Properties

Label 105.10.a.c.1.3
Level $105$
Weight $10$
Character 105.1
Self dual yes
Analytic conductor $54.079$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [105,10,Mod(1,105)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(105, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("105.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 105.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.0787627972\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 1462x^{2} + 568x + 469504 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-21.7320\) of defining polynomial
Character \(\chi\) \(=\) 105.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+17.7320 q^{2} +81.0000 q^{3} -197.578 q^{4} +625.000 q^{5} +1436.29 q^{6} -2401.00 q^{7} -12582.2 q^{8} +6561.00 q^{9} +11082.5 q^{10} -11869.9 q^{11} -16003.8 q^{12} +175503. q^{13} -42574.4 q^{14} +50625.0 q^{15} -121947. q^{16} -581422. q^{17} +116339. q^{18} -38838.5 q^{19} -123486. q^{20} -194481. q^{21} -210477. q^{22} -1.55065e6 q^{23} -1.01916e6 q^{24} +390625. q^{25} +3.11201e6 q^{26} +531441. q^{27} +474385. q^{28} -6.49890e6 q^{29} +897680. q^{30} +3.23767e6 q^{31} +4.27973e6 q^{32} -961463. q^{33} -1.03098e7 q^{34} -1.50062e6 q^{35} -1.29631e6 q^{36} -1.88645e7 q^{37} -688682. q^{38} +1.42157e7 q^{39} -7.86388e6 q^{40} -1.94238e7 q^{41} -3.44853e6 q^{42} -2.00447e6 q^{43} +2.34523e6 q^{44} +4.10062e6 q^{45} -2.74960e7 q^{46} -3.63900e6 q^{47} -9.87771e6 q^{48} +5.76480e6 q^{49} +6.92654e6 q^{50} -4.70952e7 q^{51} -3.46755e7 q^{52} -6.43457e7 q^{53} +9.42349e6 q^{54} -7.41869e6 q^{55} +3.02099e7 q^{56} -3.14592e6 q^{57} -1.15238e8 q^{58} +1.26038e8 q^{59} -1.00024e7 q^{60} +1.56864e8 q^{61} +5.74102e7 q^{62} -1.57530e7 q^{63} +1.38325e8 q^{64} +1.09689e8 q^{65} -1.70486e7 q^{66} -2.27636e8 q^{67} +1.14876e8 q^{68} -1.25603e8 q^{69} -2.66090e7 q^{70} -3.55345e8 q^{71} -8.25518e7 q^{72} -1.59247e8 q^{73} -3.34504e8 q^{74} +3.16406e7 q^{75} +7.67363e6 q^{76} +2.84997e7 q^{77} +2.52073e8 q^{78} -1.49712e8 q^{79} -7.62169e7 q^{80} +4.30467e7 q^{81} -3.44421e8 q^{82} +1.83947e8 q^{83} +3.84252e7 q^{84} -3.63389e8 q^{85} -3.55432e7 q^{86} -5.26411e8 q^{87} +1.49350e8 q^{88} -4.22798e8 q^{89} +7.27121e7 q^{90} -4.21383e8 q^{91} +3.06374e8 q^{92} +2.62251e8 q^{93} -6.45266e7 q^{94} -2.42740e7 q^{95} +3.46658e8 q^{96} +7.23133e8 q^{97} +1.02221e8 q^{98} -7.78785e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 17 q^{2} + 324 q^{3} + 949 q^{4} + 2500 q^{5} - 1377 q^{6} - 9604 q^{7} - 20679 q^{8} + 26244 q^{9} - 10625 q^{10} + 16382 q^{11} + 76869 q^{12} - 84914 q^{13} + 40817 q^{14} + 202500 q^{15} - 829359 q^{16}+ \cdots + 107482302 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 17.7320 0.783649 0.391824 0.920040i \(-0.371844\pi\)
0.391824 + 0.920040i \(0.371844\pi\)
\(3\) 81.0000 0.577350
\(4\) −197.578 −0.385894
\(5\) 625.000 0.447214
\(6\) 1436.29 0.452440
\(7\) −2401.00 −0.377964
\(8\) −12582.2 −1.08605
\(9\) 6561.00 0.333333
\(10\) 11082.5 0.350458
\(11\) −11869.9 −0.244445 −0.122222 0.992503i \(-0.539002\pi\)
−0.122222 + 0.992503i \(0.539002\pi\)
\(12\) −16003.8 −0.222796
\(13\) 175503. 1.70427 0.852137 0.523319i \(-0.175306\pi\)
0.852137 + 0.523319i \(0.175306\pi\)
\(14\) −42574.4 −0.296191
\(15\) 50625.0 0.258199
\(16\) −121947. −0.465191
\(17\) −581422. −1.68839 −0.844193 0.536040i \(-0.819920\pi\)
−0.844193 + 0.536040i \(0.819920\pi\)
\(18\) 116339. 0.261216
\(19\) −38838.5 −0.0683709 −0.0341854 0.999416i \(-0.510884\pi\)
−0.0341854 + 0.999416i \(0.510884\pi\)
\(20\) −123486. −0.172577
\(21\) −194481. −0.218218
\(22\) −210477. −0.191559
\(23\) −1.55065e6 −1.15542 −0.577708 0.816244i \(-0.696053\pi\)
−0.577708 + 0.816244i \(0.696053\pi\)
\(24\) −1.01916e6 −0.627034
\(25\) 390625. 0.200000
\(26\) 3.11201e6 1.33555
\(27\) 531441. 0.192450
\(28\) 474385. 0.145854
\(29\) −6.49890e6 −1.70627 −0.853137 0.521687i \(-0.825303\pi\)
−0.853137 + 0.521687i \(0.825303\pi\)
\(30\) 897680. 0.202337
\(31\) 3.23767e6 0.629658 0.314829 0.949148i \(-0.398053\pi\)
0.314829 + 0.949148i \(0.398053\pi\)
\(32\) 4.27973e6 0.721508
\(33\) −961463. −0.141130
\(34\) −1.03098e7 −1.32310
\(35\) −1.50062e6 −0.169031
\(36\) −1.29631e6 −0.128631
\(37\) −1.88645e7 −1.65477 −0.827383 0.561638i \(-0.810171\pi\)
−0.827383 + 0.561638i \(0.810171\pi\)
\(38\) −688682. −0.0535787
\(39\) 1.42157e7 0.983963
\(40\) −7.86388e6 −0.485698
\(41\) −1.94238e7 −1.07351 −0.536755 0.843738i \(-0.680350\pi\)
−0.536755 + 0.843738i \(0.680350\pi\)
\(42\) −3.44853e6 −0.171006
\(43\) −2.00447e6 −0.0894113 −0.0447056 0.999000i \(-0.514235\pi\)
−0.0447056 + 0.999000i \(0.514235\pi\)
\(44\) 2.34523e6 0.0943298
\(45\) 4.10062e6 0.149071
\(46\) −2.74960e7 −0.905440
\(47\) −3.63900e6 −0.108778 −0.0543891 0.998520i \(-0.517321\pi\)
−0.0543891 + 0.998520i \(0.517321\pi\)
\(48\) −9.87771e6 −0.268578
\(49\) 5.76480e6 0.142857
\(50\) 6.92654e6 0.156730
\(51\) −4.70952e7 −0.974790
\(52\) −3.46755e7 −0.657670
\(53\) −6.43457e7 −1.12015 −0.560077 0.828441i \(-0.689228\pi\)
−0.560077 + 0.828441i \(0.689228\pi\)
\(54\) 9.42349e6 0.150813
\(55\) −7.41869e6 −0.109319
\(56\) 3.02099e7 0.410490
\(57\) −3.14592e6 −0.0394739
\(58\) −1.15238e8 −1.33712
\(59\) 1.26038e8 1.35415 0.677076 0.735913i \(-0.263247\pi\)
0.677076 + 0.735913i \(0.263247\pi\)
\(60\) −1.00024e7 −0.0996375
\(61\) 1.56864e8 1.45057 0.725286 0.688448i \(-0.241708\pi\)
0.725286 + 0.688448i \(0.241708\pi\)
\(62\) 5.74102e7 0.493431
\(63\) −1.57530e7 −0.125988
\(64\) 1.38325e8 1.03060
\(65\) 1.09689e8 0.762175
\(66\) −1.70486e7 −0.110596
\(67\) −2.27636e8 −1.38008 −0.690041 0.723771i \(-0.742407\pi\)
−0.690041 + 0.723771i \(0.742407\pi\)
\(68\) 1.14876e8 0.651539
\(69\) −1.25603e8 −0.667079
\(70\) −2.66090e7 −0.132461
\(71\) −3.55345e8 −1.65954 −0.829769 0.558106i \(-0.811528\pi\)
−0.829769 + 0.558106i \(0.811528\pi\)
\(72\) −8.25518e7 −0.362018
\(73\) −1.59247e8 −0.656326 −0.328163 0.944621i \(-0.606429\pi\)
−0.328163 + 0.944621i \(0.606429\pi\)
\(74\) −3.34504e8 −1.29676
\(75\) 3.16406e7 0.115470
\(76\) 7.67363e6 0.0263839
\(77\) 2.84997e7 0.0923913
\(78\) 2.52073e8 0.771082
\(79\) −1.49712e8 −0.432449 −0.216225 0.976344i \(-0.569374\pi\)
−0.216225 + 0.976344i \(0.569374\pi\)
\(80\) −7.62169e7 −0.208040
\(81\) 4.30467e7 0.111111
\(82\) −3.44421e8 −0.841254
\(83\) 1.83947e8 0.425444 0.212722 0.977113i \(-0.431767\pi\)
0.212722 + 0.977113i \(0.431767\pi\)
\(84\) 3.84252e7 0.0842091
\(85\) −3.63389e8 −0.755069
\(86\) −3.55432e7 −0.0700670
\(87\) −5.26411e8 −0.985118
\(88\) 1.49350e8 0.265480
\(89\) −4.22798e8 −0.714295 −0.357148 0.934048i \(-0.616251\pi\)
−0.357148 + 0.934048i \(0.616251\pi\)
\(90\) 7.27121e7 0.116819
\(91\) −4.21383e8 −0.644155
\(92\) 3.06374e8 0.445868
\(93\) 2.62251e8 0.363533
\(94\) −6.45266e7 −0.0852439
\(95\) −2.42740e7 −0.0305764
\(96\) 3.46658e8 0.416563
\(97\) 7.23133e8 0.829364 0.414682 0.909966i \(-0.363893\pi\)
0.414682 + 0.909966i \(0.363893\pi\)
\(98\) 1.02221e8 0.111950
\(99\) −7.78785e7 −0.0814815
\(100\) −7.71789e7 −0.0771789
\(101\) −1.43279e8 −0.137005 −0.0685024 0.997651i \(-0.521822\pi\)
−0.0685024 + 0.997651i \(0.521822\pi\)
\(102\) −8.35090e8 −0.763893
\(103\) 1.03828e9 0.908963 0.454482 0.890756i \(-0.349825\pi\)
0.454482 + 0.890756i \(0.349825\pi\)
\(104\) −2.20821e9 −1.85093
\(105\) −1.21551e8 −0.0975900
\(106\) −1.14097e9 −0.877808
\(107\) 3.54295e8 0.261300 0.130650 0.991429i \(-0.458294\pi\)
0.130650 + 0.991429i \(0.458294\pi\)
\(108\) −1.05001e8 −0.0742654
\(109\) −3.28928e8 −0.223193 −0.111597 0.993754i \(-0.535596\pi\)
−0.111597 + 0.993754i \(0.535596\pi\)
\(110\) −1.31548e8 −0.0856676
\(111\) −1.52802e9 −0.955380
\(112\) 2.92795e8 0.175826
\(113\) 1.18479e8 0.0683581 0.0341790 0.999416i \(-0.489118\pi\)
0.0341790 + 0.999416i \(0.489118\pi\)
\(114\) −5.57832e7 −0.0309337
\(115\) −9.69155e8 −0.516718
\(116\) 1.28404e9 0.658442
\(117\) 1.15148e9 0.568091
\(118\) 2.23490e9 1.06118
\(119\) 1.39600e9 0.638150
\(120\) −6.36974e8 −0.280418
\(121\) −2.21705e9 −0.940247
\(122\) 2.78151e9 1.13674
\(123\) −1.57332e9 −0.619791
\(124\) −6.39692e8 −0.242982
\(125\) 2.44141e8 0.0894427
\(126\) −2.79331e8 −0.0987305
\(127\) −2.89100e9 −0.986123 −0.493062 0.869994i \(-0.664122\pi\)
−0.493062 + 0.869994i \(0.664122\pi\)
\(128\) 2.61548e8 0.0861207
\(129\) −1.62362e8 −0.0516216
\(130\) 1.94501e9 0.597277
\(131\) 1.72561e8 0.0511944 0.0255972 0.999672i \(-0.491851\pi\)
0.0255972 + 0.999672i \(0.491851\pi\)
\(132\) 1.89964e8 0.0544613
\(133\) 9.32512e7 0.0258418
\(134\) −4.03643e9 −1.08150
\(135\) 3.32151e8 0.0860663
\(136\) 7.31557e9 1.83368
\(137\) 3.53468e9 0.857251 0.428625 0.903482i \(-0.358998\pi\)
0.428625 + 0.903482i \(0.358998\pi\)
\(138\) −2.22718e9 −0.522756
\(139\) 2.53144e9 0.575177 0.287588 0.957754i \(-0.407147\pi\)
0.287588 + 0.957754i \(0.407147\pi\)
\(140\) 2.96490e8 0.0652281
\(141\) −2.94759e8 −0.0628031
\(142\) −6.30096e9 −1.30050
\(143\) −2.08320e9 −0.416600
\(144\) −8.00095e8 −0.155064
\(145\) −4.06181e9 −0.763069
\(146\) −2.82377e9 −0.514329
\(147\) 4.66949e8 0.0824786
\(148\) 3.72720e9 0.638565
\(149\) 1.16796e10 1.94129 0.970645 0.240518i \(-0.0773172\pi\)
0.970645 + 0.240518i \(0.0773172\pi\)
\(150\) 5.61050e8 0.0904880
\(151\) −1.04789e10 −1.64029 −0.820144 0.572157i \(-0.806107\pi\)
−0.820144 + 0.572157i \(0.806107\pi\)
\(152\) 4.88674e8 0.0742545
\(153\) −3.81471e9 −0.562795
\(154\) 5.05354e8 0.0724024
\(155\) 2.02354e9 0.281592
\(156\) −2.80872e9 −0.379706
\(157\) 1.26126e10 1.65675 0.828375 0.560174i \(-0.189266\pi\)
0.828375 + 0.560174i \(0.189266\pi\)
\(158\) −2.65469e9 −0.338889
\(159\) −5.21200e9 −0.646721
\(160\) 2.67483e9 0.322668
\(161\) 3.72311e9 0.436706
\(162\) 7.63302e8 0.0870721
\(163\) 1.42138e10 1.57713 0.788564 0.614952i \(-0.210825\pi\)
0.788564 + 0.614952i \(0.210825\pi\)
\(164\) 3.83770e9 0.414261
\(165\) −6.00914e8 −0.0631153
\(166\) 3.26175e9 0.333399
\(167\) 1.13747e10 1.13166 0.565829 0.824523i \(-0.308556\pi\)
0.565829 + 0.824523i \(0.308556\pi\)
\(168\) 2.44700e9 0.236997
\(169\) 2.01968e10 1.90455
\(170\) −6.44360e9 −0.591709
\(171\) −2.54819e8 −0.0227903
\(172\) 3.96040e8 0.0345033
\(173\) 1.28185e10 1.08800 0.544000 0.839085i \(-0.316909\pi\)
0.544000 + 0.839085i \(0.316909\pi\)
\(174\) −9.33429e9 −0.771987
\(175\) −9.37891e8 −0.0755929
\(176\) 1.44750e9 0.113713
\(177\) 1.02091e10 0.781820
\(178\) −7.49703e9 −0.559757
\(179\) −1.99262e10 −1.45073 −0.725363 0.688366i \(-0.758328\pi\)
−0.725363 + 0.688366i \(0.758328\pi\)
\(180\) −8.10193e8 −0.0575257
\(181\) 3.73456e9 0.258634 0.129317 0.991603i \(-0.458721\pi\)
0.129317 + 0.991603i \(0.458721\pi\)
\(182\) −7.47194e9 −0.504791
\(183\) 1.27060e10 0.837488
\(184\) 1.95106e10 1.25484
\(185\) −1.17903e10 −0.740034
\(186\) 4.65023e9 0.284883
\(187\) 6.90143e9 0.412717
\(188\) 7.18986e8 0.0419769
\(189\) −1.27599e9 −0.0727393
\(190\) −4.30426e8 −0.0239611
\(191\) 1.77074e10 0.962733 0.481366 0.876520i \(-0.340141\pi\)
0.481366 + 0.876520i \(0.340141\pi\)
\(192\) 1.12043e10 0.595017
\(193\) 2.72962e10 1.41610 0.708051 0.706161i \(-0.249575\pi\)
0.708051 + 0.706161i \(0.249575\pi\)
\(194\) 1.28226e10 0.649931
\(195\) 8.88484e9 0.440042
\(196\) −1.13900e9 −0.0551278
\(197\) −2.38043e10 −1.12605 −0.563024 0.826441i \(-0.690362\pi\)
−0.563024 + 0.826441i \(0.690362\pi\)
\(198\) −1.38094e9 −0.0638529
\(199\) −1.02232e10 −0.462111 −0.231056 0.972941i \(-0.574218\pi\)
−0.231056 + 0.972941i \(0.574218\pi\)
\(200\) −4.91492e9 −0.217211
\(201\) −1.84385e10 −0.796790
\(202\) −2.54061e9 −0.107364
\(203\) 1.56039e10 0.644911
\(204\) 9.30498e9 0.376166
\(205\) −1.21398e10 −0.480088
\(206\) 1.84107e10 0.712308
\(207\) −1.01738e10 −0.385138
\(208\) −2.14021e10 −0.792813
\(209\) 4.61009e8 0.0167129
\(210\) −2.15533e9 −0.0764763
\(211\) 1.71955e9 0.0597233 0.0298617 0.999554i \(-0.490493\pi\)
0.0298617 + 0.999554i \(0.490493\pi\)
\(212\) 1.27133e10 0.432261
\(213\) −2.87829e10 −0.958135
\(214\) 6.28235e9 0.204767
\(215\) −1.25280e9 −0.0399859
\(216\) −6.68670e9 −0.209011
\(217\) −7.77365e9 −0.237989
\(218\) −5.83253e9 −0.174905
\(219\) −1.28990e10 −0.378930
\(220\) 1.46577e9 0.0421856
\(221\) −1.02041e11 −2.87747
\(222\) −2.70948e10 −0.748682
\(223\) −2.29518e10 −0.621505 −0.310753 0.950491i \(-0.600581\pi\)
−0.310753 + 0.950491i \(0.600581\pi\)
\(224\) −1.02756e10 −0.272704
\(225\) 2.56289e9 0.0666667
\(226\) 2.10087e9 0.0535687
\(227\) −3.03913e10 −0.759684 −0.379842 0.925051i \(-0.624022\pi\)
−0.379842 + 0.925051i \(0.624022\pi\)
\(228\) 6.21564e8 0.0152328
\(229\) 3.73975e10 0.898634 0.449317 0.893372i \(-0.351667\pi\)
0.449317 + 0.893372i \(0.351667\pi\)
\(230\) −1.71850e10 −0.404925
\(231\) 2.30847e9 0.0533422
\(232\) 8.17705e10 1.85311
\(233\) −7.70456e10 −1.71256 −0.856281 0.516510i \(-0.827231\pi\)
−0.856281 + 0.516510i \(0.827231\pi\)
\(234\) 2.04179e10 0.445184
\(235\) −2.27437e9 −0.0486471
\(236\) −2.49023e10 −0.522560
\(237\) −1.21267e10 −0.249675
\(238\) 2.47537e10 0.500085
\(239\) 2.31989e10 0.459914 0.229957 0.973201i \(-0.426141\pi\)
0.229957 + 0.973201i \(0.426141\pi\)
\(240\) −6.17357e9 −0.120112
\(241\) 5.44449e10 1.03963 0.519817 0.854278i \(-0.326000\pi\)
0.519817 + 0.854278i \(0.326000\pi\)
\(242\) −3.93127e10 −0.736823
\(243\) 3.48678e9 0.0641500
\(244\) −3.09929e10 −0.559768
\(245\) 3.60300e9 0.0638877
\(246\) −2.78981e10 −0.485698
\(247\) −6.81627e9 −0.116523
\(248\) −4.07370e10 −0.683843
\(249\) 1.48997e10 0.245630
\(250\) 4.32909e9 0.0700917
\(251\) −1.03598e11 −1.64748 −0.823741 0.566966i \(-0.808117\pi\)
−0.823741 + 0.566966i \(0.808117\pi\)
\(252\) 3.11244e9 0.0486181
\(253\) 1.84061e10 0.282435
\(254\) −5.12630e10 −0.772774
\(255\) −2.94345e10 −0.435939
\(256\) −6.61845e10 −0.963112
\(257\) −4.69338e10 −0.671099 −0.335550 0.942023i \(-0.608922\pi\)
−0.335550 + 0.942023i \(0.608922\pi\)
\(258\) −2.87900e9 −0.0404532
\(259\) 4.52936e10 0.625443
\(260\) −2.16722e10 −0.294119
\(261\) −4.26393e10 −0.568758
\(262\) 3.05985e9 0.0401184
\(263\) 6.03960e10 0.778409 0.389204 0.921151i \(-0.372750\pi\)
0.389204 + 0.921151i \(0.372750\pi\)
\(264\) 1.20973e10 0.153275
\(265\) −4.02160e10 −0.500948
\(266\) 1.65353e9 0.0202509
\(267\) −3.42466e10 −0.412399
\(268\) 4.49759e10 0.532566
\(269\) 3.92688e10 0.457259 0.228630 0.973513i \(-0.426576\pi\)
0.228630 + 0.973513i \(0.426576\pi\)
\(270\) 5.88968e9 0.0674458
\(271\) 4.64368e10 0.522999 0.261500 0.965204i \(-0.415783\pi\)
0.261500 + 0.965204i \(0.415783\pi\)
\(272\) 7.09028e10 0.785422
\(273\) −3.41320e10 −0.371903
\(274\) 6.26768e10 0.671784
\(275\) −4.63668e9 −0.0488889
\(276\) 2.48163e10 0.257422
\(277\) −4.14668e10 −0.423196 −0.211598 0.977357i \(-0.567867\pi\)
−0.211598 + 0.977357i \(0.567867\pi\)
\(278\) 4.48874e10 0.450736
\(279\) 2.12424e10 0.209886
\(280\) 1.88812e10 0.183577
\(281\) −8.02095e10 −0.767445 −0.383723 0.923448i \(-0.625358\pi\)
−0.383723 + 0.923448i \(0.625358\pi\)
\(282\) −5.22665e9 −0.0492156
\(283\) −2.02123e10 −0.187317 −0.0936585 0.995604i \(-0.529856\pi\)
−0.0936585 + 0.995604i \(0.529856\pi\)
\(284\) 7.02083e10 0.640407
\(285\) −1.96620e9 −0.0176533
\(286\) −3.69393e10 −0.326469
\(287\) 4.66364e10 0.405748
\(288\) 2.80793e10 0.240503
\(289\) 2.19464e11 1.85065
\(290\) −7.20239e10 −0.597978
\(291\) 5.85738e10 0.478834
\(292\) 3.14638e10 0.253272
\(293\) −1.90018e11 −1.50623 −0.753115 0.657889i \(-0.771450\pi\)
−0.753115 + 0.657889i \(0.771450\pi\)
\(294\) 8.27991e9 0.0646343
\(295\) 7.87737e10 0.605595
\(296\) 2.37356e11 1.79717
\(297\) −6.30816e9 −0.0470434
\(298\) 2.07102e11 1.52129
\(299\) −2.72144e11 −1.96914
\(300\) −6.25149e9 −0.0445592
\(301\) 4.81274e9 0.0337943
\(302\) −1.85812e11 −1.28541
\(303\) −1.16056e10 −0.0790997
\(304\) 4.73624e9 0.0318055
\(305\) 9.80401e10 0.648716
\(306\) −6.76423e10 −0.441034
\(307\) −2.54830e11 −1.63730 −0.818651 0.574292i \(-0.805278\pi\)
−0.818651 + 0.574292i \(0.805278\pi\)
\(308\) −5.63090e9 −0.0356533
\(309\) 8.41006e10 0.524790
\(310\) 3.58814e10 0.220669
\(311\) −3.61990e10 −0.219419 −0.109710 0.993964i \(-0.534992\pi\)
−0.109710 + 0.993964i \(0.534992\pi\)
\(312\) −1.78865e11 −1.06864
\(313\) −6.67555e10 −0.393131 −0.196566 0.980491i \(-0.562979\pi\)
−0.196566 + 0.980491i \(0.562979\pi\)
\(314\) 2.23646e11 1.29831
\(315\) −9.84560e9 −0.0563436
\(316\) 2.95798e10 0.166880
\(317\) 1.49501e11 0.831529 0.415765 0.909472i \(-0.363514\pi\)
0.415765 + 0.909472i \(0.363514\pi\)
\(318\) −9.24189e10 −0.506802
\(319\) 7.71414e10 0.417089
\(320\) 8.64530e10 0.460898
\(321\) 2.86979e10 0.150861
\(322\) 6.60180e10 0.342224
\(323\) 2.25816e10 0.115436
\(324\) −8.50508e9 −0.0428772
\(325\) 6.85559e10 0.340855
\(326\) 2.52039e11 1.23592
\(327\) −2.66431e10 −0.128861
\(328\) 2.44394e11 1.16589
\(329\) 8.73724e9 0.0411143
\(330\) −1.06554e10 −0.0494602
\(331\) −3.03930e11 −1.39171 −0.695854 0.718183i \(-0.744974\pi\)
−0.695854 + 0.718183i \(0.744974\pi\)
\(332\) −3.63440e10 −0.164176
\(333\) −1.23770e11 −0.551589
\(334\) 2.01695e11 0.886822
\(335\) −1.42273e11 −0.617191
\(336\) 2.37164e10 0.101513
\(337\) 1.68831e11 0.713046 0.356523 0.934286i \(-0.383962\pi\)
0.356523 + 0.934286i \(0.383962\pi\)
\(338\) 3.58129e11 1.49250
\(339\) 9.59683e9 0.0394665
\(340\) 7.17976e10 0.291377
\(341\) −3.84309e10 −0.153917
\(342\) −4.51844e9 −0.0178596
\(343\) −1.38413e10 −0.0539949
\(344\) 2.52207e10 0.0971055
\(345\) −7.85016e10 −0.298327
\(346\) 2.27297e11 0.852611
\(347\) −4.83989e11 −1.79206 −0.896030 0.443993i \(-0.853562\pi\)
−0.896030 + 0.443993i \(0.853562\pi\)
\(348\) 1.04007e11 0.380151
\(349\) −1.00182e11 −0.361474 −0.180737 0.983531i \(-0.557848\pi\)
−0.180737 + 0.983531i \(0.557848\pi\)
\(350\) −1.66306e10 −0.0592383
\(351\) 9.32695e10 0.327988
\(352\) −5.08000e10 −0.176369
\(353\) 2.45377e11 0.841100 0.420550 0.907269i \(-0.361837\pi\)
0.420550 + 0.907269i \(0.361837\pi\)
\(354\) 1.81027e11 0.612672
\(355\) −2.22090e11 −0.742168
\(356\) 8.35355e10 0.275643
\(357\) 1.13076e11 0.368436
\(358\) −3.53330e11 −1.13686
\(359\) 2.99212e11 0.950723 0.475362 0.879791i \(-0.342317\pi\)
0.475362 + 0.879791i \(0.342317\pi\)
\(360\) −5.15949e10 −0.161899
\(361\) −3.21179e11 −0.995325
\(362\) 6.62211e10 0.202679
\(363\) −1.79581e11 −0.542852
\(364\) 8.32559e10 0.248576
\(365\) −9.95296e10 −0.293518
\(366\) 2.25302e11 0.656297
\(367\) −3.24328e11 −0.933228 −0.466614 0.884461i \(-0.654526\pi\)
−0.466614 + 0.884461i \(0.654526\pi\)
\(368\) 1.89097e11 0.537489
\(369\) −1.27439e11 −0.357836
\(370\) −2.09065e11 −0.579927
\(371\) 1.54494e11 0.423378
\(372\) −5.18151e10 −0.140286
\(373\) 5.38766e11 1.44115 0.720577 0.693375i \(-0.243877\pi\)
0.720577 + 0.693375i \(0.243877\pi\)
\(374\) 1.22376e11 0.323425
\(375\) 1.97754e10 0.0516398
\(376\) 4.57866e10 0.118139
\(377\) −1.14058e12 −2.90796
\(378\) −2.26258e10 −0.0570021
\(379\) −4.13899e11 −1.03043 −0.515214 0.857061i \(-0.672288\pi\)
−0.515214 + 0.857061i \(0.672288\pi\)
\(380\) 4.79602e9 0.0117993
\(381\) −2.34171e11 −0.569338
\(382\) 3.13988e11 0.754444
\(383\) 6.72205e11 1.59627 0.798137 0.602476i \(-0.205819\pi\)
0.798137 + 0.602476i \(0.205819\pi\)
\(384\) 2.11854e10 0.0497218
\(385\) 1.78123e10 0.0413187
\(386\) 4.84015e11 1.10973
\(387\) −1.31514e10 −0.0298038
\(388\) −1.42875e11 −0.320047
\(389\) 1.39495e11 0.308877 0.154439 0.988002i \(-0.450643\pi\)
0.154439 + 0.988002i \(0.450643\pi\)
\(390\) 1.57546e11 0.344838
\(391\) 9.01582e11 1.95079
\(392\) −7.25339e10 −0.155151
\(393\) 1.39775e10 0.0295571
\(394\) −4.22096e11 −0.882426
\(395\) −9.35701e10 −0.193397
\(396\) 1.53871e10 0.0314433
\(397\) −8.19036e11 −1.65480 −0.827400 0.561613i \(-0.810181\pi\)
−0.827400 + 0.561613i \(0.810181\pi\)
\(398\) −1.81277e11 −0.362133
\(399\) 7.55335e9 0.0149197
\(400\) −4.76356e10 −0.0930382
\(401\) −4.81162e11 −0.929270 −0.464635 0.885502i \(-0.653814\pi\)
−0.464635 + 0.885502i \(0.653814\pi\)
\(402\) −3.26951e11 −0.624404
\(403\) 5.68221e11 1.07311
\(404\) 2.83087e10 0.0528694
\(405\) 2.69042e10 0.0496904
\(406\) 2.76687e11 0.505384
\(407\) 2.23919e11 0.404499
\(408\) 5.92561e11 1.05868
\(409\) 1.13116e11 0.199879 0.0999397 0.994993i \(-0.468135\pi\)
0.0999397 + 0.994993i \(0.468135\pi\)
\(410\) −2.15263e11 −0.376220
\(411\) 2.86309e11 0.494934
\(412\) −2.05141e11 −0.350764
\(413\) −3.02617e11 −0.511821
\(414\) −1.80401e11 −0.301813
\(415\) 1.14967e11 0.190264
\(416\) 7.51105e11 1.22965
\(417\) 2.05047e11 0.332078
\(418\) 8.17459e9 0.0130970
\(419\) 3.24356e11 0.514114 0.257057 0.966396i \(-0.417247\pi\)
0.257057 + 0.966396i \(0.417247\pi\)
\(420\) 2.40157e10 0.0376594
\(421\) 1.72118e11 0.267028 0.133514 0.991047i \(-0.457374\pi\)
0.133514 + 0.991047i \(0.457374\pi\)
\(422\) 3.04910e10 0.0468021
\(423\) −2.38755e10 −0.0362594
\(424\) 8.09610e11 1.21655
\(425\) −2.27118e11 −0.337677
\(426\) −5.10377e11 −0.750842
\(427\) −3.76631e11 −0.548265
\(428\) −7.00010e10 −0.100834
\(429\) −1.68740e11 −0.240524
\(430\) −2.22145e10 −0.0313349
\(431\) 1.01287e12 1.41385 0.706927 0.707286i \(-0.250081\pi\)
0.706927 + 0.707286i \(0.250081\pi\)
\(432\) −6.48077e10 −0.0895261
\(433\) −8.94338e11 −1.22266 −0.611331 0.791375i \(-0.709365\pi\)
−0.611331 + 0.791375i \(0.709365\pi\)
\(434\) −1.37842e11 −0.186499
\(435\) −3.29007e11 −0.440558
\(436\) 6.49888e10 0.0861290
\(437\) 6.02248e10 0.0789967
\(438\) −2.28725e11 −0.296948
\(439\) 4.10432e11 0.527413 0.263706 0.964603i \(-0.415055\pi\)
0.263706 + 0.964603i \(0.415055\pi\)
\(440\) 9.33435e10 0.118726
\(441\) 3.78229e10 0.0476190
\(442\) −1.80939e12 −2.25493
\(443\) 3.71191e11 0.457911 0.228955 0.973437i \(-0.426469\pi\)
0.228955 + 0.973437i \(0.426469\pi\)
\(444\) 3.01903e11 0.368676
\(445\) −2.64249e11 −0.319443
\(446\) −4.06980e11 −0.487042
\(447\) 9.46049e11 1.12080
\(448\) −3.32118e11 −0.389530
\(449\) 8.93496e11 1.03749 0.518745 0.854929i \(-0.326399\pi\)
0.518745 + 0.854929i \(0.326399\pi\)
\(450\) 4.54451e10 0.0522433
\(451\) 2.30558e11 0.262413
\(452\) −2.34089e10 −0.0263790
\(453\) −8.48792e11 −0.947021
\(454\) −5.38897e11 −0.595325
\(455\) −2.63364e11 −0.288075
\(456\) 3.95826e10 0.0428708
\(457\) −7.44453e11 −0.798388 −0.399194 0.916866i \(-0.630710\pi\)
−0.399194 + 0.916866i \(0.630710\pi\)
\(458\) 6.63131e11 0.704214
\(459\) −3.08992e11 −0.324930
\(460\) 1.91484e11 0.199398
\(461\) 3.98579e10 0.0411017 0.0205509 0.999789i \(-0.493458\pi\)
0.0205509 + 0.999789i \(0.493458\pi\)
\(462\) 4.09337e10 0.0418015
\(463\) −1.33184e12 −1.34691 −0.673453 0.739230i \(-0.735190\pi\)
−0.673453 + 0.739230i \(0.735190\pi\)
\(464\) 7.92522e11 0.793744
\(465\) 1.63907e11 0.162577
\(466\) −1.36617e12 −1.34205
\(467\) −1.65914e12 −1.61419 −0.807097 0.590419i \(-0.798963\pi\)
−0.807097 + 0.590419i \(0.798963\pi\)
\(468\) −2.27506e11 −0.219223
\(469\) 5.46554e11 0.521622
\(470\) −4.03291e10 −0.0381222
\(471\) 1.02162e12 0.956525
\(472\) −1.58584e12 −1.47068
\(473\) 2.37929e10 0.0218561
\(474\) −2.15030e11 −0.195657
\(475\) −1.51713e10 −0.0136742
\(476\) −2.75818e11 −0.246258
\(477\) −4.22172e11 −0.373385
\(478\) 4.11361e11 0.360411
\(479\) −1.70555e12 −1.48032 −0.740160 0.672430i \(-0.765250\pi\)
−0.740160 + 0.672430i \(0.765250\pi\)
\(480\) 2.16661e11 0.186293
\(481\) −3.31077e12 −2.82018
\(482\) 9.65414e11 0.814708
\(483\) 3.01572e11 0.252132
\(484\) 4.38041e11 0.362836
\(485\) 4.51958e11 0.370903
\(486\) 6.18275e10 0.0502711
\(487\) 3.09447e11 0.249290 0.124645 0.992201i \(-0.460221\pi\)
0.124645 + 0.992201i \(0.460221\pi\)
\(488\) −1.97370e12 −1.57540
\(489\) 1.15132e12 0.910556
\(490\) 6.38882e10 0.0500655
\(491\) −7.75236e11 −0.601960 −0.300980 0.953630i \(-0.597314\pi\)
−0.300980 + 0.953630i \(0.597314\pi\)
\(492\) 3.10854e11 0.239174
\(493\) 3.77861e12 2.88085
\(494\) −1.20866e11 −0.0913129
\(495\) −4.86740e10 −0.0364396
\(496\) −3.94824e11 −0.292912
\(497\) 8.53183e11 0.627247
\(498\) 2.64202e11 0.192488
\(499\) 6.93045e11 0.500391 0.250195 0.968195i \(-0.419505\pi\)
0.250195 + 0.968195i \(0.419505\pi\)
\(500\) −4.82368e10 −0.0345154
\(501\) 9.21349e11 0.653363
\(502\) −1.83700e12 −1.29105
\(503\) −1.75731e12 −1.22403 −0.612016 0.790845i \(-0.709641\pi\)
−0.612016 + 0.790845i \(0.709641\pi\)
\(504\) 1.98207e11 0.136830
\(505\) −8.95492e10 −0.0612704
\(506\) 3.26375e11 0.221330
\(507\) 1.63594e12 1.09959
\(508\) 5.71197e11 0.380539
\(509\) −7.33230e11 −0.484184 −0.242092 0.970253i \(-0.577834\pi\)
−0.242092 + 0.970253i \(0.577834\pi\)
\(510\) −5.21931e11 −0.341623
\(511\) 3.82353e11 0.248068
\(512\) −1.30749e12 −0.840862
\(513\) −2.06404e10 −0.0131580
\(514\) −8.32228e11 −0.525906
\(515\) 6.48924e11 0.406501
\(516\) 3.20792e10 0.0199205
\(517\) 4.31946e10 0.0265902
\(518\) 8.03143e11 0.490128
\(519\) 1.03830e12 0.628158
\(520\) −1.38013e12 −0.827763
\(521\) 1.58170e12 0.940488 0.470244 0.882536i \(-0.344166\pi\)
0.470244 + 0.882536i \(0.344166\pi\)
\(522\) −7.56078e11 −0.445707
\(523\) 2.20359e12 1.28787 0.643937 0.765079i \(-0.277300\pi\)
0.643937 + 0.765079i \(0.277300\pi\)
\(524\) −3.40943e10 −0.0197556
\(525\) −7.59691e10 −0.0436436
\(526\) 1.07094e12 0.609999
\(527\) −1.88245e12 −1.06311
\(528\) 1.17248e11 0.0656525
\(529\) 6.03359e11 0.334985
\(530\) −7.13109e11 −0.392567
\(531\) 8.26935e11 0.451384
\(532\) −1.84244e10 −0.00997219
\(533\) −3.40893e12 −1.82955
\(534\) −6.07260e11 −0.323176
\(535\) 2.21435e11 0.116857
\(536\) 2.86416e12 1.49884
\(537\) −1.61402e12 −0.837577
\(538\) 6.96313e11 0.358331
\(539\) −6.84277e10 −0.0349206
\(540\) −6.56256e10 −0.0332125
\(541\) −1.11931e12 −0.561778 −0.280889 0.959740i \(-0.590629\pi\)
−0.280889 + 0.959740i \(0.590629\pi\)
\(542\) 8.23416e11 0.409848
\(543\) 3.02500e11 0.149323
\(544\) −2.48833e12 −1.21818
\(545\) −2.05580e11 −0.0998150
\(546\) −6.05227e11 −0.291441
\(547\) −2.45295e12 −1.17151 −0.585755 0.810488i \(-0.699202\pi\)
−0.585755 + 0.810488i \(0.699202\pi\)
\(548\) −6.98375e11 −0.330808
\(549\) 1.02919e12 0.483524
\(550\) −8.22174e10 −0.0383117
\(551\) 2.52407e11 0.116659
\(552\) 1.58036e12 0.724485
\(553\) 3.59459e11 0.163451
\(554\) −7.35286e11 −0.331637
\(555\) −9.55013e11 −0.427259
\(556\) −5.00157e11 −0.221957
\(557\) 2.09941e12 0.924163 0.462082 0.886837i \(-0.347103\pi\)
0.462082 + 0.886837i \(0.347103\pi\)
\(558\) 3.76668e11 0.164477
\(559\) −3.51791e11 −0.152381
\(560\) 1.82997e11 0.0786317
\(561\) 5.59016e11 0.238282
\(562\) −1.42227e12 −0.601408
\(563\) 1.19601e12 0.501702 0.250851 0.968026i \(-0.419290\pi\)
0.250851 + 0.968026i \(0.419290\pi\)
\(564\) 5.82379e10 0.0242354
\(565\) 7.40496e10 0.0305707
\(566\) −3.58404e11 −0.146791
\(567\) −1.03355e11 −0.0419961
\(568\) 4.47102e12 1.80235
\(569\) 4.07783e12 1.63089 0.815444 0.578836i \(-0.196493\pi\)
0.815444 + 0.578836i \(0.196493\pi\)
\(570\) −3.48645e10 −0.0138340
\(571\) 1.37719e11 0.0542163 0.0271081 0.999633i \(-0.491370\pi\)
0.0271081 + 0.999633i \(0.491370\pi\)
\(572\) 4.11595e11 0.160764
\(573\) 1.43430e12 0.555834
\(574\) 8.26955e11 0.317964
\(575\) −6.05722e11 −0.231083
\(576\) 9.07549e11 0.343533
\(577\) 3.97826e12 1.49418 0.747088 0.664725i \(-0.231451\pi\)
0.747088 + 0.664725i \(0.231451\pi\)
\(578\) 3.89153e12 1.45026
\(579\) 2.21099e12 0.817587
\(580\) 8.02524e11 0.294464
\(581\) −4.41658e11 −0.160803
\(582\) 1.03863e12 0.375238
\(583\) 7.63777e11 0.273816
\(584\) 2.00368e12 0.712806
\(585\) 7.19672e11 0.254058
\(586\) −3.36940e12 −1.18036
\(587\) 1.37046e12 0.476427 0.238213 0.971213i \(-0.423438\pi\)
0.238213 + 0.971213i \(0.423438\pi\)
\(588\) −9.22588e10 −0.0318280
\(589\) −1.25746e11 −0.0430503
\(590\) 1.39681e12 0.474574
\(591\) −1.92815e12 −0.650124
\(592\) 2.30047e12 0.769783
\(593\) −7.50360e11 −0.249186 −0.124593 0.992208i \(-0.539762\pi\)
−0.124593 + 0.992208i \(0.539762\pi\)
\(594\) −1.11856e11 −0.0368655
\(595\) 8.72497e11 0.285389
\(596\) −2.30763e12 −0.749133
\(597\) −8.28077e11 −0.266800
\(598\) −4.82564e12 −1.54312
\(599\) 3.97361e12 1.26114 0.630572 0.776131i \(-0.282820\pi\)
0.630572 + 0.776131i \(0.282820\pi\)
\(600\) −3.98109e11 −0.125407
\(601\) −1.37812e12 −0.430876 −0.215438 0.976518i \(-0.569118\pi\)
−0.215438 + 0.976518i \(0.569118\pi\)
\(602\) 8.53393e10 0.0264829
\(603\) −1.49352e12 −0.460027
\(604\) 2.07040e12 0.632978
\(605\) −1.38566e12 −0.420491
\(606\) −2.05790e11 −0.0619864
\(607\) 2.45767e12 0.734810 0.367405 0.930061i \(-0.380246\pi\)
0.367405 + 0.930061i \(0.380246\pi\)
\(608\) −1.66218e11 −0.0493301
\(609\) 1.26391e12 0.372340
\(610\) 1.73844e12 0.508365
\(611\) −6.38655e11 −0.185388
\(612\) 7.53703e11 0.217180
\(613\) −6.52053e12 −1.86514 −0.932568 0.360993i \(-0.882438\pi\)
−0.932568 + 0.360993i \(0.882438\pi\)
\(614\) −4.51864e12 −1.28307
\(615\) −9.83327e11 −0.277179
\(616\) −3.58588e11 −0.100342
\(617\) −3.58985e11 −0.0997224 −0.0498612 0.998756i \(-0.515878\pi\)
−0.0498612 + 0.998756i \(0.515878\pi\)
\(618\) 1.49127e12 0.411251
\(619\) 6.27430e12 1.71774 0.858870 0.512193i \(-0.171167\pi\)
0.858870 + 0.512193i \(0.171167\pi\)
\(620\) −3.99808e11 −0.108665
\(621\) −8.24078e11 −0.222360
\(622\) −6.41879e11 −0.171948
\(623\) 1.01514e12 0.269978
\(624\) −1.73357e12 −0.457731
\(625\) 1.52588e11 0.0400000
\(626\) −1.18371e12 −0.308077
\(627\) 3.73417e10 0.00964919
\(628\) −2.49198e12 −0.639330
\(629\) 1.09682e13 2.79388
\(630\) −1.74582e11 −0.0441536
\(631\) −4.37176e12 −1.09780 −0.548901 0.835888i \(-0.684954\pi\)
−0.548901 + 0.835888i \(0.684954\pi\)
\(632\) 1.88371e12 0.469664
\(633\) 1.39284e11 0.0344813
\(634\) 2.65095e12 0.651627
\(635\) −1.80687e12 −0.441008
\(636\) 1.02978e12 0.249566
\(637\) 1.01174e12 0.243468
\(638\) 1.36787e12 0.326852
\(639\) −2.33142e12 −0.553180
\(640\) 1.63468e11 0.0385143
\(641\) 2.65177e12 0.620405 0.310203 0.950670i \(-0.399603\pi\)
0.310203 + 0.950670i \(0.399603\pi\)
\(642\) 5.08870e11 0.118222
\(643\) 5.57601e12 1.28639 0.643197 0.765701i \(-0.277608\pi\)
0.643197 + 0.765701i \(0.277608\pi\)
\(644\) −7.35604e11 −0.168522
\(645\) −1.01476e11 −0.0230859
\(646\) 4.00415e11 0.0904616
\(647\) −8.42501e11 −0.189017 −0.0945086 0.995524i \(-0.530128\pi\)
−0.0945086 + 0.995524i \(0.530128\pi\)
\(648\) −5.41622e11 −0.120673
\(649\) −1.49606e12 −0.331015
\(650\) 1.21563e12 0.267111
\(651\) −6.29665e11 −0.137403
\(652\) −2.80834e12 −0.608605
\(653\) −3.14411e12 −0.676688 −0.338344 0.941022i \(-0.609867\pi\)
−0.338344 + 0.941022i \(0.609867\pi\)
\(654\) −4.72435e11 −0.100982
\(655\) 1.07851e11 0.0228948
\(656\) 2.36867e12 0.499387
\(657\) −1.04482e12 −0.218775
\(658\) 1.54928e11 0.0322192
\(659\) −3.84118e12 −0.793378 −0.396689 0.917953i \(-0.629841\pi\)
−0.396689 + 0.917953i \(0.629841\pi\)
\(660\) 1.18727e11 0.0243558
\(661\) 3.86205e12 0.786885 0.393442 0.919349i \(-0.371284\pi\)
0.393442 + 0.919349i \(0.371284\pi\)
\(662\) −5.38928e12 −1.09061
\(663\) −8.26535e12 −1.66131
\(664\) −2.31446e12 −0.462055
\(665\) 5.82820e10 0.0115568
\(666\) −2.19468e12 −0.432252
\(667\) 1.00775e13 1.97146
\(668\) −2.24738e12 −0.436700
\(669\) −1.85910e12 −0.358826
\(670\) −2.52277e12 −0.483661
\(671\) −1.86196e12 −0.354584
\(672\) −8.32326e11 −0.157446
\(673\) 9.02826e12 1.69643 0.848216 0.529651i \(-0.177677\pi\)
0.848216 + 0.529651i \(0.177677\pi\)
\(674\) 2.99370e12 0.558778
\(675\) 2.07594e11 0.0384900
\(676\) −3.99044e12 −0.734955
\(677\) −2.09789e12 −0.383825 −0.191913 0.981412i \(-0.561469\pi\)
−0.191913 + 0.981412i \(0.561469\pi\)
\(678\) 1.70170e11 0.0309279
\(679\) −1.73624e12 −0.313470
\(680\) 4.57223e12 0.820046
\(681\) −2.46170e12 −0.438604
\(682\) −6.81454e11 −0.120617
\(683\) −8.96881e11 −0.157704 −0.0788518 0.996886i \(-0.525125\pi\)
−0.0788518 + 0.996886i \(0.525125\pi\)
\(684\) 5.03467e10 0.00879464
\(685\) 2.20918e12 0.383374
\(686\) −2.45433e11 −0.0423131
\(687\) 3.02920e12 0.518827
\(688\) 2.44440e11 0.0415933
\(689\) −1.12929e13 −1.90905
\(690\) −1.39199e12 −0.233784
\(691\) −1.00944e13 −1.68433 −0.842166 0.539218i \(-0.818720\pi\)
−0.842166 + 0.539218i \(0.818720\pi\)
\(692\) −2.53265e12 −0.419853
\(693\) 1.86986e11 0.0307971
\(694\) −8.58207e12 −1.40435
\(695\) 1.58215e12 0.257227
\(696\) 6.62341e12 1.06989
\(697\) 1.12934e13 1.81250
\(698\) −1.77643e12 −0.283269
\(699\) −6.24069e12 −0.988748
\(700\) 1.85306e11 0.0291709
\(701\) −2.93533e12 −0.459120 −0.229560 0.973295i \(-0.573729\pi\)
−0.229560 + 0.973295i \(0.573729\pi\)
\(702\) 1.65385e12 0.257027
\(703\) 7.32667e11 0.113138
\(704\) −1.64190e12 −0.251925
\(705\) −1.84224e11 −0.0280864
\(706\) 4.35102e12 0.659127
\(707\) 3.44012e11 0.0517829
\(708\) −2.01709e12 −0.301700
\(709\) −1.02071e13 −1.51703 −0.758514 0.651656i \(-0.774074\pi\)
−0.758514 + 0.651656i \(0.774074\pi\)
\(710\) −3.93810e12 −0.581599
\(711\) −9.82262e11 −0.144150
\(712\) 5.31973e12 0.775764
\(713\) −5.02049e12 −0.727517
\(714\) 2.00505e12 0.288724
\(715\) −1.30200e12 −0.186309
\(716\) 3.93697e12 0.559827
\(717\) 1.87911e12 0.265531
\(718\) 5.30561e12 0.745033
\(719\) 2.00023e12 0.279126 0.139563 0.990213i \(-0.455430\pi\)
0.139563 + 0.990213i \(0.455430\pi\)
\(720\) −5.00059e11 −0.0693466
\(721\) −2.49291e12 −0.343556
\(722\) −5.69514e12 −0.779986
\(723\) 4.41004e12 0.600233
\(724\) −7.37867e11 −0.0998056
\(725\) −2.53863e12 −0.341255
\(726\) −3.18433e12 −0.425405
\(727\) −3.22295e12 −0.427907 −0.213953 0.976844i \(-0.568634\pi\)
−0.213953 + 0.976844i \(0.568634\pi\)
\(728\) 5.30192e12 0.699588
\(729\) 2.82430e11 0.0370370
\(730\) −1.76485e12 −0.230015
\(731\) 1.16545e12 0.150961
\(732\) −2.51042e12 −0.323182
\(733\) −5.91731e12 −0.757106 −0.378553 0.925580i \(-0.623578\pi\)
−0.378553 + 0.925580i \(0.623578\pi\)
\(734\) −5.75098e12 −0.731323
\(735\) 2.91843e11 0.0368856
\(736\) −6.63635e12 −0.833642
\(737\) 2.70202e12 0.337353
\(738\) −2.25975e12 −0.280418
\(739\) 6.71625e12 0.828374 0.414187 0.910192i \(-0.364066\pi\)
0.414187 + 0.910192i \(0.364066\pi\)
\(740\) 2.32950e12 0.285575
\(741\) −5.52118e11 −0.0672744
\(742\) 2.73948e12 0.331780
\(743\) −1.24230e13 −1.49546 −0.747731 0.664002i \(-0.768857\pi\)
−0.747731 + 0.664002i \(0.768857\pi\)
\(744\) −3.29970e12 −0.394817
\(745\) 7.29976e12 0.868171
\(746\) 9.55337e12 1.12936
\(747\) 1.20688e12 0.141815
\(748\) −1.36357e12 −0.159265
\(749\) −8.50663e11 −0.0987619
\(750\) 3.50656e11 0.0404675
\(751\) 7.52055e11 0.0862720 0.0431360 0.999069i \(-0.486265\pi\)
0.0431360 + 0.999069i \(0.486265\pi\)
\(752\) 4.43765e11 0.0506026
\(753\) −8.39146e12 −0.951174
\(754\) −2.02246e13 −2.27882
\(755\) −6.54932e12 −0.733559
\(756\) 2.52107e11 0.0280697
\(757\) 2.12671e12 0.235383 0.117692 0.993050i \(-0.462451\pi\)
0.117692 + 0.993050i \(0.462451\pi\)
\(758\) −7.33924e12 −0.807494
\(759\) 1.49089e12 0.163064
\(760\) 3.05421e11 0.0332076
\(761\) 3.97518e12 0.429661 0.214831 0.976651i \(-0.431080\pi\)
0.214831 + 0.976651i \(0.431080\pi\)
\(762\) −4.15231e12 −0.446161
\(763\) 7.89755e11 0.0843591
\(764\) −3.49860e12 −0.371513
\(765\) −2.38420e12 −0.251690
\(766\) 1.19195e13 1.25092
\(767\) 2.21200e13 2.30785
\(768\) −5.36095e12 −0.556053
\(769\) 5.74016e11 0.0591910 0.0295955 0.999562i \(-0.490578\pi\)
0.0295955 + 0.999562i \(0.490578\pi\)
\(770\) 3.15847e11 0.0323793
\(771\) −3.80164e12 −0.387459
\(772\) −5.39313e12 −0.546466
\(773\) −2.24260e12 −0.225914 −0.112957 0.993600i \(-0.536032\pi\)
−0.112957 + 0.993600i \(0.536032\pi\)
\(774\) −2.33199e11 −0.0233557
\(775\) 1.26471e12 0.125932
\(776\) −9.09861e12 −0.900735
\(777\) 3.66878e12 0.361100
\(778\) 2.47352e12 0.242051
\(779\) 7.54389e11 0.0733967
\(780\) −1.75545e12 −0.169810
\(781\) 4.21791e12 0.405665
\(782\) 1.59868e13 1.52873
\(783\) −3.45378e12 −0.328373
\(784\) −7.03001e11 −0.0664559
\(785\) 7.88289e12 0.740921
\(786\) 2.47847e11 0.0231624
\(787\) −3.34267e12 −0.310604 −0.155302 0.987867i \(-0.549635\pi\)
−0.155302 + 0.987867i \(0.549635\pi\)
\(788\) 4.70320e12 0.434536
\(789\) 4.89208e12 0.449414
\(790\) −1.65918e12 −0.151556
\(791\) −2.84469e11 −0.0258369
\(792\) 9.79883e11 0.0884934
\(793\) 2.75301e13 2.47217
\(794\) −1.45231e13 −1.29678
\(795\) −3.25750e12 −0.289223
\(796\) 2.01987e12 0.178326
\(797\) −1.60220e13 −1.40655 −0.703274 0.710919i \(-0.748279\pi\)
−0.703274 + 0.710919i \(0.748279\pi\)
\(798\) 1.33936e11 0.0116918
\(799\) 2.11580e12 0.183659
\(800\) 1.67177e12 0.144302
\(801\) −2.77398e12 −0.238098
\(802\) −8.53194e12 −0.728221
\(803\) 1.89025e12 0.160435
\(804\) 3.64305e12 0.307477
\(805\) 2.32694e12 0.195301
\(806\) 1.00757e13 0.840942
\(807\) 3.18077e12 0.263999
\(808\) 1.80276e12 0.148795
\(809\) −1.45689e13 −1.19580 −0.597901 0.801570i \(-0.703998\pi\)
−0.597901 + 0.801570i \(0.703998\pi\)
\(810\) 4.77064e11 0.0389398
\(811\) −9.11324e12 −0.739739 −0.369870 0.929084i \(-0.620598\pi\)
−0.369870 + 0.929084i \(0.620598\pi\)
\(812\) −3.08298e12 −0.248868
\(813\) 3.76138e12 0.301954
\(814\) 3.97053e12 0.316985
\(815\) 8.88365e12 0.705314
\(816\) 5.74312e12 0.453464
\(817\) 7.78507e10 0.00611313
\(818\) 2.00576e12 0.156635
\(819\) −2.76469e12 −0.214718
\(820\) 2.39857e12 0.185263
\(821\) 1.36915e13 1.05173 0.525867 0.850567i \(-0.323741\pi\)
0.525867 + 0.850567i \(0.323741\pi\)
\(822\) 5.07682e12 0.387854
\(823\) −1.09486e13 −0.831878 −0.415939 0.909392i \(-0.636547\pi\)
−0.415939 + 0.909392i \(0.636547\pi\)
\(824\) −1.30638e13 −0.987184
\(825\) −3.75571e11 −0.0282260
\(826\) −5.36599e12 −0.401088
\(827\) −1.62709e13 −1.20959 −0.604795 0.796381i \(-0.706745\pi\)
−0.604795 + 0.796381i \(0.706745\pi\)
\(828\) 2.01012e12 0.148623
\(829\) 2.67132e13 1.96440 0.982201 0.187836i \(-0.0601472\pi\)
0.982201 + 0.187836i \(0.0601472\pi\)
\(830\) 2.03859e12 0.149100
\(831\) −3.35881e12 −0.244332
\(832\) 2.42764e13 1.75643
\(833\) −3.35178e12 −0.241198
\(834\) 3.63588e12 0.260233
\(835\) 7.10917e12 0.506092
\(836\) −9.10852e10 −0.00644941
\(837\) 1.72063e12 0.121178
\(838\) 5.75147e12 0.402885
\(839\) −1.97856e13 −1.37854 −0.689271 0.724503i \(-0.742069\pi\)
−0.689271 + 0.724503i \(0.742069\pi\)
\(840\) 1.52937e12 0.105988
\(841\) 2.77286e13 1.91137
\(842\) 3.05199e12 0.209256
\(843\) −6.49697e12 −0.443085
\(844\) −3.39745e11 −0.0230469
\(845\) 1.26230e13 0.851741
\(846\) −4.23359e11 −0.0284146
\(847\) 5.32314e12 0.355380
\(848\) 7.84676e12 0.521086
\(849\) −1.63720e12 −0.108147
\(850\) −4.02725e12 −0.264620
\(851\) 2.92522e13 1.91194
\(852\) 5.68687e12 0.369739
\(853\) −1.37782e13 −0.891089 −0.445544 0.895260i \(-0.646990\pi\)
−0.445544 + 0.895260i \(0.646990\pi\)
\(854\) −6.67840e12 −0.429647
\(855\) −1.59262e11 −0.0101921
\(856\) −4.45782e12 −0.283786
\(857\) 1.86882e13 1.18346 0.591729 0.806137i \(-0.298445\pi\)
0.591729 + 0.806137i \(0.298445\pi\)
\(858\) −2.99208e12 −0.188487
\(859\) 9.78965e12 0.613476 0.306738 0.951794i \(-0.400762\pi\)
0.306738 + 0.951794i \(0.400762\pi\)
\(860\) 2.47525e11 0.0154303
\(861\) 3.77755e12 0.234259
\(862\) 1.79601e13 1.10797
\(863\) −1.31437e13 −0.806622 −0.403311 0.915063i \(-0.632141\pi\)
−0.403311 + 0.915063i \(0.632141\pi\)
\(864\) 2.27442e12 0.138854
\(865\) 8.01155e12 0.486569
\(866\) −1.58584e13 −0.958137
\(867\) 1.77766e13 1.06847
\(868\) 1.53590e12 0.0918384
\(869\) 1.77707e12 0.105710
\(870\) −5.83393e12 −0.345243
\(871\) −3.99508e13 −2.35204
\(872\) 4.13863e12 0.242400
\(873\) 4.74448e12 0.276455
\(874\) 1.06790e12 0.0619057
\(875\) −5.86182e11 −0.0338062
\(876\) 2.54857e12 0.146227
\(877\) −1.13031e13 −0.645206 −0.322603 0.946534i \(-0.604558\pi\)
−0.322603 + 0.946534i \(0.604558\pi\)
\(878\) 7.27775e12 0.413306
\(879\) −1.53915e13 −0.869622
\(880\) 9.04688e11 0.0508542
\(881\) 1.10676e13 0.618960 0.309480 0.950906i \(-0.399845\pi\)
0.309480 + 0.950906i \(0.399845\pi\)
\(882\) 6.70673e11 0.0373166
\(883\) 6.03115e12 0.333870 0.166935 0.985968i \(-0.446613\pi\)
0.166935 + 0.985968i \(0.446613\pi\)
\(884\) 2.01611e13 1.11040
\(885\) 6.38067e12 0.349641
\(886\) 6.58194e12 0.358841
\(887\) −1.50209e13 −0.814778 −0.407389 0.913255i \(-0.633561\pi\)
−0.407389 + 0.913255i \(0.633561\pi\)
\(888\) 1.92259e13 1.03759
\(889\) 6.94129e12 0.372719
\(890\) −4.68564e12 −0.250331
\(891\) −5.10961e11 −0.0271605
\(892\) 4.53477e12 0.239835
\(893\) 1.41333e11 0.00743725
\(894\) 1.67753e13 0.878317
\(895\) −1.24539e13 −0.648785
\(896\) −6.27978e11 −0.0325506
\(897\) −2.20436e13 −1.13689
\(898\) 1.58434e13 0.813029
\(899\) −2.10413e13 −1.07437
\(900\) −5.06371e11 −0.0257263
\(901\) 3.74120e13 1.89125
\(902\) 4.08825e12 0.205640
\(903\) 3.89832e11 0.0195111
\(904\) −1.49073e12 −0.0742406
\(905\) 2.33410e12 0.115665
\(906\) −1.50507e13 −0.742132
\(907\) −2.38542e13 −1.17039 −0.585196 0.810892i \(-0.698982\pi\)
−0.585196 + 0.810892i \(0.698982\pi\)
\(908\) 6.00465e12 0.293158
\(909\) −9.40052e11 −0.0456683
\(910\) −4.66996e12 −0.225750
\(911\) −4.97188e12 −0.239159 −0.119580 0.992825i \(-0.538155\pi\)
−0.119580 + 0.992825i \(0.538155\pi\)
\(912\) 3.83635e11 0.0183629
\(913\) −2.18344e12 −0.103997
\(914\) −1.32006e13 −0.625656
\(915\) 7.94124e12 0.374536
\(916\) −7.38892e12 −0.346778
\(917\) −4.14319e11 −0.0193496
\(918\) −5.47903e12 −0.254631
\(919\) 2.44969e13 1.13290 0.566449 0.824097i \(-0.308317\pi\)
0.566449 + 0.824097i \(0.308317\pi\)
\(920\) 1.21941e13 0.561183
\(921\) −2.06413e13 −0.945297
\(922\) 7.06758e11 0.0322093
\(923\) −6.23641e13 −2.82831
\(924\) −4.56103e11 −0.0205844
\(925\) −7.36893e12 −0.330953
\(926\) −2.36161e13 −1.05550
\(927\) 6.81215e12 0.302988
\(928\) −2.78135e13 −1.23109
\(929\) 1.28522e13 0.566118 0.283059 0.959102i \(-0.408651\pi\)
0.283059 + 0.959102i \(0.408651\pi\)
\(930\) 2.90639e12 0.127403
\(931\) −2.23896e11 −0.00976726
\(932\) 1.52225e13 0.660868
\(933\) −2.93212e12 −0.126682
\(934\) −2.94197e13 −1.26496
\(935\) 4.31339e12 0.184572
\(936\) −1.44881e13 −0.616978
\(937\) 5.82676e12 0.246944 0.123472 0.992348i \(-0.460597\pi\)
0.123472 + 0.992348i \(0.460597\pi\)
\(938\) 9.69148e12 0.408768
\(939\) −5.40720e12 −0.226975
\(940\) 4.49366e11 0.0187726
\(941\) 1.27027e13 0.528131 0.264066 0.964505i \(-0.414936\pi\)
0.264066 + 0.964505i \(0.414936\pi\)
\(942\) 1.81154e13 0.749580
\(943\) 3.01194e13 1.24035
\(944\) −1.53700e13 −0.629940
\(945\) −7.97494e11 −0.0325300
\(946\) 4.21895e11 0.0171275
\(947\) −3.27679e13 −1.32396 −0.661978 0.749523i \(-0.730283\pi\)
−0.661978 + 0.749523i \(0.730283\pi\)
\(948\) 2.39597e12 0.0963481
\(949\) −2.79484e13 −1.11856
\(950\) −2.69016e11 −0.0107157
\(951\) 1.21096e13 0.480084
\(952\) −1.75647e13 −0.693066
\(953\) 6.00774e11 0.0235935 0.0117968 0.999930i \(-0.496245\pi\)
0.0117968 + 0.999930i \(0.496245\pi\)
\(954\) −7.48593e12 −0.292603
\(955\) 1.10672e13 0.430547
\(956\) −4.58359e12 −0.177478
\(957\) 6.24845e12 0.240807
\(958\) −3.02428e13 −1.16005
\(959\) −8.48677e12 −0.324010
\(960\) 7.00269e12 0.266100
\(961\) −1.59571e13 −0.603530
\(962\) −5.87064e13 −2.21003
\(963\) 2.32453e12 0.0870998
\(964\) −1.07571e13 −0.401189
\(965\) 1.70601e13 0.633300
\(966\) 5.34746e12 0.197583
\(967\) 3.80320e13 1.39872 0.699359 0.714770i \(-0.253469\pi\)
0.699359 + 0.714770i \(0.253469\pi\)
\(968\) 2.78954e13 1.02116
\(969\) 1.82911e12 0.0666472
\(970\) 8.01410e12 0.290658
\(971\) 3.54296e13 1.27903 0.639513 0.768780i \(-0.279136\pi\)
0.639513 + 0.768780i \(0.279136\pi\)
\(972\) −6.88912e11 −0.0247551
\(973\) −6.07799e12 −0.217396
\(974\) 5.48709e12 0.195356
\(975\) 5.55302e12 0.196793
\(976\) −1.91291e13 −0.674793
\(977\) 2.15681e13 0.757332 0.378666 0.925533i \(-0.376383\pi\)
0.378666 + 0.925533i \(0.376383\pi\)
\(978\) 2.04152e13 0.713556
\(979\) 5.01857e12 0.174606
\(980\) −7.11873e11 −0.0246539
\(981\) −2.15809e12 −0.0743977
\(982\) −1.37465e13 −0.471725
\(983\) −1.64997e13 −0.563618 −0.281809 0.959471i \(-0.590934\pi\)
−0.281809 + 0.959471i \(0.590934\pi\)
\(984\) 1.97959e13 0.673127
\(985\) −1.48777e13 −0.503584
\(986\) 6.70021e13 2.25757
\(987\) 7.07716e11 0.0237373
\(988\) 1.34674e12 0.0449654
\(989\) 3.10823e12 0.103307
\(990\) −8.63086e11 −0.0285559
\(991\) −1.53016e13 −0.503971 −0.251985 0.967731i \(-0.581084\pi\)
−0.251985 + 0.967731i \(0.581084\pi\)
\(992\) 1.38563e13 0.454304
\(993\) −2.46184e13 −0.803503
\(994\) 1.51286e13 0.491541
\(995\) −6.38948e12 −0.206663
\(996\) −2.94386e12 −0.0947873
\(997\) 3.02444e13 0.969431 0.484715 0.874672i \(-0.338923\pi\)
0.484715 + 0.874672i \(0.338923\pi\)
\(998\) 1.22890e13 0.392131
\(999\) −1.00253e13 −0.318460
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 105.10.a.c.1.3 4
3.2 odd 2 315.10.a.f.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.10.a.c.1.3 4 1.1 even 1 trivial
315.10.a.f.1.2 4 3.2 odd 2