Properties

Label 117.2.t.c.103.10
Level $117$
Weight $2$
Character 117.103
Analytic conductor $0.934$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,2,Mod(25,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.25");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 117.t (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.934249703649\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 6x^{16} + 9x^{14} + 54x^{12} + 81x^{10} + 486x^{8} + 729x^{6} - 4374x^{4} + 59049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 103.10
Root \(-1.66095 + 0.491165i\) of defining polynomial
Character \(\chi\) \(=\) 117.103
Dual form 117.2.t.c.25.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.14539 - 1.23864i) q^{2} +(-1.72976 - 0.0890572i) q^{3} +(2.06847 - 3.58269i) q^{4} +(0.771397 + 0.445366i) q^{5} +(-3.82132 + 1.95149i) q^{6} +(-0.850723 + 0.491165i) q^{7} -5.29379i q^{8} +(2.98414 + 0.308095i) q^{9} +2.20660 q^{10} +(-2.49915 + 1.44288i) q^{11} +(-3.89702 + 6.01298i) q^{12} +(-3.41778 + 1.14839i) q^{13} +(-1.21676 + 2.10748i) q^{14} +(-1.29467 - 0.839075i) q^{15} +(-2.42018 - 4.19187i) q^{16} +5.34353 q^{17} +(6.78376 - 3.03529i) q^{18} +7.19723i q^{19} +(3.19122 - 1.84245i) q^{20} +(1.51529 - 0.773835i) q^{21} +(-3.57443 + 6.19110i) q^{22} +(2.31688 - 4.01296i) q^{23} +(-0.471451 + 9.15699i) q^{24} +(-2.10330 - 3.64302i) q^{25} +(-5.91002 + 6.69715i) q^{26} +(-5.13440 - 0.798690i) q^{27} +4.06384i q^{28} +(-0.971133 - 1.68205i) q^{29} +(-3.81688 - 0.196513i) q^{30} +(-8.73604 - 5.04375i) q^{31} +(-1.21534 - 0.701678i) q^{32} +(4.45142 - 2.27327i) q^{33} +(11.4640 - 6.61872i) q^{34} -0.874993 q^{35} +(7.27640 - 10.0540i) q^{36} -4.82809i q^{37} +(8.91479 + 15.4409i) q^{38} +(6.01421 - 1.68206i) q^{39} +(2.35768 - 4.08361i) q^{40} +(-2.39352 - 1.38190i) q^{41} +(2.29238 - 3.53708i) q^{42} +(-2.45501 - 4.25220i) q^{43} +11.9382i q^{44} +(2.16474 + 1.56670i) q^{45} -11.4791i q^{46} +(3.82403 - 2.20780i) q^{47} +(3.81301 + 7.46647i) q^{48} +(-3.01751 + 5.22649i) q^{49} +(-9.02479 - 5.21047i) q^{50} +(-9.24302 - 0.475880i) q^{51} +(-2.95523 + 14.6202i) q^{52} +6.30850 q^{53} +(-12.0046 + 4.64619i) q^{54} -2.57044 q^{55} +(2.60013 + 4.50355i) q^{56} +(0.640965 - 12.4495i) q^{57} +(-4.16692 - 2.40577i) q^{58} +(2.74727 + 1.58614i) q^{59} +(-5.68412 + 2.90280i) q^{60} +(2.76034 + 4.78105i) q^{61} -24.9896 q^{62} +(-2.69000 + 1.20360i) q^{63} +6.20421 q^{64} +(-3.14792 - 0.636297i) q^{65} +(6.73427 - 10.3908i) q^{66} +(3.15059 + 1.81899i) q^{67} +(11.0529 - 19.1442i) q^{68} +(-4.36503 + 6.73512i) q^{69} +(-1.87720 + 1.08380i) q^{70} +6.69715i q^{71} +(1.63099 - 15.7974i) q^{72} +9.33980i q^{73} +(-5.98027 - 10.3581i) q^{74} +(3.31376 + 6.48886i) q^{75} +(25.7854 + 14.8872i) q^{76} +(1.41739 - 2.45499i) q^{77} +(10.8193 - 11.0581i) q^{78} +(-2.37380 - 4.11154i) q^{79} -4.31146i q^{80} +(8.81015 + 1.83880i) q^{81} -6.84670 q^{82} +(4.78313 - 2.76154i) q^{83} +(0.361914 - 7.02946i) q^{84} +(4.12198 + 2.37983i) q^{85} +(-10.5339 - 6.08176i) q^{86} +(1.53003 + 2.99603i) q^{87} +(7.63833 + 13.2300i) q^{88} -17.5838i q^{89} +(6.58479 + 0.679842i) q^{90} +(2.34353 - 2.65566i) q^{91} +(-9.58479 - 16.6013i) q^{92} +(14.6621 + 9.50249i) q^{93} +(5.46935 - 9.47320i) q^{94} +(-3.20540 + 5.55192i) q^{95} +(2.03976 + 1.32197i) q^{96} +(-0.213335 + 0.123169i) q^{97} +14.9505i q^{98} +(-7.90234 + 3.53579i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 2 q^{3} + 12 q^{4} - 2 q^{9} - 16 q^{10} - 2 q^{12} - 4 q^{13} - 18 q^{14} + 4 q^{16} - 12 q^{17} - 10 q^{22} + 24 q^{23} - 12 q^{25} - 12 q^{26} - 22 q^{27} + 12 q^{29} - 54 q^{30} - 12 q^{35} + 50 q^{36}+ \cdots + 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.14539 1.23864i 1.51702 0.875852i 0.517220 0.855852i \(-0.326967\pi\)
0.999800 0.0199997i \(-0.00636654\pi\)
\(3\) −1.72976 0.0890572i −0.998677 0.0514172i
\(4\) 2.06847 3.58269i 1.03423 1.79135i
\(5\) 0.771397 + 0.445366i 0.344979 + 0.199174i 0.662472 0.749087i \(-0.269508\pi\)
−0.317493 + 0.948261i \(0.602841\pi\)
\(6\) −3.82132 + 1.95149i −1.56005 + 0.796693i
\(7\) −0.850723 + 0.491165i −0.321543 + 0.185643i −0.652080 0.758150i \(-0.726103\pi\)
0.330537 + 0.943793i \(0.392770\pi\)
\(8\) 5.29379i 1.87164i
\(9\) 2.98414 + 0.308095i 0.994713 + 0.102698i
\(10\) 2.20660 0.697787
\(11\) −2.49915 + 1.44288i −0.753521 + 0.435046i −0.826965 0.562254i \(-0.809934\pi\)
0.0734436 + 0.997299i \(0.476601\pi\)
\(12\) −3.89702 + 6.01298i −1.12497 + 1.73580i
\(13\) −3.41778 + 1.14839i −0.947921 + 0.318506i
\(14\) −1.21676 + 2.10748i −0.325191 + 0.563248i
\(15\) −1.29467 0.839075i −0.334282 0.216648i
\(16\) −2.42018 4.19187i −0.605045 1.04797i
\(17\) 5.34353 1.29600 0.647998 0.761642i \(-0.275606\pi\)
0.647998 + 0.761642i \(0.275606\pi\)
\(18\) 6.78376 3.03529i 1.59895 0.715425i
\(19\) 7.19723i 1.65116i 0.564287 + 0.825579i \(0.309151\pi\)
−0.564287 + 0.825579i \(0.690849\pi\)
\(20\) 3.19122 1.84245i 0.713578 0.411984i
\(21\) 1.51529 0.773835i 0.330663 0.168865i
\(22\) −3.57443 + 6.19110i −0.762071 + 1.31995i
\(23\) 2.31688 4.01296i 0.483103 0.836759i −0.516709 0.856161i \(-0.672843\pi\)
0.999812 + 0.0194021i \(0.00617627\pi\)
\(24\) −0.471451 + 9.15699i −0.0962344 + 1.86916i
\(25\) −2.10330 3.64302i −0.420660 0.728604i
\(26\) −5.91002 + 6.69715i −1.15905 + 1.31342i
\(27\) −5.13440 0.798690i −0.988116 0.153708i
\(28\) 4.06384i 0.767993i
\(29\) −0.971133 1.68205i −0.180335 0.312349i 0.761660 0.647977i \(-0.224385\pi\)
−0.941995 + 0.335628i \(0.891051\pi\)
\(30\) −3.81688 0.196513i −0.696864 0.0358783i
\(31\) −8.73604 5.04375i −1.56904 0.905885i −0.996281 0.0861597i \(-0.972540\pi\)
−0.572757 0.819725i \(-0.694126\pi\)
\(32\) −1.21534 0.701678i −0.214844 0.124040i
\(33\) 4.45142 2.27327i 0.774893 0.395726i
\(34\) 11.4640 6.61872i 1.96605 1.13510i
\(35\) −0.874993 −0.147901
\(36\) 7.27640 10.0540i 1.21273 1.67566i
\(37\) 4.82809i 0.793732i −0.917876 0.396866i \(-0.870098\pi\)
0.917876 0.396866i \(-0.129902\pi\)
\(38\) 8.91479 + 15.4409i 1.44617 + 2.50484i
\(39\) 6.01421 1.68206i 0.963044 0.269346i
\(40\) 2.35768 4.08361i 0.372781 0.645676i
\(41\) −2.39352 1.38190i −0.373804 0.215816i 0.301315 0.953525i \(-0.402574\pi\)
−0.675119 + 0.737709i \(0.735908\pi\)
\(42\) 2.29238 3.53708i 0.353722 0.545783i
\(43\) −2.45501 4.25220i −0.374386 0.648455i 0.615849 0.787864i \(-0.288813\pi\)
−0.990235 + 0.139409i \(0.955480\pi\)
\(44\) 11.9382i 1.79976i
\(45\) 2.16474 + 1.56670i 0.322700 + 0.233549i
\(46\) 11.4791i 1.69251i
\(47\) 3.82403 2.20780i 0.557791 0.322041i −0.194467 0.980909i \(-0.562298\pi\)
0.752259 + 0.658868i \(0.228964\pi\)
\(48\) 3.81301 + 7.46647i 0.550361 + 1.07769i
\(49\) −3.01751 + 5.22649i −0.431073 + 0.746641i
\(50\) −9.02479 5.21047i −1.27630 0.736871i
\(51\) −9.24302 0.475880i −1.29428 0.0666365i
\(52\) −2.95523 + 14.6202i −0.409817 + 2.02746i
\(53\) 6.30850 0.866540 0.433270 0.901264i \(-0.357360\pi\)
0.433270 + 0.901264i \(0.357360\pi\)
\(54\) −12.0046 + 4.64619i −1.63362 + 0.632266i
\(55\) −2.57044 −0.346599
\(56\) 2.60013 + 4.50355i 0.347456 + 0.601812i
\(57\) 0.640965 12.4495i 0.0848979 1.64897i
\(58\) −4.16692 2.40577i −0.547143 0.315893i
\(59\) 2.74727 + 1.58614i 0.357664 + 0.206498i 0.668056 0.744111i \(-0.267127\pi\)
−0.310391 + 0.950609i \(0.600460\pi\)
\(60\) −5.68412 + 2.90280i −0.733817 + 0.374749i
\(61\) 2.76034 + 4.78105i 0.353426 + 0.612151i 0.986847 0.161656i \(-0.0516834\pi\)
−0.633422 + 0.773807i \(0.718350\pi\)
\(62\) −24.9896 −3.17368
\(63\) −2.69000 + 1.20360i −0.338908 + 0.151639i
\(64\) 6.20421 0.775526
\(65\) −3.14792 0.636297i −0.390451 0.0789229i
\(66\) 6.73427 10.3908i 0.828931 1.27902i
\(67\) 3.15059 + 1.81899i 0.384906 + 0.222225i 0.679950 0.733258i \(-0.262001\pi\)
−0.295045 + 0.955483i \(0.595335\pi\)
\(68\) 11.0529 19.1442i 1.34036 2.32158i
\(69\) −4.36503 + 6.73512i −0.525488 + 0.810813i
\(70\) −1.87720 + 1.08380i −0.224369 + 0.129539i
\(71\) 6.69715i 0.794805i 0.917644 + 0.397403i \(0.130088\pi\)
−0.917644 + 0.397403i \(0.869912\pi\)
\(72\) 1.63099 15.7974i 0.192214 1.86174i
\(73\) 9.33980i 1.09314i 0.837413 + 0.546570i \(0.184067\pi\)
−0.837413 + 0.546570i \(0.815933\pi\)
\(74\) −5.98027 10.3581i −0.695192 1.20411i
\(75\) 3.31376 + 6.48886i 0.382640 + 0.749269i
\(76\) 25.7854 + 14.8872i 2.95779 + 1.70768i
\(77\) 1.41739 2.45499i 0.161526 0.279772i
\(78\) 10.8193 11.0581i 1.22505 1.25209i
\(79\) −2.37380 4.11154i −0.267073 0.462584i 0.701031 0.713130i \(-0.252723\pi\)
−0.968105 + 0.250546i \(0.919390\pi\)
\(80\) 4.31146i 0.482036i
\(81\) 8.81015 + 1.83880i 0.978906 + 0.204311i
\(82\) −6.84670 −0.756092
\(83\) 4.78313 2.76154i 0.525016 0.303118i −0.213968 0.976841i \(-0.568639\pi\)
0.738985 + 0.673722i \(0.235306\pi\)
\(84\) 0.361914 7.02946i 0.0394880 0.766977i
\(85\) 4.12198 + 2.37983i 0.447092 + 0.258129i
\(86\) −10.5339 6.08176i −1.13590 0.655813i
\(87\) 1.53003 + 2.99603i 0.164036 + 0.321208i
\(88\) 7.63833 + 13.2300i 0.814248 + 1.41032i
\(89\) 17.5838i 1.86388i −0.362615 0.931939i \(-0.618116\pi\)
0.362615 0.931939i \(-0.381884\pi\)
\(90\) 6.58479 + 0.679842i 0.694097 + 0.0716616i
\(91\) 2.34353 2.65566i 0.245669 0.278388i
\(92\) −9.58479 16.6013i −0.999283 1.73081i
\(93\) 14.6621 + 9.50249i 1.52039 + 0.985362i
\(94\) 5.46935 9.47320i 0.564121 0.977086i
\(95\) −3.20540 + 5.55192i −0.328867 + 0.569615i
\(96\) 2.03976 + 1.32197i 0.208182 + 0.134923i
\(97\) −0.213335 + 0.123169i −0.0216609 + 0.0125059i −0.510791 0.859705i \(-0.670648\pi\)
0.489130 + 0.872211i \(0.337314\pi\)
\(98\) 14.9505i 1.51023i
\(99\) −7.90234 + 3.53579i −0.794215 + 0.355360i
\(100\) −17.4024 −1.74024
\(101\) 2.38713 + 4.13463i 0.237528 + 0.411411i 0.960004 0.279985i \(-0.0903294\pi\)
−0.722476 + 0.691396i \(0.756996\pi\)
\(102\) −20.4193 + 10.4278i −2.02182 + 1.03251i
\(103\) 1.71676 2.97351i 0.169157 0.292988i −0.768967 0.639289i \(-0.779229\pi\)
0.938124 + 0.346300i \(0.112562\pi\)
\(104\) 6.07935 + 18.0930i 0.596129 + 1.77416i
\(105\) 1.51353 + 0.0779244i 0.147705 + 0.00760465i
\(106\) 13.5342 7.81398i 1.31456 0.758960i
\(107\) −2.34075 −0.226289 −0.113144 0.993579i \(-0.536092\pi\)
−0.113144 + 0.993579i \(0.536092\pi\)
\(108\) −13.4818 + 16.7429i −1.29729 + 1.61109i
\(109\) 10.2127i 0.978195i 0.872229 + 0.489097i \(0.162674\pi\)
−0.872229 + 0.489097i \(0.837326\pi\)
\(110\) −5.51461 + 3.18386i −0.525797 + 0.303569i
\(111\) −0.429976 + 8.35143i −0.0408115 + 0.792682i
\(112\) 4.11780 + 2.37742i 0.389096 + 0.224645i
\(113\) 0.605276 1.04837i 0.0569396 0.0986222i −0.836151 0.548500i \(-0.815199\pi\)
0.893090 + 0.449878i \(0.148532\pi\)
\(114\) −14.0453 27.5029i −1.31547 2.57588i
\(115\) 3.57447 2.06372i 0.333321 0.192443i
\(116\) −8.03503 −0.746034
\(117\) −10.5529 + 2.37396i −0.975619 + 0.219472i
\(118\) 7.85863 0.723446
\(119\) −4.54586 + 2.62456i −0.416719 + 0.240593i
\(120\) −4.44189 + 6.85370i −0.405487 + 0.625655i
\(121\) −1.33618 + 2.31432i −0.121471 + 0.210393i
\(122\) 11.8440 + 6.83815i 1.07231 + 0.619097i
\(123\) 4.01714 + 2.60351i 0.362213 + 0.234751i
\(124\) −36.1404 + 20.8657i −3.24550 + 1.87379i
\(125\) 8.20061i 0.733485i
\(126\) −4.28027 + 5.91414i −0.381317 + 0.526873i
\(127\) 7.58237 0.672827 0.336413 0.941714i \(-0.390786\pi\)
0.336413 + 0.941714i \(0.390786\pi\)
\(128\) 15.7411 9.08815i 1.39133 0.803286i
\(129\) 3.86789 + 7.57393i 0.340549 + 0.666847i
\(130\) −7.54165 + 2.53404i −0.661447 + 0.222250i
\(131\) −9.40603 + 16.2917i −0.821809 + 1.42342i 0.0825247 + 0.996589i \(0.473702\pi\)
−0.904334 + 0.426826i \(0.859632\pi\)
\(132\) 1.06319 20.6503i 0.0925384 1.79737i
\(133\) −3.53503 6.12285i −0.306526 0.530918i
\(134\) 9.01232 0.778546
\(135\) −3.60495 2.90280i −0.310265 0.249833i
\(136\) 28.2875i 2.42564i
\(137\) −15.6417 + 9.03076i −1.33636 + 0.771550i −0.986266 0.165163i \(-0.947185\pi\)
−0.350098 + 0.936713i \(0.613852\pi\)
\(138\) −1.02230 + 19.8562i −0.0870240 + 1.69027i
\(139\) 2.42577 4.20155i 0.205751 0.356371i −0.744621 0.667488i \(-0.767370\pi\)
0.950372 + 0.311117i \(0.100703\pi\)
\(140\) −1.80989 + 3.13483i −0.152964 + 0.264941i
\(141\) −6.81127 + 3.47841i −0.573612 + 0.292935i
\(142\) 8.29537 + 14.3680i 0.696132 + 1.20574i
\(143\) 6.88453 7.80145i 0.575713 0.652390i
\(144\) −5.93065 13.2548i −0.494221 1.10456i
\(145\) 1.73004i 0.143672i
\(146\) 11.5687 + 20.0375i 0.957429 + 1.65832i
\(147\) 5.68503 8.77184i 0.468893 0.723489i
\(148\) −17.2975 9.98674i −1.42185 0.820905i
\(149\) 10.6241 + 6.13383i 0.870360 + 0.502503i 0.867468 0.497493i \(-0.165746\pi\)
0.00289232 + 0.999996i \(0.499079\pi\)
\(150\) 15.1467 + 9.81658i 1.23672 + 0.801520i
\(151\) 4.82142 2.78365i 0.392362 0.226530i −0.290821 0.956777i \(-0.593928\pi\)
0.683183 + 0.730247i \(0.260595\pi\)
\(152\) 38.1006 3.09037
\(153\) 15.9458 + 1.64632i 1.28914 + 0.133097i
\(154\) 7.02254i 0.565893i
\(155\) −4.49263 7.78147i −0.360857 0.625023i
\(156\) 6.41387 25.0263i 0.513521 2.00371i
\(157\) 2.02526 3.50785i 0.161633 0.279957i −0.773821 0.633404i \(-0.781657\pi\)
0.935455 + 0.353447i \(0.114991\pi\)
\(158\) −10.1855 5.88057i −0.810311 0.467833i
\(159\) −10.9122 0.561818i −0.865393 0.0445550i
\(160\) −0.625007 1.08254i −0.0494111 0.0855826i
\(161\) 4.55188i 0.358739i
\(162\) 21.1788 6.96769i 1.66397 0.547433i
\(163\) 10.3387i 0.809787i −0.914364 0.404894i \(-0.867309\pi\)
0.914364 0.404894i \(-0.132691\pi\)
\(164\) −9.90182 + 5.71682i −0.773202 + 0.446409i
\(165\) 4.44625 + 0.228917i 0.346140 + 0.0178211i
\(166\) 6.84112 11.8492i 0.530974 0.919673i
\(167\) −11.4388 6.60418i −0.885159 0.511047i −0.0128030 0.999918i \(-0.504075\pi\)
−0.872356 + 0.488871i \(0.837409\pi\)
\(168\) −4.09652 8.02162i −0.316053 0.618881i
\(169\) 10.3624 7.84989i 0.797107 0.603838i
\(170\) 11.7910 0.904330
\(171\) −2.21743 + 21.4775i −0.169571 + 1.64243i
\(172\) −20.3124 −1.54881
\(173\) −5.71416 9.89721i −0.434439 0.752471i 0.562810 0.826586i \(-0.309720\pi\)
−0.997250 + 0.0741150i \(0.976387\pi\)
\(174\) 6.99352 + 4.53250i 0.530177 + 0.343608i
\(175\) 3.57865 + 2.06613i 0.270520 + 0.156185i
\(176\) 12.0968 + 6.98407i 0.911828 + 0.526444i
\(177\) −4.61086 2.98830i −0.346574 0.224615i
\(178\) −21.7800 37.7241i −1.63248 2.82754i
\(179\) 0.150491 0.0112482 0.00562411 0.999984i \(-0.498210\pi\)
0.00562411 + 0.999984i \(0.498210\pi\)
\(180\) 10.0907 4.51493i 0.752115 0.336523i
\(181\) −22.0219 −1.63687 −0.818436 0.574598i \(-0.805159\pi\)
−0.818436 + 0.574598i \(0.805159\pi\)
\(182\) 1.73838 8.60021i 0.128858 0.637490i
\(183\) −4.34894 8.51590i −0.321483 0.629513i
\(184\) −21.2438 12.2651i −1.56611 0.904195i
\(185\) 2.15027 3.72437i 0.158091 0.273821i
\(186\) 43.2260 + 2.22551i 3.16949 + 0.163182i
\(187\) −13.3543 + 7.71009i −0.976561 + 0.563818i
\(188\) 18.2671i 1.33226i
\(189\) 4.76024 1.84238i 0.346257 0.134013i
\(190\) 15.8814i 1.15216i
\(191\) 9.97868 + 17.2836i 0.722032 + 1.25060i 0.960184 + 0.279369i \(0.0901251\pi\)
−0.238152 + 0.971228i \(0.576542\pi\)
\(192\) −10.7318 0.552529i −0.774500 0.0398754i
\(193\) 8.70542 + 5.02608i 0.626630 + 0.361785i 0.779446 0.626470i \(-0.215501\pi\)
−0.152816 + 0.988255i \(0.548834\pi\)
\(194\) −0.305125 + 0.528492i −0.0219067 + 0.0379435i
\(195\) 5.38847 + 1.38098i 0.385876 + 0.0988944i
\(196\) 12.4833 + 21.6216i 0.891661 + 1.54440i
\(197\) 3.94715i 0.281223i 0.990065 + 0.140611i \(0.0449068\pi\)
−0.990065 + 0.140611i \(0.955093\pi\)
\(198\) −12.5740 + 17.3738i −0.893598 + 1.23470i
\(199\) 11.4749 0.813433 0.406716 0.913554i \(-0.366674\pi\)
0.406716 + 0.913554i \(0.366674\pi\)
\(200\) −19.2854 + 11.1344i −1.36368 + 0.787323i
\(201\) −5.28777 3.42700i −0.372970 0.241722i
\(202\) 10.2427 + 5.91360i 0.720670 + 0.416079i
\(203\) 1.65233 + 0.953973i 0.115971 + 0.0669558i
\(204\) −20.8238 + 32.1306i −1.45796 + 2.24959i
\(205\) −1.23090 2.13198i −0.0859698 0.148904i
\(206\) 8.50578i 0.592626i
\(207\) 8.15027 11.2614i 0.566483 0.782721i
\(208\) 13.0855 + 11.5476i 0.907319 + 0.800680i
\(209\) −10.3848 17.9869i −0.718329 1.24418i
\(210\) 3.34363 1.70754i 0.230732 0.117831i
\(211\) −5.48306 + 9.49694i −0.377469 + 0.653796i −0.990693 0.136113i \(-0.956539\pi\)
0.613224 + 0.789909i \(0.289872\pi\)
\(212\) 13.0489 22.6014i 0.896204 1.55227i
\(213\) 0.596429 11.5845i 0.0408667 0.793754i
\(214\) −5.02182 + 2.89935i −0.343285 + 0.198195i
\(215\) 4.37351i 0.298271i
\(216\) −4.22810 + 27.1805i −0.287686 + 1.84940i
\(217\) 9.90926 0.672684
\(218\) 12.6498 + 21.9101i 0.856754 + 1.48394i
\(219\) 0.831776 16.1556i 0.0562062 1.09169i
\(220\) −5.31688 + 9.20911i −0.358464 + 0.620878i
\(221\) −18.2630 + 6.13646i −1.22850 + 0.412783i
\(222\) 9.42196 + 18.4497i 0.632361 + 1.23826i
\(223\) 11.1218 6.42116i 0.744770 0.429993i −0.0790313 0.996872i \(-0.525183\pi\)
0.823801 + 0.566879i \(0.191849\pi\)
\(224\) 1.37856 0.0921088
\(225\) −5.15413 11.5193i −0.343609 0.767952i
\(226\) 2.99888i 0.199482i
\(227\) 20.4534 11.8088i 1.35754 0.783777i 0.368249 0.929727i \(-0.379957\pi\)
0.989292 + 0.145950i \(0.0466240\pi\)
\(228\) −43.2768 28.0477i −2.86608 1.85751i
\(229\) −10.7715 6.21892i −0.711800 0.410958i 0.0999271 0.994995i \(-0.468139\pi\)
−0.811727 + 0.584037i \(0.801472\pi\)
\(230\) 5.11242 8.85497i 0.337103 0.583880i
\(231\) −2.67037 + 4.12031i −0.175698 + 0.271096i
\(232\) −8.90443 + 5.14098i −0.584605 + 0.337522i
\(233\) −18.7821 −1.23046 −0.615230 0.788348i \(-0.710937\pi\)
−0.615230 + 0.788348i \(0.710937\pi\)
\(234\) −19.6997 + 18.1644i −1.28781 + 1.18744i
\(235\) 3.93312 0.256568
\(236\) 11.3653 6.56175i 0.739817 0.427134i
\(237\) 3.73994 + 7.32338i 0.242935 + 0.475705i
\(238\) −6.50177 + 11.2614i −0.421447 + 0.729968i
\(239\) 17.1326 + 9.89154i 1.10822 + 0.639830i 0.938367 0.345639i \(-0.112338\pi\)
0.169851 + 0.985470i \(0.445671\pi\)
\(240\) −0.383967 + 7.45780i −0.0247850 + 0.481399i
\(241\) 9.86550 5.69585i 0.635493 0.366902i −0.147384 0.989079i \(-0.547085\pi\)
0.782876 + 0.622178i \(0.213752\pi\)
\(242\) 6.62017i 0.425561i
\(243\) −15.0757 3.96528i −0.967106 0.254373i
\(244\) 22.8387 1.46210
\(245\) −4.65540 + 2.68780i −0.297423 + 0.171717i
\(246\) 11.8432 + 0.609748i 0.755092 + 0.0388761i
\(247\) −8.26524 24.5985i −0.525904 1.56517i
\(248\) −26.7006 + 46.2468i −1.69549 + 2.93667i
\(249\) −8.51959 + 4.35083i −0.539907 + 0.275723i
\(250\) −10.1576 17.5935i −0.642424 1.11271i
\(251\) −18.6950 −1.18002 −0.590010 0.807396i \(-0.700876\pi\)
−0.590010 + 0.807396i \(0.700876\pi\)
\(252\) −1.25205 + 12.1270i −0.0788716 + 0.763932i
\(253\) 13.3720i 0.840688i
\(254\) 16.2672 9.39184i 1.02069 0.589297i
\(255\) −6.91810 4.48362i −0.433228 0.280775i
\(256\) 16.3097 28.2492i 1.01936 1.76558i
\(257\) 4.37976 7.58598i 0.273202 0.473200i −0.696478 0.717578i \(-0.745251\pi\)
0.969680 + 0.244378i \(0.0785838\pi\)
\(258\) 17.6795 + 11.4581i 1.10068 + 0.713350i
\(259\) 2.37139 + 4.10736i 0.147351 + 0.255219i
\(260\) −8.79102 + 9.96185i −0.545196 + 0.617808i
\(261\) −2.37976 5.31868i −0.147304 0.329218i
\(262\) 46.6028i 2.87913i
\(263\) −3.86402 6.69268i −0.238266 0.412688i 0.721951 0.691944i \(-0.243246\pi\)
−0.960217 + 0.279256i \(0.909912\pi\)
\(264\) −12.0342 23.5649i −0.740657 1.45032i
\(265\) 4.86636 + 2.80959i 0.298938 + 0.172592i
\(266\) −15.1680 8.75727i −0.930012 0.536942i
\(267\) −1.56596 + 30.4157i −0.0958354 + 1.86141i
\(268\) 13.0338 7.52505i 0.796165 0.459666i
\(269\) 14.8448 0.905102 0.452551 0.891739i \(-0.350514\pi\)
0.452551 + 0.891739i \(0.350514\pi\)
\(270\) −11.3296 1.76239i −0.689495 0.107255i
\(271\) 19.3486i 1.17534i −0.809100 0.587671i \(-0.800045\pi\)
0.809100 0.587671i \(-0.199955\pi\)
\(272\) −12.9323 22.3994i −0.784136 1.35816i
\(273\) −4.29025 + 4.38494i −0.259658 + 0.265388i
\(274\) −22.3718 + 38.7490i −1.35153 + 2.34091i
\(275\) 10.5129 + 6.06963i 0.633952 + 0.366012i
\(276\) 15.1009 + 29.5699i 0.908968 + 1.77990i
\(277\) −0.587762 1.01803i −0.0353152 0.0611677i 0.847828 0.530272i \(-0.177910\pi\)
−0.883143 + 0.469104i \(0.844577\pi\)
\(278\) 12.0186i 0.720829i
\(279\) −24.5156 17.7428i −1.46771 1.06223i
\(280\) 4.63203i 0.276817i
\(281\) −3.96724 + 2.29048i −0.236665 + 0.136639i −0.613643 0.789583i \(-0.710297\pi\)
0.376978 + 0.926222i \(0.376963\pi\)
\(282\) −10.3043 + 15.8993i −0.613613 + 0.946788i
\(283\) −0.0159162 + 0.0275676i −0.000946118 + 0.00163872i −0.866498 0.499180i \(-0.833634\pi\)
0.865552 + 0.500819i \(0.166968\pi\)
\(284\) 23.9938 + 13.8528i 1.42377 + 0.822014i
\(285\) 6.03901 9.31802i 0.357720 0.551952i
\(286\) 5.10681 25.2646i 0.301972 1.49393i
\(287\) 2.71496 0.160259
\(288\) −3.41056 2.46834i −0.200969 0.145449i
\(289\) 11.5533 0.679607
\(290\) −2.14290 3.71161i −0.125835 0.217953i
\(291\) 0.379988 0.194054i 0.0222753 0.0113756i
\(292\) 33.4616 + 19.3191i 1.95819 + 1.13056i
\(293\) −9.44674 5.45408i −0.551884 0.318631i 0.197997 0.980203i \(-0.436556\pi\)
−0.749882 + 0.661572i \(0.769890\pi\)
\(294\) 1.33145 25.8607i 0.0776516 1.50823i
\(295\) 1.41282 + 2.44708i 0.0822578 + 0.142475i
\(296\) −25.5589 −1.48558
\(297\) 13.9840 5.41230i 0.811437 0.314054i
\(298\) 30.3905 1.76047
\(299\) −3.31014 + 16.3761i −0.191430 + 0.947053i
\(300\) 30.1020 + 1.54981i 1.73794 + 0.0894784i
\(301\) 4.17707 + 2.41163i 0.240762 + 0.139004i
\(302\) 6.89589 11.9440i 0.396814 0.687302i
\(303\) −3.76094 7.36451i −0.216060 0.423080i
\(304\) 30.1699 17.4186i 1.73036 0.999025i
\(305\) 4.91745i 0.281572i
\(306\) 36.2492 16.2192i 2.07223 0.927189i
\(307\) 6.90363i 0.394011i 0.980402 + 0.197005i \(0.0631217\pi\)
−0.980402 + 0.197005i \(0.936878\pi\)
\(308\) −5.86364 10.1561i −0.334112 0.578699i
\(309\) −3.23439 + 4.99056i −0.183998 + 0.283903i
\(310\) −19.2769 11.1295i −1.09485 0.632115i
\(311\) 7.69804 13.3334i 0.436516 0.756067i −0.560902 0.827882i \(-0.689546\pi\)
0.997418 + 0.0718148i \(0.0228791\pi\)
\(312\) −8.90450 31.8380i −0.504118 1.80247i
\(313\) 8.67077 + 15.0182i 0.490101 + 0.848879i 0.999935 0.0113932i \(-0.00362663\pi\)
−0.509834 + 0.860273i \(0.670293\pi\)
\(314\) 10.0343i 0.566267i
\(315\) −2.61110 0.269581i −0.147119 0.0151892i
\(316\) −19.6405 −1.10486
\(317\) 9.21059 5.31774i 0.517318 0.298674i −0.218518 0.975833i \(-0.570122\pi\)
0.735837 + 0.677159i \(0.236789\pi\)
\(318\) −24.1068 + 12.3110i −1.35184 + 0.690366i
\(319\) 4.85401 + 2.80246i 0.271772 + 0.156908i
\(320\) 4.78591 + 2.76314i 0.267540 + 0.154464i
\(321\) 4.04893 + 0.208461i 0.225989 + 0.0116351i
\(322\) 5.63815 + 9.76557i 0.314202 + 0.544214i
\(323\) 38.4586i 2.13989i
\(324\) 24.8114 27.7606i 1.37841 1.54225i
\(325\) 11.3722 + 10.0356i 0.630817 + 0.556676i
\(326\) −12.8059 22.1805i −0.709254 1.22846i
\(327\) 0.909510 17.6654i 0.0502960 0.976901i
\(328\) −7.31548 + 12.6708i −0.403930 + 0.699627i
\(329\) −2.16879 + 3.75646i −0.119569 + 0.207100i
\(330\) 9.82249 5.01620i 0.540710 0.276133i
\(331\) −27.4350 + 15.8396i −1.50796 + 0.870623i −0.508006 + 0.861353i \(0.669617\pi\)
−0.999957 + 0.00926968i \(0.997049\pi\)
\(332\) 22.8486i 1.25398i
\(333\) 1.48751 14.4077i 0.0815150 0.789536i
\(334\) −32.7208 −1.79041
\(335\) 1.62024 + 2.80633i 0.0885229 + 0.153326i
\(336\) −6.91109 4.47908i −0.377031 0.244354i
\(337\) −12.1482 + 21.0414i −0.661757 + 1.14620i 0.318397 + 0.947958i \(0.396856\pi\)
−0.980154 + 0.198239i \(0.936478\pi\)
\(338\) 12.5082 29.6764i 0.680355 1.61418i
\(339\) −1.14035 + 1.75952i −0.0619351 + 0.0955641i
\(340\) 17.0524 9.84519i 0.924795 0.533930i
\(341\) 29.1102 1.57641
\(342\) 21.8457 + 48.8243i 1.18128 + 2.64011i
\(343\) 12.8047i 0.691389i
\(344\) −22.5103 + 12.9963i −1.21367 + 0.700714i
\(345\) −6.36676 + 3.25141i −0.342775 + 0.175050i
\(346\) −24.5182 14.1556i −1.31811 0.761009i
\(347\) −1.91224 + 3.31209i −0.102654 + 0.177802i −0.912777 0.408457i \(-0.866067\pi\)
0.810123 + 0.586260i \(0.199400\pi\)
\(348\) 13.8987 + 0.715577i 0.745047 + 0.0383590i
\(349\) −20.3799 + 11.7664i −1.09091 + 0.629839i −0.933819 0.357745i \(-0.883546\pi\)
−0.157093 + 0.987584i \(0.550212\pi\)
\(350\) 10.2368 0.547180
\(351\) 18.4655 3.16656i 0.985613 0.169019i
\(352\) 4.04976 0.215853
\(353\) −20.4327 + 11.7968i −1.08752 + 0.627881i −0.932916 0.360095i \(-0.882744\pi\)
−0.154606 + 0.987976i \(0.549411\pi\)
\(354\) −13.5935 0.699868i −0.722489 0.0371976i
\(355\) −2.98268 + 5.16616i −0.158304 + 0.274191i
\(356\) −62.9973 36.3715i −3.33885 1.92769i
\(357\) 8.09699 4.13501i 0.428538 0.218848i
\(358\) 0.322862 0.186404i 0.0170638 0.00985177i
\(359\) 0.220474i 0.0116362i 0.999983 + 0.00581809i \(0.00185196\pi\)
−0.999983 + 0.00581809i \(0.998148\pi\)
\(360\) 8.29377 11.4597i 0.437120 0.603978i
\(361\) −32.8001 −1.72632
\(362\) −47.2455 + 27.2772i −2.48317 + 1.43366i
\(363\) 2.51737 3.88423i 0.132128 0.203869i
\(364\) −4.66687 13.8893i −0.244611 0.727996i
\(365\) −4.15963 + 7.20469i −0.217725 + 0.377111i
\(366\) −19.8783 12.8832i −1.03906 0.673413i
\(367\) 10.2569 + 17.7655i 0.535407 + 0.927353i 0.999144 + 0.0413794i \(0.0131752\pi\)
−0.463736 + 0.885973i \(0.653491\pi\)
\(368\) −22.4291 −1.16920
\(369\) −6.71683 4.86120i −0.349664 0.253064i
\(370\) 10.6536i 0.553856i
\(371\) −5.36679 + 3.09852i −0.278630 + 0.160867i
\(372\) 64.3725 32.8740i 3.33756 1.70444i
\(373\) −5.42755 + 9.40079i −0.281028 + 0.486754i −0.971638 0.236473i \(-0.924009\pi\)
0.690610 + 0.723227i \(0.257342\pi\)
\(374\) −19.1001 + 33.0823i −0.987642 + 1.71065i
\(375\) −0.730324 + 14.1851i −0.0377138 + 0.732515i
\(376\) −11.6876 20.2436i −0.602744 1.04398i
\(377\) 5.25077 + 4.63364i 0.270428 + 0.238644i
\(378\) 7.93054 9.84885i 0.407903 0.506570i
\(379\) 19.6987i 1.01185i −0.862577 0.505927i \(-0.831151\pi\)
0.862577 0.505927i \(-0.168849\pi\)
\(380\) 13.2605 + 22.9679i 0.680251 + 1.17823i
\(381\) −13.1157 0.675265i −0.671937 0.0345949i
\(382\) 42.8164 + 24.7200i 2.19068 + 1.26479i
\(383\) 17.6164 + 10.1708i 0.900156 + 0.519705i 0.877251 0.480032i \(-0.159375\pi\)
0.0229052 + 0.999738i \(0.492708\pi\)
\(384\) −28.0377 + 14.3184i −1.43080 + 0.730685i
\(385\) 2.18674 1.26251i 0.111446 0.0643436i
\(386\) 24.9020 1.26748
\(387\) −6.01601 13.4455i −0.305811 0.683475i
\(388\) 1.01909i 0.0517362i
\(389\) −10.6980 18.5295i −0.542412 0.939485i −0.998765 0.0496861i \(-0.984178\pi\)
0.456353 0.889799i \(-0.349155\pi\)
\(390\) 13.2709 3.71163i 0.671999 0.187946i
\(391\) 12.3803 21.4434i 0.626100 1.08444i
\(392\) 27.6679 + 15.9741i 1.39744 + 0.806814i
\(393\) 17.7211 27.3431i 0.893910 1.37928i
\(394\) 4.88911 + 8.46818i 0.246310 + 0.426621i
\(395\) 4.22884i 0.212776i
\(396\) −3.67811 + 35.6253i −0.184832 + 1.79024i
\(397\) 27.7995i 1.39522i −0.716479 0.697608i \(-0.754248\pi\)
0.716479 0.697608i \(-0.245752\pi\)
\(398\) 24.6181 14.2133i 1.23399 0.712447i
\(399\) 5.56946 + 10.9059i 0.278822 + 0.545977i
\(400\) −10.1807 + 17.6335i −0.509036 + 0.881676i
\(401\) 13.1515 + 7.59301i 0.656754 + 0.379177i 0.791039 0.611766i \(-0.209541\pi\)
−0.134285 + 0.990943i \(0.542874\pi\)
\(402\) −15.5892 0.802612i −0.777516 0.0400307i
\(403\) 35.6500 + 7.20603i 1.77585 + 0.358958i
\(404\) 19.7508 0.982639
\(405\) 5.97719 + 5.34219i 0.297009 + 0.265455i
\(406\) 4.72652 0.234573
\(407\) 6.96636 + 12.0661i 0.345310 + 0.598094i
\(408\) −2.51921 + 48.9307i −0.124720 + 2.42243i
\(409\) 2.06606 + 1.19284i 0.102160 + 0.0589823i 0.550210 0.835027i \(-0.314548\pi\)
−0.448049 + 0.894009i \(0.647881\pi\)
\(410\) −5.28152 3.04929i −0.260836 0.150594i
\(411\) 27.8607 14.2280i 1.37427 0.701818i
\(412\) −7.10210 12.3012i −0.349896 0.606037i
\(413\) −3.11622 −0.153339
\(414\) 3.53667 34.2553i 0.173818 1.68356i
\(415\) 4.91958 0.241493
\(416\) 4.95957 + 1.00249i 0.243163 + 0.0491511i
\(417\) −4.57017 + 7.05164i −0.223802 + 0.345320i
\(418\) −44.5587 25.7260i −2.17944 1.25830i
\(419\) −16.6455 + 28.8308i −0.813183 + 1.40848i 0.0974415 + 0.995241i \(0.468934\pi\)
−0.910625 + 0.413234i \(0.864399\pi\)
\(420\) 3.40986 5.26132i 0.166384 0.256726i
\(421\) −21.0487 + 12.1525i −1.02585 + 0.592275i −0.915793 0.401650i \(-0.868437\pi\)
−0.110057 + 0.993925i \(0.535103\pi\)
\(422\) 27.1662i 1.32243i
\(423\) 12.0916 5.41022i 0.587915 0.263054i
\(424\) 33.3959i 1.62185i
\(425\) −11.2390 19.4666i −0.545173 0.944268i
\(426\) −13.0694 25.5920i −0.633216 1.23993i
\(427\) −4.69657 2.71157i −0.227283 0.131222i
\(428\) −4.84176 + 8.38618i −0.234035 + 0.405361i
\(429\) −12.6034 + 12.8815i −0.608496 + 0.621926i
\(430\) −5.41722 9.38289i −0.261241 0.452483i
\(431\) 12.1410i 0.584812i −0.956294 0.292406i \(-0.905544\pi\)
0.956294 0.292406i \(-0.0944559\pi\)
\(432\) 9.07817 + 23.4557i 0.436774 + 1.12851i
\(433\) −13.2730 −0.637859 −0.318930 0.947778i \(-0.603323\pi\)
−0.318930 + 0.947778i \(0.603323\pi\)
\(434\) 21.2592 12.2740i 1.02048 0.589172i
\(435\) −0.154072 + 2.99255i −0.00738721 + 0.143482i
\(436\) 36.5888 + 21.1245i 1.75228 + 1.01168i
\(437\) 28.8822 + 16.6751i 1.38162 + 0.797680i
\(438\) −18.2265 35.6904i −0.870897 1.70535i
\(439\) 6.55074 + 11.3462i 0.312650 + 0.541526i 0.978935 0.204171i \(-0.0654500\pi\)
−0.666285 + 0.745697i \(0.732117\pi\)
\(440\) 13.6074i 0.648708i
\(441\) −10.6149 + 14.6669i −0.505473 + 0.698423i
\(442\) −31.5804 + 35.7864i −1.50213 + 1.70219i
\(443\) 17.2195 + 29.8250i 0.818123 + 1.41703i 0.907064 + 0.420993i \(0.138318\pi\)
−0.0889410 + 0.996037i \(0.528348\pi\)
\(444\) 29.0312 + 18.8151i 1.37776 + 0.892926i
\(445\) 7.83122 13.5641i 0.371236 0.642999i
\(446\) 15.9070 27.5518i 0.753220 1.30462i
\(447\) −17.8309 11.5562i −0.843372 0.546590i
\(448\) −5.27806 + 3.04729i −0.249365 + 0.143971i
\(449\) 5.32385i 0.251248i −0.992078 0.125624i \(-0.959907\pi\)
0.992078 0.125624i \(-0.0400933\pi\)
\(450\) −25.3259 18.3292i −1.19387 0.864049i
\(451\) 7.97567 0.375559
\(452\) −2.50399 4.33703i −0.117778 0.203997i
\(453\) −8.58780 + 4.38566i −0.403490 + 0.206056i
\(454\) 29.2537 50.6689i 1.37294 2.37801i
\(455\) 2.99053 1.00483i 0.140198 0.0471074i
\(456\) −65.9050 3.39314i −3.08628 0.158898i
\(457\) −10.7297 + 6.19481i −0.501916 + 0.289781i −0.729504 0.683976i \(-0.760249\pi\)
0.227589 + 0.973757i \(0.426916\pi\)
\(458\) −30.8121 −1.43975
\(459\) −27.4358 4.26782i −1.28060 0.199205i
\(460\) 17.0750i 0.796124i
\(461\) −11.2633 + 6.50288i −0.524585 + 0.302869i −0.738809 0.673915i \(-0.764611\pi\)
0.214223 + 0.976785i \(0.431278\pi\)
\(462\) −0.625408 + 12.1473i −0.0290966 + 0.565144i
\(463\) −5.56377 3.21224i −0.258570 0.149286i 0.365112 0.930964i \(-0.381031\pi\)
−0.623682 + 0.781678i \(0.714364\pi\)
\(464\) −4.70063 + 8.14173i −0.218221 + 0.377971i
\(465\) 7.07818 + 13.8602i 0.328243 + 0.642750i
\(466\) −40.2950 + 23.2644i −1.86663 + 1.07770i
\(467\) 13.9598 0.645982 0.322991 0.946402i \(-0.395312\pi\)
0.322991 + 0.946402i \(0.395312\pi\)
\(468\) −13.3232 + 42.7183i −0.615867 + 1.97466i
\(469\) −3.57370 −0.165018
\(470\) 8.43808 4.87173i 0.389220 0.224716i
\(471\) −3.81561 + 5.88737i −0.175814 + 0.271276i
\(472\) 8.39669 14.5435i 0.386489 0.669419i
\(473\) 12.2709 + 7.08459i 0.564215 + 0.325750i
\(474\) 17.0947 + 11.0791i 0.785184 + 0.508878i
\(475\) 26.2196 15.1379i 1.20304 0.694575i
\(476\) 21.7152i 0.995316i
\(477\) 18.8254 + 1.94362i 0.861958 + 0.0889922i
\(478\) 49.0083 2.24159
\(479\) 29.9863 17.3126i 1.37011 0.791033i 0.379168 0.925328i \(-0.376210\pi\)
0.990941 + 0.134295i \(0.0428769\pi\)
\(480\) 0.984704 + 1.92820i 0.0449454 + 0.0880100i
\(481\) 5.54453 + 16.5013i 0.252809 + 0.752395i
\(482\) 14.1102 24.4396i 0.642703 1.11319i
\(483\) 0.405378 7.87367i 0.0184453 0.358264i
\(484\) 5.52767 + 9.57421i 0.251258 + 0.435191i
\(485\) −0.219421 −0.00996341
\(486\) −37.2548 + 10.1663i −1.68991 + 0.461153i
\(487\) 5.78811i 0.262284i −0.991364 0.131142i \(-0.958136\pi\)
0.991364 0.131142i \(-0.0418644\pi\)
\(488\) 25.3099 14.6127i 1.14573 0.661485i
\(489\) −0.920733 + 17.8834i −0.0416370 + 0.808716i
\(490\) −6.65843 + 11.5327i −0.300797 + 0.520996i
\(491\) 12.4622 21.5851i 0.562410 0.974123i −0.434875 0.900491i \(-0.643207\pi\)
0.997285 0.0736326i \(-0.0234592\pi\)
\(492\) 17.6369 9.00689i 0.795133 0.406062i
\(493\) −5.18928 8.98810i −0.233713 0.404803i
\(494\) −48.2009 42.5358i −2.16866 1.91378i
\(495\) −7.67056 0.791942i −0.344766 0.0355951i
\(496\) 48.8272i 2.19240i
\(497\) −3.28941 5.69742i −0.147550 0.255564i
\(498\) −12.8887 + 19.8870i −0.577558 + 0.891156i
\(499\) 34.4839 + 19.9093i 1.54371 + 0.891262i 0.998600 + 0.0528989i \(0.0168461\pi\)
0.545112 + 0.838363i \(0.316487\pi\)
\(500\) −29.3803 16.9627i −1.31392 0.758595i
\(501\) 19.1982 + 12.4423i 0.857711 + 0.555883i
\(502\) −40.1082 + 23.1565i −1.79011 + 1.03352i
\(503\) −12.9120 −0.575720 −0.287860 0.957673i \(-0.592944\pi\)
−0.287860 + 0.957673i \(0.592944\pi\)
\(504\) 6.37161 + 14.2403i 0.283814 + 0.634313i
\(505\) 4.25259i 0.189238i
\(506\) 16.5631 + 28.6881i 0.736318 + 1.27534i
\(507\) −18.6235 + 12.6556i −0.827101 + 0.562054i
\(508\) 15.6839 27.1653i 0.695860 1.20527i
\(509\) −32.1750 18.5763i −1.42613 0.823378i −0.429319 0.903153i \(-0.641247\pi\)
−0.996813 + 0.0797749i \(0.974580\pi\)
\(510\) −20.3956 1.05008i −0.903133 0.0464981i
\(511\) −4.58738 7.94558i −0.202934 0.351492i
\(512\) 44.4550i 1.96465i
\(513\) 5.74835 36.9535i 0.253796 1.63154i
\(514\) 21.6998i 0.957139i
\(515\) 2.64860 1.52917i 0.116711 0.0673832i
\(516\) 35.1356 + 1.80897i 1.54676 + 0.0796354i
\(517\) −6.37120 + 11.0352i −0.280205 + 0.485329i
\(518\) 10.1751 + 5.87460i 0.447068 + 0.258115i
\(519\) 9.00270 + 17.6287i 0.395175 + 0.773813i
\(520\) −3.36842 + 16.6644i −0.147715 + 0.730783i
\(521\) −24.6907 −1.08172 −0.540859 0.841114i \(-0.681901\pi\)
−0.540859 + 0.841114i \(0.681901\pi\)
\(522\) −11.6935 8.46296i −0.511809 0.370414i
\(523\) −33.4434 −1.46238 −0.731189 0.682175i \(-0.761034\pi\)
−0.731189 + 0.682175i \(0.761034\pi\)
\(524\) 38.9121 + 67.3978i 1.69989 + 2.94429i
\(525\) −6.00620 3.89262i −0.262132 0.169888i
\(526\) −16.5797 9.57227i −0.722908 0.417371i
\(527\) −46.6813 26.9515i −2.03347 1.17402i
\(528\) −20.3025 13.1581i −0.883554 0.572632i
\(529\) 0.764121 + 1.32350i 0.0332227 + 0.0575433i
\(530\) 13.9203 0.604660
\(531\) 7.70956 + 5.57968i 0.334566 + 0.242137i
\(532\) −29.2484 −1.26808
\(533\) 9.76746 + 1.97432i 0.423076 + 0.0855174i
\(534\) 34.3146 + 67.1933i 1.48494 + 2.90774i
\(535\) −1.80565 1.04249i −0.0780649 0.0450708i
\(536\) 9.62937 16.6786i 0.415925 0.720404i
\(537\) −0.260313 0.0134023i −0.0112333 0.000578352i
\(538\) 31.8478 18.3874i 1.37306 0.792735i
\(539\) 17.4157i 0.750146i
\(540\) −17.8565 + 6.91109i −0.768423 + 0.297406i
\(541\) 10.9418i 0.470423i 0.971944 + 0.235211i \(0.0755782\pi\)
−0.971944 + 0.235211i \(0.924422\pi\)
\(542\) −23.9659 41.5102i −1.02943 1.78302i
\(543\) 38.0925 + 1.96121i 1.63471 + 0.0841634i
\(544\) −6.49422 3.74944i −0.278437 0.160756i
\(545\) −4.54837 + 7.87800i −0.194831 + 0.337457i
\(546\) −3.77290 + 14.7215i −0.161465 + 0.630021i
\(547\) −5.47407 9.48136i −0.234054 0.405394i 0.724943 0.688809i \(-0.241866\pi\)
−0.958997 + 0.283415i \(0.908533\pi\)
\(548\) 74.7194i 3.19185i
\(549\) 6.76422 + 15.1178i 0.288690 + 0.645210i
\(550\) 30.0724 1.28229
\(551\) 12.1061 6.98947i 0.515738 0.297761i
\(552\) 35.6543 + 23.1076i 1.51755 + 0.983524i
\(553\) 4.03889 + 2.33185i 0.171751 + 0.0991605i
\(554\) −2.52196 1.45605i −0.107148 0.0618618i
\(555\) −4.05112 + 6.25077i −0.171961 + 0.265330i
\(556\) −10.0352 17.3815i −0.425589 0.737141i
\(557\) 12.5825i 0.533136i −0.963816 0.266568i \(-0.914110\pi\)
0.963816 0.266568i \(-0.0858898\pi\)
\(558\) −74.5725 7.69918i −3.15690 0.325932i
\(559\) 13.2739 + 11.7138i 0.561425 + 0.495440i
\(560\) 2.11764 + 3.66786i 0.0894866 + 0.154995i
\(561\) 23.7863 12.1473i 1.00426 0.512860i
\(562\) −5.67418 + 9.82797i −0.239351 + 0.414568i
\(563\) 6.07784 10.5271i 0.256151 0.443666i −0.709057 0.705151i \(-0.750879\pi\)
0.965207 + 0.261486i \(0.0842124\pi\)
\(564\) −1.62681 + 31.5976i −0.0685012 + 1.33050i
\(565\) 0.933815 0.539139i 0.0392859 0.0226817i
\(566\) 0.0788577i 0.00331464i
\(567\) −8.39815 + 2.76293i −0.352689 + 0.116032i
\(568\) 35.4533 1.48759
\(569\) −17.6882 30.6369i −0.741529 1.28437i −0.951799 0.306722i \(-0.900768\pi\)
0.210270 0.977643i \(-0.432566\pi\)
\(570\) 1.41435 27.4710i 0.0592407 1.15063i
\(571\) 6.24561 10.8177i 0.261371 0.452707i −0.705236 0.708973i \(-0.749159\pi\)
0.966606 + 0.256266i \(0.0824922\pi\)
\(572\) −13.7098 40.8022i −0.573234 1.70603i
\(573\) −15.7215 30.7851i −0.656775 1.28607i
\(574\) 5.82465 3.36286i 0.243116 0.140363i
\(575\) −19.4924 −0.812888
\(576\) 18.5142 + 1.91149i 0.771425 + 0.0796453i
\(577\) 25.1610i 1.04747i 0.851882 + 0.523734i \(0.175461\pi\)
−0.851882 + 0.523734i \(0.824539\pi\)
\(578\) 24.7864 14.3104i 1.03098 0.595235i
\(579\) −14.6107 9.46919i −0.607199 0.393526i
\(580\) −6.19819 3.57853i −0.257366 0.148590i
\(581\) −2.71274 + 4.69861i −0.112544 + 0.194931i
\(582\) 0.574859 0.886990i 0.0238287 0.0367669i
\(583\) −15.7659 + 9.10243i −0.652956 + 0.376984i
\(584\) 49.4430 2.04596
\(585\) −9.19777 2.86865i −0.380281 0.118604i
\(586\) −27.0226 −1.11629
\(587\) 3.21529 1.85635i 0.132709 0.0766197i −0.432176 0.901789i \(-0.642254\pi\)
0.564885 + 0.825170i \(0.308921\pi\)
\(588\) −19.6675 38.5120i −0.811073 1.58821i
\(589\) 36.3011 62.8753i 1.49576 2.59073i
\(590\) 6.06212 + 3.49997i 0.249574 + 0.144091i
\(591\) 0.351522 6.82762i 0.0144597 0.280851i
\(592\) −20.2387 + 11.6848i −0.831806 + 0.480244i
\(593\) 31.6710i 1.30057i 0.759689 + 0.650287i \(0.225351\pi\)
−0.759689 + 0.650287i \(0.774649\pi\)
\(594\) 23.2973 28.9327i 0.955901 1.18712i
\(595\) −4.67555 −0.191679
\(596\) 43.9512 25.3752i 1.80031 1.03941i
\(597\) −19.8488 1.02192i −0.812357 0.0418244i
\(598\) 13.1826 + 39.2332i 0.539075 + 1.60436i
\(599\) 14.2298 24.6468i 0.581415 1.00704i −0.413897 0.910324i \(-0.635833\pi\)
0.995312 0.0967168i \(-0.0308341\pi\)
\(600\) 34.3507 17.5424i 1.40236 0.716165i
\(601\) −0.635544 1.10079i −0.0259244 0.0449023i 0.852772 0.522283i \(-0.174920\pi\)
−0.878697 + 0.477381i \(0.841586\pi\)
\(602\) 11.9486 0.486988
\(603\) 8.84136 + 6.39880i 0.360048 + 0.260579i
\(604\) 23.0315i 0.937140i
\(605\) −2.06144 + 1.19017i −0.0838096 + 0.0483875i
\(606\) −17.1907 11.1413i −0.698323 0.452584i
\(607\) 0.373604 0.647101i 0.0151641 0.0262650i −0.858344 0.513075i \(-0.828506\pi\)
0.873508 + 0.486810i \(0.161840\pi\)
\(608\) 5.05014 8.74709i 0.204810 0.354741i
\(609\) −2.77318 1.79730i −0.112375 0.0728301i
\(610\) 6.09096 + 10.5499i 0.246616 + 0.427151i
\(611\) −10.5342 + 11.9373i −0.426170 + 0.482930i
\(612\) 38.8817 53.7236i 1.57170 2.17165i
\(613\) 41.1308i 1.66126i −0.556826 0.830629i \(-0.687981\pi\)
0.556826 0.830629i \(-0.312019\pi\)
\(614\) 8.55112 + 14.8110i 0.345095 + 0.597723i
\(615\) 1.93929 + 3.79744i 0.0781999 + 0.153127i
\(616\) −12.9962 7.50336i −0.523632 0.302319i
\(617\) −10.9623 6.32908i −0.441325 0.254799i 0.262835 0.964841i \(-0.415343\pi\)
−0.704159 + 0.710042i \(0.748676\pi\)
\(618\) −0.757501 + 14.7130i −0.0304712 + 0.591842i
\(619\) −7.38692 + 4.26484i −0.296905 + 0.171418i −0.641052 0.767498i \(-0.721502\pi\)
0.344147 + 0.938916i \(0.388168\pi\)
\(620\) −37.1715 −1.49284
\(621\) −15.1009 + 18.7537i −0.605979 + 0.752559i
\(622\) 38.1404i 1.52929i
\(623\) 8.63654 + 14.9589i 0.346016 + 0.599317i
\(624\) −21.6065 21.1399i −0.864950 0.846273i
\(625\) −6.86422 + 11.8892i −0.274569 + 0.475567i
\(626\) 37.2044 + 21.4800i 1.48699 + 0.858512i
\(627\) 16.3613 + 32.0379i 0.653406 + 1.27947i
\(628\) −8.37836 14.5117i −0.334333 0.579082i
\(629\) 25.7990i 1.02867i
\(630\) −5.93574 + 2.65586i −0.236486 + 0.105812i
\(631\) 2.50848i 0.0998612i 0.998753 + 0.0499306i \(0.0159000\pi\)
−0.998753 + 0.0499306i \(0.984100\pi\)
\(632\) −21.7656 + 12.5664i −0.865791 + 0.499865i
\(633\) 10.3301 15.9391i 0.410587 0.633523i
\(634\) 13.1735 22.8173i 0.523188 0.906189i
\(635\) 5.84902 + 3.37693i 0.232111 + 0.134009i
\(636\) −24.5843 + 37.9329i −0.974832 + 1.50414i
\(637\) 4.31114 21.3283i 0.170813 0.845056i
\(638\) 13.8850 0.549712
\(639\) −2.06336 + 19.9852i −0.0816252 + 0.790603i
\(640\) 16.1902 0.639974
\(641\) 20.6692 + 35.8000i 0.816383 + 1.41402i 0.908331 + 0.418253i \(0.137357\pi\)
−0.0919475 + 0.995764i \(0.529309\pi\)
\(642\) 8.94475 4.56795i 0.353021 0.180283i
\(643\) −17.6848 10.2103i −0.697419 0.402655i 0.108966 0.994045i \(-0.465246\pi\)
−0.806385 + 0.591390i \(0.798579\pi\)
\(644\) 16.3080 + 9.41542i 0.642625 + 0.371020i
\(645\) −0.389493 + 7.56513i −0.0153363 + 0.297877i
\(646\) 47.6365 + 82.5088i 1.87423 + 3.24626i
\(647\) 15.7134 0.617756 0.308878 0.951102i \(-0.400047\pi\)
0.308878 + 0.951102i \(0.400047\pi\)
\(648\) 9.73421 46.6391i 0.382396 1.83216i
\(649\) −9.15445 −0.359344
\(650\) 36.8284 + 7.44422i 1.44453 + 0.291986i
\(651\) −17.1406 0.882491i −0.671795 0.0345876i
\(652\) −37.0403 21.3852i −1.45061 0.837509i
\(653\) 16.1168 27.9151i 0.630700 1.09240i −0.356709 0.934215i \(-0.616101\pi\)
0.987409 0.158188i \(-0.0505653\pi\)
\(654\) −19.9299 39.0258i −0.779320 1.52603i
\(655\) −14.5116 + 8.37826i −0.567014 + 0.327366i
\(656\) 13.3778i 0.522314i
\(657\) −2.87755 + 27.8712i −0.112264 + 1.08736i
\(658\) 10.7454i 0.418900i
\(659\) 2.33379 + 4.04224i 0.0909115 + 0.157463i 0.907895 0.419198i \(-0.137689\pi\)
−0.816983 + 0.576661i \(0.804355\pi\)
\(660\) 10.0171 15.4560i 0.389914 0.601625i
\(661\) 19.5539 + 11.2894i 0.760557 + 0.439108i 0.829496 0.558513i \(-0.188628\pi\)
−0.0689389 + 0.997621i \(0.521961\pi\)
\(662\) −39.2392 + 67.9642i −1.52507 + 2.64151i
\(663\) 32.1371 8.98816i 1.24810 0.349071i
\(664\) −14.6190 25.3209i −0.567328 0.982641i
\(665\) 6.29753i 0.244208i
\(666\) −14.6547 32.7526i −0.567856 1.26914i
\(667\) −9.00000 −0.348481
\(668\) −47.3215 + 27.3211i −1.83092 + 1.05708i
\(669\) −19.8099 + 10.1166i −0.765894 + 0.391130i
\(670\) 6.95207 + 4.01378i 0.268582 + 0.155066i
\(671\) −13.7970 7.96570i −0.532627 0.307512i
\(672\) −2.38458 0.122771i −0.0919870 0.00473598i
\(673\) 1.89964 + 3.29028i 0.0732259 + 0.126831i 0.900313 0.435242i \(-0.143337\pi\)
−0.827088 + 0.562073i \(0.810004\pi\)
\(674\) 60.1893i 2.31841i
\(675\) 7.88954 + 20.3846i 0.303668 + 0.784604i
\(676\) −6.68945 53.3625i −0.257287 2.05240i
\(677\) 14.9160 + 25.8352i 0.573267 + 0.992927i 0.996228 + 0.0867791i \(0.0276574\pi\)
−0.422961 + 0.906148i \(0.639009\pi\)
\(678\) −0.267072 + 5.18734i −0.0102568 + 0.199219i
\(679\) 0.120993 0.209566i 0.00464327 0.00804239i
\(680\) 12.5983 21.8209i 0.483123 0.836794i
\(681\) −36.4312 + 18.6048i −1.39605 + 0.712939i
\(682\) 62.4527 36.0571i 2.39144 1.38070i
\(683\) 0.0316640i 0.00121159i 1.00000 0.000605795i \(0.000192831\pi\)
−1.00000 0.000605795i \(0.999807\pi\)
\(684\) 72.3606 + 52.3699i 2.76678 + 2.00241i
\(685\) −16.0880 −0.614690
\(686\) −15.8604 27.4711i −0.605554 1.04885i
\(687\) 18.0782 + 11.7165i 0.689728 + 0.447013i
\(688\) −11.8831 + 20.5822i −0.453040 + 0.784689i
\(689\) −21.5611 + 7.24463i −0.821411 + 0.275998i
\(690\) −9.63186 + 14.8617i −0.366679 + 0.565774i
\(691\) −6.85148 + 3.95570i −0.260642 + 0.150482i −0.624628 0.780923i \(-0.714749\pi\)
0.363985 + 0.931405i \(0.381416\pi\)
\(692\) −47.2782 −1.79725
\(693\) 4.98605 6.88933i 0.189404 0.261704i
\(694\) 9.47431i 0.359640i
\(695\) 3.74246 2.16071i 0.141959 0.0819603i
\(696\) 15.8604 8.09965i 0.601186 0.307017i
\(697\) −12.7898 7.38421i −0.484449 0.279697i
\(698\) −29.1486 + 50.4869i −1.10329 + 1.91096i
\(699\) 32.4886 + 1.67269i 1.22883 + 0.0632668i
\(700\) 14.8046 8.54746i 0.559562 0.323064i
\(701\) 35.2396 1.33098 0.665491 0.746406i \(-0.268222\pi\)
0.665491 + 0.746406i \(0.268222\pi\)
\(702\) 35.6934 29.6656i 1.34716 1.11966i
\(703\) 34.7488 1.31058
\(704\) −15.5052 + 8.95195i −0.584375 + 0.337389i
\(705\) −6.80335 0.350273i −0.256229 0.0131920i
\(706\) −29.2241 + 50.6175i −1.09986 + 1.90502i
\(707\) −4.06157 2.34495i −0.152751 0.0881909i
\(708\) −20.2436 + 10.3381i −0.760801 + 0.388529i
\(709\) −19.4230 + 11.2139i −0.729447 + 0.421147i −0.818220 0.574905i \(-0.805039\pi\)
0.0887726 + 0.996052i \(0.471706\pi\)
\(710\) 14.7779i 0.554605i
\(711\) −5.81700 13.0008i −0.218154 0.487566i
\(712\) −93.0849 −3.48851
\(713\) −40.4807 + 23.3716i −1.51601 + 0.875272i
\(714\) 12.2494 18.9005i 0.458423 0.707333i
\(715\) 8.78521 2.95188i 0.328548 0.110394i
\(716\) 0.311285 0.539162i 0.0116333 0.0201494i
\(717\) −28.7544 18.6358i −1.07385 0.695965i
\(718\) 0.273088 + 0.473003i 0.0101916 + 0.0176523i
\(719\) −37.6708 −1.40488 −0.702442 0.711741i \(-0.747907\pi\)
−0.702442 + 0.711741i \(0.747907\pi\)
\(720\) 1.32834 12.8660i 0.0495044 0.479488i
\(721\) 3.37284i 0.125611i
\(722\) −70.3691 + 40.6276i −2.61887 + 1.51200i
\(723\) −17.5722 + 8.97385i −0.653517 + 0.333741i
\(724\) −45.5515 + 78.8975i −1.69291 + 2.93220i
\(725\) −4.08516 + 7.07571i −0.151719 + 0.262785i
\(726\) 0.589574 11.4513i 0.0218812 0.424998i
\(727\) −22.0067 38.1168i −0.816185 1.41367i −0.908474 0.417941i \(-0.862752\pi\)
0.0922894 0.995732i \(-0.470582\pi\)
\(728\) −14.0585 12.4062i −0.521042 0.459803i
\(729\) 25.7242 + 8.20159i 0.952748 + 0.303763i
\(730\) 20.6092i 0.762779i
\(731\) −13.1184 22.7218i −0.485202 0.840395i
\(732\) −39.5055 2.03395i −1.46016 0.0751770i
\(733\) −15.2722 8.81743i −0.564093 0.325679i 0.190694 0.981650i \(-0.438926\pi\)
−0.754787 + 0.655970i \(0.772260\pi\)
\(734\) 44.0102 + 25.4093i 1.62445 + 0.937875i
\(735\) 8.29209 4.23465i 0.305858 0.156197i
\(736\) −5.63161 + 3.25141i −0.207584 + 0.119849i
\(737\) −10.4984 −0.386713
\(738\) −20.4315 2.10944i −0.752094 0.0776494i
\(739\) 13.4319i 0.494100i 0.969003 + 0.247050i \(0.0794612\pi\)
−0.969003 + 0.247050i \(0.920539\pi\)
\(740\) −8.89551 15.4075i −0.327005 0.566390i
\(741\) 12.1062 + 43.2856i 0.444732 + 1.59014i
\(742\) −7.67590 + 13.2951i −0.281791 + 0.488077i
\(743\) −28.3946 16.3936i −1.04170 0.601423i −0.121383 0.992606i \(-0.538733\pi\)
−0.920313 + 0.391182i \(0.872066\pi\)
\(744\) 50.3042 77.6179i 1.84424 2.84561i
\(745\) 5.46360 + 9.46323i 0.200171 + 0.346706i
\(746\) 26.8911i 0.984555i
\(747\) 15.1243 6.76716i 0.553370 0.247597i
\(748\) 63.7923i 2.33248i
\(749\) 1.99133 1.14969i 0.0727616 0.0420089i
\(750\) 16.0034 + 31.3372i 0.584362 + 1.14427i
\(751\) −12.4916 + 21.6360i −0.455824 + 0.789511i −0.998735 0.0502796i \(-0.983989\pi\)
0.542911 + 0.839790i \(0.317322\pi\)
\(752\) −18.5097 10.6866i −0.674978 0.389699i
\(753\) 32.3379 + 1.66493i 1.17846 + 0.0606733i
\(754\) 17.0044 + 3.43714i 0.619263 + 0.125173i
\(755\) 4.95897 0.180475
\(756\) 3.24574 20.8654i 0.118047 0.758866i
\(757\) 21.6436 0.786652 0.393326 0.919399i \(-0.371324\pi\)
0.393326 + 0.919399i \(0.371324\pi\)
\(758\) −24.3996 42.2614i −0.886234 1.53500i
\(759\) 1.19087 23.1303i 0.0432258 0.839576i
\(760\) 29.3907 + 16.9687i 1.06611 + 0.615521i
\(761\) 17.2650 + 9.96794i 0.625855 + 0.361338i 0.779145 0.626844i \(-0.215654\pi\)
−0.153290 + 0.988181i \(0.548987\pi\)
\(762\) −28.9747 + 14.7969i −1.04964 + 0.536036i
\(763\) −5.01610 8.68813i −0.181595 0.314532i
\(764\) 82.5623 2.98700
\(765\) 11.5673 + 8.37170i 0.418218 + 0.302679i
\(766\) 50.3921 1.82074
\(767\) −11.2111 2.26612i −0.404808 0.0818250i
\(768\) −30.7277 + 47.4119i −1.10879 + 1.71083i
\(769\) 32.9151 + 19.0035i 1.18695 + 0.685285i 0.957612 0.288062i \(-0.0930110\pi\)
0.229337 + 0.973347i \(0.426344\pi\)
\(770\) 3.12760 5.41717i 0.112711 0.195221i
\(771\) −8.25153 + 12.7319i −0.297171 + 0.458527i
\(772\) 36.0138 20.7926i 1.29616 0.748341i
\(773\) 36.5619i 1.31504i −0.753437 0.657520i \(-0.771605\pi\)
0.753437 0.657520i \(-0.228395\pi\)
\(774\) −29.5609 21.3942i −1.06254 0.769000i
\(775\) 42.4341i 1.52428i
\(776\) 0.652032 + 1.12935i 0.0234066 + 0.0405414i
\(777\) −3.73614 7.31594i −0.134033 0.262458i
\(778\) −45.9029 26.5021i −1.64570 0.950145i
\(779\) 9.94583 17.2267i 0.356346 0.617210i
\(780\) 16.0935 16.4487i 0.576240 0.588958i
\(781\) −9.66320 16.7372i −0.345777 0.598903i
\(782\) 61.3392i 2.19348i
\(783\) 3.64275 + 9.41197i 0.130181 + 0.336356i
\(784\) 29.2117 1.04328
\(785\) 3.12456 1.80396i 0.111520 0.0643862i
\(786\) 4.15032 80.6117i 0.148037 2.87532i
\(787\) 1.39487 + 0.805329i 0.0497218 + 0.0287069i 0.524655 0.851315i \(-0.324194\pi\)
−0.474933 + 0.880022i \(0.657528\pi\)
\(788\) 14.1414 + 8.16455i 0.503767 + 0.290850i
\(789\) 6.08779 + 11.9208i 0.216731 + 0.424393i
\(790\) −5.23802 9.07251i −0.186360 0.322785i
\(791\) 1.18916i 0.0422817i
\(792\) 18.7177 + 41.8334i 0.665105 + 1.48648i
\(793\) −14.9247 13.1706i −0.529993 0.467702i
\(794\) −34.4336 59.6408i −1.22200 2.11657i
\(795\) −8.16742 5.29331i −0.289668 0.187734i
\(796\) 23.7354 41.1109i 0.841280 1.45714i
\(797\) −0.0491630 + 0.0851528i −0.00174144 + 0.00301627i −0.866895 0.498491i \(-0.833888\pi\)
0.865153 + 0.501507i \(0.167221\pi\)
\(798\) 25.4572 + 16.4988i 0.901173 + 0.584051i
\(799\) 20.4338 11.7975i 0.722896 0.417364i
\(800\) 5.90335i 0.208715i
\(801\) 5.41748 52.4724i 0.191417 1.85402i
\(802\) 37.6201 1.32841
\(803\) −13.4762 23.3415i −0.475566 0.823705i
\(804\) −23.2155 + 11.8558i −0.818746 + 0.418121i
\(805\) −2.02725 + 3.51131i −0.0714513 + 0.123757i
\(806\) 85.4089 28.6979i 3.00840 1.01084i
\(807\) −25.6779 1.32203i −0.903904 0.0465378i
\(808\) 21.8879 12.6370i 0.770013 0.444567i
\(809\) 33.5971 1.18121 0.590605 0.806961i \(-0.298889\pi\)
0.590605 + 0.806961i \(0.298889\pi\)
\(810\) 19.4405 + 4.05748i 0.683068 + 0.142565i
\(811\) 13.9011i 0.488134i 0.969758 + 0.244067i \(0.0784817\pi\)
−0.969758 + 0.244067i \(0.921518\pi\)
\(812\) 6.83558 3.94652i 0.239882 0.138496i
\(813\) −1.72313 + 33.4684i −0.0604328 + 1.17379i
\(814\) 29.8911 + 17.2577i 1.04768 + 0.604881i
\(815\) 4.60449 7.97521i 0.161288 0.279360i
\(816\) 20.3749 + 39.8973i 0.713266 + 1.39669i
\(817\) 30.6041 17.6693i 1.07070 0.618170i
\(818\) 5.91002 0.206639
\(819\) 7.81161 7.20281i 0.272960 0.251687i
\(820\) −10.1843 −0.355651
\(821\) 36.3185 20.9685i 1.26753 0.731806i 0.293007 0.956110i \(-0.405344\pi\)
0.974519 + 0.224304i \(0.0720109\pi\)
\(822\) 42.1487 65.0342i 1.47010 2.26833i
\(823\) −22.4560 + 38.8949i −0.782766 + 1.35579i 0.147558 + 0.989053i \(0.452859\pi\)
−0.930324 + 0.366737i \(0.880475\pi\)
\(824\) −15.7411 9.08815i −0.548368 0.316601i
\(825\) −17.6443 11.4352i −0.614294 0.398124i
\(826\) −6.68552 + 3.85988i −0.232619 + 0.134303i
\(827\) 17.5703i 0.610980i −0.952195 0.305490i \(-0.901180\pi\)
0.952195 0.305490i \(-0.0988202\pi\)
\(828\) −23.4875 52.4937i −0.816248 1.82428i
\(829\) 0.797445 0.0276964 0.0138482 0.999904i \(-0.495592\pi\)
0.0138482 + 0.999904i \(0.495592\pi\)
\(830\) 10.5544 6.09360i 0.366350 0.211512i
\(831\) 0.926024 + 1.81330i 0.0321234 + 0.0629026i
\(832\) −21.2046 + 7.12486i −0.735137 + 0.247010i
\(833\) −16.1242 + 27.9279i −0.558670 + 0.967644i
\(834\) −1.07034 + 20.7893i −0.0370630 + 0.719875i
\(835\) −5.88255 10.1889i −0.203574 0.352601i
\(836\) −85.9222 −2.97168
\(837\) 40.8259 + 32.8740i 1.41115 + 1.13629i
\(838\) 82.4710i 2.84891i
\(839\) 14.4922 8.36709i 0.500327 0.288864i −0.228522 0.973539i \(-0.573389\pi\)
0.728849 + 0.684675i \(0.240056\pi\)
\(840\) 0.412516 8.01230i 0.0142332 0.276451i
\(841\) 12.6138 21.8477i 0.434959 0.753371i
\(842\) −30.1051 + 52.1436i −1.03749 + 1.79699i
\(843\) 7.06635 3.60868i 0.243378 0.124289i
\(844\) 22.6831 + 39.2882i 0.780783 + 1.35236i
\(845\) 11.4896 1.44032i 0.395254 0.0495485i
\(846\) 19.2399 26.5842i 0.661483 0.913985i
\(847\) 2.62513i 0.0902006i
\(848\) −15.2677 26.4444i −0.524295 0.908106i
\(849\) 0.0299862 0.0462679i 0.00102912 0.00158791i
\(850\) −48.2243 27.8423i −1.65408 0.954983i
\(851\) −19.3749 11.1861i −0.664163 0.383455i
\(852\) −40.2698 26.0989i −1.37962 0.894133i
\(853\) 19.7398 11.3968i 0.675876 0.390217i −0.122423 0.992478i \(-0.539067\pi\)
0.798300 + 0.602261i \(0.205733\pi\)
\(854\) −13.4346 −0.459724
\(855\) −11.2759 + 15.5801i −0.385627 + 0.532829i
\(856\) 12.3914i 0.423531i
\(857\) −21.7623 37.6934i −0.743386 1.28758i −0.950945 0.309360i \(-0.899885\pi\)
0.207559 0.978223i \(-0.433448\pi\)
\(858\) −11.0835 + 43.2469i −0.378386 + 1.47643i
\(859\) 8.51911 14.7555i 0.290668 0.503452i −0.683300 0.730138i \(-0.739456\pi\)
0.973968 + 0.226686i \(0.0727890\pi\)
\(860\) −15.6689 9.04647i −0.534307 0.308482i
\(861\) −4.69623 0.241787i −0.160047 0.00824007i
\(862\) −15.0384 26.0472i −0.512209 0.887172i
\(863\) 47.3664i 1.61237i 0.591663 + 0.806186i \(0.298472\pi\)
−0.591663 + 0.806186i \(0.701528\pi\)
\(864\) 5.67963 + 4.57338i 0.193225 + 0.155589i
\(865\) 10.1796i 0.346116i
\(866\) −28.4758 + 16.4405i −0.967646 + 0.558671i
\(867\) −19.9845 1.02891i −0.678708 0.0349435i
\(868\) 20.4970 35.5018i 0.695713 1.20501i
\(869\) 11.8649 + 6.85023i 0.402491 + 0.232378i
\(870\) 3.37615 + 6.61103i 0.114462 + 0.224135i
\(871\) −12.8569 2.59880i −0.435640 0.0880571i
\(872\) 54.0637 1.83083
\(873\) −0.674569 + 0.301826i −0.0228307 + 0.0102153i
\(874\) 82.6180 2.79460
\(875\) 4.02785 + 6.97645i 0.136166 + 0.235847i
\(876\) −56.1600 36.3973i −1.89747 1.22975i
\(877\) −40.4664 23.3633i −1.36645 0.788922i −0.375980 0.926628i \(-0.622694\pi\)
−0.990473 + 0.137706i \(0.956027\pi\)
\(878\) 28.1078 + 16.2281i 0.948593 + 0.547670i
\(879\) 15.8549 + 10.2755i 0.534771 + 0.346586i
\(880\) 6.22094 + 10.7750i 0.209708 + 0.363225i
\(881\) −15.7253 −0.529797 −0.264899 0.964276i \(-0.585338\pi\)
−0.264899 + 0.964276i \(0.585338\pi\)
\(882\) −4.60617 + 44.6143i −0.155098 + 1.50224i
\(883\) −24.3745 −0.820269 −0.410134 0.912025i \(-0.634518\pi\)
−0.410134 + 0.912025i \(0.634518\pi\)
\(884\) −15.7914 + 78.1237i −0.531121 + 2.62759i
\(885\) −2.22592 4.35869i −0.0748234 0.146516i
\(886\) 73.8851 + 42.6576i 2.48222 + 1.43311i
\(887\) 1.96001 3.39484i 0.0658107 0.113987i −0.831243 0.555910i \(-0.812370\pi\)
0.897053 + 0.441922i \(0.145703\pi\)
\(888\) 44.2107 + 2.27620i 1.48362 + 0.0763844i
\(889\) −6.45050 + 3.72420i −0.216343 + 0.124906i
\(890\) 38.8003i 1.30059i
\(891\) −24.6710 + 8.11660i −0.826511 + 0.271916i
\(892\) 53.1279i 1.77885i
\(893\) 15.8901 + 27.5224i 0.531741 + 0.921002i
\(894\) −52.5682 2.70649i −1.75814 0.0905186i
\(895\) 0.116088 + 0.0670235i 0.00388040 + 0.00224035i
\(896\) −8.92756 + 15.4630i −0.298249 + 0.516582i
\(897\) 7.18415 28.0319i 0.239872 0.935957i
\(898\) −6.59435 11.4217i −0.220056 0.381149i
\(899\) 19.5926i 0.653450i
\(900\) −51.9312 5.36160i −1.73104 0.178720i
\(901\) 33.7097 1.12303
\(902\) 17.1109 9.87899i 0.569731 0.328934i
\(903\) −7.01055 4.54354i −0.233296 0.151200i
\(904\) −5.54985 3.20420i −0.184585 0.106570i
\(905\) −16.9876 9.80779i −0.564687 0.326022i
\(906\) −12.9919 + 20.0462i −0.431628 + 0.665989i
\(907\) −21.7796 37.7234i −0.723181 1.25259i −0.959718 0.280964i \(-0.909346\pi\)
0.236537 0.971622i \(-0.423987\pi\)
\(908\) 97.7044i 3.24243i
\(909\) 5.84966 + 13.0738i 0.194021 + 0.433629i
\(910\) 5.17123 5.85996i 0.171424 0.194256i
\(911\) 14.0645 + 24.3604i 0.465976 + 0.807095i 0.999245 0.0388513i \(-0.0123699\pi\)
−0.533269 + 0.845946i \(0.679037\pi\)
\(912\) −53.7379 + 27.4431i −1.77944 + 0.908733i
\(913\) −7.96916 + 13.8030i −0.263741 + 0.456812i
\(914\) −15.3463 + 26.5806i −0.507611 + 0.879208i
\(915\) 0.437934 8.50601i 0.0144777 0.281200i
\(916\) −44.5609 + 25.7273i −1.47234 + 0.850053i
\(917\) 18.4797i 0.610252i
\(918\) −64.1469 + 24.8270i −2.11716 + 0.819414i
\(919\) −17.9402 −0.591793 −0.295897 0.955220i \(-0.595618\pi\)
−0.295897 + 0.955220i \(0.595618\pi\)
\(920\) −10.9249 18.9225i −0.360184 0.623856i
\(921\) 0.614818 11.9416i 0.0202589 0.393490i
\(922\) −16.1095 + 27.9024i −0.530538 + 0.918918i
\(923\) −7.69095 22.8894i −0.253151 0.753412i
\(924\) 9.23821 + 18.0899i 0.303915 + 0.595112i
\(925\) −17.5888 + 10.1549i −0.578316 + 0.333891i
\(926\) −15.9153 −0.523008
\(927\) 6.03916 8.34443i 0.198352 0.274067i
\(928\) 2.72569i 0.0894752i
\(929\) 37.2632 21.5139i 1.22257 0.705849i 0.257101 0.966384i \(-0.417233\pi\)
0.965464 + 0.260536i \(0.0838992\pi\)
\(930\) 32.3533 + 20.9682i 1.06090 + 0.687573i
\(931\) −37.6162 21.7177i −1.23282 0.711770i
\(932\) −38.8503 + 67.2906i −1.27258 + 2.20418i
\(933\) −14.5032 + 22.3780i −0.474813 + 0.732623i
\(934\) 29.9492 17.2912i 0.979967 0.565784i
\(935\) −13.7353 −0.449191
\(936\) 12.5672 + 55.8650i 0.410773 + 1.82601i
\(937\) 20.5616 0.671719 0.335860 0.941912i \(-0.390973\pi\)
0.335860 + 0.941912i \(0.390973\pi\)
\(938\) −7.66699 + 4.42654i −0.250336 + 0.144532i
\(939\) −13.6609 26.7501i −0.445805 0.872956i
\(940\) 8.13553 14.0912i 0.265352 0.459603i
\(941\) 31.2579 + 18.0468i 1.01898 + 0.588308i 0.913808 0.406147i \(-0.133128\pi\)
0.105171 + 0.994454i \(0.466461\pi\)
\(942\) −0.893625 + 17.3569i −0.0291159 + 0.565518i
\(943\) −11.0910 + 6.40338i −0.361172 + 0.208523i
\(944\) 15.3550i 0.499761i
\(945\) 4.49257 + 0.698848i 0.146143 + 0.0227335i
\(946\) 35.1011 1.14123
\(947\) −5.32031 + 3.07168i −0.172887 + 0.0998163i −0.583946 0.811792i \(-0.698492\pi\)
0.411059 + 0.911609i \(0.365159\pi\)
\(948\) 33.9733 + 1.74913i 1.10340 + 0.0568090i
\(949\) −10.7257 31.9213i −0.348172 1.03621i
\(950\) 37.5009 64.9535i 1.21669 2.10737i
\(951\) −16.4057 + 8.37814i −0.531991 + 0.271680i
\(952\) 13.8939 + 24.0649i 0.450302 + 0.779947i
\(953\) 19.7667 0.640305 0.320152 0.947366i \(-0.396266\pi\)
0.320152 + 0.947366i \(0.396266\pi\)
\(954\) 42.7954 19.1482i 1.38555 0.619944i
\(955\) 17.7767i 0.575240i
\(956\) 70.8766 40.9206i 2.29231 1.32347i
\(957\) −8.14669 5.27987i −0.263345 0.170674i
\(958\) 42.8882 74.2846i 1.38566 2.40003i
\(959\) 8.87119 15.3654i 0.286466 0.496173i
\(960\) −8.03239 5.20579i −0.259244 0.168016i
\(961\) 35.3789 + 61.2780i 1.14125 + 1.97671i
\(962\) 32.3344 + 28.5341i 1.04250 + 0.919976i
\(963\) −6.98512 0.721173i −0.225092 0.0232395i
\(964\) 47.1267i 1.51785i
\(965\) 4.47689 + 7.75420i 0.144116 + 0.249617i
\(966\) −8.88296 17.3942i −0.285805 0.559650i
\(967\) 26.4324 + 15.2608i 0.850009 + 0.490753i 0.860654 0.509190i \(-0.170055\pi\)
−0.0106449 + 0.999943i \(0.503388\pi\)
\(968\) 12.2516 + 7.07344i 0.393780 + 0.227349i
\(969\) 3.42502 66.5242i 0.110027 2.13706i
\(970\) −0.470745 + 0.271784i −0.0151147 + 0.00872647i
\(971\) −4.05102 −0.130004 −0.0650018 0.997885i \(-0.520705\pi\)
−0.0650018 + 0.997885i \(0.520705\pi\)
\(972\) −45.3900 + 45.8095i −1.45588 + 1.46934i
\(973\) 4.76581i 0.152785i
\(974\) −7.16940 12.4178i −0.229722 0.397891i
\(975\) −18.7775 18.3720i −0.601360 0.588374i
\(976\) 13.3610 23.1420i 0.427677 0.740758i
\(977\) 25.1440 + 14.5169i 0.804426 + 0.464436i 0.845017 0.534740i \(-0.179590\pi\)
−0.0405902 + 0.999176i \(0.512924\pi\)
\(978\) 20.1758 + 39.5074i 0.645151 + 1.26331i
\(979\) 25.3714 + 43.9445i 0.810872 + 1.40447i
\(980\) 22.2385i 0.710382i
\(981\) −3.14647 + 30.4760i −0.100459 + 0.973022i
\(982\) 61.7447i 1.97035i
\(983\) 5.23002 3.01955i 0.166812 0.0963088i −0.414270 0.910154i \(-0.635963\pi\)
0.581082 + 0.813845i \(0.302630\pi\)
\(984\) 13.7824 21.2659i 0.439368 0.677932i
\(985\) −1.75793 + 3.04482i −0.0560122 + 0.0970160i
\(986\) −22.2661 12.8553i −0.709096 0.409397i
\(987\) 4.08603 6.30462i 0.130060 0.200678i
\(988\) −105.225 21.2695i −3.34766 0.676672i
\(989\) −22.7519 −0.723467
\(990\) −17.4373 + 7.80205i −0.554193 + 0.247966i
\(991\) −49.4199 −1.56987 −0.784937 0.619575i \(-0.787305\pi\)
−0.784937 + 0.619575i \(0.787305\pi\)
\(992\) 7.07818 + 12.2598i 0.224732 + 0.389248i
\(993\) 48.8666 24.9554i 1.55073 0.791936i
\(994\) −14.1141 8.14879i −0.447673 0.258464i
\(995\) 8.85169 + 5.11052i 0.280617 + 0.162014i
\(996\) −2.03483 + 39.5226i −0.0644762 + 1.25232i
\(997\) 10.6174 + 18.3899i 0.336257 + 0.582414i 0.983725 0.179678i \(-0.0575056\pi\)
−0.647469 + 0.762092i \(0.724172\pi\)
\(998\) 98.6419 3.12246
\(999\) −3.85614 + 24.7893i −0.122003 + 0.784300i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.2.t.c.103.10 yes 20
3.2 odd 2 351.2.t.c.64.1 20
9.2 odd 6 351.2.t.c.181.10 20
9.4 even 3 1053.2.b.j.649.10 10
9.5 odd 6 1053.2.b.i.649.1 10
9.7 even 3 inner 117.2.t.c.25.1 20
13.12 even 2 inner 117.2.t.c.103.1 yes 20
39.38 odd 2 351.2.t.c.64.10 20
117.25 even 6 inner 117.2.t.c.25.10 yes 20
117.38 odd 6 351.2.t.c.181.1 20
117.77 odd 6 1053.2.b.i.649.10 10
117.103 even 6 1053.2.b.j.649.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.t.c.25.1 20 9.7 even 3 inner
117.2.t.c.25.10 yes 20 117.25 even 6 inner
117.2.t.c.103.1 yes 20 13.12 even 2 inner
117.2.t.c.103.10 yes 20 1.1 even 1 trivial
351.2.t.c.64.1 20 3.2 odd 2
351.2.t.c.64.10 20 39.38 odd 2
351.2.t.c.181.1 20 117.38 odd 6
351.2.t.c.181.10 20 9.2 odd 6
1053.2.b.i.649.1 10 9.5 odd 6
1053.2.b.i.649.10 10 117.77 odd 6
1053.2.b.j.649.1 10 117.103 even 6
1053.2.b.j.649.10 10 9.4 even 3