gp: [N,k,chi] = [1064,2,Mod(1,1064)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1064, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1064.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,2,0,1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 − x 3 − 8 x 2 + 9 x + 3 x^{4} - x^{3} - 8x^{2} + 9x + 3 x 4 − x 3 − 8 x 2 + 9 x + 3
x^4 - x^3 - 8*x^2 + 9*x + 3
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( ν 3 − 6 ν + 1 ) / 2 ( \nu^{3} - 6\nu + 1 ) / 2 ( ν 3 − 6 ν + 1 ) / 2
(v^3 - 6*v + 1) / 2
β 3 \beta_{3} β 3 = = =
ν 2 − 4 \nu^{2} - 4 ν 2 − 4
v^2 - 4
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 3 + 4 \beta_{3} + 4 β 3 + 4
b3 + 4
ν 3 \nu^{3} ν 3 = = =
2 β 2 + 6 β 1 − 1 2\beta_{2} + 6\beta _1 - 1 2 β 2 + 6 β 1 − 1
2*b2 + 6*b1 - 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
7 7 7
− 1 -1 − 1
19 19 1 9
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 3 2 − T 3 − 3 T_{3}^{2} - T_{3} - 3 T 3 2 − T 3 − 3
T3^2 - T3 - 3
acting on S 2 n e w ( Γ 0 ( 1064 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(1064)) S 2 n e w ( Γ 0 ( 1 0 6 4 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 T^{4} T 4
T^4
3 3 3
( T 2 − T − 3 ) 2 (T^{2} - T - 3)^{2} ( T 2 − T − 3 ) 2
(T^2 - T - 3)^2
5 5 5
T 4 − T 3 − 8 T 2 + ⋯ + 3 T^{4} - T^{3} - 8 T^{2} + \cdots + 3 T 4 − T 3 − 8 T 2 + ⋯ + 3
T^4 - T^3 - 8*T^2 + 9*T + 3
7 7 7
( T − 1 ) 4 (T - 1)^{4} ( T − 1 ) 4
(T - 1)^4
11 11 1 1
T 4 − 2 T 3 + ⋯ + 79 T^{4} - 2 T^{3} + \cdots + 79 T 4 − 2 T 3 + ⋯ + 7 9
T^4 - 2*T^3 - 27*T^2 + 28*T + 79
13 13 1 3
T 4 − 2 T 3 + ⋯ + 4 T^{4} - 2 T^{3} + \cdots + 4 T 4 − 2 T 3 + ⋯ + 4
T^4 - 2*T^3 - 21*T^2 + 22*T + 4
17 17 1 7
T 4 − 3 T 3 + ⋯ + 64 T^{4} - 3 T^{3} + \cdots + 64 T 4 − 3 T 3 + ⋯ + 6 4
T^4 - 3*T^3 - 17*T^2 + 24*T + 64
19 19 1 9
( T − 1 ) 4 (T - 1)^{4} ( T − 1 ) 4
(T - 1)^4
23 23 2 3
T 4 − 6 T 3 + ⋯ − 36 T^{4} - 6 T^{3} + \cdots - 36 T 4 − 6 T 3 + ⋯ − 3 6
T^4 - 6*T^3 - 9*T^2 + 54*T - 36
29 29 2 9
T 4 − 53 T 2 + ⋯ − 29 T^{4} - 53 T^{2} + \cdots - 29 T 4 − 5 3 T 2 + ⋯ − 2 9
T^4 - 53*T^2 + 78*T - 29
31 31 3 1
T 4 − 17 T 3 + ⋯ − 636 T^{4} - 17 T^{3} + \cdots - 636 T 4 − 1 7 T 3 + ⋯ − 6 3 6
T^4 - 17*T^3 + 67*T^2 + 108*T - 636
37 37 3 7
T 4 − 3 T 3 + ⋯ + 1543 T^{4} - 3 T^{3} + \cdots + 1543 T 4 − 3 T 3 + ⋯ + 1 5 4 3
T^4 - 3*T^3 - 86*T^2 + 69*T + 1543
41 41 4 1
T 4 − 8 T 3 + ⋯ − 69 T^{4} - 8 T^{3} + \cdots - 69 T 4 − 8 T 3 + ⋯ − 6 9
T^4 - 8*T^3 - 29*T^2 + 102*T - 69
43 43 4 3
T 4 − 7 T 3 + ⋯ + 1156 T^{4} - 7 T^{3} + \cdots + 1156 T 4 − 7 T 3 + ⋯ + 1 1 5 6
T^4 - 7*T^3 - 111*T^2 + 680*T + 1156
47 47 4 7
T 4 − 5 T 3 + ⋯ − 87 T^{4} - 5 T^{3} + \cdots - 87 T 4 − 5 T 3 + ⋯ − 8 7
T^4 - 5*T^3 - 32*T^2 + 159*T - 87
53 53 5 3
T 4 + 16 T 3 + ⋯ − 23 T^{4} + 16 T^{3} + \cdots - 23 T 4 + 1 6 T 3 + ⋯ − 2 3
T^4 + 16*T^3 + 69*T^2 + 40*T - 23
59 59 5 9
T 4 − 7 T 3 + ⋯ + 417 T^{4} - 7 T^{3} + \cdots + 417 T 4 − 7 T 3 + ⋯ + 4 1 7
T^4 - 7*T^3 - 110*T^2 + 111*T + 417
61 61 6 1
T 4 + T 3 + ⋯ + 2643 T^{4} + T^{3} + \cdots + 2643 T 4 + T 3 + ⋯ + 2 6 4 3
T^4 + T^3 - 116*T^2 - 141*T + 2643
67 67 6 7
T 4 − 7 T 3 + ⋯ + 2532 T^{4} - 7 T^{3} + \cdots + 2532 T 4 − 7 T 3 + ⋯ + 2 5 3 2
T^4 - 7*T^3 - 161*T^2 + 348*T + 2532
71 71 7 1
T 4 − 27 T 3 + ⋯ − 6269 T^{4} - 27 T^{3} + \cdots - 6269 T 4 − 2 7 T 3 + ⋯ − 6 2 6 9
T^4 - 27*T^3 + 154*T^2 + 825*T - 6269
73 73 7 3
T 4 + T 3 + ⋯ − 108 T^{4} + T^{3} + \cdots - 108 T 4 + T 3 + ⋯ − 1 0 8
T^4 + T^3 - 101*T^2 - 270*T - 108
79 79 7 9
T 4 − 15 T 3 + ⋯ + 412 T^{4} - 15 T^{3} + \cdots + 412 T 4 − 1 5 T 3 + ⋯ + 4 1 2
T^4 - 15*T^3 - 71*T^2 + 540*T + 412
83 83 8 3
T 4 − 3 T 3 + ⋯ + 1296 T^{4} - 3 T^{3} + \cdots + 1296 T 4 − 3 T 3 + ⋯ + 1 2 9 6
T^4 - 3*T^3 - 189*T^2 - 108*T + 1296
89 89 8 9
T 4 + 9 T 3 + ⋯ + 324 T^{4} + 9 T^{3} + \cdots + 324 T 4 + 9 T 3 + ⋯ + 3 2 4
T^4 + 9*T^3 - 45*T^2 - 162*T + 324
97 97 9 7
T 4 − 3 T 3 + ⋯ + 7747 T^{4} - 3 T^{3} + \cdots + 7747 T 4 − 3 T 3 + ⋯ + 7 7 4 7
T^4 - 3*T^3 - 212*T^2 + 375*T + 7747
show more
show less