0.585709
\(162\) 0 0
\(163\) −51521.0 −0.151885 −0.0759426 0.997112i \(-0.524197\pi\)
−0.0759426 + 0.997112i \(0.524197\pi\)
\(164\) 0 0
\(165\) 23135.3 0.0661554
\(166\) 0 0
\(167\) 557787. 1.54767 0.773833 0.633389i \(-0.218337\pi\)
0.773833 + 0.633389i \(0.218337\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 251155. 0.656829
\(172\) 0 0
\(173\) 398379. 1.01200 0.506001 0.862533i \(-0.331123\pi\)
0.506001 + 0.862533i \(0.331123\pi\)
\(174\) 0 0
\(175\) 62402.5 0.154031
\(176\) 0 0
\(177\) −237428. −0.569638
\(178\) 0 0
\(179\) 408069. 0.951921 0.475961 0.879467i \(-0.342100\pi\)
0.475961 + 0.879467i \(0.342100\pi\)
\(180\) 0 0
\(181\) −343160. −0.778575 −0.389288 0.921116i \(-0.627279\pi\)
−0.389288 + 0.921116i \(0.627279\pi\)
\(182\) 0 0
\(183\) 109793. 0.242352
\(184\) 0 0
\(185\) −159136. −0.341853
\(186\) 0 0
\(187\) −23637.4 −0.0494306
\(188\) 0 0
\(189\) 407333. 0.829459
\(190\) 0 0
\(191\) 96103.0 0.190613 0.0953067 0.995448i \(-0.469617\pi\)
0.0953067 + 0.995448i \(0.469617\pi\)
\(192\) 0 0
\(193\) 562867. 1.08771 0.543855 0.839179i \(-0.316964\pi\)
0.543855 + 0.839179i \(0.316964\pi\)
\(194\) 0 0
\(195\) 49165.7 0.0925925
\(196\) 0 0
\(197\) 828181. 1.52041 0.760203 0.649685i \(-0.225099\pi\)
0.760203 + 0.649685i \(0.225099\pi\)
\(198\) 0 0
\(199\) 712208. 1.27489 0.637447 0.770494i \(-0.279990\pi\)
0.637447 + 0.770494i \(0.279990\pi\)
\(200\) 0 0
\(201\) 55023.0 0.0960626
\(202\) 0 0
\(203\) 129993. 0.221402
\(204\) 0 0
\(205\) −319184. −0.530464
\(206\) 0 0
\(207\) −207573. −0.336701
\(208\) 0 0
\(209\) 185651. 0.293989
\(210\) 0 0
\(211\) 838056. 1.29589 0.647943 0.761689i \(-0.275629\pi\)
0.647943 + 0.761689i \(0.275629\pi\)
\(212\) 0 0
\(213\) −426255. −0.643755
\(214\) 0 0
\(215\) 359057. 0.529745
\(216\) 0 0
\(217\) −694831. −1.00168
\(218\) 0 0
\(219\) 739454. 1.04184
\(220\) 0 0
\(221\) −50232.7 −0.0691841
\(222\) 0 0
\(223\) 850811. 1.14570 0.572850 0.819660i \(-0.305838\pi\)
0.572850 + 0.819660i \(0.305838\pi\)
\(224\) 0 0
\(225\) −67239.7 −0.0885461
\(226\) 0 0
\(227\) −731485. −0.942196 −0.471098 0.882081i \(-0.656142\pi\)
−0.471098 + 0.882081i \(0.656142\pi\)
\(228\) 0 0
\(229\) 1.16789e6 1.47168 0.735839 0.677157i \(-0.236788\pi\)
0.735839 + 0.677157i \(0.236788\pi\)
\(230\) 0 0
\(231\) 92396.9 0.113927
\(232\) 0 0
\(233\) −122118. −0.147364 −0.0736820 0.997282i \(-0.523475\pi\)
−0.0736820 + 0.997282i \(0.523475\pi\)
\(234\) 0 0
\(235\) 730189. 0.862513
\(236\) 0 0
\(237\) 823387. 0.952211
\(238\) 0 0
\(239\) 363719. 0.411880 0.205940 0.978565i \(-0.433975\pi\)
0.205940 + 0.978565i \(0.433975\pi\)
\(240\) 0 0
\(241\) 502433. 0.557232 0.278616 0.960403i \(-0.410124\pi\)
0.278616 + 0.960403i \(0.410124\pi\)
\(242\) 0 0
\(243\) −743127. −0.807323
\(244\) 0 0
\(245\) −170954. −0.181955
\(246\) 0 0
\(247\) 394533. 0.411473
\(248\) 0 0
\(249\) −933836. −0.954492
\(250\) 0 0
\(251\) −24195.1 −0.0242406 −0.0121203 0.999927i \(-0.503858\pi\)
−0.0121203 + 0.999927i \(0.503858\pi\)
\(252\) 0 0
\(253\) −153435. −0.150703
\(254\) 0 0
\(255\) −86472.1 −0.0832771
\(256\) 0 0
\(257\) −712227. −0.672644 −0.336322 0.941747i \(-0.609183\pi\)
−0.336322 + 0.941747i \(0.609183\pi\)
\(258\) 0 0
\(259\) −635552. −0.588710
\(260\) 0 0
\(261\) −140070. −0.127275
\(262\) 0 0
\(263\) 2.02312e6 1.80357 0.901786 0.432184i \(-0.142257\pi\)
0.901786 + 0.432184i \(0.142257\pi\)
\(264\) 0 0
\(265\) 492496. 0.430812
\(266\) 0 0
\(267\) 570736. 0.489956
\(268\) 0 0
\(269\) 1.18862e6 1.00153 0.500765 0.865583i \(-0.333052\pi\)
0.500765 + 0.865583i \(0.333052\pi\)
\(270\) 0 0
\(271\) −1.11841e6 −0.925075 −0.462538 0.886600i \(-0.653061\pi\)
−0.462538 + 0.886600i \(0.653061\pi\)
\(272\) 0 0
\(273\) 196356. 0.159455
\(274\) 0 0
\(275\) −49702.6 −0.0396322
\(276\) 0 0
\(277\) 2.34259e6 1.83441 0.917207 0.398412i \(-0.130439\pi\)
0.917207 + 0.398412i \(0.130439\pi\)
\(278\) 0 0
\(279\) 748691. 0.575827
\(280\) 0 0
\(281\) −2.20864e6 −1.66862 −0.834312 0.551293i \(-0.814135\pi\)
−0.834312 + 0.551293i \(0.814135\pi\)
\(282\) 0 0
\(283\) 2.59344e6 1.92491 0.962453 0.271449i \(-0.0875028\pi\)
0.962453 + 0.271449i \(0.0875028\pi\)
\(284\) 0 0
\(285\) 679161. 0.495291
\(286\) 0 0
\(287\) −1.27474e6 −0.913520
\(288\) 0 0
\(289\) −1.33151e6 −0.937776
\(290\) 0 0
\(291\) 468895. 0.324596
\(292\) 0 0
\(293\) 1.80233e6 1.22649 0.613247 0.789891i \(-0.289863\pi\)
0.613247 + 0.789891i \(0.289863\pi\)
\(294\) 0 0
\(295\) 510078. 0.341257
\(296\) 0 0
\(297\) −324434. −0.213420
\(298\) 0 0
\(299\) −326070. −0.210928
\(300\) 0 0
\(301\) 1.43399e6 0.912281
\(302\) 0 0
\(303\) −595535. −0.372650
\(304\) 0 0
\(305\) −235873. −0.145187
\(306\) 0 0
\(307\) 1.36590e6 0.827130 0.413565 0.910474i \(-0.364283\pi\)
0.413565 + 0.910474i \(0.364283\pi\)
\(308\) 0 0
\(309\) −1.59309e6 −0.949171
\(310\) 0 0
\(311\) 1.45020e6 0.850212 0.425106 0.905144i \(-0.360237\pi\)
0.425106 + 0.905144i \(0.360237\pi\)
\(312\) 0 0
\(313\) 3.40623e6 1.96523 0.982613 0.185664i \(-0.0594437\pi\)
0.982613 + 0.185664i \(0.0594437\pi\)
\(314\) 0 0
\(315\) −268539. −0.152486
\(316\) 0 0
\(317\) 1.61062e6 0.900213 0.450107 0.892975i \(-0.351386\pi\)
0.450107 + 0.892975i \(0.351386\pi\)
\(318\) 0 0
\(319\) −103538. −0.0569668
\(320\) 0 0
\(321\) 2.48632e6 1.34677
\(322\) 0 0
\(323\) −693900. −0.370076
\(324\) 0 0
\(325\) −105625. −0.0554700
\(326\) 0 0
\(327\) −742979. −0.384244
\(328\) 0 0
\(329\) 2.91620e6 1.48535
\(330\) 0 0
\(331\) −721558. −0.361994 −0.180997 0.983484i \(-0.557932\pi\)
−0.180997 + 0.983484i \(0.557932\pi\)
\(332\) 0 0
\(333\) 684817. 0.338426
\(334\) 0 0
\(335\) −118209. −0.0575489
\(336\) 0 0
\(337\) 297341. 0.142620 0.0713100 0.997454i \(-0.477282\pi\)
0.0713100 + 0.997454i \(0.477282\pi\)
\(338\) 0 0
\(339\) 515393. 0.243579
\(340\) 0 0
\(341\) 553422. 0.257733
\(342\) 0 0
\(343\) −2.36083e6 −1.08350
\(344\) 0 0
\(345\) −561307. −0.253894
\(346\) 0 0
\(347\) −2.99246e6 −1.33415 −0.667075 0.744991i \(-0.732454\pi\)
−0.667075 + 0.744991i \(0.732454\pi\)
\(348\) 0 0
\(349\) −1.00575e6 −0.442006 −0.221003 0.975273i \(-0.570933\pi\)
−0.221003 + 0.975273i \(0.570933\pi\)
\(350\) 0 0
\(351\) −689468. −0.298708
\(352\) 0 0
\(353\) −233541. −0.0997531 −0.0498765 0.998755i \(-0.515883\pi\)
−0.0498765 + 0.998755i \(0.515883\pi\)
\(354\) 0 0
\(355\) 915743. 0.385658
\(356\) 0 0
\(357\) −345349. −0.143413
\(358\) 0 0
\(359\) −1.32413e6 −0.542244 −0.271122 0.962545i \(-0.587395\pi\)
−0.271122 + 0.962545i \(0.587395\pi\)
\(360\) 0 0
\(361\) 2.97387e6 1.20103
\(362\) 0 0
\(363\) 1.80054e6 0.717191
\(364\) 0 0
\(365\) −1.58860e6 −0.624142
\(366\) 0 0
\(367\) −1.80239e6 −0.698527 −0.349264 0.937024i \(-0.613568\pi\)
−0.349264 + 0.937024i \(0.613568\pi\)
\(368\) 0 0
\(369\) 1.37356e6 0.525147
\(370\) 0 0
\(371\) 1.96691e6 0.741908
\(372\) 0 0
\(373\) −2.97050e6 −1.10550 −0.552749 0.833348i \(-0.686421\pi\)
−0.552749 + 0.833348i \(0.686421\pi\)
\(374\) 0 0
\(375\) −181826. −0.0667694
\(376\) 0 0
\(377\) −220032. −0.0797320
\(378\) 0 0
\(379\) −2.82214e6 −1.00921 −0.504603 0.863351i \(-0.668361\pi\)
−0.504603 + 0.863351i \(0.668361\pi\)
\(380\) 0 0
\(381\) −29253.5 −0.0103244
\(382\) 0 0
\(383\) 185821. 0.0647289 0.0323645 0.999476i \(-0.489696\pi\)
0.0323645 + 0.999476i \(0.489696\pi\)
\(384\) 0 0
\(385\) −198500. −0.0682511
\(386\) 0 0
\(387\) −1.54514e6 −0.524434
\(388\) 0 0
\(389\) 4.38840e6 1.47039 0.735195 0.677856i \(-0.237091\pi\)
0.735195 + 0.677856i \(0.237091\pi\)
\(390\) 0 0
\(391\) 573489. 0.189707
\(392\) 0 0
\(393\) 52271.0 0.0170718
\(394\) 0 0
\(395\) −1.76892e6 −0.570447
\(396\) 0 0
\(397\) 5.42974e6 1.72903 0.864515 0.502606i \(-0.167625\pi\)
0.864515 + 0.502606i \(0.167625\pi\)
\(398\) 0 0
\(399\) 2.71241e6 0.852948
\(400\) 0 0
\(401\) −88016.8 −0.0273341 −0.0136670 0.999907i \(-0.504350\pi\)
−0.0136670 + 0.999907i \(0.504350\pi\)
\(402\) 0 0
\(403\) 1.17610e6 0.360729
\(404\) 0 0
\(405\) −533300. −0.161560
\(406\) 0 0
\(407\) 506207. 0.151476
\(408\) 0 0
\(409\) 5.12199e6 1.51402 0.757008 0.653406i \(-0.226661\pi\)
0.757008 + 0.653406i \(0.226661\pi\)
\(410\) 0 0
\(411\) −522362. −0.152534
\(412\) 0 0
\(413\) 2.03713e6 0.587683
\(414\) 0 0
\(415\) 2.00620e6 0.571814
\(416\) 0 0
\(417\) 1.96039e6 0.552082
\(418\) 0 0
\(419\) −883128. −0.245747 −0.122874 0.992422i \(-0.539211\pi\)
−0.122874 + 0.992422i \(0.539211\pi\)
\(420\) 0 0
\(421\) 5.44582e6 1.49747 0.748735 0.662869i \(-0.230661\pi\)
0.748735 + 0.662869i \(0.230661\pi\)
\(422\) 0 0
\(423\) −3.14225e6 −0.853866
\(424\) 0 0
\(425\) 185772. 0.0498893
\(426\) 0 0
\(427\) −942019. −0.250029
\(428\) 0 0
\(429\) −156395. −0.0410278
\(430\) 0 0
\(431\) −5.24811e6 −1.36085 −0.680424 0.732819i \(-0.738204\pi\)
−0.680424 + 0.732819i \(0.738204\pi\)
\(432\) 0 0
\(433\) −3.34621e6 −0.857695 −0.428848 0.903377i \(-0.641080\pi\)
−0.428848 + 0.903377i \(0.641080\pi\)
\(434\) 0 0
\(435\) −378769. −0.0959736
\(436\) 0 0
\(437\) −4.50424e6 −1.12828
\(438\) 0 0
\(439\) −129149. −0.0319838 −0.0159919 0.999872i \(-0.505091\pi\)
−0.0159919 + 0.999872i \(0.505091\pi\)
\(440\) 0 0
\(441\) 735674. 0.180131
\(442\) 0 0
\(443\) 2.97268e6 0.719680 0.359840 0.933014i \(-0.382831\pi\)
0.359840 + 0.933014i \(0.382831\pi\)
\(444\) 0 0
\(445\) −1.22614e6 −0.293521
\(446\) 0 0
\(447\) −434853. −0.102937
\(448\) 0 0
\(449\) −618002. −0.144669 −0.0723343 0.997380i \(-0.523045\pi\)
−0.0723343 + 0.997380i \(0.523045\pi\)
\(450\) 0 0
\(451\) 1.01531e6 0.235049
\(452\) 0 0
\(453\) −1.67034e6 −0.382436
\(454\) 0 0
\(455\) −421841. −0.0955257
\(456\) 0 0
\(457\) −4.45372e6 −0.997545 −0.498772 0.866733i \(-0.666216\pi\)
−0.498772 + 0.866733i \(0.666216\pi\)
\(458\) 0 0
\(459\) 1.21263e6 0.268655
\(460\) 0 0
\(461\) −930948. −0.204020 −0.102010 0.994783i \(-0.532527\pi\)
−0.102010 + 0.994783i \(0.532527\pi\)
\(462\) 0 0
\(463\) 6.85746e6 1.48666 0.743329 0.668926i \(-0.233246\pi\)
0.743329 + 0.668926i \(0.233246\pi\)
\(464\) 0 0
\(465\) 2.02457e6 0.434211
\(466\) 0 0
\(467\) 749357. 0.159000 0.0794999 0.996835i \(-0.474668\pi\)
0.0794999 + 0.996835i \(0.474668\pi\)
\(468\) 0 0
\(469\) −472096. −0.0991057
\(470\) 0 0
\(471\) 4.69908e6 0.976023
\(472\) 0 0
\(473\) −1.14215e6 −0.234730
\(474\) 0 0
\(475\) −1.45907e6 −0.296717
\(476\) 0 0
\(477\) −2.11938e6 −0.426493
\(478\) 0 0
\(479\) 3.06170e6 0.609710 0.304855 0.952399i \(-0.401392\pi\)
0.304855 + 0.952399i \(0.401392\pi\)
\(480\) 0 0
\(481\) 1.07576e6 0.212008
\(482\) 0 0
\(483\) −2.24173e6 −0.437235
\(484\) 0 0
\(485\) −1.00735e6 −0.194458
\(486\) 0 0
\(487\) −7.14247e6 −1.36466 −0.682332 0.731042i \(-0.739034\pi\)
−0.682332 + 0.731042i \(0.739034\pi\)
\(488\) 0 0
\(489\) 599543. 0.113383
\(490\) 0 0
\(491\) 2.50239e6 0.468437 0.234218 0.972184i \(-0.424747\pi\)
0.234218 + 0.972184i \(0.424747\pi\)
\(492\) 0 0
\(493\) 386990. 0.0717104
\(494\) 0 0
\(495\) 213887. 0.0392348
\(496\) 0 0
\(497\) 3.65726e6 0.664148
\(498\) 0 0
\(499\) 7.90328e6 1.42088 0.710438 0.703760i \(-0.248497\pi\)
0.710438 + 0.703760i \(0.248497\pi\)
\(500\) 0 0
\(501\) −6.49089e6 −1.15534
\(502\) 0 0
\(503\) 350720. 0.0618075 0.0309037 0.999522i \(-0.490161\pi\)
0.0309037 + 0.999522i \(0.490161\pi\)
\(504\) 0 0
\(505\) 1.27942e6 0.223246
\(506\) 0 0
\(507\) −332360. −0.0574235
\(508\) 0 0
\(509\) 7.12004e6 1.21811 0.609057 0.793126i \(-0.291548\pi\)
0.609057 + 0.793126i \(0.291548\pi\)
\(510\) 0 0
\(511\) −6.34450e6 −1.07484
\(512\) 0 0
\(513\) −9.52410e6 −1.59783
\(514\) 0 0
\(515\) 3.42251e6 0.568626
\(516\) 0 0
\(517\) −2.32271e6 −0.382180
\(518\) 0 0
\(519\) −4.63588e6 −0.755464
\(520\) 0 0
\(521\) 2.66156e6 0.429578 0.214789 0.976660i \(-0.431094\pi\)
0.214789 + 0.976660i \(0.431094\pi\)
\(522\) 0 0
\(523\) 4.16549e6 0.665904 0.332952 0.942944i \(-0.391955\pi\)
0.332952 + 0.942944i \(0.391955\pi\)
\(524\) 0 0
\(525\) −726169. −0.114985
\(526\) 0 0
\(527\) −2.06851e6 −0.324437
\(528\) 0 0
\(529\) −2.71372e6 −0.421624
\(530\) 0 0
\(531\) −2.19504e6 −0.337836
\(532\) 0 0
\(533\) 2.15768e6 0.328980
\(534\) 0 0
\(535\) −5.34148e6 −0.806821
\(536\) 0 0
\(537\) −4.74864e6 −0.710614
\(538\) 0 0
\(539\) 543800. 0.0806246
\(540\) 0 0
\(541\) 1.20870e7 1.77552 0.887758 0.460311i \(-0.152262\pi\)
0.887758 + 0.460311i \(0.152262\pi\)
\(542\) 0 0
\(543\) 3.99331e6 0.581210
\(544\) 0 0
\(545\) 1.59618e6 0.230192
\(546\) 0 0
\(547\) −1.03523e7 −1.47934 −0.739671 0.672968i \(-0.765019\pi\)
−0.739671 + 0.672968i \(0.765019\pi\)
\(548\) 0 0
\(549\) 1.01504e6 0.143732
\(550\) 0 0
\(551\) −3.03946e6 −0.426498
\(552\) 0 0
\(553\) −7.06464e6 −0.982375
\(554\) 0 0
\(555\) 1.85185e6 0.255195
\(556\) 0 0
\(557\) −8.99816e6 −1.22890 −0.614449 0.788957i \(-0.710622\pi\)
−0.614449 + 0.788957i \(0.710622\pi\)
\(558\) 0 0
\(559\) −2.42722e6 −0.328534
\(560\) 0 0
\(561\) 275065. 0.0369002
\(562\) 0 0
\(563\) 4.23529e6 0.563134 0.281567 0.959542i \(-0.409146\pi\)
0.281567 + 0.959542i \(0.409146\pi\)
\(564\) 0 0
\(565\) −1.10724e6 −0.145922
\(566\) 0 0
\(567\) −2.12987e6 −0.278225
\(568\) 0 0
\(569\) −9.51598e6 −1.23218 −0.616088 0.787677i \(-0.711283\pi\)
−0.616088 + 0.787677i \(0.711283\pi\)
\(570\) 0 0
\(571\) −2.55583e6 −0.328051 −0.164026 0.986456i \(-0.552448\pi\)
−0.164026 + 0.986456i \(0.552448\pi\)
\(572\) 0 0
\(573\) −1.11834e6 −0.142294
\(574\) 0 0
\(575\) 1.20588e6 0.152102
\(576\) 0 0
\(577\) 1.14047e6 0.142609 0.0713043 0.997455i \(-0.477284\pi\)
0.0713043 + 0.997455i \(0.477284\pi\)
\(578\) 0 0
\(579\) −6.55001e6 −0.811980
\(580\) 0 0
\(581\) 8.01229e6 0.984729
\(582\) 0 0
\(583\) −1.56661e6 −0.190893
\(584\) 0 0
\(585\) 454540. 0.0549139
\(586\) 0 0
\(587\) 8.35974e6 1.00138 0.500688 0.865628i \(-0.333080\pi\)
0.500688 + 0.865628i \(0.333080\pi\)
\(588\) 0 0
\(589\) 1.62463e7 1.92959
\(590\) 0 0
\(591\) −9.63743e6 −1.13499
\(592\) 0 0
\(593\) −8.51631e6 −0.994523 −0.497261 0.867601i \(-0.665661\pi\)
−0.497261 + 0.867601i \(0.665661\pi\)
\(594\) 0 0
\(595\) 741929. 0.0859152
\(596\) 0 0
\(597\) −8.28786e6 −0.951715
\(598\) 0 0
\(599\) 6.94083e6 0.790395 0.395197 0.918596i \(-0.370676\pi\)
0.395197 + 0.918596i \(0.370676\pi\)
\(600\) 0 0
\(601\) −8.31102e6 −0.938574 −0.469287 0.883046i \(-0.655489\pi\)
−0.469287 + 0.883046i \(0.655489\pi\)
\(602\) 0 0
\(603\) 508691. 0.0569719
\(604\) 0 0
\(605\) −3.86817e6 −0.429653
\(606\) 0 0
\(607\) 1.13341e7 1.24858 0.624288 0.781194i \(-0.285389\pi\)
0.624288 + 0.781194i \(0.285389\pi\)
\(608\) 0 0
\(609\) −1.51271e6 −0.165278
\(610\) 0 0
\(611\) −4.93608e6 −0.534908
\(612\) 0 0
\(613\) −1.77962e6 −0.191283 −0.0956414 0.995416i \(-0.530490\pi\)
−0.0956414 + 0.995416i \(0.530490\pi\)
\(614\) 0 0
\(615\) 3.71430e6 0.395994
\(616\) 0 0
\(617\) 5.77125e6 0.610319 0.305160 0.952301i \(-0.401290\pi\)
0.305160 + 0.952301i \(0.401290\pi\)
\(618\) 0 0
\(619\) 1.32777e7 1.39283 0.696413 0.717641i \(-0.254778\pi\)
0.696413 + 0.717641i \(0.254778\pi\)
\(620\) 0 0
\(621\) 7.87140e6 0.819074
\(622\) 0 0
\(623\) −4.89691e6 −0.505477
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 0 0
\(627\) −2.16039e6 −0.219464
\(628\) 0 0
\(629\) −1.89204e6 −0.190679
\(630\) 0 0
\(631\) 1.17159e6 0.117139 0.0585695 0.998283i \(-0.481346\pi\)
0.0585695 + 0.998283i \(0.481346\pi\)
\(632\) 0 0
\(633\) −9.75234e6 −0.967385
\(634\) 0 0
\(635\) 62846.5 0.00618510
\(636\) 0 0
\(637\) 1.15565e6 0.112844
\(638\) 0 0
\(639\) −3.94075e6 −0.381792
\(640\) 0 0
\(641\) 1.17828e7 1.13267 0.566337 0.824174i \(-0.308360\pi\)
0.566337 + 0.824174i \(0.308360\pi\)
\(642\) 0 0
\(643\) −4.39280e6 −0.419000 −0.209500 0.977809i \(-0.567184\pi\)
−0.209500 + 0.977809i \(0.567184\pi\)
\(644\) 0 0
\(645\) −4.17829e6 −0.395457
\(646\) 0 0
\(647\) 9.82885e6 0.923086 0.461543 0.887118i \(-0.347296\pi\)
0.461543 + 0.887118i \(0.347296\pi\)
\(648\) 0 0
\(649\) −1.62254e6 −0.151211
\(650\) 0 0
\(651\) 8.08565e6 0.747760
\(652\) 0 0
\(653\) 2.24847e6 0.206350 0.103175 0.994663i \(-0.467100\pi\)
0.103175 + 0.994663i \(0.467100\pi\)
\(654\) 0 0
\(655\) −112296. −0.0102273
\(656\) 0 0
\(657\) 6.83630e6 0.617885
\(658\) 0 0
\(659\) 7.71969e6 0.692447 0.346224 0.938152i \(-0.387464\pi\)
0.346224 + 0.938152i \(0.387464\pi\)
\(660\) 0 0
\(661\) 1.75441e7 1.56181 0.780903 0.624652i \(-0.214759\pi\)
0.780903 + 0.624652i \(0.214759\pi\)
\(662\) 0 0
\(663\) 584551. 0.0516463
\(664\) 0 0
\(665\) −5.82719e6 −0.510981
\(666\) 0 0
\(667\) 2.51202e6 0.218630
\(668\) 0 0
\(669\) −9.90077e6 −0.855270
\(670\) 0 0
\(671\) 750304. 0.0643326
\(672\) 0 0
\(673\) −3.06858e6 −0.261156 −0.130578 0.991438i \(-0.541683\pi\)
−0.130578 + 0.991438i \(0.541683\pi\)
\(674\) 0 0
\(675\) 2.54981e6 0.215401
\(676\) 0 0
\(677\) −1.37167e7 −1.15021 −0.575106 0.818079i \(-0.695039\pi\)
−0.575106 + 0.818079i \(0.695039\pi\)
\(678\) 0 0
\(679\) −4.02311e6 −0.334879
\(680\) 0 0
\(681\) 8.51219e6 0.703354
\(682\) 0 0
\(683\) 1.10195e7 0.903877 0.451939 0.892049i \(-0.350733\pi\)
0.451939 + 0.892049i \(0.350733\pi\)
\(684\) 0 0
\(685\) 1.12221e6 0.0913797
\(686\) 0 0
\(687\) −1.35906e7 −1.09861
\(688\) 0 0
\(689\) −3.32927e6 −0.267178
\(690\) 0 0
\(691\) 3.78853e6 0.301840 0.150920 0.988546i \(-0.451776\pi\)
0.150920 + 0.988546i \(0.451776\pi\)
\(692\) 0 0
\(693\) 854215. 0.0675669
\(694\) 0 0
\(695\) −4.21161e6 −0.330739
\(696\) 0 0
\(697\) −3.79491e6 −0.295882
\(698\) 0 0
\(699\) 1.42107e6 0.110008
\(700\) 0 0
\(701\) −1.42400e7 −1.09450 −0.547248 0.836970i \(-0.684325\pi\)
−0.547248 + 0.836970i \(0.684325\pi\)
\(702\) 0 0
\(703\) 1.48602e7 1.13406
\(704\) 0 0
\(705\) −8.49710e6 −0.643870
\(706\) 0 0
\(707\) 5.10968e6 0.384455
\(708\) 0 0
\(709\) 1.61344e6 0.120542 0.0602710 0.998182i \(-0.480804\pi\)
0.0602710 + 0.998182i \(0.480804\pi\)
\(710\) 0 0
\(711\) 7.61226e6 0.564728
\(712\) 0 0
\(713\) −1.34271e7 −0.989140
\(714\) 0 0
\(715\) 335990. 0.0245788
\(716\) 0 0
\(717\) −4.23254e6 −0.307471
\(718\) 0 0
\(719\) −1.59531e7 −1.15086 −0.575431 0.817850i \(-0.695166\pi\)
−0.575431 + 0.817850i \(0.695166\pi\)
\(720\) 0 0
\(721\) 1.36687e7 0.979239
\(722\) 0 0
\(723\) −5.84675e6 −0.415976
\(724\) 0 0
\(725\) 813728. 0.0574955
\(726\) 0 0
\(727\) −1.22874e7 −0.862230 −0.431115 0.902297i \(-0.641880\pi\)
−0.431115 + 0.902297i \(0.641880\pi\)
\(728\) 0 0
\(729\) 1.38313e7 0.963930
\(730\) 0 0
\(731\) 4.26897e6 0.295481
\(732\) 0 0
\(733\) −1.38897e7 −0.954843 −0.477422 0.878674i \(-0.658429\pi\)
−0.477422 + 0.878674i \(0.658429\pi\)
\(734\) 0 0
\(735\) 1.98937e6 0.135831
\(736\) 0 0
\(737\) 376018. 0.0255000
\(738\) 0 0
\(739\) −2.20837e7 −1.48751 −0.743757 0.668450i \(-0.766958\pi\)
−0.743757 + 0.668450i \(0.766958\pi\)
\(740\) 0 0
\(741\) −4.59113e6 −0.307167
\(742\) 0 0
\(743\) 2.23745e7 1.48690 0.743449 0.668793i \(-0.233189\pi\)
0.743449 + 0.668793i \(0.233189\pi\)
\(744\) 0 0
\(745\) 934214. 0.0616674
\(746\) 0 0
\(747\) −8.63337e6 −0.566081
\(748\) 0 0
\(749\) −2.13326e7 −1.38944
\(750\) 0 0
\(751\) −2.41424e7 −1.56200 −0.781001 0.624530i \(-0.785291\pi\)
−0.781001 + 0.624530i \(0.785291\pi\)
\(752\) 0 0
\(753\) 281555. 0.0180957
\(754\) 0 0
\(755\) 3.58846e6 0.229109
\(756\) 0 0
\(757\) −1.48180e7 −0.939833 −0.469917 0.882711i \(-0.655716\pi\)
−0.469917 + 0.882711i \(0.655716\pi\)
\(758\) 0 0
\(759\) 1.78550e6 0.112501
\(760\) 0 0
\(761\) 1.14020e7 0.713706 0.356853 0.934161i \(-0.383850\pi\)
0.356853 + 0.934161i \(0.383850\pi\)
\(762\) 0 0
\(763\) 6.37474e6 0.396416
\(764\) 0 0
\(765\) −799440. −0.0493892
\(766\) 0 0
\(767\) −3.44813e6 −0.211639
\(768\) 0 0
\(769\) −2.30707e7 −1.40684 −0.703422 0.710773i \(-0.748345\pi\)
−0.703422 + 0.710773i \(0.748345\pi\)
\(770\) 0 0
\(771\) 8.28809e6 0.502132
\(772\) 0 0
\(773\) −1.66600e7 −1.00283 −0.501414 0.865208i \(-0.667186\pi\)
−0.501414 + 0.865208i \(0.667186\pi\)
\(774\) 0 0
\(775\) −4.34948e6 −0.260125
\(776\) 0 0
\(777\) 7.39583e6 0.439475
\(778\) 0 0
\(779\) 2.98056e7 1.75976
\(780\) 0 0
\(781\) −2.91295e6 −0.170886
\(782\) 0 0
\(783\) 5.31161e6 0.309615
\(784\) 0 0
\(785\) −1.00952e7 −0.584713
\(786\) 0 0
\(787\) −1.11136e7 −0.639617 −0.319808 0.947482i \(-0.603619\pi\)
−0.319808 + 0.947482i \(0.603619\pi\)
\(788\) 0 0
\(789\) −2.35428e7 −1.34637
\(790\) 0 0
\(791\) −4.42206e6 −0.251295
\(792\) 0 0
\(793\) 1.59450e6 0.0900412
\(794\) 0 0
\(795\) −5.73111e6 −0.321603
\(796\) 0 0
\(797\) 2.62504e7 1.46383 0.731913 0.681398i \(-0.238628\pi\)
0.731913 + 0.681398i \(0.238628\pi\)
\(798\) 0 0
\(799\) 8.68151e6 0.481092
\(800\) 0 0
\(801\) 5.27649e6 0.290579
\(802\) 0 0
\(803\) 5.05330e6 0.276558
\(804\) 0 0
\(805\) 4.81600e6 0.261937
\(806\) 0 0
\(807\) −1.38319e7 −0.747647
\(808\) 0 0
\(809\) −1.18334e7 −0.635680 −0.317840 0.948144i \(-0.602958\pi\)
−0.317840 + 0.948144i \(0.602958\pi\)
\(810\) 0 0
\(811\) −1.94078e7 −1.03615 −0.518076 0.855334i \(-0.673352\pi\)
−0.518076 + 0.855334i \(0.673352\pi\)
\(812\) 0 0
\(813\) 1.30148e7 0.690573
\(814\) 0 0
\(815\) −1.28803e6 −0.0679251
\(816\) 0 0
\(817\) −3.35289e7 −1.75738
\(818\) 0 0
\(819\) 1.81532e6 0.0945681
\(820\) 0 0
\(821\) 2.99379e7 1.55011 0.775056 0.631892i \(-0.217722\pi\)
0.775056 + 0.631892i \(0.217722\pi\)
\(822\) 0 0
\(823\) 1.05061e7 0.540684 0.270342 0.962764i \(-0.412863\pi\)
0.270342 + 0.962764i \(0.412863\pi\)
\(824\) 0 0
\(825\) 578383. 0.0295856
\(826\) 0 0
\(827\) −1.30147e6 −0.0661715 −0.0330858 0.999453i \(-0.510533\pi\)
−0.0330858 + 0.999453i \(0.510533\pi\)
\(828\) 0 0
\(829\) 5.25708e6 0.265679 0.132840 0.991138i \(-0.457590\pi\)
0.132840 + 0.991138i \(0.457590\pi\)
\(830\) 0 0
\(831\) −2.72604e7 −1.36940
\(832\) 0 0
\(833\) −2.03255e6 −0.101491
\(834\) 0 0
\(835\) 1.39447e7 0.692138
\(836\) 0 0
\(837\) −2.83912e7 −1.40078
\(838\) 0 0
\(839\) −3.50995e6 −0.172146 −0.0860728 0.996289i \(-0.527432\pi\)
−0.0860728 + 0.996289i \(0.527432\pi\)
\(840\) 0 0
\(841\) −1.88160e7 −0.917357
\(842\) 0 0
\(843\) 2.57016e7 1.24564
\(844\) 0 0
\(845\) 714025. 0.0344010
\(846\) 0 0
\(847\) −1.54486e7 −0.739911
\(848\) 0 0
\(849\) −3.01795e7 −1.43695
\(850\) 0 0
\(851\) −1.22816e7 −0.581340
\(852\) 0 0
\(853\) 2.12343e7 0.999231 0.499616 0.866247i \(-0.333475\pi\)
0.499616 + 0.866247i \(0.333475\pi\)
\(854\) 0 0
\(855\) 6.27888e6 0.293743
\(856\) 0 0
\(857\) 3.69643e7 1.71921 0.859607 0.510955i \(-0.170708\pi\)
0.859607 + 0.510955i \(0.170708\pi\)
\(858\) 0 0
\(859\) 1.12909e7 0.522089 0.261045 0.965327i \(-0.415933\pi\)
0.261045 + 0.965327i \(0.415933\pi\)
\(860\) 0 0
\(861\) 1.48340e7 0.681947
\(862\) 0 0
\(863\) −1.91140e7 −0.873625 −0.436813 0.899553i \(-0.643893\pi\)
−0.436813 + 0.899553i \(0.643893\pi\)
\(864\) 0 0
\(865\) 9.95947e6 0.452581
\(866\) 0 0
\(867\) 1.54946e7 0.700055
\(868\) 0 0
\(869\) 5.62688e6 0.252766
\(870\) 0 0
\(871\) 799089. 0.0356903
\(872\) 0 0
\(873\) 4.33497e6 0.192509
\(874\) 0 0
\(875\) 1.56006e6 0.0688846
\(876\) 0 0
\(877\) −2.04090e7 −0.896029 −0.448014 0.894026i \(-0.647869\pi\)
−0.448014 + 0.894026i \(0.647869\pi\)
\(878\) 0 0
\(879\) −2.09735e7 −0.915583
\(880\) 0 0
\(881\) −3.33290e7 −1.44671 −0.723356 0.690476i \(-0.757401\pi\)
−0.723356 + 0.690476i \(0.757401\pi\)
\(882\) 0 0
\(883\) 1.72858e7 0.746082 0.373041 0.927815i \(-0.378315\pi\)
0.373041 + 0.927815i \(0.378315\pi\)
\(884\) 0 0
\(885\) −5.93570e6 −0.254750
\(886\) 0 0
\(887\) −1.87501e7 −0.800192 −0.400096 0.916473i \(-0.631023\pi\)
−0.400096 + 0.916473i \(0.631023\pi\)
\(888\) 0 0
\(889\) 250994. 0.0106515
\(890\) 0 0
\(891\) 1.69641e6 0.0715875
\(892\) 0 0
\(893\) −6.81855e7 −2.86130
\(894\) 0 0
\(895\) 1.02017e7 0.425712
\(896\) 0 0
\(897\) 3.79444e6 0.157459
\(898\) 0 0
\(899\) −9.06058e6 −0.373901
\(900\) 0 0
\(901\) 5.85548e6 0.240298
\(902\) 0 0
\(903\) −1.66871e7 −0.681022
\(904\) 0 0
\(905\) −8.57901e6 −0.348189
\(906\) 0 0
\(907\) −3.48113e7 −1.40508 −0.702542 0.711643i \(-0.747952\pi\)
−0.702542 + 0.711643i \(0.747952\pi\)
\(908\) 0 0
\(909\) −5.50576e6 −0.221008
\(910\) 0 0
\(911\) 3.48528e6 0.139137 0.0695684 0.997577i \(-0.477838\pi\)
0.0695684 + 0.997577i \(0.477838\pi\)
\(912\) 0 0
\(913\) −6.38167e6 −0.253371
\(914\) 0 0
\(915\) 2.74482e6 0.108383
\(916\) 0 0
\(917\) −448484. −0.0176126
\(918\) 0 0
\(919\) −3.52355e7 −1.37623 −0.688116 0.725601i \(-0.741562\pi\)
−0.688116 + 0.725601i \(0.741562\pi\)
\(920\) 0 0
\(921\) −1.58948e7 −0.617457
\(922\) 0 0
\(923\) −6.19042e6 −0.239175
\(924\) 0 0
\(925\) −3.97841e6 −0.152881
\(926\) 0 0
\(927\) −1.47282e7 −0.562925
\(928\) 0 0
\(929\) 3.53806e7 1.34501 0.672506 0.740092i \(-0.265218\pi\)
0.672506 + 0.740092i \(0.265218\pi\)
\(930\) 0 0
\(931\) 1.59638e7 0.603619
\(932\) 0 0
\(933\) −1.68758e7 −0.634688
\(934\) 0 0
\(935\) −590935. −0.0221060
\(936\) 0 0
\(937\) −1.91406e7 −0.712209 −0.356104 0.934446i \(-0.615895\pi\)
−0.356104 + 0.934446i \(0.615895\pi\)
\(938\) 0 0
\(939\) −3.96378e7 −1.46705
\(940\) 0 0
\(941\) 1.85564e7 0.683157 0.341579 0.939853i \(-0.389038\pi\)
0.341579 + 0.939853i \(0.389038\pi\)
\(942\) 0 0
\(943\) −2.46335e7 −0.902083
\(944\) 0 0
\(945\) 1.01833e7 0.370945
\(946\) 0 0
\(947\) 3.21634e6 0.116543 0.0582716 0.998301i \(-0.481441\pi\)
0.0582716 + 0.998301i \(0.481441\pi\)
\(948\) 0 0
\(949\) 1.07390e7 0.387076
\(950\) 0 0
\(951\) −1.87426e7 −0.672014
\(952\) 0 0
\(953\) 2.39773e7 0.855202 0.427601 0.903968i \(-0.359359\pi\)
0.427601 + 0.903968i \(0.359359\pi\)
\(954\) 0 0
\(955\) 2.40257e6 0.0852449
\(956\) 0 0
\(957\) 1.20485e6 0.0425260
\(958\) 0 0
\(959\) 4.48186e6 0.157366
\(960\) 0 0
\(961\) 1.98008e7 0.691630
\(962\) 0 0
\(963\) 2.29862e7 0.798732
\(964\) 0 0
\(965\) 1.40717e7 0.486438
\(966\) 0 0
\(967\) −1.59207e6 −0.0547514 −0.0273757 0.999625i \(-0.508715\pi\)
−0.0273757 + 0.999625i \(0.508715\pi\)
\(968\) 0 0
\(969\) 8.07482e6 0.276263
\(970\) 0 0
\(971\) −1.59047e6 −0.0541350 −0.0270675 0.999634i \(-0.508617\pi\)
−0.0270675 + 0.999634i \(0.508617\pi\)
\(972\) 0 0
\(973\) −1.68201e7 −0.569571
\(974\) 0 0
\(975\) 1.22914e6 0.0414086
\(976\) 0 0
\(977\) −8.91327e6 −0.298745 −0.149372 0.988781i \(-0.547725\pi\)
−0.149372 + 0.988781i \(0.547725\pi\)
\(978\) 0 0
\(979\) 3.90031e6 0.130060
\(980\) 0 0
\(981\) −6.86889e6 −0.227884
\(982\) 0 0
\(983\) 1.35469e7 0.447154 0.223577 0.974686i \(-0.428227\pi\)
0.223577 + 0.974686i \(0.428227\pi\)
\(984\) 0 0
\(985\) 2.07045e7 0.679946
\(986\) 0 0
\(987\) −3.39354e7 −1.10882
\(988\) 0 0
\(989\) 2.77107e7 0.900859
\(990\) 0 0
\(991\) −4.24496e7 −1.37306 −0.686529 0.727102i \(-0.740867\pi\)
−0.686529 + 0.727102i \(0.740867\pi\)
\(992\) 0 0
\(993\) 8.39667e6 0.270230
\(994\) 0 0
\(995\) 1.78052e7 0.570150
\(996\) 0 0
\(997\) 2.15543e6 0.0686747 0.0343374 0.999410i \(-0.489068\pi\)
0.0343374 + 0.999410i \(0.489068\pi\)
\(998\) 0 0
\(999\) −2.59691e7 −0.823271
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.6.a.ba.1.3 8
4.3 odd 2 520.6.a.d.1.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
520.6.a.d.1.6 8 4.3 odd 2
1040.6.a.ba.1.3 8 1.1 even 1 trivial