Properties

Label 7448.2.a.bj
Level 74487448
Weight 22
Character orbit 7448.a
Self dual yes
Analytic conductor 59.47359.473
Analytic rank 11
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7448,2,Mod(1,7448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7448, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7448.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 7448=237219 7448 = 2^{3} \cdot 7^{2} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 7448.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 59.472579425459.4725794254
Analytic rank: 11
Dimension: 44
Coefficient field: 4.4.25857.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x38x2+9x+3 x^{4} - x^{3} - 8x^{2} + 9x + 3 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 1064)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β21)q3+(β2+β11)q5+(β2+1)q9+(β3+β2β1+1)q11+(β3β1)q13+(β3+2)q15+(β31)q17++(β2+3β11)q99+O(q100) q + ( - \beta_{2} - 1) q^{3} + ( - \beta_{2} + \beta_1 - 1) q^{5} + (\beta_{2} + 1) q^{9} + (\beta_{3} + \beta_{2} - \beta_1 + 1) q^{11} + ( - \beta_{3} - \beta_1) q^{13} + ( - \beta_{3} + 2) q^{15} + (\beta_{3} - 1) q^{17}+ \cdots + ( - \beta_{2} + 3 \beta_1 - 1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q3q5+2q9+2q112q13+7q153q174q19+6q233q258q2717q31q33+3q37+q398q41+7q437q455q47++q99+O(q100) 4 q - 2 q^{3} - q^{5} + 2 q^{9} + 2 q^{11} - 2 q^{13} + 7 q^{15} - 3 q^{17} - 4 q^{19} + 6 q^{23} - 3 q^{25} - 8 q^{27} - 17 q^{31} - q^{33} + 3 q^{37} + q^{39} - 8 q^{41} + 7 q^{43} - 7 q^{45} - 5 q^{47}+ \cdots + q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4x38x2+9x+3 x^{4} - x^{3} - 8x^{2} + 9x + 3 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν36ν+1)/2 ( \nu^{3} - 6\nu + 1 ) / 2 Copy content Toggle raw display
β3\beta_{3}== ν24 \nu^{2} - 4 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β3+4 \beta_{3} + 4 Copy content Toggle raw display
ν3\nu^{3}== 2β2+6β11 2\beta_{2} + 6\beta _1 - 1 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−0.270905
2.57368
−2.82557
1.52280
0 −2.30278 0 −2.57368 0 0 0 2.30278 0
1.2 0 −2.30278 0 0.270905 0 0 0 2.30278 0
1.3 0 1.30278 0 −1.52280 0 0 0 −1.30278 0
1.4 0 1.30278 0 2.82557 0 0 0 −1.30278 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
77 1 -1
1919 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7448.2.a.bj 4
7.b odd 2 1 1064.2.a.h 4
21.c even 2 1 9576.2.a.ci 4
28.d even 2 1 2128.2.a.t 4
56.e even 2 1 8512.2.a.bu 4
56.h odd 2 1 8512.2.a.bq 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1064.2.a.h 4 7.b odd 2 1
2128.2.a.t 4 28.d even 2 1
7448.2.a.bj 4 1.a even 1 1 trivial
8512.2.a.bq 4 56.h odd 2 1
8512.2.a.bu 4 56.e even 2 1
9576.2.a.ci 4 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(7448))S_{2}^{\mathrm{new}}(\Gamma_0(7448)):

T32+T33 T_{3}^{2} + T_{3} - 3 Copy content Toggle raw display
T54+T538T529T5+3 T_{5}^{4} + T_{5}^{3} - 8T_{5}^{2} - 9T_{5} + 3 Copy content Toggle raw display
T1142T11327T112+28T11+79 T_{11}^{4} - 2T_{11}^{3} - 27T_{11}^{2} + 28T_{11} + 79 Copy content Toggle raw display
T134+2T13321T13222T13+4 T_{13}^{4} + 2T_{13}^{3} - 21T_{13}^{2} - 22T_{13} + 4 Copy content Toggle raw display
T174+3T17317T17224T17+64 T_{17}^{4} + 3T_{17}^{3} - 17T_{17}^{2} - 24T_{17} + 64 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T2+T3)2 (T^{2} + T - 3)^{2} Copy content Toggle raw display
55 T4+T38T2++3 T^{4} + T^{3} - 8 T^{2} + \cdots + 3 Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 T42T3++79 T^{4} - 2 T^{3} + \cdots + 79 Copy content Toggle raw display
1313 T4+2T3++4 T^{4} + 2 T^{3} + \cdots + 4 Copy content Toggle raw display
1717 T4+3T3++64 T^{4} + 3 T^{3} + \cdots + 64 Copy content Toggle raw display
1919 (T+1)4 (T + 1)^{4} Copy content Toggle raw display
2323 T46T3+36 T^{4} - 6 T^{3} + \cdots - 36 Copy content Toggle raw display
2929 T453T2+29 T^{4} - 53 T^{2} + \cdots - 29 Copy content Toggle raw display
3131 T4+17T3+636 T^{4} + 17 T^{3} + \cdots - 636 Copy content Toggle raw display
3737 T43T3++1543 T^{4} - 3 T^{3} + \cdots + 1543 Copy content Toggle raw display
4141 T4+8T3+69 T^{4} + 8 T^{3} + \cdots - 69 Copy content Toggle raw display
4343 T47T3++1156 T^{4} - 7 T^{3} + \cdots + 1156 Copy content Toggle raw display
4747 T4+5T3+87 T^{4} + 5 T^{3} + \cdots - 87 Copy content Toggle raw display
5353 T4+16T3+23 T^{4} + 16 T^{3} + \cdots - 23 Copy content Toggle raw display
5959 T4+7T3++417 T^{4} + 7 T^{3} + \cdots + 417 Copy content Toggle raw display
6161 T4T3++2643 T^{4} - T^{3} + \cdots + 2643 Copy content Toggle raw display
6767 T47T3++2532 T^{4} - 7 T^{3} + \cdots + 2532 Copy content Toggle raw display
7171 T427T3+6269 T^{4} - 27 T^{3} + \cdots - 6269 Copy content Toggle raw display
7373 T4T3+108 T^{4} - T^{3} + \cdots - 108 Copy content Toggle raw display
7979 T415T3++412 T^{4} - 15 T^{3} + \cdots + 412 Copy content Toggle raw display
8383 T4+3T3++1296 T^{4} + 3 T^{3} + \cdots + 1296 Copy content Toggle raw display
8989 T49T3++324 T^{4} - 9 T^{3} + \cdots + 324 Copy content Toggle raw display
9797 T4+3T3++7747 T^{4} + 3 T^{3} + \cdots + 7747 Copy content Toggle raw display
show more
show less