Properties

Label 1045.2.a.f.1.3
Level $1045$
Weight $2$
Character 1045.1
Self dual yes
Analytic conductor $8.344$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1045,2,Mod(1,1045)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1045, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1045.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1045 = 5 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1045.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.34436701122\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.7281497.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 5x^{4} + 7x^{3} + 6x^{2} - 2x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.748369\) of defining polynomial
Character \(\chi\) \(=\) 1045.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.412130 q^{2} +1.67805 q^{3} -1.83015 q^{4} -1.00000 q^{5} -0.691575 q^{6} +0.0703171 q^{7} +1.57852 q^{8} -0.184142 q^{9} +0.412130 q^{10} -1.00000 q^{11} -3.07109 q^{12} +1.09018 q^{13} -0.0289798 q^{14} -1.67805 q^{15} +3.00974 q^{16} -2.37951 q^{17} +0.0758904 q^{18} -1.00000 q^{19} +1.83015 q^{20} +0.117996 q^{21} +0.412130 q^{22} -2.83321 q^{23} +2.64884 q^{24} +1.00000 q^{25} -0.449296 q^{26} -5.34316 q^{27} -0.128691 q^{28} -9.85701 q^{29} +0.691575 q^{30} +1.51103 q^{31} -4.39744 q^{32} -1.67805 q^{33} +0.980667 q^{34} -0.0703171 q^{35} +0.337007 q^{36} -1.38463 q^{37} +0.412130 q^{38} +1.82938 q^{39} -1.57852 q^{40} +2.59281 q^{41} -0.0486296 q^{42} -5.63972 q^{43} +1.83015 q^{44} +0.184142 q^{45} +1.16765 q^{46} -4.95295 q^{47} +5.05051 q^{48} -6.99506 q^{49} -0.412130 q^{50} -3.99294 q^{51} -1.99519 q^{52} -3.23082 q^{53} +2.20207 q^{54} +1.00000 q^{55} +0.110997 q^{56} -1.67805 q^{57} +4.06237 q^{58} +5.63037 q^{59} +3.07109 q^{60} +1.13632 q^{61} -0.622740 q^{62} -0.0129483 q^{63} -4.20717 q^{64} -1.09018 q^{65} +0.691575 q^{66} -10.5728 q^{67} +4.35486 q^{68} -4.75428 q^{69} +0.0289798 q^{70} -3.37214 q^{71} -0.290671 q^{72} -4.54954 q^{73} +0.570648 q^{74} +1.67805 q^{75} +1.83015 q^{76} -0.0703171 q^{77} -0.753942 q^{78} +2.22913 q^{79} -3.00974 q^{80} -8.41367 q^{81} -1.06857 q^{82} +2.48243 q^{83} -0.215950 q^{84} +2.37951 q^{85} +2.32430 q^{86} -16.5406 q^{87} -1.57852 q^{88} +6.45611 q^{89} -0.0758904 q^{90} +0.0766584 q^{91} +5.18520 q^{92} +2.53559 q^{93} +2.04126 q^{94} +1.00000 q^{95} -7.37913 q^{96} +9.43225 q^{97} +2.88287 q^{98} +0.184142 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} - q^{3} + 4 q^{4} - 6 q^{5} + 5 q^{7} - 12 q^{8} + q^{9} + 2 q^{10} - 6 q^{11} + q^{12} - 5 q^{13} - 8 q^{14} + q^{15} + 4 q^{16} + q^{17} + 6 q^{18} - 6 q^{19} - 4 q^{20} - 21 q^{21}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.412130 −0.291420 −0.145710 0.989327i \(-0.546547\pi\)
−0.145710 + 0.989327i \(0.546547\pi\)
\(3\) 1.67805 0.968824 0.484412 0.874840i \(-0.339034\pi\)
0.484412 + 0.874840i \(0.339034\pi\)
\(4\) −1.83015 −0.915075
\(5\) −1.00000 −0.447214
\(6\) −0.691575 −0.282334
\(7\) 0.0703171 0.0265774 0.0132887 0.999912i \(-0.495770\pi\)
0.0132887 + 0.999912i \(0.495770\pi\)
\(8\) 1.57852 0.558090
\(9\) −0.184142 −0.0613807
\(10\) 0.412130 0.130327
\(11\) −1.00000 −0.301511
\(12\) −3.07109 −0.886546
\(13\) 1.09018 0.302362 0.151181 0.988506i \(-0.451692\pi\)
0.151181 + 0.988506i \(0.451692\pi\)
\(14\) −0.0289798 −0.00774517
\(15\) −1.67805 −0.433271
\(16\) 3.00974 0.752436
\(17\) −2.37951 −0.577116 −0.288558 0.957462i \(-0.593176\pi\)
−0.288558 + 0.957462i \(0.593176\pi\)
\(18\) 0.0758904 0.0178875
\(19\) −1.00000 −0.229416
\(20\) 1.83015 0.409234
\(21\) 0.117996 0.0257488
\(22\) 0.412130 0.0878663
\(23\) −2.83321 −0.590766 −0.295383 0.955379i \(-0.595447\pi\)
−0.295383 + 0.955379i \(0.595447\pi\)
\(24\) 2.64884 0.540691
\(25\) 1.00000 0.200000
\(26\) −0.449296 −0.0881142
\(27\) −5.34316 −1.02829
\(28\) −0.128691 −0.0243203
\(29\) −9.85701 −1.83040 −0.915201 0.402999i \(-0.867968\pi\)
−0.915201 + 0.402999i \(0.867968\pi\)
\(30\) 0.691575 0.126264
\(31\) 1.51103 0.271389 0.135694 0.990751i \(-0.456673\pi\)
0.135694 + 0.990751i \(0.456673\pi\)
\(32\) −4.39744 −0.777365
\(33\) −1.67805 −0.292111
\(34\) 0.980667 0.168183
\(35\) −0.0703171 −0.0118858
\(36\) 0.337007 0.0561679
\(37\) −1.38463 −0.227632 −0.113816 0.993502i \(-0.536307\pi\)
−0.113816 + 0.993502i \(0.536307\pi\)
\(38\) 0.412130 0.0668563
\(39\) 1.82938 0.292935
\(40\) −1.57852 −0.249586
\(41\) 2.59281 0.404929 0.202464 0.979290i \(-0.435105\pi\)
0.202464 + 0.979290i \(0.435105\pi\)
\(42\) −0.0486296 −0.00750370
\(43\) −5.63972 −0.860049 −0.430025 0.902817i \(-0.641495\pi\)
−0.430025 + 0.902817i \(0.641495\pi\)
\(44\) 1.83015 0.275905
\(45\) 0.184142 0.0274503
\(46\) 1.16765 0.172161
\(47\) −4.95295 −0.722462 −0.361231 0.932476i \(-0.617643\pi\)
−0.361231 + 0.932476i \(0.617643\pi\)
\(48\) 5.05051 0.728978
\(49\) −6.99506 −0.999294
\(50\) −0.412130 −0.0582839
\(51\) −3.99294 −0.559124
\(52\) −1.99519 −0.276684
\(53\) −3.23082 −0.443787 −0.221893 0.975071i \(-0.571224\pi\)
−0.221893 + 0.975071i \(0.571224\pi\)
\(54\) 2.20207 0.299664
\(55\) 1.00000 0.134840
\(56\) 0.110997 0.0148326
\(57\) −1.67805 −0.222263
\(58\) 4.06237 0.533415
\(59\) 5.63037 0.733011 0.366506 0.930416i \(-0.380554\pi\)
0.366506 + 0.930416i \(0.380554\pi\)
\(60\) 3.07109 0.396475
\(61\) 1.13632 0.145491 0.0727457 0.997351i \(-0.476824\pi\)
0.0727457 + 0.997351i \(0.476824\pi\)
\(62\) −0.622740 −0.0790880
\(63\) −0.0129483 −0.00163134
\(64\) −4.20717 −0.525897
\(65\) −1.09018 −0.135220
\(66\) 0.691575 0.0851270
\(67\) −10.5728 −1.29167 −0.645834 0.763478i \(-0.723490\pi\)
−0.645834 + 0.763478i \(0.723490\pi\)
\(68\) 4.35486 0.528104
\(69\) −4.75428 −0.572348
\(70\) 0.0289798 0.00346374
\(71\) −3.37214 −0.400199 −0.200099 0.979776i \(-0.564127\pi\)
−0.200099 + 0.979776i \(0.564127\pi\)
\(72\) −0.290671 −0.0342560
\(73\) −4.54954 −0.532483 −0.266242 0.963906i \(-0.585782\pi\)
−0.266242 + 0.963906i \(0.585782\pi\)
\(74\) 0.570648 0.0663365
\(75\) 1.67805 0.193765
\(76\) 1.83015 0.209933
\(77\) −0.0703171 −0.00801338
\(78\) −0.753942 −0.0853671
\(79\) 2.22913 0.250797 0.125398 0.992106i \(-0.459979\pi\)
0.125398 + 0.992106i \(0.459979\pi\)
\(80\) −3.00974 −0.336500
\(81\) −8.41367 −0.934852
\(82\) −1.06857 −0.118004
\(83\) 2.48243 0.272482 0.136241 0.990676i \(-0.456498\pi\)
0.136241 + 0.990676i \(0.456498\pi\)
\(84\) −0.215950 −0.0235621
\(85\) 2.37951 0.258094
\(86\) 2.32430 0.250635
\(87\) −16.5406 −1.77334
\(88\) −1.57852 −0.168271
\(89\) 6.45611 0.684346 0.342173 0.939637i \(-0.388837\pi\)
0.342173 + 0.939637i \(0.388837\pi\)
\(90\) −0.0758904 −0.00799955
\(91\) 0.0766584 0.00803599
\(92\) 5.18520 0.540595
\(93\) 2.53559 0.262928
\(94\) 2.04126 0.210540
\(95\) 1.00000 0.102598
\(96\) −7.37913 −0.753130
\(97\) 9.43225 0.957700 0.478850 0.877897i \(-0.341054\pi\)
0.478850 + 0.877897i \(0.341054\pi\)
\(98\) 2.88287 0.291214
\(99\) 0.184142 0.0185070
\(100\) −1.83015 −0.183015
\(101\) 2.07500 0.206470 0.103235 0.994657i \(-0.467081\pi\)
0.103235 + 0.994657i \(0.467081\pi\)
\(102\) 1.64561 0.162940
\(103\) 13.9955 1.37902 0.689510 0.724276i \(-0.257826\pi\)
0.689510 + 0.724276i \(0.257826\pi\)
\(104\) 1.72087 0.168745
\(105\) −0.117996 −0.0115152
\(106\) 1.33152 0.129328
\(107\) 2.15806 0.208628 0.104314 0.994544i \(-0.466735\pi\)
0.104314 + 0.994544i \(0.466735\pi\)
\(108\) 9.77877 0.940963
\(109\) −2.10949 −0.202053 −0.101026 0.994884i \(-0.532213\pi\)
−0.101026 + 0.994884i \(0.532213\pi\)
\(110\) −0.412130 −0.0392950
\(111\) −2.32348 −0.220535
\(112\) 0.211637 0.0199978
\(113\) 1.73202 0.162935 0.0814673 0.996676i \(-0.474039\pi\)
0.0814673 + 0.996676i \(0.474039\pi\)
\(114\) 0.691575 0.0647719
\(115\) 2.83321 0.264199
\(116\) 18.0398 1.67495
\(117\) −0.200748 −0.0185592
\(118\) −2.32044 −0.213614
\(119\) −0.167320 −0.0153382
\(120\) −2.64884 −0.241804
\(121\) 1.00000 0.0909091
\(122\) −0.468313 −0.0423991
\(123\) 4.35087 0.392305
\(124\) −2.76541 −0.248341
\(125\) −1.00000 −0.0894427
\(126\) 0.00533639 0.000475404 0
\(127\) 2.45825 0.218134 0.109067 0.994034i \(-0.465214\pi\)
0.109067 + 0.994034i \(0.465214\pi\)
\(128\) 10.5288 0.930622
\(129\) −9.46374 −0.833236
\(130\) 0.449296 0.0394059
\(131\) −18.9151 −1.65262 −0.826312 0.563212i \(-0.809565\pi\)
−0.826312 + 0.563212i \(0.809565\pi\)
\(132\) 3.07109 0.267304
\(133\) −0.0703171 −0.00609727
\(134\) 4.35735 0.376418
\(135\) 5.34316 0.459866
\(136\) −3.75610 −0.322083
\(137\) −15.5938 −1.33227 −0.666134 0.745832i \(-0.732052\pi\)
−0.666134 + 0.745832i \(0.732052\pi\)
\(138\) 1.95938 0.166793
\(139\) 9.69714 0.822501 0.411250 0.911522i \(-0.365092\pi\)
0.411250 + 0.911522i \(0.365092\pi\)
\(140\) 0.128691 0.0108764
\(141\) −8.31131 −0.699938
\(142\) 1.38976 0.116626
\(143\) −1.09018 −0.0911656
\(144\) −0.554220 −0.0461850
\(145\) 9.85701 0.818580
\(146\) 1.87500 0.155176
\(147\) −11.7381 −0.968139
\(148\) 2.53408 0.208300
\(149\) 8.64937 0.708584 0.354292 0.935135i \(-0.384722\pi\)
0.354292 + 0.935135i \(0.384722\pi\)
\(150\) −0.691575 −0.0564669
\(151\) 8.67013 0.705565 0.352782 0.935705i \(-0.385236\pi\)
0.352782 + 0.935705i \(0.385236\pi\)
\(152\) −1.57852 −0.128035
\(153\) 0.438168 0.0354238
\(154\) 0.0289798 0.00233526
\(155\) −1.51103 −0.121369
\(156\) −3.34804 −0.268058
\(157\) 1.46525 0.116939 0.0584697 0.998289i \(-0.481378\pi\)
0.0584697 + 0.998289i \(0.481378\pi\)
\(158\) −0.918691 −0.0730872
\(159\) −5.42148 −0.429951
\(160\) 4.39744 0.347648
\(161\) −0.199223 −0.0157010
\(162\) 3.46752 0.272434
\(163\) 8.65423 0.677852 0.338926 0.940813i \(-0.389936\pi\)
0.338926 + 0.940813i \(0.389936\pi\)
\(164\) −4.74523 −0.370540
\(165\) 1.67805 0.130636
\(166\) −1.02308 −0.0794065
\(167\) 13.6449 1.05587 0.527936 0.849284i \(-0.322966\pi\)
0.527936 + 0.849284i \(0.322966\pi\)
\(168\) 0.186258 0.0143701
\(169\) −11.8115 −0.908577
\(170\) −0.980667 −0.0752137
\(171\) 0.184142 0.0140817
\(172\) 10.3215 0.787009
\(173\) 2.05153 0.155975 0.0779876 0.996954i \(-0.475151\pi\)
0.0779876 + 0.996954i \(0.475151\pi\)
\(174\) 6.81686 0.516785
\(175\) 0.0703171 0.00531547
\(176\) −3.00974 −0.226868
\(177\) 9.44805 0.710159
\(178\) −2.66075 −0.199432
\(179\) −22.4395 −1.67720 −0.838602 0.544744i \(-0.816627\pi\)
−0.838602 + 0.544744i \(0.816627\pi\)
\(180\) −0.337007 −0.0251190
\(181\) −13.8894 −1.03239 −0.516195 0.856471i \(-0.672652\pi\)
−0.516195 + 0.856471i \(0.672652\pi\)
\(182\) −0.0315932 −0.00234184
\(183\) 1.90681 0.140956
\(184\) −4.47228 −0.329701
\(185\) 1.38463 0.101800
\(186\) −1.04499 −0.0766224
\(187\) 2.37951 0.174007
\(188\) 9.06464 0.661107
\(189\) −0.375715 −0.0273293
\(190\) −0.412130 −0.0298990
\(191\) −14.8007 −1.07094 −0.535472 0.844553i \(-0.679866\pi\)
−0.535472 + 0.844553i \(0.679866\pi\)
\(192\) −7.05985 −0.509501
\(193\) 9.31714 0.670662 0.335331 0.942100i \(-0.391152\pi\)
0.335331 + 0.942100i \(0.391152\pi\)
\(194\) −3.88731 −0.279093
\(195\) −1.82938 −0.131005
\(196\) 12.8020 0.914428
\(197\) −12.3492 −0.879844 −0.439922 0.898036i \(-0.644994\pi\)
−0.439922 + 0.898036i \(0.644994\pi\)
\(198\) −0.0758904 −0.00539329
\(199\) −3.24025 −0.229695 −0.114848 0.993383i \(-0.536638\pi\)
−0.114848 + 0.993383i \(0.536638\pi\)
\(200\) 1.57852 0.111618
\(201\) −17.7416 −1.25140
\(202\) −0.855167 −0.0601694
\(203\) −0.693117 −0.0486472
\(204\) 7.30768 0.511640
\(205\) −2.59281 −0.181090
\(206\) −5.76797 −0.401874
\(207\) 0.521714 0.0362616
\(208\) 3.28117 0.227508
\(209\) 1.00000 0.0691714
\(210\) 0.0486296 0.00335576
\(211\) 24.9918 1.72051 0.860253 0.509868i \(-0.170306\pi\)
0.860253 + 0.509868i \(0.170306\pi\)
\(212\) 5.91287 0.406098
\(213\) −5.65862 −0.387722
\(214\) −0.889402 −0.0607982
\(215\) 5.63972 0.384626
\(216\) −8.43427 −0.573879
\(217\) 0.106251 0.00721280
\(218\) 0.869384 0.0588821
\(219\) −7.63436 −0.515882
\(220\) −1.83015 −0.123389
\(221\) −2.59410 −0.174498
\(222\) 0.957577 0.0642683
\(223\) 17.1079 1.14563 0.572814 0.819685i \(-0.305852\pi\)
0.572814 + 0.819685i \(0.305852\pi\)
\(224\) −0.309215 −0.0206603
\(225\) −0.184142 −0.0122761
\(226\) −0.713816 −0.0474823
\(227\) −2.43249 −0.161450 −0.0807251 0.996736i \(-0.525724\pi\)
−0.0807251 + 0.996736i \(0.525724\pi\)
\(228\) 3.07109 0.203388
\(229\) 4.21444 0.278498 0.139249 0.990257i \(-0.455531\pi\)
0.139249 + 0.990257i \(0.455531\pi\)
\(230\) −1.16765 −0.0769927
\(231\) −0.117996 −0.00776355
\(232\) −15.5595 −1.02153
\(233\) 5.17997 0.339351 0.169676 0.985500i \(-0.445728\pi\)
0.169676 + 0.985500i \(0.445728\pi\)
\(234\) 0.0827343 0.00540851
\(235\) 4.95295 0.323095
\(236\) −10.3044 −0.670760
\(237\) 3.74060 0.242978
\(238\) 0.0689576 0.00446986
\(239\) 1.21784 0.0787756 0.0393878 0.999224i \(-0.487459\pi\)
0.0393878 + 0.999224i \(0.487459\pi\)
\(240\) −5.05051 −0.326009
\(241\) −5.39692 −0.347646 −0.173823 0.984777i \(-0.555612\pi\)
−0.173823 + 0.984777i \(0.555612\pi\)
\(242\) −0.412130 −0.0264927
\(243\) 1.91090 0.122584
\(244\) −2.07964 −0.133135
\(245\) 6.99506 0.446898
\(246\) −1.79312 −0.114325
\(247\) −1.09018 −0.0693666
\(248\) 2.38519 0.151460
\(249\) 4.16564 0.263987
\(250\) 0.412130 0.0260654
\(251\) 1.25250 0.0790573 0.0395287 0.999218i \(-0.487414\pi\)
0.0395287 + 0.999218i \(0.487414\pi\)
\(252\) 0.0236974 0.00149279
\(253\) 2.83321 0.178123
\(254\) −1.01312 −0.0635687
\(255\) 3.99294 0.250048
\(256\) 4.07512 0.254695
\(257\) 6.98317 0.435598 0.217799 0.975994i \(-0.430112\pi\)
0.217799 + 0.975994i \(0.430112\pi\)
\(258\) 3.90029 0.242821
\(259\) −0.0973633 −0.00604986
\(260\) 1.99519 0.123737
\(261\) 1.81509 0.112351
\(262\) 7.79549 0.481607
\(263\) 13.1108 0.808449 0.404224 0.914660i \(-0.367542\pi\)
0.404224 + 0.914660i \(0.367542\pi\)
\(264\) −2.64884 −0.163025
\(265\) 3.23082 0.198467
\(266\) 0.0289798 0.00177686
\(267\) 10.8337 0.663011
\(268\) 19.3497 1.18197
\(269\) −2.33183 −0.142174 −0.0710871 0.997470i \(-0.522647\pi\)
−0.0710871 + 0.997470i \(0.522647\pi\)
\(270\) −2.20207 −0.134014
\(271\) 5.01423 0.304593 0.152296 0.988335i \(-0.451333\pi\)
0.152296 + 0.988335i \(0.451333\pi\)
\(272\) −7.16172 −0.434243
\(273\) 0.128637 0.00778545
\(274\) 6.42666 0.388249
\(275\) −1.00000 −0.0603023
\(276\) 8.70104 0.523741
\(277\) 27.8630 1.67412 0.837062 0.547108i \(-0.184271\pi\)
0.837062 + 0.547108i \(0.184271\pi\)
\(278\) −3.99648 −0.239693
\(279\) −0.278244 −0.0166580
\(280\) −0.110997 −0.00663333
\(281\) 22.1845 1.32342 0.661708 0.749762i \(-0.269832\pi\)
0.661708 + 0.749762i \(0.269832\pi\)
\(282\) 3.42534 0.203976
\(283\) −18.8783 −1.12220 −0.561099 0.827749i \(-0.689621\pi\)
−0.561099 + 0.827749i \(0.689621\pi\)
\(284\) 6.17151 0.366212
\(285\) 1.67805 0.0993992
\(286\) 0.449296 0.0265674
\(287\) 0.182319 0.0107619
\(288\) 0.809754 0.0477152
\(289\) −11.3379 −0.666937
\(290\) −4.06237 −0.238550
\(291\) 15.8278 0.927842
\(292\) 8.32633 0.487262
\(293\) 16.2931 0.951854 0.475927 0.879485i \(-0.342113\pi\)
0.475927 + 0.879485i \(0.342113\pi\)
\(294\) 4.83761 0.282135
\(295\) −5.63037 −0.327813
\(296\) −2.18567 −0.127039
\(297\) 5.34316 0.310041
\(298\) −3.56466 −0.206495
\(299\) −3.08872 −0.178625
\(300\) −3.07109 −0.177309
\(301\) −0.396569 −0.0228578
\(302\) −3.57322 −0.205615
\(303\) 3.48195 0.200033
\(304\) −3.00974 −0.172621
\(305\) −1.13632 −0.0650657
\(306\) −0.180582 −0.0103232
\(307\) 30.9183 1.76460 0.882301 0.470686i \(-0.155994\pi\)
0.882301 + 0.470686i \(0.155994\pi\)
\(308\) 0.128691 0.00733284
\(309\) 23.4852 1.33603
\(310\) 0.622740 0.0353692
\(311\) −31.5851 −1.79103 −0.895513 0.445035i \(-0.853191\pi\)
−0.895513 + 0.445035i \(0.853191\pi\)
\(312\) 2.88771 0.163484
\(313\) −18.4889 −1.04505 −0.522527 0.852623i \(-0.675011\pi\)
−0.522527 + 0.852623i \(0.675011\pi\)
\(314\) −0.603872 −0.0340784
\(315\) 0.0129483 0.000729556 0
\(316\) −4.07964 −0.229498
\(317\) −28.7562 −1.61511 −0.807555 0.589793i \(-0.799209\pi\)
−0.807555 + 0.589793i \(0.799209\pi\)
\(318\) 2.23435 0.125296
\(319\) 9.85701 0.551887
\(320\) 4.20717 0.235188
\(321\) 3.62134 0.202124
\(322\) 0.0821059 0.00457558
\(323\) 2.37951 0.132399
\(324\) 15.3983 0.855459
\(325\) 1.09018 0.0604724
\(326\) −3.56667 −0.197539
\(327\) −3.53984 −0.195753
\(328\) 4.09280 0.225987
\(329\) −0.348277 −0.0192011
\(330\) −0.691575 −0.0380699
\(331\) −21.0396 −1.15644 −0.578221 0.815880i \(-0.696253\pi\)
−0.578221 + 0.815880i \(0.696253\pi\)
\(332\) −4.54321 −0.249341
\(333\) 0.254969 0.0139722
\(334\) −5.62346 −0.307702
\(335\) 10.5728 0.577652
\(336\) 0.355137 0.0193743
\(337\) 3.72856 0.203108 0.101554 0.994830i \(-0.467619\pi\)
0.101554 + 0.994830i \(0.467619\pi\)
\(338\) 4.86787 0.264777
\(339\) 2.90642 0.157855
\(340\) −4.35486 −0.236175
\(341\) −1.51103 −0.0818268
\(342\) −0.0758904 −0.00410368
\(343\) −0.984092 −0.0531360
\(344\) −8.90240 −0.479985
\(345\) 4.75428 0.255962
\(346\) −0.845498 −0.0454542
\(347\) 18.0660 0.969836 0.484918 0.874560i \(-0.338849\pi\)
0.484918 + 0.874560i \(0.338849\pi\)
\(348\) 30.2717 1.62273
\(349\) 21.4770 1.14964 0.574820 0.818280i \(-0.305072\pi\)
0.574820 + 0.818280i \(0.305072\pi\)
\(350\) −0.0289798 −0.00154903
\(351\) −5.82501 −0.310916
\(352\) 4.39744 0.234384
\(353\) −19.3979 −1.03245 −0.516223 0.856454i \(-0.672662\pi\)
−0.516223 + 0.856454i \(0.672662\pi\)
\(354\) −3.89382 −0.206954
\(355\) 3.37214 0.178974
\(356\) −11.8156 −0.626228
\(357\) −0.280772 −0.0148600
\(358\) 9.24797 0.488770
\(359\) −10.6909 −0.564245 −0.282123 0.959378i \(-0.591038\pi\)
−0.282123 + 0.959378i \(0.591038\pi\)
\(360\) 0.290671 0.0153197
\(361\) 1.00000 0.0526316
\(362\) 5.72423 0.300859
\(363\) 1.67805 0.0880749
\(364\) −0.140296 −0.00735353
\(365\) 4.54954 0.238134
\(366\) −0.785853 −0.0410772
\(367\) 26.5288 1.38479 0.692395 0.721518i \(-0.256556\pi\)
0.692395 + 0.721518i \(0.256556\pi\)
\(368\) −8.52725 −0.444514
\(369\) −0.477445 −0.0248548
\(370\) −0.570648 −0.0296666
\(371\) −0.227182 −0.0117947
\(372\) −4.64050 −0.240599
\(373\) −13.5037 −0.699194 −0.349597 0.936900i \(-0.613681\pi\)
−0.349597 + 0.936900i \(0.613681\pi\)
\(374\) −0.980667 −0.0507091
\(375\) −1.67805 −0.0866542
\(376\) −7.81832 −0.403199
\(377\) −10.7459 −0.553444
\(378\) 0.154843 0.00796428
\(379\) −25.0206 −1.28522 −0.642611 0.766193i \(-0.722149\pi\)
−0.642611 + 0.766193i \(0.722149\pi\)
\(380\) −1.83015 −0.0938847
\(381\) 4.12507 0.211334
\(382\) 6.09983 0.312094
\(383\) 22.3247 1.14074 0.570369 0.821389i \(-0.306800\pi\)
0.570369 + 0.821389i \(0.306800\pi\)
\(384\) 17.6678 0.901608
\(385\) 0.0703171 0.00358369
\(386\) −3.83987 −0.195444
\(387\) 1.03851 0.0527904
\(388\) −17.2624 −0.876367
\(389\) 10.1663 0.515450 0.257725 0.966218i \(-0.417027\pi\)
0.257725 + 0.966218i \(0.417027\pi\)
\(390\) 0.753942 0.0381773
\(391\) 6.74166 0.340940
\(392\) −11.0418 −0.557696
\(393\) −31.7406 −1.60110
\(394\) 5.08947 0.256404
\(395\) −2.22913 −0.112160
\(396\) −0.337007 −0.0169353
\(397\) 18.2304 0.914956 0.457478 0.889221i \(-0.348753\pi\)
0.457478 + 0.889221i \(0.348753\pi\)
\(398\) 1.33540 0.0669377
\(399\) −0.117996 −0.00590718
\(400\) 3.00974 0.150487
\(401\) −4.66663 −0.233040 −0.116520 0.993188i \(-0.537174\pi\)
−0.116520 + 0.993188i \(0.537174\pi\)
\(402\) 7.31186 0.364682
\(403\) 1.64730 0.0820577
\(404\) −3.79755 −0.188935
\(405\) 8.41367 0.418078
\(406\) 0.285654 0.0141768
\(407\) 1.38463 0.0686337
\(408\) −6.30293 −0.312042
\(409\) −5.67179 −0.280452 −0.140226 0.990120i \(-0.544783\pi\)
−0.140226 + 0.990120i \(0.544783\pi\)
\(410\) 1.06857 0.0527731
\(411\) −26.1672 −1.29073
\(412\) −25.6139 −1.26191
\(413\) 0.395911 0.0194815
\(414\) −0.215014 −0.0105673
\(415\) −2.48243 −0.121857
\(416\) −4.79401 −0.235046
\(417\) 16.2723 0.796858
\(418\) −0.412130 −0.0201579
\(419\) 23.7450 1.16002 0.580009 0.814610i \(-0.303049\pi\)
0.580009 + 0.814610i \(0.303049\pi\)
\(420\) 0.215950 0.0105373
\(421\) 12.5779 0.613010 0.306505 0.951869i \(-0.400840\pi\)
0.306505 + 0.951869i \(0.400840\pi\)
\(422\) −10.2999 −0.501389
\(423\) 0.912046 0.0443452
\(424\) −5.09990 −0.247673
\(425\) −2.37951 −0.115423
\(426\) 2.33208 0.112990
\(427\) 0.0799030 0.00386678
\(428\) −3.94958 −0.190910
\(429\) −1.82938 −0.0883234
\(430\) −2.32430 −0.112087
\(431\) −39.2782 −1.89197 −0.945983 0.324216i \(-0.894900\pi\)
−0.945983 + 0.324216i \(0.894900\pi\)
\(432\) −16.0815 −0.773723
\(433\) 11.3560 0.545737 0.272868 0.962051i \(-0.412028\pi\)
0.272868 + 0.962051i \(0.412028\pi\)
\(434\) −0.0437893 −0.00210195
\(435\) 16.5406 0.793060
\(436\) 3.86069 0.184893
\(437\) 2.83321 0.135531
\(438\) 3.14635 0.150338
\(439\) −2.62398 −0.125236 −0.0626178 0.998038i \(-0.519945\pi\)
−0.0626178 + 0.998038i \(0.519945\pi\)
\(440\) 1.57852 0.0752529
\(441\) 1.28808 0.0613373
\(442\) 1.06910 0.0508521
\(443\) −19.9485 −0.947782 −0.473891 0.880583i \(-0.657151\pi\)
−0.473891 + 0.880583i \(0.657151\pi\)
\(444\) 4.25232 0.201806
\(445\) −6.45611 −0.306049
\(446\) −7.05066 −0.333859
\(447\) 14.5141 0.686493
\(448\) −0.295836 −0.0139769
\(449\) −2.91822 −0.137719 −0.0688597 0.997626i \(-0.521936\pi\)
−0.0688597 + 0.997626i \(0.521936\pi\)
\(450\) 0.0758904 0.00357751
\(451\) −2.59281 −0.122091
\(452\) −3.16985 −0.149097
\(453\) 14.5489 0.683568
\(454\) 1.00250 0.0470498
\(455\) −0.0766584 −0.00359380
\(456\) −2.64884 −0.124043
\(457\) −2.23340 −0.104474 −0.0522369 0.998635i \(-0.516635\pi\)
−0.0522369 + 0.998635i \(0.516635\pi\)
\(458\) −1.73690 −0.0811599
\(459\) 12.7141 0.593443
\(460\) −5.18520 −0.241761
\(461\) −27.1480 −1.26441 −0.632204 0.774802i \(-0.717849\pi\)
−0.632204 + 0.774802i \(0.717849\pi\)
\(462\) 0.0486296 0.00226245
\(463\) −0.728298 −0.0338469 −0.0169234 0.999857i \(-0.505387\pi\)
−0.0169234 + 0.999857i \(0.505387\pi\)
\(464\) −29.6671 −1.37726
\(465\) −2.53559 −0.117585
\(466\) −2.13482 −0.0988937
\(467\) −26.7879 −1.23960 −0.619798 0.784761i \(-0.712785\pi\)
−0.619798 + 0.784761i \(0.712785\pi\)
\(468\) 0.367399 0.0169830
\(469\) −0.743446 −0.0343291
\(470\) −2.04126 −0.0941562
\(471\) 2.45876 0.113294
\(472\) 8.88764 0.409087
\(473\) 5.63972 0.259315
\(474\) −1.54161 −0.0708086
\(475\) −1.00000 −0.0458831
\(476\) 0.306221 0.0140356
\(477\) 0.594929 0.0272399
\(478\) −0.501909 −0.0229568
\(479\) −31.4796 −1.43834 −0.719170 0.694835i \(-0.755478\pi\)
−0.719170 + 0.694835i \(0.755478\pi\)
\(480\) 7.37913 0.336810
\(481\) −1.50950 −0.0688273
\(482\) 2.22423 0.101311
\(483\) −0.334307 −0.0152115
\(484\) −1.83015 −0.0831886
\(485\) −9.43225 −0.428296
\(486\) −0.787538 −0.0357235
\(487\) −18.5946 −0.842603 −0.421302 0.906921i \(-0.638427\pi\)
−0.421302 + 0.906921i \(0.638427\pi\)
\(488\) 1.79371 0.0811974
\(489\) 14.5223 0.656719
\(490\) −2.88287 −0.130235
\(491\) −21.5567 −0.972839 −0.486420 0.873725i \(-0.661697\pi\)
−0.486420 + 0.873725i \(0.661697\pi\)
\(492\) −7.96274 −0.358988
\(493\) 23.4549 1.05635
\(494\) 0.449296 0.0202148
\(495\) −0.184142 −0.00827657
\(496\) 4.54781 0.204203
\(497\) −0.237119 −0.0106362
\(498\) −1.71678 −0.0769309
\(499\) 5.83099 0.261031 0.130515 0.991446i \(-0.458337\pi\)
0.130515 + 0.991446i \(0.458337\pi\)
\(500\) 1.83015 0.0818468
\(501\) 22.8968 1.02295
\(502\) −0.516194 −0.0230389
\(503\) −16.7197 −0.745494 −0.372747 0.927933i \(-0.621584\pi\)
−0.372747 + 0.927933i \(0.621584\pi\)
\(504\) −0.0204392 −0.000910433 0
\(505\) −2.07500 −0.0923361
\(506\) −1.16765 −0.0519084
\(507\) −19.8203 −0.880251
\(508\) −4.49897 −0.199609
\(509\) −17.7373 −0.786190 −0.393095 0.919498i \(-0.628596\pi\)
−0.393095 + 0.919498i \(0.628596\pi\)
\(510\) −1.64561 −0.0728688
\(511\) −0.319910 −0.0141520
\(512\) −22.7370 −1.00484
\(513\) 5.34316 0.235906
\(514\) −2.87797 −0.126942
\(515\) −13.9955 −0.616717
\(516\) 17.3201 0.762473
\(517\) 4.95295 0.217830
\(518\) 0.0401263 0.00176305
\(519\) 3.44258 0.151112
\(520\) −1.72087 −0.0754652
\(521\) −29.8773 −1.30895 −0.654474 0.756085i \(-0.727110\pi\)
−0.654474 + 0.756085i \(0.727110\pi\)
\(522\) −0.748052 −0.0327414
\(523\) −27.0125 −1.18117 −0.590586 0.806975i \(-0.701103\pi\)
−0.590586 + 0.806975i \(0.701103\pi\)
\(524\) 34.6175 1.51227
\(525\) 0.117996 0.00514976
\(526\) −5.40336 −0.235598
\(527\) −3.59551 −0.156623
\(528\) −5.05051 −0.219795
\(529\) −14.9729 −0.650996
\(530\) −1.33152 −0.0578373
\(531\) −1.03679 −0.0449927
\(532\) 0.128691 0.00557945
\(533\) 2.82663 0.122435
\(534\) −4.46488 −0.193214
\(535\) −2.15806 −0.0933012
\(536\) −16.6893 −0.720868
\(537\) −37.6546 −1.62492
\(538\) 0.961017 0.0414324
\(539\) 6.99506 0.301298
\(540\) −9.77877 −0.420811
\(541\) 30.2095 1.29881 0.649404 0.760444i \(-0.275019\pi\)
0.649404 + 0.760444i \(0.275019\pi\)
\(542\) −2.06651 −0.0887643
\(543\) −23.3071 −1.00020
\(544\) 10.4638 0.448630
\(545\) 2.10949 0.0903607
\(546\) −0.0530150 −0.00226883
\(547\) 4.79311 0.204939 0.102469 0.994736i \(-0.467326\pi\)
0.102469 + 0.994736i \(0.467326\pi\)
\(548\) 28.5390 1.21912
\(549\) −0.209245 −0.00893036
\(550\) 0.412130 0.0175733
\(551\) 9.85701 0.419923
\(552\) −7.50472 −0.319422
\(553\) 0.156746 0.00666552
\(554\) −11.4832 −0.487873
\(555\) 2.32348 0.0986264
\(556\) −17.7472 −0.752650
\(557\) −2.86504 −0.121396 −0.0606978 0.998156i \(-0.519333\pi\)
−0.0606978 + 0.998156i \(0.519333\pi\)
\(558\) 0.114673 0.00485448
\(559\) −6.14832 −0.260046
\(560\) −0.211637 −0.00894327
\(561\) 3.99294 0.168582
\(562\) −9.14288 −0.385669
\(563\) −41.4795 −1.74815 −0.874076 0.485790i \(-0.838532\pi\)
−0.874076 + 0.485790i \(0.838532\pi\)
\(564\) 15.2109 0.640496
\(565\) −1.73202 −0.0728665
\(566\) 7.78030 0.327030
\(567\) −0.591625 −0.0248459
\(568\) −5.32298 −0.223347
\(569\) 9.90541 0.415256 0.207628 0.978208i \(-0.433426\pi\)
0.207628 + 0.978208i \(0.433426\pi\)
\(570\) −0.691575 −0.0289669
\(571\) −17.6387 −0.738156 −0.369078 0.929398i \(-0.620326\pi\)
−0.369078 + 0.929398i \(0.620326\pi\)
\(572\) 1.99519 0.0834233
\(573\) −24.8364 −1.03756
\(574\) −0.0751390 −0.00313624
\(575\) −2.83321 −0.118153
\(576\) 0.774717 0.0322799
\(577\) −27.8986 −1.16143 −0.580716 0.814106i \(-0.697227\pi\)
−0.580716 + 0.814106i \(0.697227\pi\)
\(578\) 4.67270 0.194359
\(579\) 15.6346 0.649754
\(580\) −18.0398 −0.749062
\(581\) 0.174557 0.00724184
\(582\) −6.52311 −0.270392
\(583\) 3.23082 0.133807
\(584\) −7.18153 −0.297174
\(585\) 0.200748 0.00829992
\(586\) −6.71488 −0.277389
\(587\) −16.0386 −0.661984 −0.330992 0.943634i \(-0.607383\pi\)
−0.330992 + 0.943634i \(0.607383\pi\)
\(588\) 21.4824 0.885920
\(589\) −1.51103 −0.0622609
\(590\) 2.32044 0.0955311
\(591\) −20.7226 −0.852414
\(592\) −4.16739 −0.171279
\(593\) 29.1140 1.19557 0.597784 0.801657i \(-0.296048\pi\)
0.597784 + 0.801657i \(0.296048\pi\)
\(594\) −2.20207 −0.0903521
\(595\) 0.167320 0.00685946
\(596\) −15.8296 −0.648407
\(597\) −5.43730 −0.222534
\(598\) 1.27295 0.0520549
\(599\) −26.0938 −1.06616 −0.533082 0.846064i \(-0.678966\pi\)
−0.533082 + 0.846064i \(0.678966\pi\)
\(600\) 2.64884 0.108138
\(601\) 15.2644 0.622647 0.311324 0.950304i \(-0.399228\pi\)
0.311324 + 0.950304i \(0.399228\pi\)
\(602\) 0.163438 0.00666123
\(603\) 1.94689 0.0792835
\(604\) −15.8676 −0.645644
\(605\) −1.00000 −0.0406558
\(606\) −1.43502 −0.0582935
\(607\) 29.2038 1.18535 0.592674 0.805443i \(-0.298072\pi\)
0.592674 + 0.805443i \(0.298072\pi\)
\(608\) 4.39744 0.178340
\(609\) −1.16309 −0.0471306
\(610\) 0.468313 0.0189614
\(611\) −5.39961 −0.218445
\(612\) −0.801912 −0.0324154
\(613\) −22.1940 −0.896409 −0.448204 0.893931i \(-0.647936\pi\)
−0.448204 + 0.893931i \(0.647936\pi\)
\(614\) −12.7424 −0.514240
\(615\) −4.35087 −0.175444
\(616\) −0.110997 −0.00447219
\(617\) 18.6664 0.751482 0.375741 0.926725i \(-0.377388\pi\)
0.375741 + 0.926725i \(0.377388\pi\)
\(618\) −9.67896 −0.389345
\(619\) −31.8733 −1.28110 −0.640549 0.767917i \(-0.721293\pi\)
−0.640549 + 0.767917i \(0.721293\pi\)
\(620\) 2.76541 0.111061
\(621\) 15.1383 0.607479
\(622\) 13.0172 0.521940
\(623\) 0.453975 0.0181881
\(624\) 5.50597 0.220415
\(625\) 1.00000 0.0400000
\(626\) 7.61982 0.304549
\(627\) 1.67805 0.0670149
\(628\) −2.68162 −0.107008
\(629\) 3.29475 0.131370
\(630\) −0.00533639 −0.000212607 0
\(631\) −34.0268 −1.35458 −0.677292 0.735714i \(-0.736847\pi\)
−0.677292 + 0.735714i \(0.736847\pi\)
\(632\) 3.51872 0.139967
\(633\) 41.9375 1.66687
\(634\) 11.8513 0.470675
\(635\) −2.45825 −0.0975527
\(636\) 9.92211 0.393437
\(637\) −7.62588 −0.302148
\(638\) −4.06237 −0.160831
\(639\) 0.620952 0.0245645
\(640\) −10.5288 −0.416187
\(641\) 12.2428 0.483561 0.241781 0.970331i \(-0.422269\pi\)
0.241781 + 0.970331i \(0.422269\pi\)
\(642\) −1.49246 −0.0589028
\(643\) 25.2441 0.995531 0.497765 0.867312i \(-0.334154\pi\)
0.497765 + 0.867312i \(0.334154\pi\)
\(644\) 0.364609 0.0143676
\(645\) 9.46374 0.372634
\(646\) −0.980667 −0.0385838
\(647\) 20.4406 0.803604 0.401802 0.915727i \(-0.368384\pi\)
0.401802 + 0.915727i \(0.368384\pi\)
\(648\) −13.2811 −0.521732
\(649\) −5.63037 −0.221011
\(650\) −0.449296 −0.0176228
\(651\) 0.178295 0.00698793
\(652\) −15.8385 −0.620285
\(653\) −24.2656 −0.949587 −0.474793 0.880097i \(-0.657477\pi\)
−0.474793 + 0.880097i \(0.657477\pi\)
\(654\) 1.45887 0.0570464
\(655\) 18.9151 0.739076
\(656\) 7.80369 0.304683
\(657\) 0.837761 0.0326842
\(658\) 0.143535 0.00559559
\(659\) 15.1423 0.589859 0.294929 0.955519i \(-0.404704\pi\)
0.294929 + 0.955519i \(0.404704\pi\)
\(660\) −3.07109 −0.119542
\(661\) 25.5680 0.994480 0.497240 0.867613i \(-0.334347\pi\)
0.497240 + 0.867613i \(0.334347\pi\)
\(662\) 8.67106 0.337010
\(663\) −4.35303 −0.169058
\(664\) 3.91855 0.152069
\(665\) 0.0703171 0.00272678
\(666\) −0.105080 −0.00407178
\(667\) 27.9270 1.08134
\(668\) −24.9721 −0.966201
\(669\) 28.7079 1.10991
\(670\) −4.35735 −0.168339
\(671\) −1.13632 −0.0438673
\(672\) −0.518879 −0.0200162
\(673\) −37.5675 −1.44812 −0.724061 0.689736i \(-0.757727\pi\)
−0.724061 + 0.689736i \(0.757727\pi\)
\(674\) −1.53665 −0.0591896
\(675\) −5.34316 −0.205658
\(676\) 21.6168 0.831416
\(677\) 23.6420 0.908637 0.454319 0.890839i \(-0.349883\pi\)
0.454319 + 0.890839i \(0.349883\pi\)
\(678\) −1.19782 −0.0460020
\(679\) 0.663249 0.0254531
\(680\) 3.75610 0.144040
\(681\) −4.08185 −0.156417
\(682\) 0.622740 0.0238459
\(683\) 14.6976 0.562389 0.281195 0.959651i \(-0.409269\pi\)
0.281195 + 0.959651i \(0.409269\pi\)
\(684\) −0.337007 −0.0128858
\(685\) 15.5938 0.595808
\(686\) 0.405573 0.0154849
\(687\) 7.07205 0.269816
\(688\) −16.9741 −0.647132
\(689\) −3.52218 −0.134184
\(690\) −1.95938 −0.0745923
\(691\) −7.76870 −0.295535 −0.147768 0.989022i \(-0.547209\pi\)
−0.147768 + 0.989022i \(0.547209\pi\)
\(692\) −3.75461 −0.142729
\(693\) 0.0129483 0.000491866 0
\(694\) −7.44555 −0.282629
\(695\) −9.69714 −0.367834
\(696\) −26.1096 −0.989682
\(697\) −6.16962 −0.233691
\(698\) −8.85132 −0.335028
\(699\) 8.69227 0.328772
\(700\) −0.128691 −0.00486405
\(701\) 21.9159 0.827751 0.413876 0.910333i \(-0.364175\pi\)
0.413876 + 0.910333i \(0.364175\pi\)
\(702\) 2.40066 0.0906070
\(703\) 1.38463 0.0522224
\(704\) 4.20717 0.158564
\(705\) 8.31131 0.313022
\(706\) 7.99445 0.300875
\(707\) 0.145908 0.00548742
\(708\) −17.2913 −0.649848
\(709\) −2.41310 −0.0906260 −0.0453130 0.998973i \(-0.514429\pi\)
−0.0453130 + 0.998973i \(0.514429\pi\)
\(710\) −1.38976 −0.0521566
\(711\) −0.410477 −0.0153941
\(712\) 10.1911 0.381927
\(713\) −4.28107 −0.160327
\(714\) 0.115715 0.00433051
\(715\) 1.09018 0.0407705
\(716\) 41.0676 1.53477
\(717\) 2.04360 0.0763197
\(718\) 4.40604 0.164432
\(719\) 25.0038 0.932484 0.466242 0.884657i \(-0.345608\pi\)
0.466242 + 0.884657i \(0.345608\pi\)
\(720\) 0.554220 0.0206546
\(721\) 0.984125 0.0366507
\(722\) −0.412130 −0.0153379
\(723\) −9.05632 −0.336808
\(724\) 25.4197 0.944714
\(725\) −9.85701 −0.366080
\(726\) −0.691575 −0.0256668
\(727\) −17.0950 −0.634017 −0.317009 0.948423i \(-0.602678\pi\)
−0.317009 + 0.948423i \(0.602678\pi\)
\(728\) 0.121007 0.00448481
\(729\) 28.4476 1.05361
\(730\) −1.87500 −0.0693969
\(731\) 13.4198 0.496348
\(732\) −3.48975 −0.128985
\(733\) 4.33014 0.159937 0.0799686 0.996797i \(-0.474518\pi\)
0.0799686 + 0.996797i \(0.474518\pi\)
\(734\) −10.9333 −0.403555
\(735\) 11.7381 0.432965
\(736\) 12.4589 0.459241
\(737\) 10.5728 0.389453
\(738\) 0.196769 0.00724318
\(739\) −45.3068 −1.66664 −0.833319 0.552793i \(-0.813562\pi\)
−0.833319 + 0.552793i \(0.813562\pi\)
\(740\) −2.53408 −0.0931547
\(741\) −1.82938 −0.0672040
\(742\) 0.0936283 0.00343720
\(743\) −29.9590 −1.09909 −0.549544 0.835465i \(-0.685198\pi\)
−0.549544 + 0.835465i \(0.685198\pi\)
\(744\) 4.00247 0.146738
\(745\) −8.64937 −0.316888
\(746\) 5.56527 0.203759
\(747\) −0.457119 −0.0167251
\(748\) −4.35486 −0.159229
\(749\) 0.151749 0.00554478
\(750\) 0.691575 0.0252527
\(751\) 19.1315 0.698117 0.349058 0.937101i \(-0.386502\pi\)
0.349058 + 0.937101i \(0.386502\pi\)
\(752\) −14.9071 −0.543606
\(753\) 2.10177 0.0765926
\(754\) 4.42872 0.161284
\(755\) −8.67013 −0.315538
\(756\) 0.687615 0.0250083
\(757\) 1.82770 0.0664290 0.0332145 0.999448i \(-0.489426\pi\)
0.0332145 + 0.999448i \(0.489426\pi\)
\(758\) 10.3117 0.374539
\(759\) 4.75428 0.172569
\(760\) 1.57852 0.0572589
\(761\) 14.9911 0.543426 0.271713 0.962378i \(-0.412410\pi\)
0.271713 + 0.962378i \(0.412410\pi\)
\(762\) −1.70006 −0.0615868
\(763\) −0.148333 −0.00537003
\(764\) 27.0876 0.979994
\(765\) −0.438168 −0.0158420
\(766\) −9.20066 −0.332433
\(767\) 6.13812 0.221635
\(768\) 6.83826 0.246755
\(769\) 22.5313 0.812501 0.406251 0.913762i \(-0.366836\pi\)
0.406251 + 0.913762i \(0.366836\pi\)
\(770\) −0.0289798 −0.00104436
\(771\) 11.7181 0.422018
\(772\) −17.0518 −0.613706
\(773\) −32.9273 −1.18431 −0.592157 0.805822i \(-0.701724\pi\)
−0.592157 + 0.805822i \(0.701724\pi\)
\(774\) −0.428000 −0.0153842
\(775\) 1.51103 0.0542778
\(776\) 14.8890 0.534483
\(777\) −0.163381 −0.00586125
\(778\) −4.18982 −0.150212
\(779\) −2.59281 −0.0928970
\(780\) 3.34804 0.119879
\(781\) 3.37214 0.120664
\(782\) −2.77844 −0.0993568
\(783\) 52.6675 1.88218
\(784\) −21.0533 −0.751905
\(785\) −1.46525 −0.0522969
\(786\) 13.0812 0.466593
\(787\) −17.7799 −0.633786 −0.316893 0.948461i \(-0.602640\pi\)
−0.316893 + 0.948461i \(0.602640\pi\)
\(788\) 22.6009 0.805123
\(789\) 22.0007 0.783244
\(790\) 0.918691 0.0326856
\(791\) 0.121790 0.00433037
\(792\) 0.290671 0.0103286
\(793\) 1.23880 0.0439911
\(794\) −7.51327 −0.266636
\(795\) 5.42148 0.192280
\(796\) 5.93014 0.210188
\(797\) 10.5569 0.373943 0.186972 0.982365i \(-0.440133\pi\)
0.186972 + 0.982365i \(0.440133\pi\)
\(798\) 0.0486296 0.00172147
\(799\) 11.7856 0.416944
\(800\) −4.39744 −0.155473
\(801\) −1.18884 −0.0420056
\(802\) 1.92326 0.0679126
\(803\) 4.54954 0.160550
\(804\) 32.4699 1.14512
\(805\) 0.199223 0.00702170
\(806\) −0.678900 −0.0239132
\(807\) −3.91293 −0.137742
\(808\) 3.27542 0.115229
\(809\) −0.800366 −0.0281394 −0.0140697 0.999901i \(-0.504479\pi\)
−0.0140697 + 0.999901i \(0.504479\pi\)
\(810\) −3.46752 −0.121836
\(811\) 3.75214 0.131756 0.0658778 0.997828i \(-0.479015\pi\)
0.0658778 + 0.997828i \(0.479015\pi\)
\(812\) 1.26851 0.0445159
\(813\) 8.41413 0.295097
\(814\) −0.570648 −0.0200012
\(815\) −8.65423 −0.303145
\(816\) −12.0177 −0.420705
\(817\) 5.63972 0.197309
\(818\) 2.33751 0.0817293
\(819\) −0.0141160 −0.000493254 0
\(820\) 4.74523 0.165711
\(821\) −16.4431 −0.573868 −0.286934 0.957950i \(-0.592636\pi\)
−0.286934 + 0.957950i \(0.592636\pi\)
\(822\) 10.7843 0.376145
\(823\) 42.6902 1.48809 0.744044 0.668131i \(-0.232905\pi\)
0.744044 + 0.668131i \(0.232905\pi\)
\(824\) 22.0922 0.769618
\(825\) −1.67805 −0.0584223
\(826\) −0.163167 −0.00567730
\(827\) −11.2062 −0.389679 −0.194839 0.980835i \(-0.562419\pi\)
−0.194839 + 0.980835i \(0.562419\pi\)
\(828\) −0.954814 −0.0331821
\(829\) 21.4252 0.744128 0.372064 0.928207i \(-0.378650\pi\)
0.372064 + 0.928207i \(0.378650\pi\)
\(830\) 1.02308 0.0355117
\(831\) 46.7555 1.62193
\(832\) −4.58658 −0.159011
\(833\) 16.6448 0.576708
\(834\) −6.70630 −0.232220
\(835\) −13.6449 −0.472200
\(836\) −1.83015 −0.0632970
\(837\) −8.07366 −0.279067
\(838\) −9.78601 −0.338052
\(839\) −10.8785 −0.375569 −0.187784 0.982210i \(-0.560131\pi\)
−0.187784 + 0.982210i \(0.560131\pi\)
\(840\) −0.186258 −0.00642653
\(841\) 68.1607 2.35037
\(842\) −5.18373 −0.178643
\(843\) 37.2267 1.28216
\(844\) −45.7387 −1.57439
\(845\) 11.8115 0.406328
\(846\) −0.375881 −0.0129231
\(847\) 0.0703171 0.00241612
\(848\) −9.72393 −0.333921
\(849\) −31.6787 −1.08721
\(850\) 0.980667 0.0336366
\(851\) 3.92296 0.134477
\(852\) 10.3561 0.354795
\(853\) 10.5424 0.360966 0.180483 0.983578i \(-0.442234\pi\)
0.180483 + 0.983578i \(0.442234\pi\)
\(854\) −0.0329304 −0.00112686
\(855\) −0.184142 −0.00629752
\(856\) 3.40654 0.116433
\(857\) −14.9488 −0.510641 −0.255320 0.966857i \(-0.582181\pi\)
−0.255320 + 0.966857i \(0.582181\pi\)
\(858\) 0.753942 0.0257392
\(859\) 12.4442 0.424590 0.212295 0.977206i \(-0.431906\pi\)
0.212295 + 0.977206i \(0.431906\pi\)
\(860\) −10.3215 −0.351961
\(861\) 0.305940 0.0104264
\(862\) 16.1877 0.551356
\(863\) −31.1531 −1.06046 −0.530232 0.847853i \(-0.677895\pi\)
−0.530232 + 0.847853i \(0.677895\pi\)
\(864\) 23.4962 0.799357
\(865\) −2.05153 −0.0697542
\(866\) −4.68016 −0.159038
\(867\) −19.0256 −0.646144
\(868\) −0.194456 −0.00660025
\(869\) −2.22913 −0.0756181
\(870\) −6.81686 −0.231113
\(871\) −11.5262 −0.390551
\(872\) −3.32987 −0.112764
\(873\) −1.73687 −0.0587843
\(874\) −1.16765 −0.0394964
\(875\) −0.0703171 −0.00237715
\(876\) 13.9720 0.472071
\(877\) 41.3652 1.39680 0.698402 0.715706i \(-0.253895\pi\)
0.698402 + 0.715706i \(0.253895\pi\)
\(878\) 1.08142 0.0364961
\(879\) 27.3407 0.922179
\(880\) 3.00974 0.101458
\(881\) 56.9643 1.91917 0.959587 0.281411i \(-0.0908025\pi\)
0.959587 + 0.281411i \(0.0908025\pi\)
\(882\) −0.530857 −0.0178749
\(883\) −41.5298 −1.39759 −0.698795 0.715322i \(-0.746280\pi\)
−0.698795 + 0.715322i \(0.746280\pi\)
\(884\) 4.74759 0.159679
\(885\) −9.44805 −0.317593
\(886\) 8.22137 0.276202
\(887\) −37.4902 −1.25880 −0.629399 0.777082i \(-0.716699\pi\)
−0.629399 + 0.777082i \(0.716699\pi\)
\(888\) −3.66766 −0.123079
\(889\) 0.172857 0.00579744
\(890\) 2.66075 0.0891887
\(891\) 8.41367 0.281868
\(892\) −31.3100 −1.04834
\(893\) 4.95295 0.165744
\(894\) −5.98169 −0.200057
\(895\) 22.4395 0.750069
\(896\) 0.740354 0.0247335
\(897\) −5.18303 −0.173056
\(898\) 1.20268 0.0401341
\(899\) −14.8942 −0.496750
\(900\) 0.337007 0.0112336
\(901\) 7.68776 0.256116
\(902\) 1.06857 0.0355796
\(903\) −0.665463 −0.0221452
\(904\) 2.73402 0.0909322
\(905\) 13.8894 0.461699
\(906\) −5.99604 −0.199205
\(907\) −25.3818 −0.842789 −0.421394 0.906877i \(-0.638459\pi\)
−0.421394 + 0.906877i \(0.638459\pi\)
\(908\) 4.45183 0.147739
\(909\) −0.382094 −0.0126733
\(910\) 0.0315932 0.00104730
\(911\) −13.4110 −0.444327 −0.222163 0.975009i \(-0.571312\pi\)
−0.222163 + 0.975009i \(0.571312\pi\)
\(912\) −5.05051 −0.167239
\(913\) −2.48243 −0.0821563
\(914\) 0.920449 0.0304457
\(915\) −1.90681 −0.0630372
\(916\) −7.71306 −0.254847
\(917\) −1.33006 −0.0439224
\(918\) −5.23985 −0.172941
\(919\) 34.5515 1.13975 0.569874 0.821732i \(-0.306992\pi\)
0.569874 + 0.821732i \(0.306992\pi\)
\(920\) 4.47228 0.147447
\(921\) 51.8825 1.70959
\(922\) 11.1885 0.368473
\(923\) −3.67624 −0.121005
\(924\) 0.215950 0.00710423
\(925\) −1.38463 −0.0455264
\(926\) 0.300153 0.00986365
\(927\) −2.57716 −0.0846452
\(928\) 43.3456 1.42289
\(929\) −27.2218 −0.893117 −0.446558 0.894755i \(-0.647350\pi\)
−0.446558 + 0.894755i \(0.647350\pi\)
\(930\) 1.04499 0.0342666
\(931\) 6.99506 0.229254
\(932\) −9.48013 −0.310532
\(933\) −53.0014 −1.73519
\(934\) 11.0401 0.361243
\(935\) −2.37951 −0.0778183
\(936\) −0.316885 −0.0103577
\(937\) −1.39912 −0.0457071 −0.0228535 0.999739i \(-0.507275\pi\)
−0.0228535 + 0.999739i \(0.507275\pi\)
\(938\) 0.306396 0.0100042
\(939\) −31.0253 −1.01247
\(940\) −9.06464 −0.295656
\(941\) 15.1184 0.492845 0.246423 0.969162i \(-0.420745\pi\)
0.246423 + 0.969162i \(0.420745\pi\)
\(942\) −1.01333 −0.0330160
\(943\) −7.34598 −0.239218
\(944\) 16.9460 0.551544
\(945\) 0.375715 0.0122220
\(946\) −2.32430 −0.0755694
\(947\) −29.9768 −0.974116 −0.487058 0.873370i \(-0.661930\pi\)
−0.487058 + 0.873370i \(0.661930\pi\)
\(948\) −6.84585 −0.222343
\(949\) −4.95982 −0.161003
\(950\) 0.412130 0.0133713
\(951\) −48.2544 −1.56476
\(952\) −0.264118 −0.00856012
\(953\) −27.4874 −0.890405 −0.445203 0.895430i \(-0.646868\pi\)
−0.445203 + 0.895430i \(0.646868\pi\)
\(954\) −0.245188 −0.00793825
\(955\) 14.8007 0.478941
\(956\) −2.22883 −0.0720856
\(957\) 16.5406 0.534681
\(958\) 12.9737 0.419160
\(959\) −1.09651 −0.0354082
\(960\) 7.05985 0.227856
\(961\) −28.7168 −0.926348
\(962\) 0.622110 0.0200576
\(963\) −0.397390 −0.0128057
\(964\) 9.87717 0.318122
\(965\) −9.31714 −0.299929
\(966\) 0.137778 0.00443293
\(967\) 39.1290 1.25830 0.629152 0.777282i \(-0.283402\pi\)
0.629152 + 0.777282i \(0.283402\pi\)
\(968\) 1.57852 0.0507355
\(969\) 3.99294 0.128272
\(970\) 3.88731 0.124814
\(971\) −25.6444 −0.822967 −0.411484 0.911417i \(-0.634989\pi\)
−0.411484 + 0.911417i \(0.634989\pi\)
\(972\) −3.49723 −0.112174
\(973\) 0.681875 0.0218599
\(974\) 7.66340 0.245551
\(975\) 1.82938 0.0585871
\(976\) 3.42004 0.109473
\(977\) 47.5333 1.52072 0.760362 0.649500i \(-0.225022\pi\)
0.760362 + 0.649500i \(0.225022\pi\)
\(978\) −5.98505 −0.191381
\(979\) −6.45611 −0.206338
\(980\) −12.8020 −0.408945
\(981\) 0.388446 0.0124021
\(982\) 8.88415 0.283504
\(983\) 6.49735 0.207233 0.103617 0.994617i \(-0.466959\pi\)
0.103617 + 0.994617i \(0.466959\pi\)
\(984\) 6.86792 0.218941
\(985\) 12.3492 0.393478
\(986\) −9.66644 −0.307842
\(987\) −0.584427 −0.0186025
\(988\) 1.99519 0.0634756
\(989\) 15.9785 0.508088
\(990\) 0.0758904 0.00241195
\(991\) −1.15760 −0.0367724 −0.0183862 0.999831i \(-0.505853\pi\)
−0.0183862 + 0.999831i \(0.505853\pi\)
\(992\) −6.64466 −0.210968
\(993\) −35.3056 −1.12039
\(994\) 0.0977237 0.00309961
\(995\) 3.24025 0.102723
\(996\) −7.62374 −0.241567
\(997\) 45.5209 1.44166 0.720830 0.693112i \(-0.243761\pi\)
0.720830 + 0.693112i \(0.243761\pi\)
\(998\) −2.40312 −0.0760696
\(999\) 7.39830 0.234072
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1045.2.a.f.1.3 6
3.2 odd 2 9405.2.a.z.1.4 6
5.4 even 2 5225.2.a.l.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1045.2.a.f.1.3 6 1.1 even 1 trivial
5225.2.a.l.1.4 6 5.4 even 2
9405.2.a.z.1.4 6 3.2 odd 2