Properties

Label 105.10.a.c.1.1
Level $105$
Weight $10$
Character 105.1
Self dual yes
Analytic conductor $54.079$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [105,10,Mod(1,105)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(105, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("105.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 105.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.0787627972\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 1462x^{2} + 568x + 469504 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(31.8126\) of defining polynomial
Character \(\chi\) \(=\) 105.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-35.8126 q^{2} +81.0000 q^{3} +770.540 q^{4} +625.000 q^{5} -2900.82 q^{6} -2401.00 q^{7} -9258.97 q^{8} +6561.00 q^{9} -22382.9 q^{10} +84191.1 q^{11} +62413.7 q^{12} -107949. q^{13} +85986.0 q^{14} +50625.0 q^{15} -62928.9 q^{16} -534805. q^{17} -234966. q^{18} +300331. q^{19} +481587. q^{20} -194481. q^{21} -3.01510e6 q^{22} -2.04494e6 q^{23} -749977. q^{24} +390625. q^{25} +3.86592e6 q^{26} +531441. q^{27} -1.85007e6 q^{28} +1.06113e6 q^{29} -1.81301e6 q^{30} -3.40296e6 q^{31} +6.99424e6 q^{32} +6.81948e6 q^{33} +1.91527e7 q^{34} -1.50062e6 q^{35} +5.05551e6 q^{36} +1.60944e7 q^{37} -1.07556e7 q^{38} -8.74385e6 q^{39} -5.78686e6 q^{40} -2.82323e7 q^{41} +6.96486e6 q^{42} +3.41602e7 q^{43} +6.48726e7 q^{44} +4.10062e6 q^{45} +7.32347e7 q^{46} -4.39666e6 q^{47} -5.09724e6 q^{48} +5.76480e6 q^{49} -1.39893e7 q^{50} -4.33192e7 q^{51} -8.31788e7 q^{52} -4.82841e7 q^{53} -1.90323e7 q^{54} +5.26195e7 q^{55} +2.22308e7 q^{56} +2.43268e7 q^{57} -3.80016e7 q^{58} -8.28369e7 q^{59} +3.90086e7 q^{60} +1.07823e8 q^{61} +1.21869e8 q^{62} -1.57530e7 q^{63} -2.18262e8 q^{64} -6.74680e7 q^{65} -2.44223e8 q^{66} -6.09954e7 q^{67} -4.12088e8 q^{68} -1.65640e8 q^{69} +5.37412e7 q^{70} +3.45810e8 q^{71} -6.07481e7 q^{72} -4.35356e8 q^{73} -5.76383e8 q^{74} +3.16406e7 q^{75} +2.31417e8 q^{76} -2.02143e8 q^{77} +3.13140e8 q^{78} +1.56176e8 q^{79} -3.93306e7 q^{80} +4.30467e7 q^{81} +1.01107e9 q^{82} -2.28263e8 q^{83} -1.49855e8 q^{84} -3.34253e8 q^{85} -1.22336e9 q^{86} +8.59511e7 q^{87} -7.79523e8 q^{88} -1.00731e9 q^{89} -1.46854e8 q^{90} +2.59185e8 q^{91} -1.57571e9 q^{92} -2.75640e8 q^{93} +1.57456e8 q^{94} +1.87707e8 q^{95} +5.66533e8 q^{96} -1.50889e9 q^{97} -2.06452e8 q^{98} +5.52378e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 17 q^{2} + 324 q^{3} + 949 q^{4} + 2500 q^{5} - 1377 q^{6} - 9604 q^{7} - 20679 q^{8} + 26244 q^{9} - 10625 q^{10} + 16382 q^{11} + 76869 q^{12} - 84914 q^{13} + 40817 q^{14} + 202500 q^{15} - 829359 q^{16}+ \cdots + 107482302 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −35.8126 −1.58271 −0.791353 0.611359i \(-0.790623\pi\)
−0.791353 + 0.611359i \(0.790623\pi\)
\(3\) 81.0000 0.577350
\(4\) 770.540 1.50496
\(5\) 625.000 0.447214
\(6\) −2900.82 −0.913776
\(7\) −2401.00 −0.377964
\(8\) −9258.97 −0.799204
\(9\) 6561.00 0.333333
\(10\) −22382.9 −0.707808
\(11\) 84191.1 1.73380 0.866901 0.498481i \(-0.166109\pi\)
0.866901 + 0.498481i \(0.166109\pi\)
\(12\) 62413.7 0.868889
\(13\) −107949. −1.04827 −0.524134 0.851636i \(-0.675611\pi\)
−0.524134 + 0.851636i \(0.675611\pi\)
\(14\) 85986.0 0.598207
\(15\) 50625.0 0.258199
\(16\) −62928.9 −0.240055
\(17\) −534805. −1.55301 −0.776507 0.630109i \(-0.783010\pi\)
−0.776507 + 0.630109i \(0.783010\pi\)
\(18\) −234966. −0.527569
\(19\) 300331. 0.528699 0.264350 0.964427i \(-0.414843\pi\)
0.264350 + 0.964427i \(0.414843\pi\)
\(20\) 481587. 0.673039
\(21\) −194481. −0.218218
\(22\) −3.01510e6 −2.74410
\(23\) −2.04494e6 −1.52372 −0.761862 0.647740i \(-0.775714\pi\)
−0.761862 + 0.647740i \(0.775714\pi\)
\(24\) −749977. −0.461421
\(25\) 390625. 0.200000
\(26\) 3.86592e6 1.65910
\(27\) 531441. 0.192450
\(28\) −1.85007e6 −0.568822
\(29\) 1.06113e6 0.278596 0.139298 0.990250i \(-0.455515\pi\)
0.139298 + 0.990250i \(0.455515\pi\)
\(30\) −1.81301e6 −0.408653
\(31\) −3.40296e6 −0.661805 −0.330902 0.943665i \(-0.607353\pi\)
−0.330902 + 0.943665i \(0.607353\pi\)
\(32\) 6.99424e6 1.17914
\(33\) 6.81948e6 1.00101
\(34\) 1.91527e7 2.45796
\(35\) −1.50062e6 −0.169031
\(36\) 5.05551e6 0.501653
\(37\) 1.60944e7 1.41178 0.705892 0.708320i \(-0.250547\pi\)
0.705892 + 0.708320i \(0.250547\pi\)
\(38\) −1.07556e7 −0.836776
\(39\) −8.74385e6 −0.605218
\(40\) −5.78686e6 −0.357415
\(41\) −2.82323e7 −1.56034 −0.780169 0.625569i \(-0.784867\pi\)
−0.780169 + 0.625569i \(0.784867\pi\)
\(42\) 6.96486e6 0.345375
\(43\) 3.41602e7 1.52374 0.761872 0.647728i \(-0.224280\pi\)
0.761872 + 0.647728i \(0.224280\pi\)
\(44\) 6.48726e7 2.60930
\(45\) 4.10062e6 0.149071
\(46\) 7.32347e7 2.41161
\(47\) −4.39666e6 −0.131426 −0.0657132 0.997839i \(-0.520932\pi\)
−0.0657132 + 0.997839i \(0.520932\pi\)
\(48\) −5.09724e6 −0.138596
\(49\) 5.76480e6 0.142857
\(50\) −1.39893e7 −0.316541
\(51\) −4.33192e7 −0.896633
\(52\) −8.31788e7 −1.57760
\(53\) −4.82841e7 −0.840548 −0.420274 0.907397i \(-0.638066\pi\)
−0.420274 + 0.907397i \(0.638066\pi\)
\(54\) −1.90323e7 −0.304592
\(55\) 5.26195e7 0.775380
\(56\) 2.22308e7 0.302071
\(57\) 2.43268e7 0.305245
\(58\) −3.80016e7 −0.440936
\(59\) −8.28369e7 −0.889999 −0.445000 0.895531i \(-0.646796\pi\)
−0.445000 + 0.895531i \(0.646796\pi\)
\(60\) 3.90086e7 0.388579
\(61\) 1.07823e8 0.997076 0.498538 0.866868i \(-0.333870\pi\)
0.498538 + 0.866868i \(0.333870\pi\)
\(62\) 1.21869e8 1.04744
\(63\) −1.57530e7 −0.125988
\(64\) −2.18262e8 −1.62618
\(65\) −6.74680e7 −0.468800
\(66\) −2.44223e8 −1.58431
\(67\) −6.09954e7 −0.369794 −0.184897 0.982758i \(-0.559195\pi\)
−0.184897 + 0.982758i \(0.559195\pi\)
\(68\) −4.12088e8 −2.33722
\(69\) −1.65640e8 −0.879722
\(70\) 5.37412e7 0.267526
\(71\) 3.45810e8 1.61501 0.807505 0.589860i \(-0.200817\pi\)
0.807505 + 0.589860i \(0.200817\pi\)
\(72\) −6.07481e7 −0.266401
\(73\) −4.35356e8 −1.79428 −0.897142 0.441742i \(-0.854361\pi\)
−0.897142 + 0.441742i \(0.854361\pi\)
\(74\) −5.76383e8 −2.23444
\(75\) 3.16406e7 0.115470
\(76\) 2.31417e8 0.795671
\(77\) −2.02143e8 −0.655315
\(78\) 3.13140e8 0.957883
\(79\) 1.56176e8 0.451121 0.225560 0.974229i \(-0.427579\pi\)
0.225560 + 0.974229i \(0.427579\pi\)
\(80\) −3.93306e7 −0.107356
\(81\) 4.30467e7 0.111111
\(82\) 1.01107e9 2.46956
\(83\) −2.28263e8 −0.527940 −0.263970 0.964531i \(-0.585032\pi\)
−0.263970 + 0.964531i \(0.585032\pi\)
\(84\) −1.49855e8 −0.328409
\(85\) −3.34253e8 −0.694529
\(86\) −1.22336e9 −2.41164
\(87\) 8.59511e7 0.160848
\(88\) −7.79523e8 −1.38566
\(89\) −1.00731e9 −1.70181 −0.850903 0.525323i \(-0.823945\pi\)
−0.850903 + 0.525323i \(0.823945\pi\)
\(90\) −1.46854e8 −0.235936
\(91\) 2.59185e8 0.396208
\(92\) −1.57571e9 −2.29314
\(93\) −2.75640e8 −0.382093
\(94\) 1.57456e8 0.208009
\(95\) 1.87707e8 0.236441
\(96\) 5.66533e8 0.680777
\(97\) −1.50889e9 −1.73055 −0.865274 0.501300i \(-0.832855\pi\)
−0.865274 + 0.501300i \(0.832855\pi\)
\(98\) −2.06452e8 −0.226101
\(99\) 5.52378e8 0.577934
\(100\) 3.00992e8 0.300992
\(101\) −6.12709e8 −0.585880 −0.292940 0.956131i \(-0.594634\pi\)
−0.292940 + 0.956131i \(0.594634\pi\)
\(102\) 1.55137e9 1.41911
\(103\) −9.19459e8 −0.804942 −0.402471 0.915433i \(-0.631849\pi\)
−0.402471 + 0.915433i \(0.631849\pi\)
\(104\) 9.99495e8 0.837781
\(105\) −1.21551e8 −0.0975900
\(106\) 1.72918e9 1.33034
\(107\) 1.17064e9 0.863368 0.431684 0.902025i \(-0.357919\pi\)
0.431684 + 0.902025i \(0.357919\pi\)
\(108\) 4.09496e8 0.289630
\(109\) −1.15522e9 −0.783872 −0.391936 0.919993i \(-0.628194\pi\)
−0.391936 + 0.919993i \(0.628194\pi\)
\(110\) −1.88444e9 −1.22720
\(111\) 1.30365e9 0.815094
\(112\) 1.51092e8 0.0907322
\(113\) −1.00961e9 −0.582505 −0.291253 0.956646i \(-0.594072\pi\)
−0.291253 + 0.956646i \(0.594072\pi\)
\(114\) −8.71205e8 −0.483113
\(115\) −1.27809e9 −0.681430
\(116\) 8.17639e8 0.419277
\(117\) −7.08252e8 −0.349423
\(118\) 2.96660e9 1.40861
\(119\) 1.28407e9 0.586984
\(120\) −4.68735e8 −0.206354
\(121\) 4.73020e9 2.00607
\(122\) −3.86143e9 −1.57808
\(123\) −2.28681e9 −0.900861
\(124\) −2.62212e9 −0.995990
\(125\) 2.44141e8 0.0894427
\(126\) 5.64154e8 0.199402
\(127\) 2.17464e8 0.0741773 0.0370887 0.999312i \(-0.488192\pi\)
0.0370887 + 0.999312i \(0.488192\pi\)
\(128\) 4.23547e9 1.39462
\(129\) 2.76697e9 0.879734
\(130\) 2.41620e9 0.741973
\(131\) −1.77259e9 −0.525880 −0.262940 0.964812i \(-0.584692\pi\)
−0.262940 + 0.964812i \(0.584692\pi\)
\(132\) 5.25468e9 1.50648
\(133\) −7.21094e8 −0.199830
\(134\) 2.18440e9 0.585276
\(135\) 3.32151e8 0.0860663
\(136\) 4.95174e9 1.24117
\(137\) 3.14137e9 0.761861 0.380931 0.924604i \(-0.375604\pi\)
0.380931 + 0.924604i \(0.375604\pi\)
\(138\) 5.93201e9 1.39234
\(139\) 3.25429e9 0.739417 0.369709 0.929148i \(-0.379457\pi\)
0.369709 + 0.929148i \(0.379457\pi\)
\(140\) −1.15629e9 −0.254385
\(141\) −3.56130e8 −0.0758791
\(142\) −1.23844e10 −2.55609
\(143\) −9.08833e9 −1.81749
\(144\) −4.12877e8 −0.0800182
\(145\) 6.63203e8 0.124592
\(146\) 1.55912e10 2.83983
\(147\) 4.66949e8 0.0824786
\(148\) 1.24014e10 2.12468
\(149\) −6.61484e9 −1.09946 −0.549732 0.835341i \(-0.685270\pi\)
−0.549732 + 0.835341i \(0.685270\pi\)
\(150\) −1.13313e9 −0.182755
\(151\) 6.35305e9 0.994457 0.497228 0.867620i \(-0.334351\pi\)
0.497228 + 0.867620i \(0.334351\pi\)
\(152\) −2.78075e9 −0.422539
\(153\) −3.50885e9 −0.517671
\(154\) 7.23926e9 1.03717
\(155\) −2.12685e9 −0.295968
\(156\) −6.73749e9 −0.910830
\(157\) −8.89146e9 −1.16795 −0.583976 0.811771i \(-0.698504\pi\)
−0.583976 + 0.811771i \(0.698504\pi\)
\(158\) −5.59307e9 −0.713991
\(159\) −3.91101e9 −0.485291
\(160\) 4.37140e9 0.527328
\(161\) 4.90991e9 0.575913
\(162\) −1.54161e9 −0.175856
\(163\) −1.03493e10 −1.14833 −0.574163 0.818741i \(-0.694672\pi\)
−0.574163 + 0.818741i \(0.694672\pi\)
\(164\) −2.17541e10 −2.34825
\(165\) 4.26218e9 0.447666
\(166\) 8.17469e9 0.835574
\(167\) 8.18502e8 0.0814321 0.0407161 0.999171i \(-0.487036\pi\)
0.0407161 + 0.999171i \(0.487036\pi\)
\(168\) 1.80069e9 0.174401
\(169\) 1.04844e9 0.0988678
\(170\) 1.19705e10 1.09924
\(171\) 1.97047e9 0.176233
\(172\) 2.63218e10 2.29317
\(173\) −1.96017e10 −1.66374 −0.831872 0.554968i \(-0.812731\pi\)
−0.831872 + 0.554968i \(0.812731\pi\)
\(174\) −3.07813e9 −0.254575
\(175\) −9.37891e8 −0.0755929
\(176\) −5.29806e9 −0.416207
\(177\) −6.70979e9 −0.513841
\(178\) 3.60745e10 2.69346
\(179\) −1.77307e10 −1.29089 −0.645443 0.763809i \(-0.723327\pi\)
−0.645443 + 0.763809i \(0.723327\pi\)
\(180\) 3.15969e9 0.224346
\(181\) −5.76852e9 −0.399494 −0.199747 0.979847i \(-0.564012\pi\)
−0.199747 + 0.979847i \(0.564012\pi\)
\(182\) −9.28208e9 −0.627082
\(183\) 8.73369e9 0.575662
\(184\) 1.89341e10 1.21777
\(185\) 1.00590e10 0.631369
\(186\) 9.87138e9 0.604741
\(187\) −4.50258e10 −2.69262
\(188\) −3.38780e9 −0.197792
\(189\) −1.27599e9 −0.0727393
\(190\) −6.72226e9 −0.374218
\(191\) −2.73585e10 −1.48745 −0.743724 0.668487i \(-0.766942\pi\)
−0.743724 + 0.668487i \(0.766942\pi\)
\(192\) −1.76792e10 −0.938875
\(193\) 3.19892e10 1.65957 0.829785 0.558084i \(-0.188463\pi\)
0.829785 + 0.558084i \(0.188463\pi\)
\(194\) 5.40371e10 2.73895
\(195\) −5.46491e9 −0.270662
\(196\) 4.44201e9 0.214994
\(197\) −2.39420e10 −1.13256 −0.566281 0.824212i \(-0.691618\pi\)
−0.566281 + 0.824212i \(0.691618\pi\)
\(198\) −1.97821e10 −0.914700
\(199\) −2.39019e10 −1.08042 −0.540212 0.841529i \(-0.681656\pi\)
−0.540212 + 0.841529i \(0.681656\pi\)
\(200\) −3.61678e9 −0.159841
\(201\) −4.94062e9 −0.213501
\(202\) 2.19427e10 0.927275
\(203\) −2.54776e9 −0.105300
\(204\) −3.33792e10 −1.34940
\(205\) −1.76452e10 −0.697804
\(206\) 3.29282e10 1.27399
\(207\) −1.34169e10 −0.507908
\(208\) 6.79310e9 0.251642
\(209\) 2.52852e10 0.916659
\(210\) 4.35304e9 0.154456
\(211\) 4.63597e10 1.61016 0.805081 0.593165i \(-0.202122\pi\)
0.805081 + 0.593165i \(0.202122\pi\)
\(212\) −3.72048e10 −1.26499
\(213\) 2.80106e10 0.932427
\(214\) −4.19236e10 −1.36646
\(215\) 2.13501e10 0.681439
\(216\) −4.92060e9 −0.153807
\(217\) 8.17052e9 0.250139
\(218\) 4.13713e10 1.24064
\(219\) −3.52638e10 −1.03593
\(220\) 4.05454e10 1.16692
\(221\) 5.77315e10 1.62798
\(222\) −4.66870e10 −1.29005
\(223\) 4.21324e10 1.14089 0.570446 0.821335i \(-0.306770\pi\)
0.570446 + 0.821335i \(0.306770\pi\)
\(224\) −1.67932e10 −0.445673
\(225\) 2.56289e9 0.0666667
\(226\) 3.61567e10 0.921935
\(227\) 5.31913e10 1.32961 0.664805 0.747017i \(-0.268515\pi\)
0.664805 + 0.747017i \(0.268515\pi\)
\(228\) 1.87448e10 0.459381
\(229\) 1.07297e10 0.257826 0.128913 0.991656i \(-0.458851\pi\)
0.128913 + 0.991656i \(0.458851\pi\)
\(230\) 4.57717e10 1.07850
\(231\) −1.63736e10 −0.378346
\(232\) −9.82492e9 −0.222655
\(233\) 9.09223e9 0.202101 0.101051 0.994881i \(-0.467780\pi\)
0.101051 + 0.994881i \(0.467780\pi\)
\(234\) 2.53643e10 0.553034
\(235\) −2.74791e9 −0.0587757
\(236\) −6.38291e10 −1.33941
\(237\) 1.26503e10 0.260455
\(238\) −4.59857e10 −0.929023
\(239\) −3.87663e10 −0.768536 −0.384268 0.923222i \(-0.625546\pi\)
−0.384268 + 0.923222i \(0.625546\pi\)
\(240\) −3.18578e9 −0.0619819
\(241\) −2.43486e10 −0.464941 −0.232471 0.972603i \(-0.574681\pi\)
−0.232471 + 0.972603i \(0.574681\pi\)
\(242\) −1.69401e11 −3.17502
\(243\) 3.48678e9 0.0641500
\(244\) 8.30822e10 1.50056
\(245\) 3.60300e9 0.0638877
\(246\) 8.18967e10 1.42580
\(247\) −3.24204e10 −0.554219
\(248\) 3.15079e10 0.528917
\(249\) −1.84893e10 −0.304806
\(250\) −8.74330e9 −0.141562
\(251\) 7.45034e10 1.18480 0.592399 0.805644i \(-0.298181\pi\)
0.592399 + 0.805644i \(0.298181\pi\)
\(252\) −1.21383e10 −0.189607
\(253\) −1.72166e11 −2.64183
\(254\) −7.78795e9 −0.117401
\(255\) −2.70745e10 −0.400986
\(256\) −3.99330e10 −0.581101
\(257\) −5.48723e10 −0.784610 −0.392305 0.919835i \(-0.628322\pi\)
−0.392305 + 0.919835i \(0.628322\pi\)
\(258\) −9.90924e10 −1.39236
\(259\) −3.86427e10 −0.533604
\(260\) −5.19868e10 −0.705526
\(261\) 6.96204e9 0.0928655
\(262\) 6.34808e10 0.832313
\(263\) −2.49569e9 −0.0321655 −0.0160827 0.999871i \(-0.505120\pi\)
−0.0160827 + 0.999871i \(0.505120\pi\)
\(264\) −6.31414e10 −0.800012
\(265\) −3.01776e10 −0.375905
\(266\) 2.58242e10 0.316272
\(267\) −8.15925e10 −0.982538
\(268\) −4.69993e10 −0.556526
\(269\) 1.01620e11 1.18329 0.591647 0.806197i \(-0.298478\pi\)
0.591647 + 0.806197i \(0.298478\pi\)
\(270\) −1.18952e10 −0.136218
\(271\) −2.26977e10 −0.255635 −0.127817 0.991798i \(-0.540797\pi\)
−0.127817 + 0.991798i \(0.540797\pi\)
\(272\) 3.36547e10 0.372808
\(273\) 2.09940e10 0.228751
\(274\) −1.12500e11 −1.20580
\(275\) 3.28872e10 0.346760
\(276\) −1.27633e11 −1.32395
\(277\) 2.71976e10 0.277570 0.138785 0.990323i \(-0.455680\pi\)
0.138785 + 0.990323i \(0.455680\pi\)
\(278\) −1.16544e11 −1.17028
\(279\) −2.23268e10 −0.220602
\(280\) 1.38942e10 0.135090
\(281\) −1.24340e11 −1.18968 −0.594842 0.803842i \(-0.702786\pi\)
−0.594842 + 0.803842i \(0.702786\pi\)
\(282\) 1.27539e10 0.120094
\(283\) −2.18159e10 −0.202179 −0.101089 0.994877i \(-0.532233\pi\)
−0.101089 + 0.994877i \(0.532233\pi\)
\(284\) 2.66461e11 2.43053
\(285\) 1.52042e10 0.136510
\(286\) 3.25477e11 2.87655
\(287\) 6.77857e10 0.589752
\(288\) 4.58892e10 0.393047
\(289\) 1.67428e11 1.41185
\(290\) −2.37510e10 −0.197193
\(291\) −1.22220e11 −0.999132
\(292\) −3.35459e11 −2.70033
\(293\) −1.84628e11 −1.46350 −0.731750 0.681573i \(-0.761296\pi\)
−0.731750 + 0.681573i \(0.761296\pi\)
\(294\) −1.67226e10 −0.130539
\(295\) −5.17730e10 −0.398020
\(296\) −1.49018e11 −1.12830
\(297\) 4.47426e10 0.333670
\(298\) 2.36894e11 1.74013
\(299\) 2.20749e11 1.59727
\(300\) 2.43804e10 0.173778
\(301\) −8.20186e10 −0.575921
\(302\) −2.27519e11 −1.57393
\(303\) −4.96295e10 −0.338258
\(304\) −1.88995e10 −0.126917
\(305\) 6.73896e10 0.445906
\(306\) 1.25661e11 0.819321
\(307\) −1.05117e10 −0.0675386 −0.0337693 0.999430i \(-0.510751\pi\)
−0.0337693 + 0.999430i \(0.510751\pi\)
\(308\) −1.55759e11 −0.986224
\(309\) −7.44762e10 −0.464734
\(310\) 7.61680e10 0.468431
\(311\) 2.19914e11 1.33300 0.666500 0.745505i \(-0.267791\pi\)
0.666500 + 0.745505i \(0.267791\pi\)
\(312\) 8.09591e10 0.483693
\(313\) −9.45697e9 −0.0556932 −0.0278466 0.999612i \(-0.508865\pi\)
−0.0278466 + 0.999612i \(0.508865\pi\)
\(314\) 3.18426e11 1.84852
\(315\) −9.84560e9 −0.0563436
\(316\) 1.20340e11 0.678918
\(317\) −1.44675e11 −0.804689 −0.402344 0.915488i \(-0.631805\pi\)
−0.402344 + 0.915488i \(0.631805\pi\)
\(318\) 1.40063e11 0.768073
\(319\) 8.93373e10 0.483031
\(320\) −1.36414e11 −0.727249
\(321\) 9.48218e10 0.498466
\(322\) −1.75836e11 −0.911502
\(323\) −1.60618e11 −0.821077
\(324\) 3.31692e10 0.167218
\(325\) −4.21675e10 −0.209654
\(326\) 3.70633e11 1.81746
\(327\) −9.35727e10 −0.452569
\(328\) 2.61402e11 1.24703
\(329\) 1.05564e10 0.0496745
\(330\) −1.52639e11 −0.708523
\(331\) −1.44951e10 −0.0663734 −0.0331867 0.999449i \(-0.510566\pi\)
−0.0331867 + 0.999449i \(0.510566\pi\)
\(332\) −1.75886e11 −0.794529
\(333\) 1.05596e11 0.470594
\(334\) −2.93127e10 −0.128883
\(335\) −3.81221e10 −0.165377
\(336\) 1.22385e10 0.0523842
\(337\) 4.48099e11 1.89252 0.946258 0.323412i \(-0.104830\pi\)
0.946258 + 0.323412i \(0.104830\pi\)
\(338\) −3.75474e10 −0.156479
\(339\) −8.17783e10 −0.336310
\(340\) −2.57555e11 −1.04524
\(341\) −2.86499e11 −1.14744
\(342\) −7.05676e10 −0.278925
\(343\) −1.38413e10 −0.0539949
\(344\) −3.16288e11 −1.21778
\(345\) −1.03525e11 −0.393424
\(346\) 7.01987e11 2.63322
\(347\) −9.24776e10 −0.342416 −0.171208 0.985235i \(-0.554767\pi\)
−0.171208 + 0.985235i \(0.554767\pi\)
\(348\) 6.62288e10 0.242069
\(349\) 3.15231e11 1.13740 0.568702 0.822543i \(-0.307446\pi\)
0.568702 + 0.822543i \(0.307446\pi\)
\(350\) 3.35883e10 0.119641
\(351\) −5.73684e10 −0.201739
\(352\) 5.88853e11 2.04440
\(353\) 1.59837e10 0.0547886 0.0273943 0.999625i \(-0.491279\pi\)
0.0273943 + 0.999625i \(0.491279\pi\)
\(354\) 2.40295e11 0.813260
\(355\) 2.16131e11 0.722255
\(356\) −7.76176e11 −2.56115
\(357\) 1.04009e11 0.338895
\(358\) 6.34982e11 2.04309
\(359\) −1.43936e11 −0.457346 −0.228673 0.973503i \(-0.573439\pi\)
−0.228673 + 0.973503i \(0.573439\pi\)
\(360\) −3.79676e10 −0.119138
\(361\) −2.32489e11 −0.720477
\(362\) 2.06585e11 0.632282
\(363\) 3.83146e11 1.15820
\(364\) 1.99712e11 0.596278
\(365\) −2.72097e11 −0.802428
\(366\) −3.12776e11 −0.911105
\(367\) −2.20156e11 −0.633481 −0.316740 0.948512i \(-0.602588\pi\)
−0.316740 + 0.948512i \(0.602588\pi\)
\(368\) 1.28686e11 0.365777
\(369\) −1.85232e11 −0.520113
\(370\) −3.60239e11 −0.999271
\(371\) 1.15930e11 0.317697
\(372\) −2.12392e11 −0.575035
\(373\) 1.12990e10 0.0302238 0.0151119 0.999886i \(-0.495190\pi\)
0.0151119 + 0.999886i \(0.495190\pi\)
\(374\) 1.61249e12 4.26162
\(375\) 1.97754e10 0.0516398
\(376\) 4.07086e10 0.105037
\(377\) −1.14547e11 −0.292044
\(378\) 4.56965e10 0.115125
\(379\) −5.70052e11 −1.41918 −0.709590 0.704614i \(-0.751120\pi\)
−0.709590 + 0.704614i \(0.751120\pi\)
\(380\) 1.44636e11 0.355835
\(381\) 1.76146e10 0.0428263
\(382\) 9.79777e11 2.35419
\(383\) 1.52007e11 0.360968 0.180484 0.983578i \(-0.442234\pi\)
0.180484 + 0.983578i \(0.442234\pi\)
\(384\) 3.43073e11 0.805186
\(385\) −1.26339e11 −0.293066
\(386\) −1.14561e12 −2.62661
\(387\) 2.24125e11 0.507915
\(388\) −1.16266e12 −2.60441
\(389\) −6.06438e11 −1.34281 −0.671403 0.741092i \(-0.734308\pi\)
−0.671403 + 0.741092i \(0.734308\pi\)
\(390\) 1.95712e11 0.428378
\(391\) 1.09365e12 2.36636
\(392\) −5.33761e10 −0.114172
\(393\) −1.43579e11 −0.303617
\(394\) 8.57424e11 1.79251
\(395\) 9.76100e10 0.201747
\(396\) 4.25629e11 0.869767
\(397\) −1.84846e11 −0.373467 −0.186734 0.982411i \(-0.559790\pi\)
−0.186734 + 0.982411i \(0.559790\pi\)
\(398\) 8.55990e11 1.70999
\(399\) −5.84086e10 −0.115372
\(400\) −2.45816e10 −0.0480109
\(401\) −9.11060e10 −0.175953 −0.0879766 0.996123i \(-0.528040\pi\)
−0.0879766 + 0.996123i \(0.528040\pi\)
\(402\) 1.76936e11 0.337909
\(403\) 3.67346e11 0.693749
\(404\) −4.72117e11 −0.881725
\(405\) 2.69042e10 0.0496904
\(406\) 9.12419e10 0.166658
\(407\) 1.35501e12 2.44775
\(408\) 4.01091e11 0.716592
\(409\) −5.88759e11 −1.04036 −0.520179 0.854057i \(-0.674135\pi\)
−0.520179 + 0.854057i \(0.674135\pi\)
\(410\) 6.31919e11 1.10442
\(411\) 2.54451e11 0.439861
\(412\) −7.08480e11 −1.21141
\(413\) 1.98891e11 0.336388
\(414\) 4.80493e11 0.803869
\(415\) −1.42665e11 −0.236102
\(416\) −7.55020e11 −1.23606
\(417\) 2.63597e11 0.426903
\(418\) −9.05528e11 −1.45080
\(419\) 8.87719e10 0.140706 0.0703529 0.997522i \(-0.477587\pi\)
0.0703529 + 0.997522i \(0.477587\pi\)
\(420\) −9.36596e10 −0.146869
\(421\) −6.81644e11 −1.05752 −0.528760 0.848772i \(-0.677343\pi\)
−0.528760 + 0.848772i \(0.677343\pi\)
\(422\) −1.66026e12 −2.54841
\(423\) −2.88465e10 −0.0438088
\(424\) 4.47061e11 0.671770
\(425\) −2.08908e11 −0.310603
\(426\) −1.00313e12 −1.47576
\(427\) −2.58884e11 −0.376859
\(428\) 9.02024e11 1.29934
\(429\) −7.36155e11 −1.04933
\(430\) −7.64602e11 −1.07852
\(431\) −8.67770e11 −1.21131 −0.605657 0.795726i \(-0.707090\pi\)
−0.605657 + 0.795726i \(0.707090\pi\)
\(432\) −3.34430e10 −0.0461986
\(433\) 5.63267e10 0.0770050 0.0385025 0.999259i \(-0.487741\pi\)
0.0385025 + 0.999259i \(0.487741\pi\)
\(434\) −2.92607e11 −0.395896
\(435\) 5.37195e10 0.0719333
\(436\) −8.90142e11 −1.17970
\(437\) −6.14160e11 −0.805592
\(438\) 1.26289e12 1.63957
\(439\) 2.74363e11 0.352562 0.176281 0.984340i \(-0.443593\pi\)
0.176281 + 0.984340i \(0.443593\pi\)
\(440\) −4.87202e11 −0.619686
\(441\) 3.78229e10 0.0476190
\(442\) −2.06751e12 −2.57661
\(443\) −2.04299e11 −0.252028 −0.126014 0.992028i \(-0.540218\pi\)
−0.126014 + 0.992028i \(0.540218\pi\)
\(444\) 1.00451e12 1.22668
\(445\) −6.29572e11 −0.761071
\(446\) −1.50887e12 −1.80570
\(447\) −5.35802e11 −0.634776
\(448\) 5.24047e11 0.614638
\(449\) 1.50425e12 1.74668 0.873338 0.487114i \(-0.161951\pi\)
0.873338 + 0.487114i \(0.161951\pi\)
\(450\) −9.17837e10 −0.105514
\(451\) −2.37691e12 −2.70532
\(452\) −7.77943e11 −0.876648
\(453\) 5.14597e11 0.574150
\(454\) −1.90492e12 −2.10438
\(455\) 1.61991e11 0.177190
\(456\) −2.25241e11 −0.243953
\(457\) 4.80154e10 0.0514941 0.0257470 0.999668i \(-0.491804\pi\)
0.0257470 + 0.999668i \(0.491804\pi\)
\(458\) −3.84258e11 −0.408064
\(459\) −2.84217e11 −0.298878
\(460\) −9.84819e11 −1.02552
\(461\) 9.97395e11 1.02852 0.514260 0.857634i \(-0.328067\pi\)
0.514260 + 0.857634i \(0.328067\pi\)
\(462\) 5.86380e11 0.598811
\(463\) −1.62897e12 −1.64740 −0.823699 0.567027i \(-0.808093\pi\)
−0.823699 + 0.567027i \(0.808093\pi\)
\(464\) −6.67754e10 −0.0668784
\(465\) −1.72275e11 −0.170877
\(466\) −3.25616e11 −0.319867
\(467\) 2.32981e11 0.226670 0.113335 0.993557i \(-0.463847\pi\)
0.113335 + 0.993557i \(0.463847\pi\)
\(468\) −5.45736e11 −0.525868
\(469\) 1.46450e11 0.139769
\(470\) 9.84098e10 0.0930247
\(471\) −7.20209e11 −0.674317
\(472\) 7.66984e11 0.711291
\(473\) 2.87598e12 2.64187
\(474\) −4.53038e11 −0.412223
\(475\) 1.17317e11 0.105740
\(476\) 9.89424e11 0.883387
\(477\) −3.16792e11 −0.280183
\(478\) 1.38832e12 1.21637
\(479\) 5.50909e11 0.478157 0.239078 0.971000i \(-0.423155\pi\)
0.239078 + 0.971000i \(0.423155\pi\)
\(480\) 3.54083e11 0.304453
\(481\) −1.73738e12 −1.47993
\(482\) 8.71988e11 0.735866
\(483\) 3.97703e11 0.332504
\(484\) 3.64481e12 3.01905
\(485\) −9.43053e11 −0.773924
\(486\) −1.24871e11 −0.101531
\(487\) −8.41488e11 −0.677903 −0.338952 0.940804i \(-0.610072\pi\)
−0.338952 + 0.940804i \(0.610072\pi\)
\(488\) −9.98333e11 −0.796868
\(489\) −8.38290e11 −0.662986
\(490\) −1.29033e11 −0.101115
\(491\) 5.68127e10 0.0441143 0.0220571 0.999757i \(-0.492978\pi\)
0.0220571 + 0.999757i \(0.492978\pi\)
\(492\) −1.76208e12 −1.35576
\(493\) −5.67495e11 −0.432664
\(494\) 1.16106e12 0.877166
\(495\) 3.45236e11 0.258460
\(496\) 2.14145e11 0.158869
\(497\) −8.30291e11 −0.610417
\(498\) 6.62150e11 0.482419
\(499\) 1.59993e12 1.15518 0.577589 0.816328i \(-0.303994\pi\)
0.577589 + 0.816328i \(0.303994\pi\)
\(500\) 1.88120e11 0.134608
\(501\) 6.62987e10 0.0470149
\(502\) −2.66816e12 −1.87519
\(503\) −2.13568e12 −1.48758 −0.743790 0.668413i \(-0.766974\pi\)
−0.743790 + 0.668413i \(0.766974\pi\)
\(504\) 1.45856e11 0.100690
\(505\) −3.82943e11 −0.262013
\(506\) 6.16571e12 4.18125
\(507\) 8.49239e10 0.0570813
\(508\) 1.67565e11 0.111634
\(509\) −2.64888e11 −0.174917 −0.0874585 0.996168i \(-0.527875\pi\)
−0.0874585 + 0.996168i \(0.527875\pi\)
\(510\) 9.69607e11 0.634644
\(511\) 1.04529e12 0.678176
\(512\) −7.38460e11 −0.474911
\(513\) 1.59608e11 0.101748
\(514\) 1.96512e12 1.24181
\(515\) −5.74662e11 −0.359981
\(516\) 2.13206e12 1.32396
\(517\) −3.70160e11 −0.227867
\(518\) 1.38390e12 0.844539
\(519\) −1.58774e12 −0.960563
\(520\) 6.24684e11 0.374667
\(521\) 6.57232e11 0.390795 0.195398 0.980724i \(-0.437400\pi\)
0.195398 + 0.980724i \(0.437400\pi\)
\(522\) −2.49329e11 −0.146979
\(523\) −7.78872e11 −0.455207 −0.227603 0.973754i \(-0.573089\pi\)
−0.227603 + 0.973754i \(0.573089\pi\)
\(524\) −1.36585e12 −0.791428
\(525\) −7.59691e10 −0.0436436
\(526\) 8.93771e10 0.0509085
\(527\) 1.81992e12 1.02779
\(528\) −4.29143e11 −0.240297
\(529\) 2.38064e12 1.32173
\(530\) 1.08074e12 0.594947
\(531\) −5.43493e11 −0.296666
\(532\) −5.55632e11 −0.300736
\(533\) 3.04764e12 1.63565
\(534\) 2.92204e12 1.55507
\(535\) 7.31650e11 0.386110
\(536\) 5.64754e11 0.295541
\(537\) −1.43619e12 −0.745293
\(538\) −3.63926e12 −1.87281
\(539\) 4.85345e11 0.247686
\(540\) 2.55935e11 0.129526
\(541\) 3.65316e12 1.83350 0.916749 0.399463i \(-0.130803\pi\)
0.916749 + 0.399463i \(0.130803\pi\)
\(542\) 8.12863e11 0.404595
\(543\) −4.67250e11 −0.230648
\(544\) −3.74055e12 −1.83122
\(545\) −7.22012e11 −0.350558
\(546\) −7.51849e11 −0.362046
\(547\) 3.95047e12 1.88671 0.943357 0.331780i \(-0.107649\pi\)
0.943357 + 0.331780i \(0.107649\pi\)
\(548\) 2.42055e12 1.14657
\(549\) 7.07429e11 0.332359
\(550\) −1.17777e12 −0.548820
\(551\) 3.18689e11 0.147294
\(552\) 1.53366e12 0.703078
\(553\) −3.74979e11 −0.170508
\(554\) −9.74017e11 −0.439312
\(555\) 8.14781e11 0.364521
\(556\) 2.50756e12 1.11279
\(557\) −2.64871e12 −1.16597 −0.582983 0.812485i \(-0.698114\pi\)
−0.582983 + 0.812485i \(0.698114\pi\)
\(558\) 7.99582e11 0.349147
\(559\) −3.68755e12 −1.59729
\(560\) 9.44327e10 0.0405767
\(561\) −3.64709e12 −1.55458
\(562\) 4.45293e12 1.88292
\(563\) 4.22760e12 1.77340 0.886700 0.462346i \(-0.152992\pi\)
0.886700 + 0.462346i \(0.152992\pi\)
\(564\) −2.74412e11 −0.114195
\(565\) −6.31005e11 −0.260504
\(566\) 7.81285e11 0.319989
\(567\) −1.03355e11 −0.0419961
\(568\) −3.20185e12 −1.29072
\(569\) −2.22544e11 −0.0890040 −0.0445020 0.999009i \(-0.514170\pi\)
−0.0445020 + 0.999009i \(0.514170\pi\)
\(570\) −5.44503e11 −0.216055
\(571\) −2.23366e11 −0.0879336 −0.0439668 0.999033i \(-0.514000\pi\)
−0.0439668 + 0.999033i \(0.514000\pi\)
\(572\) −7.00292e12 −2.73525
\(573\) −2.21604e12 −0.858778
\(574\) −2.42758e12 −0.933405
\(575\) −7.98806e11 −0.304745
\(576\) −1.43202e12 −0.542059
\(577\) 9.14770e11 0.343574 0.171787 0.985134i \(-0.445046\pi\)
0.171787 + 0.985134i \(0.445046\pi\)
\(578\) −5.99604e12 −2.23454
\(579\) 2.59112e12 0.958153
\(580\) 5.11024e11 0.187506
\(581\) 5.48060e11 0.199543
\(582\) 4.37700e12 1.58133
\(583\) −4.06509e12 −1.45734
\(584\) 4.03094e12 1.43400
\(585\) −4.42658e11 −0.156267
\(586\) 6.61200e12 2.31629
\(587\) −8.90998e10 −0.0309746 −0.0154873 0.999880i \(-0.504930\pi\)
−0.0154873 + 0.999880i \(0.504930\pi\)
\(588\) 3.59803e11 0.124127
\(589\) −1.02202e12 −0.349896
\(590\) 1.85413e12 0.629948
\(591\) −1.93930e12 −0.653885
\(592\) −1.01281e12 −0.338905
\(593\) 4.43657e12 1.47333 0.736667 0.676255i \(-0.236398\pi\)
0.736667 + 0.676255i \(0.236398\pi\)
\(594\) −1.60235e12 −0.528102
\(595\) 8.02541e11 0.262507
\(596\) −5.09700e12 −1.65465
\(597\) −1.93606e12 −0.623783
\(598\) −7.90560e12 −2.52801
\(599\) −2.96966e12 −0.942510 −0.471255 0.881997i \(-0.656199\pi\)
−0.471255 + 0.881997i \(0.656199\pi\)
\(600\) −2.92960e11 −0.0922841
\(601\) 4.15976e12 1.30057 0.650284 0.759691i \(-0.274650\pi\)
0.650284 + 0.759691i \(0.274650\pi\)
\(602\) 2.93730e12 0.911514
\(603\) −4.00191e11 −0.123265
\(604\) 4.89527e12 1.49662
\(605\) 2.95638e12 0.897141
\(606\) 1.77736e12 0.535363
\(607\) 1.72840e12 0.516767 0.258383 0.966042i \(-0.416810\pi\)
0.258383 + 0.966042i \(0.416810\pi\)
\(608\) 2.10059e12 0.623411
\(609\) −2.06369e11 −0.0607947
\(610\) −2.41339e12 −0.705739
\(611\) 4.74614e11 0.137770
\(612\) −2.70371e12 −0.779074
\(613\) −3.80459e12 −1.08827 −0.544134 0.838998i \(-0.683142\pi\)
−0.544134 + 0.838998i \(0.683142\pi\)
\(614\) 3.76453e11 0.106894
\(615\) −1.42926e12 −0.402877
\(616\) 1.87164e12 0.523731
\(617\) 3.47525e12 0.965390 0.482695 0.875788i \(-0.339658\pi\)
0.482695 + 0.875788i \(0.339658\pi\)
\(618\) 2.66718e12 0.735537
\(619\) 5.88125e11 0.161013 0.0805067 0.996754i \(-0.474346\pi\)
0.0805067 + 0.996754i \(0.474346\pi\)
\(620\) −1.63882e12 −0.445420
\(621\) −1.08677e12 −0.293241
\(622\) −7.87567e12 −2.10975
\(623\) 2.41856e12 0.643222
\(624\) 5.50241e11 0.145286
\(625\) 1.52588e11 0.0400000
\(626\) 3.38678e11 0.0881460
\(627\) 2.04810e12 0.529234
\(628\) −6.85123e12 −1.75772
\(629\) −8.60738e12 −2.19252
\(630\) 3.52596e11 0.0891754
\(631\) 4.71015e12 1.18278 0.591388 0.806387i \(-0.298580\pi\)
0.591388 + 0.806387i \(0.298580\pi\)
\(632\) −1.44603e12 −0.360537
\(633\) 3.75514e12 0.929627
\(634\) 5.18119e12 1.27359
\(635\) 1.35915e11 0.0331731
\(636\) −3.01359e12 −0.730343
\(637\) −6.22303e11 −0.149753
\(638\) −3.19940e12 −0.764496
\(639\) 2.26886e12 0.538337
\(640\) 2.64717e12 0.623694
\(641\) 1.19663e12 0.279962 0.139981 0.990154i \(-0.455296\pi\)
0.139981 + 0.990154i \(0.455296\pi\)
\(642\) −3.39581e12 −0.788925
\(643\) 1.29513e12 0.298789 0.149395 0.988778i \(-0.452267\pi\)
0.149395 + 0.988778i \(0.452267\pi\)
\(644\) 3.78328e12 0.866727
\(645\) 1.72936e12 0.393429
\(646\) 5.75216e12 1.29952
\(647\) 1.48852e11 0.0333953 0.0166977 0.999861i \(-0.494685\pi\)
0.0166977 + 0.999861i \(0.494685\pi\)
\(648\) −3.98568e11 −0.0888005
\(649\) −6.97413e12 −1.54308
\(650\) 1.51013e12 0.331820
\(651\) 6.61812e11 0.144418
\(652\) −7.97451e12 −1.72818
\(653\) 3.04475e12 0.655302 0.327651 0.944799i \(-0.393743\pi\)
0.327651 + 0.944799i \(0.393743\pi\)
\(654\) 3.35108e12 0.716283
\(655\) −1.10787e12 −0.235181
\(656\) 1.77663e12 0.374566
\(657\) −2.85637e12 −0.598095
\(658\) −3.78051e11 −0.0786202
\(659\) −1.26892e12 −0.262090 −0.131045 0.991376i \(-0.541833\pi\)
−0.131045 + 0.991376i \(0.541833\pi\)
\(660\) 3.28418e12 0.673719
\(661\) 5.05562e11 0.103007 0.0515036 0.998673i \(-0.483599\pi\)
0.0515036 + 0.998673i \(0.483599\pi\)
\(662\) 5.19106e11 0.105050
\(663\) 4.67625e12 0.939912
\(664\) 2.11348e12 0.421932
\(665\) −4.50684e11 −0.0893665
\(666\) −3.78165e12 −0.744813
\(667\) −2.16994e12 −0.424504
\(668\) 6.30689e11 0.122552
\(669\) 3.41273e12 0.658695
\(670\) 1.36525e12 0.261743
\(671\) 9.07777e12 1.72873
\(672\) −1.36025e12 −0.257310
\(673\) 3.83391e12 0.720401 0.360201 0.932875i \(-0.382708\pi\)
0.360201 + 0.932875i \(0.382708\pi\)
\(674\) −1.60476e13 −2.99530
\(675\) 2.07594e11 0.0384900
\(676\) 8.07867e11 0.148792
\(677\) −7.47732e12 −1.36803 −0.684017 0.729466i \(-0.739769\pi\)
−0.684017 + 0.729466i \(0.739769\pi\)
\(678\) 2.92869e12 0.532280
\(679\) 3.62283e12 0.654085
\(680\) 3.09484e12 0.555070
\(681\) 4.30849e12 0.767650
\(682\) 1.02603e13 1.81606
\(683\) 4.35616e11 0.0765969 0.0382984 0.999266i \(-0.487806\pi\)
0.0382984 + 0.999266i \(0.487806\pi\)
\(684\) 1.51833e12 0.265224
\(685\) 1.96335e12 0.340715
\(686\) 4.95692e11 0.0854581
\(687\) 8.69105e11 0.148856
\(688\) −2.14966e12 −0.365782
\(689\) 5.21221e12 0.881121
\(690\) 3.70751e12 0.622674
\(691\) 3.77081e12 0.629193 0.314596 0.949226i \(-0.398131\pi\)
0.314596 + 0.949226i \(0.398131\pi\)
\(692\) −1.51039e13 −2.50387
\(693\) −1.32626e12 −0.218438
\(694\) 3.31186e12 0.541944
\(695\) 2.03393e12 0.330678
\(696\) −7.95819e11 −0.128550
\(697\) 1.50988e13 2.42323
\(698\) −1.12892e13 −1.80018
\(699\) 7.36471e11 0.116683
\(700\) −7.22682e11 −0.113764
\(701\) −2.85631e12 −0.446760 −0.223380 0.974731i \(-0.571709\pi\)
−0.223380 + 0.974731i \(0.571709\pi\)
\(702\) 2.05451e12 0.319294
\(703\) 4.83366e12 0.746409
\(704\) −1.83757e13 −2.81947
\(705\) −2.22581e11 −0.0339342
\(706\) −5.72416e11 −0.0867143
\(707\) 1.47112e12 0.221442
\(708\) −5.17016e12 −0.773311
\(709\) −3.58768e12 −0.533219 −0.266609 0.963805i \(-0.585903\pi\)
−0.266609 + 0.963805i \(0.585903\pi\)
\(710\) −7.74022e12 −1.14312
\(711\) 1.02467e12 0.150374
\(712\) 9.32670e12 1.36009
\(713\) 6.95887e12 1.00841
\(714\) −3.72484e12 −0.536372
\(715\) −5.68021e12 −0.812806
\(716\) −1.36622e13 −1.94273
\(717\) −3.14007e12 −0.443715
\(718\) 5.15472e12 0.723844
\(719\) −1.01912e13 −1.42214 −0.711072 0.703119i \(-0.751790\pi\)
−0.711072 + 0.703119i \(0.751790\pi\)
\(720\) −2.58048e11 −0.0357852
\(721\) 2.20762e12 0.304240
\(722\) 8.32603e12 1.14030
\(723\) −1.97224e12 −0.268434
\(724\) −4.44487e12 −0.601223
\(725\) 4.14502e11 0.0557193
\(726\) −1.37215e13 −1.83310
\(727\) −3.99530e12 −0.530450 −0.265225 0.964186i \(-0.585446\pi\)
−0.265225 + 0.964186i \(0.585446\pi\)
\(728\) −2.39979e12 −0.316651
\(729\) 2.82430e11 0.0370370
\(730\) 9.74450e12 1.27001
\(731\) −1.82690e13 −2.36639
\(732\) 6.72965e12 0.866349
\(733\) 9.16984e12 1.17326 0.586630 0.809855i \(-0.300454\pi\)
0.586630 + 0.809855i \(0.300454\pi\)
\(734\) 7.88435e12 1.00261
\(735\) 2.91843e11 0.0368856
\(736\) −1.43028e13 −1.79668
\(737\) −5.13527e12 −0.641150
\(738\) 6.63363e12 0.823186
\(739\) 3.49268e12 0.430783 0.215391 0.976528i \(-0.430897\pi\)
0.215391 + 0.976528i \(0.430897\pi\)
\(740\) 7.75088e12 0.950185
\(741\) −2.62605e12 −0.319978
\(742\) −4.15175e12 −0.502822
\(743\) 5.84311e12 0.703387 0.351694 0.936115i \(-0.385606\pi\)
0.351694 + 0.936115i \(0.385606\pi\)
\(744\) 2.55214e12 0.305370
\(745\) −4.13428e12 −0.491696
\(746\) −4.04644e11 −0.0478353
\(747\) −1.49763e12 −0.175980
\(748\) −3.46942e13 −4.05228
\(749\) −2.81071e12 −0.326323
\(750\) −7.08207e11 −0.0817306
\(751\) 2.28360e12 0.261964 0.130982 0.991385i \(-0.458187\pi\)
0.130982 + 0.991385i \(0.458187\pi\)
\(752\) 2.76677e11 0.0315495
\(753\) 6.03478e12 0.684044
\(754\) 4.10223e12 0.462220
\(755\) 3.97065e12 0.444734
\(756\) −9.83201e11 −0.109470
\(757\) 5.77803e12 0.639511 0.319755 0.947500i \(-0.396399\pi\)
0.319755 + 0.947500i \(0.396399\pi\)
\(758\) 2.04150e13 2.24615
\(759\) −1.39455e13 −1.52526
\(760\) −1.73797e12 −0.188965
\(761\) 1.40979e13 1.52378 0.761892 0.647704i \(-0.224271\pi\)
0.761892 + 0.647704i \(0.224271\pi\)
\(762\) −6.30824e11 −0.0677815
\(763\) 2.77368e12 0.296276
\(764\) −2.10808e13 −2.23855
\(765\) −2.19303e12 −0.231510
\(766\) −5.44376e12 −0.571307
\(767\) 8.94214e12 0.932959
\(768\) −3.23457e12 −0.335499
\(769\) 1.16373e13 1.20000 0.600002 0.799999i \(-0.295167\pi\)
0.600002 + 0.799999i \(0.295167\pi\)
\(770\) 4.52454e12 0.463837
\(771\) −4.44466e12 −0.452995
\(772\) 2.46489e13 2.49759
\(773\) 1.57196e13 1.58356 0.791779 0.610808i \(-0.209155\pi\)
0.791779 + 0.610808i \(0.209155\pi\)
\(774\) −8.02649e12 −0.803880
\(775\) −1.32928e12 −0.132361
\(776\) 1.39707e13 1.38306
\(777\) −3.13006e12 −0.308076
\(778\) 2.17181e13 2.12527
\(779\) −8.47902e12 −0.824949
\(780\) −4.21093e12 −0.407335
\(781\) 2.91142e13 2.80011
\(782\) −3.91663e13 −3.74526
\(783\) 5.63925e11 0.0536159
\(784\) −3.62773e11 −0.0342935
\(785\) −5.55717e12 −0.522324
\(786\) 5.14195e12 0.480536
\(787\) 8.78355e12 0.816176 0.408088 0.912943i \(-0.366196\pi\)
0.408088 + 0.912943i \(0.366196\pi\)
\(788\) −1.84483e13 −1.70446
\(789\) −2.02151e11 −0.0185707
\(790\) −3.49567e12 −0.319307
\(791\) 2.42407e12 0.220166
\(792\) −5.11445e12 −0.461887
\(793\) −1.16394e13 −1.04520
\(794\) 6.61981e12 0.591089
\(795\) −2.44438e12 −0.217029
\(796\) −1.84174e13 −1.62600
\(797\) 9.70422e12 0.851919 0.425960 0.904742i \(-0.359937\pi\)
0.425960 + 0.904742i \(0.359937\pi\)
\(798\) 2.09176e12 0.182599
\(799\) 2.35136e12 0.204107
\(800\) 2.73212e12 0.235828
\(801\) −6.60899e12 −0.567269
\(802\) 3.26274e12 0.278482
\(803\) −3.66531e13 −3.11093
\(804\) −3.80695e12 −0.321310
\(805\) 3.06869e12 0.257556
\(806\) −1.31556e13 −1.09800
\(807\) 8.23119e12 0.683175
\(808\) 5.67306e12 0.468237
\(809\) 1.62305e13 1.33218 0.666090 0.745872i \(-0.267967\pi\)
0.666090 + 0.745872i \(0.267967\pi\)
\(810\) −9.63508e11 −0.0786453
\(811\) −5.37254e12 −0.436100 −0.218050 0.975938i \(-0.569970\pi\)
−0.218050 + 0.975938i \(0.569970\pi\)
\(812\) −1.96315e12 −0.158472
\(813\) −1.83851e12 −0.147591
\(814\) −4.85264e13 −3.87407
\(815\) −6.46829e12 −0.513547
\(816\) 2.72603e12 0.215241
\(817\) 1.02594e13 0.805602
\(818\) 2.10850e13 1.64658
\(819\) 1.70051e12 0.132069
\(820\) −1.35963e13 −1.05017
\(821\) −1.92984e13 −1.48244 −0.741221 0.671262i \(-0.765753\pi\)
−0.741221 + 0.671262i \(0.765753\pi\)
\(822\) −9.11253e12 −0.696171
\(823\) −1.24146e10 −0.000943268 0 −0.000471634 1.00000i \(-0.500150\pi\)
−0.000471634 1.00000i \(0.500150\pi\)
\(824\) 8.51324e12 0.643313
\(825\) 2.66386e12 0.200202
\(826\) −7.12281e12 −0.532404
\(827\) 2.23970e13 1.66500 0.832502 0.554022i \(-0.186908\pi\)
0.832502 + 0.554022i \(0.186908\pi\)
\(828\) −1.03382e13 −0.764381
\(829\) −1.36701e13 −1.00525 −0.502627 0.864504i \(-0.667633\pi\)
−0.502627 + 0.864504i \(0.667633\pi\)
\(830\) 5.10918e12 0.373680
\(831\) 2.20301e12 0.160255
\(832\) 2.35611e13 1.70467
\(833\) −3.08304e12 −0.221859
\(834\) −9.44010e12 −0.675662
\(835\) 5.11564e11 0.0364176
\(836\) 1.94832e13 1.37954
\(837\) −1.80847e12 −0.127364
\(838\) −3.17915e12 −0.222696
\(839\) −8.86389e12 −0.617583 −0.308792 0.951130i \(-0.599925\pi\)
−0.308792 + 0.951130i \(0.599925\pi\)
\(840\) 1.12543e12 0.0779943
\(841\) −1.33812e13 −0.922384
\(842\) 2.44114e13 1.67374
\(843\) −1.00715e13 −0.686865
\(844\) 3.57220e13 2.42323
\(845\) 6.55277e11 0.0442150
\(846\) 1.03307e12 0.0693365
\(847\) −1.13572e13 −0.758222
\(848\) 3.03847e12 0.201778
\(849\) −1.76709e12 −0.116728
\(850\) 7.48154e12 0.491593
\(851\) −3.29122e13 −2.15117
\(852\) 2.15833e13 1.40327
\(853\) 1.57022e11 0.0101552 0.00507762 0.999987i \(-0.498384\pi\)
0.00507762 + 0.999987i \(0.498384\pi\)
\(854\) 9.27129e12 0.596458
\(855\) 1.23154e12 0.0788138
\(856\) −1.08389e13 −0.690008
\(857\) −1.86750e13 −1.18262 −0.591312 0.806443i \(-0.701390\pi\)
−0.591312 + 0.806443i \(0.701390\pi\)
\(858\) 2.63636e13 1.66078
\(859\) 4.59125e10 0.00287714 0.00143857 0.999999i \(-0.499542\pi\)
0.00143857 + 0.999999i \(0.499542\pi\)
\(860\) 1.64511e13 1.02554
\(861\) 5.49064e12 0.340494
\(862\) 3.10771e13 1.91716
\(863\) −6.27875e12 −0.385323 −0.192661 0.981265i \(-0.561712\pi\)
−0.192661 + 0.981265i \(0.561712\pi\)
\(864\) 3.71702e12 0.226926
\(865\) −1.22511e13 −0.744049
\(866\) −2.01720e12 −0.121876
\(867\) 1.35617e13 0.815132
\(868\) 6.29571e12 0.376449
\(869\) 1.31486e13 0.782153
\(870\) −1.92383e12 −0.113849
\(871\) 6.58437e12 0.387644
\(872\) 1.06961e13 0.626473
\(873\) −9.89980e12 −0.576849
\(874\) 2.19946e13 1.27502
\(875\) −5.86182e11 −0.0338062
\(876\) −2.71722e13 −1.55903
\(877\) −1.02257e13 −0.583708 −0.291854 0.956463i \(-0.594272\pi\)
−0.291854 + 0.956463i \(0.594272\pi\)
\(878\) −9.82564e12 −0.558002
\(879\) −1.49549e13 −0.844952
\(880\) −3.31129e12 −0.186134
\(881\) 2.72329e13 1.52301 0.761503 0.648161i \(-0.224462\pi\)
0.761503 + 0.648161i \(0.224462\pi\)
\(882\) −1.35453e12 −0.0753670
\(883\) −6.00194e12 −0.332253 −0.166126 0.986104i \(-0.553126\pi\)
−0.166126 + 0.986104i \(0.553126\pi\)
\(884\) 4.44844e13 2.45004
\(885\) −4.19362e12 −0.229797
\(886\) 7.31647e12 0.398887
\(887\) −3.89408e12 −0.211227 −0.105613 0.994407i \(-0.533681\pi\)
−0.105613 + 0.994407i \(0.533681\pi\)
\(888\) −1.20705e13 −0.651426
\(889\) −5.22132e11 −0.0280364
\(890\) 2.25466e13 1.20455
\(891\) 3.62415e12 0.192645
\(892\) 3.24647e13 1.71700
\(893\) −1.32045e12 −0.0694850
\(894\) 1.91885e13 1.00466
\(895\) −1.10817e13 −0.577302
\(896\) −1.01694e13 −0.527118
\(897\) 1.78807e13 0.922185
\(898\) −5.38712e13 −2.76448
\(899\) −3.61097e12 −0.184376
\(900\) 1.97481e12 0.100331
\(901\) 2.58226e13 1.30538
\(902\) 8.51232e13 4.28172
\(903\) −6.64351e12 −0.332508
\(904\) 9.34793e12 0.465541
\(905\) −3.60532e12 −0.178659
\(906\) −1.84290e13 −0.908711
\(907\) 2.08550e13 1.02324 0.511619 0.859212i \(-0.329046\pi\)
0.511619 + 0.859212i \(0.329046\pi\)
\(908\) 4.09860e13 2.00101
\(909\) −4.01999e12 −0.195293
\(910\) −5.80130e12 −0.280439
\(911\) 3.23594e13 1.55657 0.778283 0.627914i \(-0.216091\pi\)
0.778283 + 0.627914i \(0.216091\pi\)
\(912\) −1.53086e12 −0.0732754
\(913\) −1.92177e13 −0.915343
\(914\) −1.71955e12 −0.0815000
\(915\) 5.45856e12 0.257444
\(916\) 8.26765e12 0.388018
\(917\) 4.25598e12 0.198764
\(918\) 1.01785e13 0.473035
\(919\) −2.97905e13 −1.37771 −0.688856 0.724898i \(-0.741887\pi\)
−0.688856 + 0.724898i \(0.741887\pi\)
\(920\) 1.18338e13 0.544602
\(921\) −8.51451e11 −0.0389934
\(922\) −3.57193e13 −1.62785
\(923\) −3.73298e13 −1.69297
\(924\) −1.26165e13 −0.569396
\(925\) 6.28689e12 0.282357
\(926\) 5.83376e13 2.60735
\(927\) −6.03257e12 −0.268314
\(928\) 7.42176e12 0.328504
\(929\) −1.26280e13 −0.556242 −0.278121 0.960546i \(-0.589712\pi\)
−0.278121 + 0.960546i \(0.589712\pi\)
\(930\) 6.16961e12 0.270448
\(931\) 1.73135e12 0.0755285
\(932\) 7.00593e12 0.304154
\(933\) 1.78130e13 0.769608
\(934\) −8.34364e12 −0.358752
\(935\) −2.81411e13 −1.20417
\(936\) 6.55768e12 0.279260
\(937\) 1.84687e13 0.782721 0.391361 0.920237i \(-0.372005\pi\)
0.391361 + 0.920237i \(0.372005\pi\)
\(938\) −5.24474e12 −0.221213
\(939\) −7.66014e11 −0.0321545
\(940\) −2.11738e12 −0.0884551
\(941\) 1.58948e13 0.660849 0.330424 0.943832i \(-0.392808\pi\)
0.330424 + 0.943832i \(0.392808\pi\)
\(942\) 2.57925e13 1.06725
\(943\) 5.77334e13 2.37752
\(944\) 5.21283e12 0.213649
\(945\) −7.97494e11 −0.0325300
\(946\) −1.02996e14 −4.18130
\(947\) −2.60534e13 −1.05266 −0.526331 0.850280i \(-0.676433\pi\)
−0.526331 + 0.850280i \(0.676433\pi\)
\(948\) 9.74753e12 0.391974
\(949\) 4.69961e13 1.88089
\(950\) −4.20141e12 −0.167355
\(951\) −1.17187e13 −0.464587
\(952\) −1.18891e13 −0.469120
\(953\) −6.58389e12 −0.258562 −0.129281 0.991608i \(-0.541267\pi\)
−0.129281 + 0.991608i \(0.541267\pi\)
\(954\) 1.13451e13 0.443447
\(955\) −1.70990e13 −0.665207
\(956\) −2.98710e13 −1.15662
\(957\) 7.23632e12 0.278878
\(958\) −1.97295e13 −0.756782
\(959\) −7.54242e12 −0.287957
\(960\) −1.10495e13 −0.419877
\(961\) −1.48595e13 −0.562015
\(962\) 6.22199e13 2.34229
\(963\) 7.68057e12 0.287789
\(964\) −1.87616e13 −0.699718
\(965\) 1.99932e13 0.742182
\(966\) −1.42428e13 −0.526256
\(967\) −3.25082e12 −0.119557 −0.0597783 0.998212i \(-0.519039\pi\)
−0.0597783 + 0.998212i \(0.519039\pi\)
\(968\) −4.37968e13 −1.60326
\(969\) −1.30101e13 −0.474049
\(970\) 3.37732e13 1.22490
\(971\) −4.83326e13 −1.74483 −0.872416 0.488764i \(-0.837448\pi\)
−0.872416 + 0.488764i \(0.837448\pi\)
\(972\) 2.68671e12 0.0965433
\(973\) −7.81355e12 −0.279474
\(974\) 3.01359e13 1.07292
\(975\) −3.41557e12 −0.121044
\(976\) −6.78520e12 −0.239353
\(977\) −4.29930e13 −1.50964 −0.754819 0.655933i \(-0.772275\pi\)
−0.754819 + 0.655933i \(0.772275\pi\)
\(978\) 3.00213e13 1.04931
\(979\) −8.48070e13 −2.95059
\(980\) 2.77625e12 0.0961484
\(981\) −7.57939e12 −0.261291
\(982\) −2.03461e12 −0.0698199
\(983\) −5.22942e12 −0.178634 −0.0893168 0.996003i \(-0.528468\pi\)
−0.0893168 + 0.996003i \(0.528468\pi\)
\(984\) 2.11735e13 0.719972
\(985\) −1.49637e13 −0.506497
\(986\) 2.03234e13 0.684780
\(987\) 8.55067e11 0.0286796
\(988\) −2.49812e13 −0.834078
\(989\) −6.98557e13 −2.32176
\(990\) −1.23638e13 −0.409066
\(991\) −9.94933e12 −0.327690 −0.163845 0.986486i \(-0.552390\pi\)
−0.163845 + 0.986486i \(0.552390\pi\)
\(992\) −2.38011e13 −0.780360
\(993\) −1.17410e12 −0.0383207
\(994\) 2.97348e13 0.966111
\(995\) −1.49387e13 −0.483180
\(996\) −1.42468e13 −0.458721
\(997\) 2.90141e13 0.929997 0.464999 0.885311i \(-0.346055\pi\)
0.464999 + 0.885311i \(0.346055\pi\)
\(998\) −5.72976e13 −1.82831
\(999\) 8.55324e12 0.271698
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 105.10.a.c.1.1 4
3.2 odd 2 315.10.a.f.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.10.a.c.1.1 4 1.1 even 1 trivial
315.10.a.f.1.4 4 3.2 odd 2