Properties

Label 7448.2
Level 7448
Weight 2
Dimension 905709
Nonzero newspaces 96
Sturm bound 6773760

Downloads

Learn more

Defining parameters

Level: N N = 7448=237219 7448 = 2^{3} \cdot 7^{2} \cdot 19
Weight: k k = 2 2
Nonzero newspaces: 96 96
Sturm bound: 67737606773760

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(7448))M_{2}(\Gamma_1(7448)).

Total New Old
Modular forms 1706400 912305 794095
Cusp forms 1680481 905709 774772
Eisenstein series 25919 6596 19323

Decomposition of S2new(Γ1(7448))S_{2}^{\mathrm{new}}(\Gamma_1(7448))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
7448.2.a χ7448(1,)\chi_{7448}(1, \cdot) 7448.2.a.a 1 1
7448.2.a.b 1
7448.2.a.c 1
7448.2.a.d 1
7448.2.a.e 1
7448.2.a.f 1
7448.2.a.g 1
7448.2.a.h 1
7448.2.a.i 1
7448.2.a.j 1
7448.2.a.k 1
7448.2.a.l 1
7448.2.a.m 1
7448.2.a.n 1
7448.2.a.o 1
7448.2.a.p 1
7448.2.a.q 1
7448.2.a.r 1
7448.2.a.s 1
7448.2.a.t 1
7448.2.a.u 1
7448.2.a.v 1
7448.2.a.w 2
7448.2.a.x 2
7448.2.a.y 2
7448.2.a.z 2
7448.2.a.ba 2
7448.2.a.bb 2
7448.2.a.bc 2
7448.2.a.bd 2
7448.2.a.be 2
7448.2.a.bf 3
7448.2.a.bg 3
7448.2.a.bh 3
7448.2.a.bi 3
7448.2.a.bj 4
7448.2.a.bk 4
7448.2.a.bl 5
7448.2.a.bm 6
7448.2.a.bn 6
7448.2.a.bo 7
7448.2.a.bp 7
7448.2.a.bq 8
7448.2.a.br 8
7448.2.a.bs 11
7448.2.a.bt 11
7448.2.a.bu 14
7448.2.a.bv 14
7448.2.a.bw 14
7448.2.a.bx 14
7448.2.b χ7448(3725,)\chi_{7448}(3725, \cdot) n/a 738 1
7448.2.e χ7448(6763,)\chi_{7448}(6763, \cdot) n/a 810 1
7448.2.f χ7448(1861,)\chi_{7448}(1861, \cdot) n/a 792 1
7448.2.i χ7448(2547,)\chi_{7448}(2547, \cdot) n/a 720 1
7448.2.j χ7448(6271,)\chi_{7448}(6271, \cdot) None 0 1
7448.2.m χ7448(5585,)\chi_{7448}(5585, \cdot) n/a 200 1
7448.2.n χ7448(3039,)\chi_{7448}(3039, \cdot) None 0 1
7448.2.q χ7448(3497,)\chi_{7448}(3497, \cdot) n/a 360 2
7448.2.r χ7448(1569,)\chi_{7448}(1569, \cdot) n/a 410 2
7448.2.s χ7448(3313,)\chi_{7448}(3313, \cdot) n/a 400 2
7448.2.t χ7448(961,)\chi_{7448}(961, \cdot) n/a 400 2
7448.2.u χ7448(2971,)\chi_{7448}(2971, \cdot) n/a 1584 2
7448.2.x χ7448(901,)\chi_{7448}(901, \cdot) n/a 1584 2
7448.2.y χ7448(4587,)\chi_{7448}(4587, \cdot) n/a 1584 2
7448.2.bb χ7448(3693,)\chi_{7448}(3693, \cdot) n/a 1584 2
7448.2.bc χ7448(521,)\chi_{7448}(521, \cdot) n/a 400 2
7448.2.bf χ7448(3351,)\chi_{7448}(3351, \cdot) None 0 2
7448.2.bh χ7448(1471,)\chi_{7448}(1471, \cdot) None 0 2
7448.2.bj χ7448(2431,)\chi_{7448}(2431, \cdot) None 0 2
7448.2.bn χ7448(391,)\chi_{7448}(391, \cdot) None 0 2
7448.2.bp χ7448(2089,)\chi_{7448}(2089, \cdot) n/a 400 2
7448.2.bq χ7448(2775,)\chi_{7448}(2775, \cdot) None 0 2
7448.2.bs χ7448(1665,)\chi_{7448}(1665, \cdot) n/a 400 2
7448.2.bw χ7448(4967,)\chi_{7448}(4967, \cdot) None 0 2
7448.2.bx χ7448(1243,)\chi_{7448}(1243, \cdot) n/a 1584 2
7448.2.ca χ7448(1341,)\chi_{7448}(1341, \cdot) n/a 1584 2
7448.2.cc χ7448(293,)\chi_{7448}(293, \cdot) n/a 1584 2
7448.2.ce χ7448(3155,)\chi_{7448}(3155, \cdot) n/a 1440 2
7448.2.cf χ7448(2469,)\chi_{7448}(2469, \cdot) n/a 1584 2
7448.2.ch χ7448(4115,)\chi_{7448}(4115, \cdot) n/a 1584 2
7448.2.ck χ7448(197,)\chi_{7448}(197, \cdot) n/a 1620 2
7448.2.cm χ7448(2811,)\chi_{7448}(2811, \cdot) n/a 1584 2
7448.2.cn χ7448(3117,)\chi_{7448}(3117, \cdot) n/a 1440 2
7448.2.cp χ7448(2843,)\chi_{7448}(2843, \cdot) n/a 1620 2
7448.2.cr χ7448(619,)\chi_{7448}(619, \cdot) n/a 1584 2
7448.2.cu χ7448(4245,)\chi_{7448}(4245, \cdot) n/a 1584 2
7448.2.cx χ7448(863,)\chi_{7448}(863, \cdot) None 0 2
7448.2.cy χ7448(4625,)\chi_{7448}(4625, \cdot) n/a 400 2
7448.2.db χ7448(999,)\chi_{7448}(999, \cdot) None 0 2
7448.2.dc χ7448(1065,)\chi_{7448}(1065, \cdot) n/a 1512 6
7448.2.dd χ7448(785,)\chi_{7448}(785, \cdot) n/a 1230 6
7448.2.de χ7448(177,)\chi_{7448}(177, \cdot) n/a 1200 6
7448.2.df χ7448(1745,)\chi_{7448}(1745, \cdot) n/a 1200 6
7448.2.di χ7448(911,)\chi_{7448}(911, \cdot) None 0 6
7448.2.dj χ7448(265,)\chi_{7448}(265, \cdot) n/a 1680 6
7448.2.dm χ7448(951,)\chi_{7448}(951, \cdot) None 0 6
7448.2.dn χ7448(419,)\chi_{7448}(419, \cdot) n/a 6048 6
7448.2.dq χ7448(797,)\chi_{7448}(797, \cdot) n/a 6696 6
7448.2.dr χ7448(379,)\chi_{7448}(379, \cdot) n/a 6696 6
7448.2.du χ7448(533,)\chi_{7448}(533, \cdot) n/a 6048 6
7448.2.dv χ7448(1783,)\chi_{7448}(1783, \cdot) None 0 6
7448.2.dw χ7448(79,)\chi_{7448}(79, \cdot) None 0 6
7448.2.dz χ7448(117,)\chi_{7448}(117, \cdot) n/a 4752 6
7448.2.ea χ7448(557,)\chi_{7448}(557, \cdot) n/a 4752 6
7448.2.ef χ7448(97,)\chi_{7448}(97, \cdot) n/a 1200 6
7448.2.ei χ7448(3449,)\chi_{7448}(3449, \cdot) n/a 1200 6
7448.2.el χ7448(195,)\chi_{7448}(195, \cdot) n/a 4752 6
7448.2.em χ7448(1275,)\chi_{7448}(1275, \cdot) n/a 4860 6
7448.2.ep χ7448(459,)\chi_{7448}(459, \cdot) n/a 4752 6
7448.2.eq χ7448(1403,)\chi_{7448}(1403, \cdot) n/a 4752 6
7448.2.et χ7448(295,)\chi_{7448}(295, \cdot) None 0 6
7448.2.eu χ7448(783,)\chi_{7448}(783, \cdot) None 0 6
7448.2.ex χ7448(215,)\chi_{7448}(215, \cdot) None 0 6
7448.2.ey χ7448(471,)\chi_{7448}(471, \cdot) None 0 6
7448.2.fb χ7448(1373,)\chi_{7448}(1373, \cdot) n/a 4860 6
7448.2.fc χ7448(1077,)\chi_{7448}(1077, \cdot) n/a 4752 6
7448.2.ff χ7448(325,)\chi_{7448}(325, \cdot) n/a 4752 6
7448.2.fg χ7448(2125,)\chi_{7448}(2125, \cdot) n/a 4752 6
7448.2.fh χ7448(129,)\chi_{7448}(129, \cdot) n/a 1200 6
7448.2.fk χ7448(67,)\chi_{7448}(67, \cdot) n/a 4752 6
7448.2.fl χ7448(803,)\chi_{7448}(803, \cdot) n/a 4752 6
7448.2.fo χ7448(1033,)\chi_{7448}(1033, \cdot) n/a 3360 12
7448.2.fp χ7448(121,)\chi_{7448}(121, \cdot) n/a 3360 12
7448.2.fq χ7448(505,)\chi_{7448}(505, \cdot) n/a 3360 12
7448.2.fr χ7448(305,)\chi_{7448}(305, \cdot) n/a 3024 12
7448.2.fs χ7448(311,)\chi_{7448}(311, \cdot) None 0 12
7448.2.fv χ7448(297,)\chi_{7448}(297, \cdot) n/a 3360 12
7448.2.fw χ7448(487,)\chi_{7448}(487, \cdot) None 0 12
7448.2.fz χ7448(677,)\chi_{7448}(677, \cdot) n/a 13392 12
7448.2.gc χ7448(691,)\chi_{7448}(691, \cdot) n/a 13392 12
7448.2.ge χ7448(715,)\chi_{7448}(715, \cdot) n/a 13392 12
7448.2.gg χ7448(837,)\chi_{7448}(837, \cdot) n/a 12096 12
7448.2.gh χ7448(683,)\chi_{7448}(683, \cdot) n/a 13392 12
7448.2.gj χ7448(1037,)\chi_{7448}(1037, \cdot) n/a 13392 12
7448.2.gm χ7448(83,)\chi_{7448}(83, \cdot) n/a 13392 12
7448.2.go χ7448(341,)\chi_{7448}(341, \cdot) n/a 13392 12
7448.2.gp χ7448(115,)\chi_{7448}(115, \cdot) n/a 12096 12
7448.2.gr χ7448(69,)\chi_{7448}(69, \cdot) n/a 13392 12
7448.2.gt χ7448(277,)\chi_{7448}(277, \cdot) n/a 13392 12
7448.2.gw χ7448(107,)\chi_{7448}(107, \cdot) n/a 13392 12
7448.2.gx χ7448(639,)\chi_{7448}(639, \cdot) None 0 12
7448.2.hb χ7448(601,)\chi_{7448}(601, \cdot) n/a 3360 12
7448.2.hd χ7448(495,)\chi_{7448}(495, \cdot) None 0 12
7448.2.he χ7448(873,)\chi_{7448}(873, \cdot) n/a 3360 12
7448.2.hg χ7448(615,)\chi_{7448}(615, \cdot) None 0 12
7448.2.hk χ7448(151,)\chi_{7448}(151, \cdot) None 0 12
7448.2.hm χ7448(183,)\chi_{7448}(183, \cdot) None 0 12
7448.2.ho χ7448(87,)\chi_{7448}(87, \cdot) None 0 12
7448.2.hr χ7448(145,)\chi_{7448}(145, \cdot) n/a 3360 12
7448.2.hs χ7448(429,)\chi_{7448}(429, \cdot) n/a 13392 12
7448.2.hv χ7448(331,)\chi_{7448}(331, \cdot) n/a 13392 12
7448.2.hw χ7448(829,)\chi_{7448}(829, \cdot) n/a 13392 12
7448.2.hz χ7448(467,)\chi_{7448}(467, \cdot) n/a 13392 12
7448.2.ia χ7448(25,)\chi_{7448}(25, \cdot) n/a 10080 36
7448.2.ib χ7448(169,)\chi_{7448}(169, \cdot) n/a 10080 36
7448.2.ic χ7448(9,)\chi_{7448}(9, \cdot) n/a 10080 36
7448.2.id χ7448(131,)\chi_{7448}(131, \cdot) n/a 40176 36
7448.2.ie χ7448(611,)\chi_{7448}(611, \cdot) n/a 40176 36
7448.2.ih χ7448(33,)\chi_{7448}(33, \cdot) n/a 10080 36
7448.2.im χ7448(13,)\chi_{7448}(13, \cdot) n/a 40176 36
7448.2.in χ7448(85,)\chi_{7448}(85, \cdot) n/a 40176 36
7448.2.iq χ7448(541,)\chi_{7448}(541, \cdot) n/a 40176 36
7448.2.ir χ7448(269,)\chi_{7448}(269, \cdot) n/a 40176 36
7448.2.iu χ7448(55,)\chi_{7448}(55, \cdot) None 0 36
7448.2.iv χ7448(15,)\chi_{7448}(15, \cdot) None 0 36
7448.2.iy χ7448(375,)\chi_{7448}(375, \cdot) None 0 36
7448.2.iz χ7448(47,)\chi_{7448}(47, \cdot) None 0 36
7448.2.jc χ7448(155,)\chi_{7448}(155, \cdot) n/a 40176 36
7448.2.jd χ7448(139,)\chi_{7448}(139, \cdot) n/a 40176 36
7448.2.jg χ7448(283,)\chi_{7448}(283, \cdot) n/a 40176 36
7448.2.jh χ7448(51,)\chi_{7448}(51, \cdot) n/a 40176 36
7448.2.jk χ7448(41,)\chi_{7448}(41, \cdot) n/a 10080 36
7448.2.jn χ7448(89,)\chi_{7448}(89, \cdot) n/a 10080 36
7448.2.jo χ7448(93,)\chi_{7448}(93, \cdot) n/a 40176 36
7448.2.jp χ7448(173,)\chi_{7448}(173, \cdot) n/a 40176 36
7448.2.js χ7448(135,)\chi_{7448}(135, \cdot) None 0 36
7448.2.jt χ7448(199,)\chi_{7448}(199, \cdot) None 0 36

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S2old(Γ1(7448))S_{2}^{\mathrm{old}}(\Gamma_1(7448)) into lower level spaces

S2old(Γ1(7448)) S_{2}^{\mathrm{old}}(\Gamma_1(7448)) \cong S2new(Γ1(1))S_{2}^{\mathrm{new}}(\Gamma_1(1))24^{\oplus 24}\oplusS2new(Γ1(2))S_{2}^{\mathrm{new}}(\Gamma_1(2))18^{\oplus 18}\oplusS2new(Γ1(4))S_{2}^{\mathrm{new}}(\Gamma_1(4))12^{\oplus 12}\oplusS2new(Γ1(7))S_{2}^{\mathrm{new}}(\Gamma_1(7))16^{\oplus 16}\oplusS2new(Γ1(8))S_{2}^{\mathrm{new}}(\Gamma_1(8))6^{\oplus 6}\oplusS2new(Γ1(14))S_{2}^{\mathrm{new}}(\Gamma_1(14))12^{\oplus 12}\oplusS2new(Γ1(19))S_{2}^{\mathrm{new}}(\Gamma_1(19))12^{\oplus 12}\oplusS2new(Γ1(28))S_{2}^{\mathrm{new}}(\Gamma_1(28))8^{\oplus 8}\oplusS2new(Γ1(38))S_{2}^{\mathrm{new}}(\Gamma_1(38))9^{\oplus 9}\oplusS2new(Γ1(49))S_{2}^{\mathrm{new}}(\Gamma_1(49))8^{\oplus 8}\oplusS2new(Γ1(56))S_{2}^{\mathrm{new}}(\Gamma_1(56))4^{\oplus 4}\oplusS2new(Γ1(76))S_{2}^{\mathrm{new}}(\Gamma_1(76))6^{\oplus 6}\oplusS2new(Γ1(98))S_{2}^{\mathrm{new}}(\Gamma_1(98))6^{\oplus 6}\oplusS2new(Γ1(133))S_{2}^{\mathrm{new}}(\Gamma_1(133))8^{\oplus 8}\oplusS2new(Γ1(152))S_{2}^{\mathrm{new}}(\Gamma_1(152))3^{\oplus 3}\oplusS2new(Γ1(196))S_{2}^{\mathrm{new}}(\Gamma_1(196))4^{\oplus 4}\oplusS2new(Γ1(266))S_{2}^{\mathrm{new}}(\Gamma_1(266))6^{\oplus 6}\oplusS2new(Γ1(392))S_{2}^{\mathrm{new}}(\Gamma_1(392))2^{\oplus 2}\oplusS2new(Γ1(532))S_{2}^{\mathrm{new}}(\Gamma_1(532))4^{\oplus 4}\oplusS2new(Γ1(931))S_{2}^{\mathrm{new}}(\Gamma_1(931))4^{\oplus 4}\oplusS2new(Γ1(1064))S_{2}^{\mathrm{new}}(\Gamma_1(1064))2^{\oplus 2}\oplusS2new(Γ1(1862))S_{2}^{\mathrm{new}}(\Gamma_1(1862))3^{\oplus 3}\oplusS2new(Γ1(3724))S_{2}^{\mathrm{new}}(\Gamma_1(3724))2^{\oplus 2}