Properties

Label 1053.2.b.j.649.10
Level $1053$
Weight $2$
Character 1053.649
Analytic conductor $8.408$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1053,2,Mod(649,1053)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1053, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1053.649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1053 = 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1053.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.40824733284\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 16x^{8} + 91x^{6} + 222x^{4} + 228x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.10
Root \(2.47728i\) of defining polynomial
Character \(\chi\) \(=\) 1053.649
Dual form 1053.2.b.j.649.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.47728i q^{2} -4.13693 q^{4} -0.890732i q^{5} -0.982330i q^{7} -5.29379i q^{8} +2.20660 q^{10} -2.88577i q^{11} +(2.70342 + 2.38569i) q^{13} +2.43351 q^{14} +4.84036 q^{16} +5.34353 q^{17} +7.19723i q^{19} +3.68490i q^{20} +7.14886 q^{22} -4.63376 q^{23} +4.20660 q^{25} +(-5.91002 + 6.69715i) q^{26} +4.06384i q^{28} +1.94227 q^{29} +10.0875i q^{31} +1.40336i q^{32} +13.2374i q^{34} -0.874993 q^{35} -4.82809i q^{37} -17.8296 q^{38} -4.71535 q^{40} +2.76379i q^{41} +4.91002 q^{43} +11.9382i q^{44} -11.4791i q^{46} +4.41560i q^{47} +6.03503 q^{49} +10.4209i q^{50} +(-11.1839 - 9.86943i) q^{52} +6.30850 q^{53} -2.57044 q^{55} -5.20025 q^{56} +4.81154i q^{58} -3.17228i q^{59} -5.52068 q^{61} -24.9896 q^{62} +6.20421 q^{64} +(2.12501 - 2.40803i) q^{65} -3.63799i q^{67} -22.1058 q^{68} -2.16761i q^{70} +6.69715i q^{71} +9.33980i q^{73} +11.9605 q^{74} -29.7745i q^{76} -2.83478 q^{77} +4.74760 q^{79} -4.31146i q^{80} -6.84670 q^{82} +5.52308i q^{83} -4.75965i q^{85} +12.1635i q^{86} -15.2767 q^{88} -17.5838i q^{89} +(2.34353 - 2.65566i) q^{91} +19.1696 q^{92} -10.9387 q^{94} +6.41080 q^{95} -0.246338i q^{97} +14.9505i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 12 q^{4} - 8 q^{10} + 4 q^{13} + 18 q^{14} - 4 q^{16} - 6 q^{17} + 10 q^{22} - 24 q^{23} + 12 q^{25} - 6 q^{26} - 12 q^{29} - 6 q^{35} - 12 q^{38} + 8 q^{40} - 4 q^{43} + 10 q^{49} + 54 q^{53} + 10 q^{55}+ \cdots - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1053\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(730\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.47728i 1.75170i 0.482580 + 0.875852i \(0.339700\pi\)
−0.482580 + 0.875852i \(0.660300\pi\)
\(3\) 0 0
\(4\) −4.13693 −2.06847
\(5\) 0.890732i 0.398348i −0.979964 0.199174i \(-0.936174\pi\)
0.979964 0.199174i \(-0.0638258\pi\)
\(6\) 0 0
\(7\) 0.982330i 0.371286i −0.982617 0.185643i \(-0.940563\pi\)
0.982617 0.185643i \(-0.0594368\pi\)
\(8\) 5.29379i 1.87164i
\(9\) 0 0
\(10\) 2.20660 0.697787
\(11\) 2.88577i 0.870091i −0.900408 0.435046i \(-0.856732\pi\)
0.900408 0.435046i \(-0.143268\pi\)
\(12\) 0 0
\(13\) 2.70342 + 2.38569i 0.749795 + 0.661670i
\(14\) 2.43351 0.650383
\(15\) 0 0
\(16\) 4.84036 1.21009
\(17\) 5.34353 1.29600 0.647998 0.761642i \(-0.275606\pi\)
0.647998 + 0.761642i \(0.275606\pi\)
\(18\) 0 0
\(19\) 7.19723i 1.65116i 0.564287 + 0.825579i \(0.309151\pi\)
−0.564287 + 0.825579i \(0.690849\pi\)
\(20\) 3.68490i 0.823969i
\(21\) 0 0
\(22\) 7.14886 1.52414
\(23\) −4.63376 −0.966206 −0.483103 0.875563i \(-0.660490\pi\)
−0.483103 + 0.875563i \(0.660490\pi\)
\(24\) 0 0
\(25\) 4.20660 0.841319
\(26\) −5.91002 + 6.69715i −1.15905 + 1.31342i
\(27\) 0 0
\(28\) 4.06384i 0.767993i
\(29\) 1.94227 0.360670 0.180335 0.983605i \(-0.442282\pi\)
0.180335 + 0.983605i \(0.442282\pi\)
\(30\) 0 0
\(31\) 10.0875i 1.81177i 0.423524 + 0.905885i \(0.360793\pi\)
−0.423524 + 0.905885i \(0.639207\pi\)
\(32\) 1.40336i 0.248081i
\(33\) 0 0
\(34\) 13.2374i 2.27020i
\(35\) −0.874993 −0.147901
\(36\) 0 0
\(37\) 4.82809i 0.793732i −0.917876 0.396866i \(-0.870098\pi\)
0.917876 0.396866i \(-0.129902\pi\)
\(38\) −17.8296 −2.89234
\(39\) 0 0
\(40\) −4.71535 −0.745563
\(41\) 2.76379i 0.431632i 0.976434 + 0.215816i \(0.0692412\pi\)
−0.976434 + 0.215816i \(0.930759\pi\)
\(42\) 0 0
\(43\) 4.91002 0.748771 0.374386 0.927273i \(-0.377854\pi\)
0.374386 + 0.927273i \(0.377854\pi\)
\(44\) 11.9382i 1.79976i
\(45\) 0 0
\(46\) 11.4791i 1.69251i
\(47\) 4.41560i 0.644082i 0.946726 + 0.322041i \(0.104369\pi\)
−0.946726 + 0.322041i \(0.895631\pi\)
\(48\) 0 0
\(49\) 6.03503 0.862147
\(50\) 10.4209i 1.47374i
\(51\) 0 0
\(52\) −11.1839 9.86943i −1.55093 1.36864i
\(53\) 6.30850 0.866540 0.433270 0.901264i \(-0.357360\pi\)
0.433270 + 0.901264i \(0.357360\pi\)
\(54\) 0 0
\(55\) −2.57044 −0.346599
\(56\) −5.20025 −0.694913
\(57\) 0 0
\(58\) 4.81154i 0.631787i
\(59\) 3.17228i 0.412995i −0.978447 0.206498i \(-0.933793\pi\)
0.978447 0.206498i \(-0.0662066\pi\)
\(60\) 0 0
\(61\) −5.52068 −0.706851 −0.353426 0.935463i \(-0.614983\pi\)
−0.353426 + 0.935463i \(0.614983\pi\)
\(62\) −24.9896 −3.17368
\(63\) 0 0
\(64\) 6.20421 0.775526
\(65\) 2.12501 2.40803i 0.263575 0.298679i
\(66\) 0 0
\(67\) 3.63799i 0.444451i −0.974995 0.222225i \(-0.928668\pi\)
0.974995 0.222225i \(-0.0713321\pi\)
\(68\) −22.1058 −2.68073
\(69\) 0 0
\(70\) 2.16761i 0.259078i
\(71\) 6.69715i 0.794805i 0.917644 + 0.397403i \(0.130088\pi\)
−0.917644 + 0.397403i \(0.869912\pi\)
\(72\) 0 0
\(73\) 9.33980i 1.09314i 0.837413 + 0.546570i \(0.184067\pi\)
−0.837413 + 0.546570i \(0.815933\pi\)
\(74\) 11.9605 1.39038
\(75\) 0 0
\(76\) 29.7745i 3.41537i
\(77\) −2.83478 −0.323053
\(78\) 0 0
\(79\) 4.74760 0.534146 0.267073 0.963676i \(-0.413943\pi\)
0.267073 + 0.963676i \(0.413943\pi\)
\(80\) 4.31146i 0.482036i
\(81\) 0 0
\(82\) −6.84670 −0.756092
\(83\) 5.52308i 0.606237i 0.952953 + 0.303118i \(0.0980277\pi\)
−0.952953 + 0.303118i \(0.901972\pi\)
\(84\) 0 0
\(85\) 4.75965i 0.516257i
\(86\) 12.1635i 1.31163i
\(87\) 0 0
\(88\) −15.2767 −1.62850
\(89\) 17.5838i 1.86388i −0.362615 0.931939i \(-0.618116\pi\)
0.362615 0.931939i \(-0.381884\pi\)
\(90\) 0 0
\(91\) 2.34353 2.65566i 0.245669 0.278388i
\(92\) 19.1696 1.99857
\(93\) 0 0
\(94\) −10.9387 −1.12824
\(95\) 6.41080 0.657735
\(96\) 0 0
\(97\) 0.246338i 0.0250119i −0.999922 0.0125059i \(-0.996019\pi\)
0.999922 0.0125059i \(-0.00398086\pi\)
\(98\) 14.9505i 1.51023i
\(99\) 0 0
\(100\) −17.4024 −1.74024
\(101\) −4.77426 −0.475057 −0.237528 0.971381i \(-0.576337\pi\)
−0.237528 + 0.971381i \(0.576337\pi\)
\(102\) 0 0
\(103\) −3.43351 −0.338314 −0.169157 0.985589i \(-0.554104\pi\)
−0.169157 + 0.985589i \(0.554104\pi\)
\(104\) 12.6293 14.3114i 1.23841 1.40335i
\(105\) 0 0
\(106\) 15.6280i 1.51792i
\(107\) −2.34075 −0.226289 −0.113144 0.993579i \(-0.536092\pi\)
−0.113144 + 0.993579i \(0.536092\pi\)
\(108\) 0 0
\(109\) 10.2127i 0.978195i 0.872229 + 0.489097i \(0.162674\pi\)
−0.872229 + 0.489097i \(0.837326\pi\)
\(110\) 6.36772i 0.607138i
\(111\) 0 0
\(112\) 4.75483i 0.449289i
\(113\) −1.21055 −0.113879 −0.0569396 0.998378i \(-0.518134\pi\)
−0.0569396 + 0.998378i \(0.518134\pi\)
\(114\) 0 0
\(115\) 4.12744i 0.384886i
\(116\) −8.03503 −0.746034
\(117\) 0 0
\(118\) 7.85863 0.723446
\(119\) 5.24911i 0.481185i
\(120\) 0 0
\(121\) 2.67235 0.242941
\(122\) 13.6763i 1.23819i
\(123\) 0 0
\(124\) 41.7314i 3.74759i
\(125\) 8.20061i 0.733485i
\(126\) 0 0
\(127\) 7.58237 0.672827 0.336413 0.941714i \(-0.390786\pi\)
0.336413 + 0.941714i \(0.390786\pi\)
\(128\) 18.1763i 1.60657i
\(129\) 0 0
\(130\) 5.96537 + 5.26425i 0.523197 + 0.461705i
\(131\) 18.8121 1.64362 0.821809 0.569763i \(-0.192965\pi\)
0.821809 + 0.569763i \(0.192965\pi\)
\(132\) 0 0
\(133\) 7.07006 0.613052
\(134\) 9.01232 0.778546
\(135\) 0 0
\(136\) 28.2875i 2.42564i
\(137\) 18.0615i 1.54310i −0.636168 0.771550i \(-0.719482\pi\)
0.636168 0.771550i \(-0.280518\pi\)
\(138\) 0 0
\(139\) −4.85153 −0.411502 −0.205751 0.978604i \(-0.565964\pi\)
−0.205751 + 0.978604i \(0.565964\pi\)
\(140\) 3.61979 0.305928
\(141\) 0 0
\(142\) −16.5907 −1.39226
\(143\) 6.88453 7.80145i 0.575713 0.652390i
\(144\) 0 0
\(145\) 1.73004i 0.143672i
\(146\) −23.1373 −1.91486
\(147\) 0 0
\(148\) 19.9735i 1.64181i
\(149\) 12.2677i 1.00501i −0.864576 0.502503i \(-0.832413\pi\)
0.864576 0.502503i \(-0.167587\pi\)
\(150\) 0 0
\(151\) 5.56730i 0.453060i 0.974004 + 0.226530i \(0.0727382\pi\)
−0.974004 + 0.226530i \(0.927262\pi\)
\(152\) 38.1006 3.09037
\(153\) 0 0
\(154\) 7.02254i 0.565893i
\(155\) 8.98527 0.721714
\(156\) 0 0
\(157\) −4.05052 −0.323266 −0.161633 0.986851i \(-0.551676\pi\)
−0.161633 + 0.986851i \(0.551676\pi\)
\(158\) 11.7611i 0.935667i
\(159\) 0 0
\(160\) 1.25001 0.0988223
\(161\) 4.55188i 0.358739i
\(162\) 0 0
\(163\) 10.3387i 0.809787i −0.914364 0.404894i \(-0.867309\pi\)
0.914364 0.404894i \(-0.132691\pi\)
\(164\) 11.4336i 0.892817i
\(165\) 0 0
\(166\) −13.6822 −1.06195
\(167\) 13.2084i 1.02209i 0.859553 + 0.511047i \(0.170742\pi\)
−0.859553 + 0.511047i \(0.829258\pi\)
\(168\) 0 0
\(169\) 1.61701 + 12.8990i 0.124385 + 0.992234i
\(170\) 11.7910 0.904330
\(171\) 0 0
\(172\) −20.3124 −1.54881
\(173\) 11.4283 0.868879 0.434439 0.900701i \(-0.356947\pi\)
0.434439 + 0.900701i \(0.356947\pi\)
\(174\) 0 0
\(175\) 4.13227i 0.312370i
\(176\) 13.9681i 1.05289i
\(177\) 0 0
\(178\) 43.5600 3.26496
\(179\) 0.150491 0.0112482 0.00562411 0.999984i \(-0.498210\pi\)
0.00562411 + 0.999984i \(0.498210\pi\)
\(180\) 0 0
\(181\) −22.0219 −1.63687 −0.818436 0.574598i \(-0.805159\pi\)
−0.818436 + 0.574598i \(0.805159\pi\)
\(182\) 6.57881 + 5.80559i 0.487654 + 0.430339i
\(183\) 0 0
\(184\) 24.5302i 1.80839i
\(185\) −4.30053 −0.316181
\(186\) 0 0
\(187\) 15.4202i 1.12764i
\(188\) 18.2671i 1.33226i
\(189\) 0 0
\(190\) 15.8814i 1.15216i
\(191\) −19.9574 −1.44406 −0.722032 0.691859i \(-0.756792\pi\)
−0.722032 + 0.691859i \(0.756792\pi\)
\(192\) 0 0
\(193\) 10.0522i 0.723570i −0.932262 0.361785i \(-0.882167\pi\)
0.932262 0.361785i \(-0.117833\pi\)
\(194\) 0.610250 0.0438134
\(195\) 0 0
\(196\) −24.9665 −1.78332
\(197\) 3.94715i 0.281223i 0.990065 + 0.140611i \(0.0449068\pi\)
−0.990065 + 0.140611i \(0.955093\pi\)
\(198\) 0 0
\(199\) 11.4749 0.813433 0.406716 0.913554i \(-0.366674\pi\)
0.406716 + 0.913554i \(0.366674\pi\)
\(200\) 22.2689i 1.57465i
\(201\) 0 0
\(202\) 11.8272i 0.832158i
\(203\) 1.90795i 0.133912i
\(204\) 0 0
\(205\) 2.46180 0.171940
\(206\) 8.50578i 0.592626i
\(207\) 0 0
\(208\) 13.0855 + 11.5476i 0.907319 + 0.800680i
\(209\) 20.7695 1.43666
\(210\) 0 0
\(211\) 10.9661 0.754939 0.377469 0.926022i \(-0.376794\pi\)
0.377469 + 0.926022i \(0.376794\pi\)
\(212\) −26.0979 −1.79241
\(213\) 0 0
\(214\) 5.79870i 0.396391i
\(215\) 4.37351i 0.298271i
\(216\) 0 0
\(217\) 9.90926 0.672684
\(218\) −25.2996 −1.71351
\(219\) 0 0
\(220\) 10.6338 0.716928
\(221\) 14.4458 + 12.7480i 0.971732 + 0.857522i
\(222\) 0 0
\(223\) 12.8423i 0.859986i 0.902832 + 0.429993i \(0.141484\pi\)
−0.902832 + 0.429993i \(0.858516\pi\)
\(224\) 1.37856 0.0921088
\(225\) 0 0
\(226\) 2.99888i 0.199482i
\(227\) 23.6176i 1.56755i 0.621043 + 0.783777i \(0.286709\pi\)
−0.621043 + 0.783777i \(0.713291\pi\)
\(228\) 0 0
\(229\) 12.4378i 0.821916i 0.911654 + 0.410958i \(0.134806\pi\)
−0.911654 + 0.410958i \(0.865194\pi\)
\(230\) −10.2248 −0.674206
\(231\) 0 0
\(232\) 10.2820i 0.675043i
\(233\) −18.7821 −1.23046 −0.615230 0.788348i \(-0.710937\pi\)
−0.615230 + 0.788348i \(0.710937\pi\)
\(234\) 0 0
\(235\) 3.93312 0.256568
\(236\) 13.1235i 0.854267i
\(237\) 0 0
\(238\) 13.0035 0.842894
\(239\) 19.7831i 1.27966i −0.768516 0.639830i \(-0.779005\pi\)
0.768516 0.639830i \(-0.220995\pi\)
\(240\) 0 0
\(241\) 11.3917i 0.733804i 0.930260 + 0.366902i \(0.119581\pi\)
−0.930260 + 0.366902i \(0.880419\pi\)
\(242\) 6.62017i 0.425561i
\(243\) 0 0
\(244\) 22.8387 1.46210
\(245\) 5.37559i 0.343434i
\(246\) 0 0
\(247\) −17.1703 + 19.4572i −1.09252 + 1.23803i
\(248\) 53.4012 3.39098
\(249\) 0 0
\(250\) 20.3152 1.28485
\(251\) −18.6950 −1.18002 −0.590010 0.807396i \(-0.700876\pi\)
−0.590010 + 0.807396i \(0.700876\pi\)
\(252\) 0 0
\(253\) 13.3720i 0.840688i
\(254\) 18.7837i 1.17859i
\(255\) 0 0
\(256\) −32.6194 −2.03871
\(257\) −8.75953 −0.546404 −0.273202 0.961957i \(-0.588083\pi\)
−0.273202 + 0.961957i \(0.588083\pi\)
\(258\) 0 0
\(259\) −4.74277 −0.294702
\(260\) −8.79102 + 9.96185i −0.545196 + 0.617808i
\(261\) 0 0
\(262\) 46.6028i 2.87913i
\(263\) 7.72804 0.476531 0.238266 0.971200i \(-0.423421\pi\)
0.238266 + 0.971200i \(0.423421\pi\)
\(264\) 0 0
\(265\) 5.61919i 0.345184i
\(266\) 17.5145i 1.07388i
\(267\) 0 0
\(268\) 15.0501i 0.919332i
\(269\) 14.8448 0.905102 0.452551 0.891739i \(-0.350514\pi\)
0.452551 + 0.891739i \(0.350514\pi\)
\(270\) 0 0
\(271\) 19.3486i 1.17534i −0.809100 0.587671i \(-0.800045\pi\)
0.809100 0.587671i \(-0.199955\pi\)
\(272\) 25.8646 1.56827
\(273\) 0 0
\(274\) 44.7435 2.70306
\(275\) 12.1393i 0.732025i
\(276\) 0 0
\(277\) 1.17552 0.0706304 0.0353152 0.999376i \(-0.488756\pi\)
0.0353152 + 0.999376i \(0.488756\pi\)
\(278\) 12.0186i 0.720829i
\(279\) 0 0
\(280\) 4.63203i 0.276817i
\(281\) 4.58097i 0.273278i −0.990621 0.136639i \(-0.956370\pi\)
0.990621 0.136639i \(-0.0436300\pi\)
\(282\) 0 0
\(283\) 0.0318323 0.00189224 0.000946118 1.00000i \(-0.499699\pi\)
0.000946118 1.00000i \(0.499699\pi\)
\(284\) 27.7057i 1.64403i
\(285\) 0 0
\(286\) 19.3264 + 17.0549i 1.14279 + 1.00848i
\(287\) 2.71496 0.160259
\(288\) 0 0
\(289\) 11.5533 0.679607
\(290\) 4.28580 0.251671
\(291\) 0 0
\(292\) 38.6381i 2.26113i
\(293\) 10.9082i 0.637261i 0.947879 + 0.318631i \(0.103223\pi\)
−0.947879 + 0.318631i \(0.896777\pi\)
\(294\) 0 0
\(295\) −2.82565 −0.164516
\(296\) −25.5589 −1.48558
\(297\) 0 0
\(298\) 30.3905 1.76047
\(299\) −12.5270 11.0547i −0.724457 0.639310i
\(300\) 0 0
\(301\) 4.82326i 0.278008i
\(302\) −13.7918 −0.793627
\(303\) 0 0
\(304\) 34.8372i 1.99805i
\(305\) 4.91745i 0.281572i
\(306\) 0 0
\(307\) 6.90363i 0.394011i 0.980402 + 0.197005i \(0.0631217\pi\)
−0.980402 + 0.197005i \(0.936878\pi\)
\(308\) 11.7273 0.668224
\(309\) 0 0
\(310\) 22.2591i 1.26423i
\(311\) −15.3961 −0.873031 −0.436516 0.899697i \(-0.643788\pi\)
−0.436516 + 0.899697i \(0.643788\pi\)
\(312\) 0 0
\(313\) −17.3415 −0.980202 −0.490101 0.871666i \(-0.663040\pi\)
−0.490101 + 0.871666i \(0.663040\pi\)
\(314\) 10.0343i 0.566267i
\(315\) 0 0
\(316\) −19.6405 −1.10486
\(317\) 10.6355i 0.597348i 0.954355 + 0.298674i \(0.0965443\pi\)
−0.954355 + 0.298674i \(0.903456\pi\)
\(318\) 0 0
\(319\) 5.60493i 0.313816i
\(320\) 5.52629i 0.308929i
\(321\) 0 0
\(322\) −11.2763 −0.628404
\(323\) 38.4586i 2.13989i
\(324\) 0 0
\(325\) 11.3722 + 10.0356i 0.630817 + 0.556676i
\(326\) 25.6118 1.41851
\(327\) 0 0
\(328\) 14.6310 0.807859
\(329\) 4.33758 0.239139
\(330\) 0 0
\(331\) 31.6792i 1.74125i −0.491951 0.870623i \(-0.663716\pi\)
0.491951 0.870623i \(-0.336284\pi\)
\(332\) 22.8486i 1.25398i
\(333\) 0 0
\(334\) −32.7208 −1.79041
\(335\) −3.24047 −0.177046
\(336\) 0 0
\(337\) 24.2965 1.32351 0.661757 0.749718i \(-0.269811\pi\)
0.661757 + 0.749718i \(0.269811\pi\)
\(338\) −31.9546 + 4.00578i −1.73810 + 0.217886i
\(339\) 0 0
\(340\) 19.6904i 1.06786i
\(341\) 29.1102 1.57641
\(342\) 0 0
\(343\) 12.8047i 0.691389i
\(344\) 25.9926i 1.40143i
\(345\) 0 0
\(346\) 28.3112i 1.52202i
\(347\) 3.82448 0.205309 0.102654 0.994717i \(-0.467266\pi\)
0.102654 + 0.994717i \(0.467266\pi\)
\(348\) 0 0
\(349\) 23.5327i 1.25968i −0.776726 0.629839i \(-0.783121\pi\)
0.776726 0.629839i \(-0.216879\pi\)
\(350\) 10.2368 0.547180
\(351\) 0 0
\(352\) 4.04976 0.215853
\(353\) 23.5936i 1.25576i −0.778309 0.627881i \(-0.783922\pi\)
0.778309 0.627881i \(-0.216078\pi\)
\(354\) 0 0
\(355\) 5.96537 0.316609
\(356\) 72.7430i 3.85537i
\(357\) 0 0
\(358\) 0.372809i 0.0197035i
\(359\) 0.220474i 0.0116362i 0.999983 + 0.00581809i \(0.00185196\pi\)
−0.999983 + 0.00581809i \(0.998148\pi\)
\(360\) 0 0
\(361\) −32.8001 −1.72632
\(362\) 54.5544i 2.86732i
\(363\) 0 0
\(364\) −9.69503 + 10.9863i −0.508158 + 0.575837i
\(365\) 8.31926 0.435450
\(366\) 0 0
\(367\) −20.5139 −1.07081 −0.535407 0.844594i \(-0.679842\pi\)
−0.535407 + 0.844594i \(0.679842\pi\)
\(368\) −22.4291 −1.16920
\(369\) 0 0
\(370\) 10.6536i 0.553856i
\(371\) 6.19703i 0.321734i
\(372\) 0 0
\(373\) 10.8551 0.562055 0.281028 0.959700i \(-0.409325\pi\)
0.281028 + 0.959700i \(0.409325\pi\)
\(374\) 38.2002 1.97528
\(375\) 0 0
\(376\) 23.3753 1.20549
\(377\) 5.25077 + 4.63364i 0.270428 + 0.238644i
\(378\) 0 0
\(379\) 19.6987i 1.01185i −0.862577 0.505927i \(-0.831151\pi\)
0.862577 0.505927i \(-0.168849\pi\)
\(380\) −26.5211 −1.36050
\(381\) 0 0
\(382\) 49.4401i 2.52957i
\(383\) 20.3417i 1.03941i −0.854346 0.519705i \(-0.826042\pi\)
0.854346 0.519705i \(-0.173958\pi\)
\(384\) 0 0
\(385\) 2.52503i 0.128687i
\(386\) 24.9020 1.26748
\(387\) 0 0
\(388\) 1.01909i 0.0517362i
\(389\) 21.3961 1.08482 0.542412 0.840113i \(-0.317511\pi\)
0.542412 + 0.840113i \(0.317511\pi\)
\(390\) 0 0
\(391\) −24.7607 −1.25220
\(392\) 31.9482i 1.61363i
\(393\) 0 0
\(394\) −9.77821 −0.492619
\(395\) 4.22884i 0.212776i
\(396\) 0 0
\(397\) 27.7995i 1.39522i −0.716479 0.697608i \(-0.754248\pi\)
0.716479 0.697608i \(-0.245752\pi\)
\(398\) 28.4265i 1.42489i
\(399\) 0 0
\(400\) 20.3614 1.01807
\(401\) 15.1860i 0.758354i −0.925324 0.379177i \(-0.876207\pi\)
0.925324 0.379177i \(-0.123793\pi\)
\(402\) 0 0
\(403\) −24.0656 + 27.2708i −1.19879 + 1.35846i
\(404\) 19.7508 0.982639
\(405\) 0 0
\(406\) 4.72652 0.234573
\(407\) −13.9327 −0.690620
\(408\) 0 0
\(409\) 2.38569i 0.117965i −0.998259 0.0589823i \(-0.981214\pi\)
0.998259 0.0589823i \(-0.0187855\pi\)
\(410\) 6.09858i 0.301187i
\(411\) 0 0
\(412\) 14.2042 0.699791
\(413\) −3.11622 −0.153339
\(414\) 0 0
\(415\) 4.91958 0.241493
\(416\) −3.34797 + 3.79387i −0.164148 + 0.186010i
\(417\) 0 0
\(418\) 51.4520i 2.51660i
\(419\) 33.2909 1.62637 0.813183 0.582007i \(-0.197733\pi\)
0.813183 + 0.582007i \(0.197733\pi\)
\(420\) 0 0
\(421\) 24.3049i 1.18455i −0.805736 0.592275i \(-0.798230\pi\)
0.805736 0.592275i \(-0.201770\pi\)
\(422\) 27.1662i 1.32243i
\(423\) 0 0
\(424\) 33.3959i 1.62185i
\(425\) 22.4781 1.09035
\(426\) 0 0
\(427\) 5.42313i 0.262444i
\(428\) 9.68352 0.468071
\(429\) 0 0
\(430\) 10.8344 0.522483
\(431\) 12.1410i 0.584812i −0.956294 0.292406i \(-0.905544\pi\)
0.956294 0.292406i \(-0.0944559\pi\)
\(432\) 0 0
\(433\) −13.2730 −0.637859 −0.318930 0.947778i \(-0.603323\pi\)
−0.318930 + 0.947778i \(0.603323\pi\)
\(434\) 24.5481i 1.17834i
\(435\) 0 0
\(436\) 42.2491i 2.02336i
\(437\) 33.3503i 1.59536i
\(438\) 0 0
\(439\) −13.1015 −0.625300 −0.312650 0.949868i \(-0.601217\pi\)
−0.312650 + 0.949868i \(0.601217\pi\)
\(440\) 13.6074i 0.648708i
\(441\) 0 0
\(442\) −31.5804 + 35.7864i −1.50213 + 1.70219i
\(443\) −34.4390 −1.63625 −0.818123 0.575044i \(-0.804985\pi\)
−0.818123 + 0.575044i \(0.804985\pi\)
\(444\) 0 0
\(445\) −15.6624 −0.742471
\(446\) −31.8141 −1.50644
\(447\) 0 0
\(448\) 6.09458i 0.287942i
\(449\) 5.32385i 0.251248i −0.992078 0.125624i \(-0.959907\pi\)
0.992078 0.125624i \(-0.0400933\pi\)
\(450\) 0 0
\(451\) 7.97567 0.375559
\(452\) 5.00797 0.235555
\(453\) 0 0
\(454\) −58.5074 −2.74589
\(455\) −2.36548 2.08746i −0.110895 0.0978616i
\(456\) 0 0
\(457\) 12.3896i 0.579562i −0.957093 0.289781i \(-0.906417\pi\)
0.957093 0.289781i \(-0.0935825\pi\)
\(458\) −30.8121 −1.43975
\(459\) 0 0
\(460\) 17.0750i 0.796124i
\(461\) 13.0058i 0.605739i −0.953032 0.302869i \(-0.902055\pi\)
0.953032 0.302869i \(-0.0979446\pi\)
\(462\) 0 0
\(463\) 6.42448i 0.298571i 0.988794 + 0.149286i \(0.0476974\pi\)
−0.988794 + 0.149286i \(0.952303\pi\)
\(464\) 9.40126 0.436443
\(465\) 0 0
\(466\) 46.5287i 2.15540i
\(467\) 13.9598 0.645982 0.322991 0.946402i \(-0.395312\pi\)
0.322991 + 0.946402i \(0.395312\pi\)
\(468\) 0 0
\(469\) −3.57370 −0.165018
\(470\) 9.74346i 0.449432i
\(471\) 0 0
\(472\) −16.7934 −0.772978
\(473\) 14.1692i 0.651499i
\(474\) 0 0
\(475\) 30.2758i 1.38915i
\(476\) 21.7152i 0.995316i
\(477\) 0 0
\(478\) 49.0083 2.24159
\(479\) 34.6252i 1.58207i 0.611773 + 0.791033i \(0.290456\pi\)
−0.611773 + 0.791033i \(0.709544\pi\)
\(480\) 0 0
\(481\) 11.5183 13.0524i 0.525189 0.595137i
\(482\) −28.2205 −1.28541
\(483\) 0 0
\(484\) −11.0553 −0.502516
\(485\) −0.219421 −0.00996341
\(486\) 0 0
\(487\) 5.78811i 0.262284i −0.991364 0.131142i \(-0.958136\pi\)
0.991364 0.131142i \(-0.0418644\pi\)
\(488\) 29.2254i 1.32297i
\(489\) 0 0
\(490\) 13.3169 0.601595
\(491\) −24.9244 −1.12482 −0.562410 0.826858i \(-0.690126\pi\)
−0.562410 + 0.826858i \(0.690126\pi\)
\(492\) 0 0
\(493\) 10.3786 0.467427
\(494\) −48.2009 42.5358i −2.16866 1.91378i
\(495\) 0 0
\(496\) 48.8272i 2.19240i
\(497\) 6.57881 0.295100
\(498\) 0 0
\(499\) 39.8186i 1.78252i −0.453488 0.891262i \(-0.649821\pi\)
0.453488 0.891262i \(-0.350179\pi\)
\(500\) 33.9254i 1.51719i
\(501\) 0 0
\(502\) 46.3129i 2.06705i
\(503\) −12.9120 −0.575720 −0.287860 0.957673i \(-0.592944\pi\)
−0.287860 + 0.957673i \(0.592944\pi\)
\(504\) 0 0
\(505\) 4.25259i 0.189238i
\(506\) −33.1261 −1.47264
\(507\) 0 0
\(508\) −31.3678 −1.39172
\(509\) 37.1525i 1.64676i 0.567494 + 0.823378i \(0.307913\pi\)
−0.567494 + 0.823378i \(0.692087\pi\)
\(510\) 0 0
\(511\) 9.17476 0.405868
\(512\) 44.4550i 1.96465i
\(513\) 0 0
\(514\) 21.6998i 0.957139i
\(515\) 3.05834i 0.134766i
\(516\) 0 0
\(517\) 12.7424 0.560410
\(518\) 11.7492i 0.516230i
\(519\) 0 0
\(520\) −12.7476 11.2493i −0.559019 0.493317i
\(521\) −24.6907 −1.08172 −0.540859 0.841114i \(-0.681901\pi\)
−0.540859 + 0.841114i \(0.681901\pi\)
\(522\) 0 0
\(523\) −33.4434 −1.46238 −0.731189 0.682175i \(-0.761034\pi\)
−0.731189 + 0.682175i \(0.761034\pi\)
\(524\) −77.8243 −3.39977
\(525\) 0 0
\(526\) 19.1445i 0.834742i
\(527\) 53.9029i 2.34805i
\(528\) 0 0
\(529\) −1.52824 −0.0664453
\(530\) 13.9203 0.604660
\(531\) 0 0
\(532\) −29.2484 −1.26808
\(533\) −6.59354 + 7.47171i −0.285598 + 0.323636i
\(534\) 0 0
\(535\) 2.08498i 0.0901416i
\(536\) −19.2587 −0.831851
\(537\) 0 0
\(538\) 36.7747i 1.58547i
\(539\) 17.4157i 0.750146i
\(540\) 0 0
\(541\) 10.9418i 0.470423i 0.971944 + 0.235211i \(0.0755782\pi\)
−0.971944 + 0.235211i \(0.924422\pi\)
\(542\) 47.9319 2.05885
\(543\) 0 0
\(544\) 7.49887i 0.321512i
\(545\) 9.09674 0.389661
\(546\) 0 0
\(547\) 10.9481 0.468108 0.234054 0.972224i \(-0.424801\pi\)
0.234054 + 0.972224i \(0.424801\pi\)
\(548\) 74.7194i 3.19185i
\(549\) 0 0
\(550\) 30.0724 1.28229
\(551\) 13.9789i 0.595523i
\(552\) 0 0
\(553\) 4.66371i 0.198321i
\(554\) 2.91211i 0.123724i
\(555\) 0 0
\(556\) 20.0705 0.851177
\(557\) 12.5825i 0.533136i −0.963816 0.266568i \(-0.914110\pi\)
0.963816 0.266568i \(-0.0858898\pi\)
\(558\) 0 0
\(559\) 13.2739 + 11.7138i 0.561425 + 0.495440i
\(560\) −4.23528 −0.178973
\(561\) 0 0
\(562\) 11.3484 0.478702
\(563\) −12.1557 −0.512301 −0.256151 0.966637i \(-0.582454\pi\)
−0.256151 + 0.966637i \(0.582454\pi\)
\(564\) 0 0
\(565\) 1.07828i 0.0453635i
\(566\) 0.0788577i 0.00331464i
\(567\) 0 0
\(568\) 35.4533 1.48759
\(569\) 35.3764 1.48306 0.741529 0.670921i \(-0.234101\pi\)
0.741529 + 0.670921i \(0.234101\pi\)
\(570\) 0 0
\(571\) −12.4912 −0.522741 −0.261371 0.965239i \(-0.584174\pi\)
−0.261371 + 0.965239i \(0.584174\pi\)
\(572\) −28.4809 + 32.2741i −1.19084 + 1.34945i
\(573\) 0 0
\(574\) 6.72572i 0.280726i
\(575\) −19.4924 −0.812888
\(576\) 0 0
\(577\) 25.1610i 1.04747i 0.851882 + 0.523734i \(0.175461\pi\)
−0.851882 + 0.523734i \(0.824539\pi\)
\(578\) 28.6209i 1.19047i
\(579\) 0 0
\(580\) 7.15706i 0.297181i
\(581\) 5.42549 0.225087
\(582\) 0 0
\(583\) 18.2049i 0.753969i
\(584\) 49.4430 2.04596
\(585\) 0 0
\(586\) −27.0226 −1.11629
\(587\) 3.71270i 0.153239i 0.997060 + 0.0766197i \(0.0244127\pi\)
−0.997060 + 0.0766197i \(0.975587\pi\)
\(588\) 0 0
\(589\) −72.6021 −2.99152
\(590\) 6.99993i 0.288183i
\(591\) 0 0
\(592\) 23.3697i 0.960487i
\(593\) 31.6710i 1.30057i 0.759689 + 0.650287i \(0.225351\pi\)
−0.759689 + 0.650287i \(0.774649\pi\)
\(594\) 0 0
\(595\) −4.67555 −0.191679
\(596\) 50.7505i 2.07882i
\(597\) 0 0
\(598\) 27.3856 31.0330i 1.11988 1.26903i
\(599\) −28.4597 −1.16283 −0.581415 0.813607i \(-0.697501\pi\)
−0.581415 + 0.813607i \(0.697501\pi\)
\(600\) 0 0
\(601\) 1.27109 0.0518487 0.0259244 0.999664i \(-0.491747\pi\)
0.0259244 + 0.999664i \(0.491747\pi\)
\(602\) 11.9486 0.486988
\(603\) 0 0
\(604\) 23.0315i 0.937140i
\(605\) 2.38035i 0.0967750i
\(606\) 0 0
\(607\) −0.747208 −0.0303283 −0.0151641 0.999885i \(-0.504827\pi\)
−0.0151641 + 0.999885i \(0.504827\pi\)
\(608\) −10.1003 −0.409620
\(609\) 0 0
\(610\) −12.1819 −0.493231
\(611\) −10.5342 + 11.9373i −0.426170 + 0.482930i
\(612\) 0 0
\(613\) 41.1308i 1.66126i −0.556826 0.830629i \(-0.687981\pi\)
0.556826 0.830629i \(-0.312019\pi\)
\(614\) −17.1022 −0.690191
\(615\) 0 0
\(616\) 15.0067i 0.604638i
\(617\) 12.6582i 0.509598i 0.966994 + 0.254799i \(0.0820093\pi\)
−0.966994 + 0.254799i \(0.917991\pi\)
\(618\) 0 0
\(619\) 8.52968i 0.342837i −0.985198 0.171418i \(-0.945165\pi\)
0.985198 0.171418i \(-0.0548350\pi\)
\(620\) −37.1715 −1.49284
\(621\) 0 0
\(622\) 38.1404i 1.52929i
\(623\) −17.2731 −0.692032
\(624\) 0 0
\(625\) 13.7284 0.549137
\(626\) 42.9599i 1.71702i
\(627\) 0 0
\(628\) 16.7567 0.668666
\(629\) 25.7990i 1.02867i
\(630\) 0 0
\(631\) 2.50848i 0.0998612i 0.998753 + 0.0499306i \(0.0159000\pi\)
−0.998753 + 0.0499306i \(0.984100\pi\)
\(632\) 25.1328i 0.999729i
\(633\) 0 0
\(634\) −26.3471 −1.04638
\(635\) 6.75386i 0.268019i
\(636\) 0 0
\(637\) 16.3152 + 14.3977i 0.646433 + 0.570457i
\(638\) 13.8850 0.549712
\(639\) 0 0
\(640\) 16.1902 0.639974
\(641\) −41.3383 −1.63277 −0.816383 0.577511i \(-0.804024\pi\)
−0.816383 + 0.577511i \(0.804024\pi\)
\(642\) 0 0
\(643\) 20.4206i 0.805310i 0.915352 + 0.402655i \(0.131913\pi\)
−0.915352 + 0.402655i \(0.868087\pi\)
\(644\) 18.8308i 0.742039i
\(645\) 0 0
\(646\) −95.2729 −3.74846
\(647\) 15.7134 0.617756 0.308878 0.951102i \(-0.400047\pi\)
0.308878 + 0.951102i \(0.400047\pi\)
\(648\) 0 0
\(649\) −9.15445 −0.359344
\(650\) −24.8611 + 28.1722i −0.975131 + 1.10500i
\(651\) 0 0
\(652\) 42.7704i 1.67502i
\(653\) −32.2336 −1.26140 −0.630700 0.776027i \(-0.717232\pi\)
−0.630700 + 0.776027i \(0.717232\pi\)
\(654\) 0 0
\(655\) 16.7565i 0.654731i
\(656\) 13.3778i 0.522314i
\(657\) 0 0
\(658\) 10.7454i 0.418900i
\(659\) −4.66757 −0.181823 −0.0909115 0.995859i \(-0.528978\pi\)
−0.0909115 + 0.995859i \(0.528978\pi\)
\(660\) 0 0
\(661\) 22.5788i 0.878215i −0.898434 0.439108i \(-0.855295\pi\)
0.898434 0.439108i \(-0.144705\pi\)
\(662\) 78.4784 3.05015
\(663\) 0 0
\(664\) 29.2380 1.13466
\(665\) 6.29753i 0.244208i
\(666\) 0 0
\(667\) −9.00000 −0.348481
\(668\) 54.6421i 2.11417i
\(669\) 0 0
\(670\) 8.02756i 0.310132i
\(671\) 15.9314i 0.615025i
\(672\) 0 0
\(673\) −3.79929 −0.146452 −0.0732259 0.997315i \(-0.523329\pi\)
−0.0732259 + 0.997315i \(0.523329\pi\)
\(674\) 60.1893i 2.31841i
\(675\) 0 0
\(676\) −6.68945 53.3625i −0.257287 2.05240i
\(677\) −29.8319 −1.14653 −0.573267 0.819369i \(-0.694324\pi\)
−0.573267 + 0.819369i \(0.694324\pi\)
\(678\) 0 0
\(679\) −0.241985 −0.00928655
\(680\) −25.1966 −0.966247
\(681\) 0 0
\(682\) 72.1142i 2.76140i
\(683\) 0.0316640i 0.00121159i 1.00000 0.000605795i \(0.000192831\pi\)
−1.00000 0.000605795i \(0.999807\pi\)
\(684\) 0 0
\(685\) −16.0880 −0.614690
\(686\) 31.7209 1.21111
\(687\) 0 0
\(688\) 23.7663 0.906080
\(689\) 17.0546 + 15.0501i 0.649727 + 0.573363i
\(690\) 0 0
\(691\) 7.91140i 0.300964i −0.988613 0.150482i \(-0.951917\pi\)
0.988613 0.150482i \(-0.0480826\pi\)
\(692\) −47.2782 −1.79725
\(693\) 0 0
\(694\) 9.47431i 0.359640i
\(695\) 4.32141i 0.163921i
\(696\) 0 0
\(697\) 14.7684i 0.559394i
\(698\) 58.2972 2.20658
\(699\) 0 0
\(700\) 17.0949i 0.646127i
\(701\) 35.2396 1.33098 0.665491 0.746406i \(-0.268222\pi\)
0.665491 + 0.746406i \(0.268222\pi\)
\(702\) 0 0
\(703\) 34.7488 1.31058
\(704\) 17.9039i 0.674778i
\(705\) 0 0
\(706\) 58.4481 2.19972
\(707\) 4.68990i 0.176382i
\(708\) 0 0
\(709\) 22.4278i 0.842293i −0.906993 0.421147i \(-0.861628\pi\)
0.906993 0.421147i \(-0.138372\pi\)
\(710\) 14.7779i 0.554605i
\(711\) 0 0
\(712\) −93.0849 −3.48851
\(713\) 46.7431i 1.75054i
\(714\) 0 0
\(715\) −6.94900 6.13227i −0.259878 0.229334i
\(716\) −0.622571 −0.0232666
\(717\) 0 0
\(718\) −0.546177 −0.0203831
\(719\) −37.6708 −1.40488 −0.702442 0.711741i \(-0.747907\pi\)
−0.702442 + 0.711741i \(0.747907\pi\)
\(720\) 0 0
\(721\) 3.37284i 0.125611i
\(722\) 81.2552i 3.02401i
\(723\) 0 0
\(724\) 91.1030 3.38582
\(725\) 8.17033 0.303438
\(726\) 0 0
\(727\) 44.0135 1.63237 0.816185 0.577791i \(-0.196085\pi\)
0.816185 + 0.577791i \(0.196085\pi\)
\(728\) −14.0585 12.4062i −0.521042 0.459803i
\(729\) 0 0
\(730\) 20.6092i 0.762779i
\(731\) 26.2368 0.970405
\(732\) 0 0
\(733\) 17.6349i 0.651358i 0.945480 + 0.325679i \(0.105593\pi\)
−0.945480 + 0.325679i \(0.894407\pi\)
\(734\) 50.8187i 1.87575i
\(735\) 0 0
\(736\) 6.50282i 0.239697i
\(737\) −10.4984 −0.386713
\(738\) 0 0
\(739\) 13.4319i 0.494100i 0.969003 + 0.247050i \(0.0794612\pi\)
−0.969003 + 0.247050i \(0.920539\pi\)
\(740\) 17.7910 0.654011
\(741\) 0 0
\(742\) 15.3518 0.563583
\(743\) 32.7872i 1.20285i 0.798930 + 0.601423i \(0.205399\pi\)
−0.798930 + 0.601423i \(0.794601\pi\)
\(744\) 0 0
\(745\) −10.9272 −0.400341
\(746\) 26.8911i 0.984555i
\(747\) 0 0
\(748\) 63.7923i 2.33248i
\(749\) 2.29939i 0.0840178i
\(750\) 0 0
\(751\) 24.9832 0.911648 0.455824 0.890070i \(-0.349345\pi\)
0.455824 + 0.890070i \(0.349345\pi\)
\(752\) 21.3731i 0.779397i
\(753\) 0 0
\(754\) −11.4788 + 13.0076i −0.418034 + 0.473711i
\(755\) 4.95897 0.180475
\(756\) 0 0
\(757\) 21.6436 0.786652 0.393326 0.919399i \(-0.371324\pi\)
0.393326 + 0.919399i \(0.371324\pi\)
\(758\) 48.7992 1.77247
\(759\) 0 0
\(760\) 33.9375i 1.23104i
\(761\) 19.9359i 0.722675i −0.932435 0.361338i \(-0.882320\pi\)
0.932435 0.361338i \(-0.117680\pi\)
\(762\) 0 0
\(763\) 10.0322 0.363190
\(764\) 82.5623 2.98700
\(765\) 0 0
\(766\) 50.3921 1.82074
\(767\) 7.56806 8.57601i 0.273267 0.309662i
\(768\) 0 0
\(769\) 38.0071i 1.37057i −0.728275 0.685285i \(-0.759678\pi\)
0.728275 0.685285i \(-0.240322\pi\)
\(770\) −6.25520 −0.225422
\(771\) 0 0
\(772\) 41.5851i 1.49668i
\(773\) 36.5619i 1.31504i −0.753437 0.657520i \(-0.771605\pi\)
0.753437 0.657520i \(-0.228395\pi\)
\(774\) 0 0
\(775\) 42.4341i 1.52428i
\(776\) −1.30406 −0.0468132
\(777\) 0 0
\(778\) 53.0041i 1.90029i
\(779\) −19.8917 −0.712693
\(780\) 0 0
\(781\) 19.3264 0.691553
\(782\) 61.3392i 2.19348i
\(783\) 0 0
\(784\) 29.2117 1.04328
\(785\) 3.60793i 0.128772i
\(786\) 0 0
\(787\) 1.61066i 0.0574138i −0.999588 0.0287069i \(-0.990861\pi\)
0.999588 0.0287069i \(-0.00913894\pi\)
\(788\) 16.3291i 0.581700i
\(789\) 0 0
\(790\) 10.4760 0.372720
\(791\) 1.18916i 0.0422817i
\(792\) 0 0
\(793\) −14.9247 13.1706i −0.529993 0.467702i
\(794\) 68.8672 2.44401
\(795\) 0 0
\(796\) −47.4708 −1.68256
\(797\) 0.0983260 0.00348289 0.00174144 0.999998i \(-0.499446\pi\)
0.00174144 + 0.999998i \(0.499446\pi\)
\(798\) 0 0
\(799\) 23.5949i 0.834728i
\(800\) 5.90335i 0.208715i
\(801\) 0 0
\(802\) 37.6201 1.32841
\(803\) 26.9525 0.951132
\(804\) 0 0
\(805\) 4.05451 0.142903
\(806\) −67.5575 59.6174i −2.37961 2.09993i
\(807\) 0 0
\(808\) 25.2739i 0.889134i
\(809\) 33.5971 1.18121 0.590605 0.806961i \(-0.298889\pi\)
0.590605 + 0.806961i \(0.298889\pi\)
\(810\) 0 0
\(811\) 13.9011i 0.488134i 0.969758 + 0.244067i \(0.0784817\pi\)
−0.969758 + 0.244067i \(0.921518\pi\)
\(812\) 7.89305i 0.276992i
\(813\) 0 0
\(814\) 34.5153i 1.20976i
\(815\) −9.20898 −0.322577
\(816\) 0 0
\(817\) 35.3385i 1.23634i
\(818\) 5.91002 0.206639
\(819\) 0 0
\(820\) −10.1843 −0.355651
\(821\) 41.9370i 1.46361i 0.681513 + 0.731806i \(0.261322\pi\)
−0.681513 + 0.731806i \(0.738678\pi\)
\(822\) 0 0
\(823\) 44.9120 1.56553 0.782766 0.622316i \(-0.213808\pi\)
0.782766 + 0.622316i \(0.213808\pi\)
\(824\) 18.1763i 0.633201i
\(825\) 0 0
\(826\) 7.71977i 0.268605i
\(827\) 17.5703i 0.610980i −0.952195 0.305490i \(-0.901180\pi\)
0.952195 0.305490i \(-0.0988202\pi\)
\(828\) 0 0
\(829\) 0.797445 0.0276964 0.0138482 0.999904i \(-0.495592\pi\)
0.0138482 + 0.999904i \(0.495592\pi\)
\(830\) 12.1872i 0.423024i
\(831\) 0 0
\(832\) 16.7726 + 14.8013i 0.581485 + 0.513142i
\(833\) 32.2484 1.11734
\(834\) 0 0
\(835\) 11.7651 0.407148
\(836\) −85.9222 −2.97168
\(837\) 0 0
\(838\) 82.4710i 2.84891i
\(839\) 16.7342i 0.577728i 0.957370 + 0.288864i \(0.0932775\pi\)
−0.957370 + 0.288864i \(0.906722\pi\)
\(840\) 0 0
\(841\) −25.2276 −0.869917
\(842\) 60.2102 2.07498
\(843\) 0 0
\(844\) −45.3661 −1.56157
\(845\) 11.4896 1.44032i 0.395254 0.0495485i
\(846\) 0 0
\(847\) 2.62513i 0.0902006i
\(848\) 30.5354 1.04859
\(849\) 0 0
\(850\) 55.6846i 1.90997i
\(851\) 22.3722i 0.766909i
\(852\) 0 0
\(853\) 22.7935i 0.780435i 0.920723 + 0.390217i \(0.127600\pi\)
−0.920723 + 0.390217i \(0.872400\pi\)
\(854\) −13.4346 −0.459724
\(855\) 0 0
\(856\) 12.3914i 0.423531i
\(857\) 43.5246 1.48677 0.743386 0.668862i \(-0.233218\pi\)
0.743386 + 0.668862i \(0.233218\pi\)
\(858\) 0 0
\(859\) −17.0382 −0.581337 −0.290668 0.956824i \(-0.593878\pi\)
−0.290668 + 0.956824i \(0.593878\pi\)
\(860\) 18.0929i 0.616964i
\(861\) 0 0
\(862\) 30.0768 1.02442
\(863\) 47.3664i 1.61237i 0.591663 + 0.806186i \(0.298472\pi\)
−0.591663 + 0.806186i \(0.701528\pi\)
\(864\) 0 0
\(865\) 10.1796i 0.346116i
\(866\) 32.8810i 1.11734i
\(867\) 0 0
\(868\) −40.9940 −1.39143
\(869\) 13.7005i 0.464756i
\(870\) 0 0
\(871\) 8.67909 9.83502i 0.294080 0.333247i
\(872\) 54.0637 1.83083
\(873\) 0 0
\(874\) 82.6180 2.79460
\(875\) −8.05571 −0.272333
\(876\) 0 0
\(877\) 46.7266i 1.57784i 0.614493 + 0.788922i \(0.289361\pi\)
−0.614493 + 0.788922i \(0.710639\pi\)
\(878\) 32.4561i 1.09534i
\(879\) 0 0
\(880\) −12.4419 −0.419416
\(881\) −15.7253 −0.529797 −0.264899 0.964276i \(-0.585338\pi\)
−0.264899 + 0.964276i \(0.585338\pi\)
\(882\) 0 0
\(883\) −24.3745 −0.820269 −0.410134 0.912025i \(-0.634518\pi\)
−0.410134 + 0.912025i \(0.634518\pi\)
\(884\) −59.7615 52.7376i −2.01000 1.77376i
\(885\) 0 0
\(886\) 85.3151i 2.86622i
\(887\) −3.92002 −0.131621 −0.0658107 0.997832i \(-0.520963\pi\)
−0.0658107 + 0.997832i \(0.520963\pi\)
\(888\) 0 0
\(889\) 7.44839i 0.249811i
\(890\) 38.8003i 1.30059i
\(891\) 0 0
\(892\) 53.1279i 1.77885i
\(893\) −31.7801 −1.06348
\(894\) 0 0
\(895\) 0.134047i 0.00448070i
\(896\) 17.8551 0.596498
\(897\) 0 0
\(898\) 13.1887 0.440112
\(899\) 19.5926i 0.653450i
\(900\) 0 0
\(901\) 33.7097 1.12303
\(902\) 19.7580i 0.657869i
\(903\) 0 0
\(904\) 6.40841i 0.213141i
\(905\) 19.6156i 0.652044i
\(906\) 0 0
\(907\) 43.5593 1.44636 0.723181 0.690658i \(-0.242679\pi\)
0.723181 + 0.690658i \(0.242679\pi\)
\(908\) 97.7044i 3.24243i
\(909\) 0 0
\(910\) 5.17123 5.85996i 0.171424 0.194256i
\(911\) −28.1289 −0.931953 −0.465976 0.884797i \(-0.654297\pi\)
−0.465976 + 0.884797i \(0.654297\pi\)
\(912\) 0 0
\(913\) 15.9383 0.527481
\(914\) 30.6926 1.01522
\(915\) 0 0
\(916\) 51.4545i 1.70011i
\(917\) 18.4797i 0.610252i
\(918\) 0 0
\(919\) −17.9402 −0.591793 −0.295897 0.955220i \(-0.595618\pi\)
−0.295897 + 0.955220i \(0.595618\pi\)
\(920\) 21.8498 0.720367
\(921\) 0 0
\(922\) 32.2190 1.06108
\(923\) −15.9773 + 18.1052i −0.525899 + 0.595941i
\(924\) 0 0
\(925\) 20.3098i 0.667782i
\(926\) −15.9153 −0.523008
\(927\) 0 0
\(928\) 2.72569i 0.0894752i
\(929\) 43.0278i 1.41170i 0.708363 + 0.705849i \(0.249434\pi\)
−0.708363 + 0.705849i \(0.750566\pi\)
\(930\) 0 0
\(931\) 43.4355i 1.42354i
\(932\) 77.7005 2.54516
\(933\) 0 0
\(934\) 34.5823i 1.13157i
\(935\) −13.7353 −0.449191
\(936\) 0 0
\(937\) 20.5616 0.671719 0.335860 0.941912i \(-0.390973\pi\)
0.335860 + 0.941912i \(0.390973\pi\)
\(938\) 8.85307i 0.289063i
\(939\) 0 0
\(940\) −16.2711 −0.530704
\(941\) 36.0935i 1.17662i −0.808637 0.588308i \(-0.799794\pi\)
0.808637 0.588308i \(-0.200206\pi\)
\(942\) 0 0
\(943\) 12.8068i 0.417046i
\(944\) 15.3550i 0.499761i
\(945\) 0 0
\(946\) 35.1011 1.14123
\(947\) 6.14337i 0.199633i −0.995006 0.0998163i \(-0.968174\pi\)
0.995006 0.0998163i \(-0.0318255\pi\)
\(948\) 0 0
\(949\) −22.2818 + 25.2494i −0.723299 + 0.819631i
\(950\) −75.0018 −2.43338
\(951\) 0 0
\(952\) −27.7877 −0.900605
\(953\) 19.7667 0.640305 0.320152 0.947366i \(-0.396266\pi\)
0.320152 + 0.947366i \(0.396266\pi\)
\(954\) 0 0
\(955\) 17.7767i 0.575240i
\(956\) 81.8413i 2.64694i
\(957\) 0 0
\(958\) −85.7765 −2.77131
\(959\) −17.7424 −0.572931
\(960\) 0 0
\(961\) −70.7578 −2.28251
\(962\) 32.3344 + 28.5341i 1.04250 + 0.919976i
\(963\) 0 0
\(964\) 47.1267i 1.51785i
\(965\) −8.95378 −0.288232
\(966\) 0 0
\(967\) 30.5215i 0.981506i −0.871299 0.490753i \(-0.836722\pi\)
0.871299 0.490753i \(-0.163278\pi\)
\(968\) 14.1469i 0.454698i
\(969\) 0 0
\(970\) 0.543569i 0.0174529i
\(971\) −4.05102 −0.130004 −0.0650018 0.997885i \(-0.520705\pi\)
−0.0650018 + 0.997885i \(0.520705\pi\)
\(972\) 0 0
\(973\) 4.76581i 0.152785i
\(974\) 14.3388 0.459445
\(975\) 0 0
\(976\) −26.7221 −0.855353
\(977\) 29.0337i 0.928872i −0.885607 0.464436i \(-0.846257\pi\)
0.885607 0.464436i \(-0.153743\pi\)
\(978\) 0 0
\(979\) −50.7427 −1.62174
\(980\) 22.2385i 0.710382i
\(981\) 0 0
\(982\) 61.7447i 1.97035i
\(983\) 6.03911i 0.192618i 0.995352 + 0.0963088i \(0.0307036\pi\)
−0.995352 + 0.0963088i \(0.969296\pi\)
\(984\) 0 0
\(985\) 3.51585 0.112024
\(986\) 25.7106i 0.818793i
\(987\) 0 0
\(988\) 71.0325 80.4930i 2.25985 2.56082i
\(989\) −22.7519 −0.723467
\(990\) 0 0
\(991\) −49.4199 −1.56987 −0.784937 0.619575i \(-0.787305\pi\)
−0.784937 + 0.619575i \(0.787305\pi\)
\(992\) −14.1564 −0.449465
\(993\) 0 0
\(994\) 16.2976i 0.516928i
\(995\) 10.2210i 0.324029i
\(996\) 0 0
\(997\) −21.2348 −0.672514 −0.336257 0.941770i \(-0.609161\pi\)
−0.336257 + 0.941770i \(0.609161\pi\)
\(998\) 98.6419 3.12246
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1053.2.b.j.649.10 10
3.2 odd 2 1053.2.b.i.649.1 10
9.2 odd 6 351.2.t.c.64.1 20
9.4 even 3 117.2.t.c.25.1 20
9.5 odd 6 351.2.t.c.181.10 20
9.7 even 3 117.2.t.c.103.10 yes 20
13.12 even 2 inner 1053.2.b.j.649.1 10
39.38 odd 2 1053.2.b.i.649.10 10
117.25 even 6 117.2.t.c.103.1 yes 20
117.38 odd 6 351.2.t.c.64.10 20
117.77 odd 6 351.2.t.c.181.1 20
117.103 even 6 117.2.t.c.25.10 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.t.c.25.1 20 9.4 even 3
117.2.t.c.25.10 yes 20 117.103 even 6
117.2.t.c.103.1 yes 20 117.25 even 6
117.2.t.c.103.10 yes 20 9.7 even 3
351.2.t.c.64.1 20 9.2 odd 6
351.2.t.c.64.10 20 117.38 odd 6
351.2.t.c.181.1 20 117.77 odd 6
351.2.t.c.181.10 20 9.5 odd 6
1053.2.b.i.649.1 10 3.2 odd 2
1053.2.b.i.649.10 10 39.38 odd 2
1053.2.b.j.649.1 10 13.12 even 2 inner
1053.2.b.j.649.10 10 1.1 even 1 trivial