Properties

Label 1071.2.n.b.820.3
Level $1071$
Weight $2$
Character 1071.820
Analytic conductor $8.552$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1071,2,Mod(64,1071)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1071, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1071.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1071 = 3^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1071.n (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.55197805648\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 32 x^{18} + 426 x^{16} + 3072 x^{14} + 13121 x^{12} + 34148 x^{10} + 53608 x^{8} + 48276 x^{6} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 357)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 820.3
Root \(-1.71520i\) of defining polynomial
Character \(\chi\) \(=\) 1071.820
Dual form 1071.2.n.b.64.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.71520i q^{2} -0.941909 q^{4} +(-2.50881 + 2.50881i) q^{5} +(-0.707107 - 0.707107i) q^{7} -1.81484i q^{8} +(4.30311 + 4.30311i) q^{10} +(-1.81437 - 1.81437i) q^{11} +3.70620 q^{13} +(-1.21283 + 1.21283i) q^{14} -4.99663 q^{16} +(-3.33822 - 2.41998i) q^{17} +6.90985i q^{19} +(2.36307 - 2.36307i) q^{20} +(-3.11200 + 3.11200i) q^{22} +(5.39938 + 5.39938i) q^{23} -7.58826i q^{25} -6.35687i q^{26} +(0.666030 + 0.666030i) q^{28} +(-6.87048 + 6.87048i) q^{29} +(-0.818937 + 0.818937i) q^{31} +4.94054i q^{32} +(-4.15075 + 5.72571i) q^{34} +3.54799 q^{35} +(-6.42994 + 6.42994i) q^{37} +11.8518 q^{38} +(4.55308 + 4.55308i) q^{40} +(6.03201 + 6.03201i) q^{41} +1.71992i q^{43} +(1.70897 + 1.70897i) q^{44} +(9.26101 - 9.26101i) q^{46} +0.699863 q^{47} +1.00000i q^{49} -13.0154 q^{50} -3.49090 q^{52} -3.38235i q^{53} +9.10380 q^{55} +(-1.28328 + 1.28328i) q^{56} +(11.7842 + 11.7842i) q^{58} +10.9220i q^{59} +(3.62531 + 3.62531i) q^{61} +(1.40464 + 1.40464i) q^{62} -1.51925 q^{64} +(-9.29814 + 9.29814i) q^{65} -2.86834 q^{67} +(3.14430 + 2.27940i) q^{68} -6.08552i q^{70} +(-9.13401 + 9.13401i) q^{71} +(1.00706 - 1.00706i) q^{73} +(11.0286 + 11.0286i) q^{74} -6.50846i q^{76} +2.56590i q^{77} +(-7.80162 - 7.80162i) q^{79} +(12.5356 - 12.5356i) q^{80} +(10.3461 - 10.3461i) q^{82} -8.11587i q^{83} +(14.4462 - 2.30368i) q^{85} +2.95001 q^{86} +(-3.29278 + 3.29278i) q^{88} +11.1085 q^{89} +(-2.62068 - 2.62068i) q^{91} +(-5.08573 - 5.08573i) q^{92} -1.20040i q^{94} +(-17.3355 - 17.3355i) q^{95} +(1.25205 - 1.25205i) q^{97} +1.71520 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 24 q^{4} - 8 q^{5} + 16 q^{10} - 4 q^{11} - 12 q^{13} - 4 q^{14} + 40 q^{16} - 4 q^{17} + 52 q^{20} - 24 q^{22} + 4 q^{23} + 8 q^{29} + 8 q^{31} - 44 q^{34} - 12 q^{35} + 24 q^{37} + 64 q^{38} - 52 q^{40}+ \cdots + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1071\mathbb{Z}\right)^\times\).

\(n\) \(190\) \(596\) \(766\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.71520i 1.21283i −0.795149 0.606415i \(-0.792607\pi\)
0.795149 0.606415i \(-0.207393\pi\)
\(3\) 0 0
\(4\) −0.941909 −0.470955
\(5\) −2.50881 + 2.50881i −1.12197 + 1.12197i −0.130530 + 0.991444i \(0.541668\pi\)
−0.991444 + 0.130530i \(0.958332\pi\)
\(6\) 0 0
\(7\) −0.707107 0.707107i −0.267261 0.267261i
\(8\) 1.81484i 0.641642i
\(9\) 0 0
\(10\) 4.30311 + 4.30311i 1.36076 + 1.36076i
\(11\) −1.81437 1.81437i −0.547052 0.547052i 0.378535 0.925587i \(-0.376428\pi\)
−0.925587 + 0.378535i \(0.876428\pi\)
\(12\) 0 0
\(13\) 3.70620 1.02791 0.513957 0.857816i \(-0.328179\pi\)
0.513957 + 0.857816i \(0.328179\pi\)
\(14\) −1.21283 + 1.21283i −0.324142 + 0.324142i
\(15\) 0 0
\(16\) −4.99663 −1.24916
\(17\) −3.33822 2.41998i −0.809637 0.586932i
\(18\) 0 0
\(19\) 6.90985i 1.58523i 0.609723 + 0.792615i \(0.291281\pi\)
−0.609723 + 0.792615i \(0.708719\pi\)
\(20\) 2.36307 2.36307i 0.528399 0.528399i
\(21\) 0 0
\(22\) −3.11200 + 3.11200i −0.663481 + 0.663481i
\(23\) 5.39938 + 5.39938i 1.12585 + 1.12585i 0.990845 + 0.135004i \(0.0431046\pi\)
0.135004 + 0.990845i \(0.456895\pi\)
\(24\) 0 0
\(25\) 7.58826i 1.51765i
\(26\) 6.35687i 1.24668i
\(27\) 0 0
\(28\) 0.666030 + 0.666030i 0.125868 + 0.125868i
\(29\) −6.87048 + 6.87048i −1.27582 + 1.27582i −0.332830 + 0.942987i \(0.608003\pi\)
−0.942987 + 0.332830i \(0.891997\pi\)
\(30\) 0 0
\(31\) −0.818937 + 0.818937i −0.147086 + 0.147086i −0.776815 0.629729i \(-0.783166\pi\)
0.629729 + 0.776815i \(0.283166\pi\)
\(32\) 4.94054i 0.873372i
\(33\) 0 0
\(34\) −4.15075 + 5.72571i −0.711848 + 0.981951i
\(35\) 3.54799 0.599721
\(36\) 0 0
\(37\) −6.42994 + 6.42994i −1.05708 + 1.05708i −0.0588066 + 0.998269i \(0.518730\pi\)
−0.998269 + 0.0588066i \(0.981270\pi\)
\(38\) 11.8518 1.92261
\(39\) 0 0
\(40\) 4.55308 + 4.55308i 0.719905 + 0.719905i
\(41\) 6.03201 + 6.03201i 0.942042 + 0.942042i 0.998410 0.0563678i \(-0.0179519\pi\)
−0.0563678 + 0.998410i \(0.517952\pi\)
\(42\) 0 0
\(43\) 1.71992i 0.262286i 0.991363 + 0.131143i \(0.0418647\pi\)
−0.991363 + 0.131143i \(0.958135\pi\)
\(44\) 1.70897 + 1.70897i 0.257637 + 0.257637i
\(45\) 0 0
\(46\) 9.26101 9.26101i 1.36546 1.36546i
\(47\) 0.699863 0.102086 0.0510428 0.998696i \(-0.483746\pi\)
0.0510428 + 0.998696i \(0.483746\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) −13.0154 −1.84065
\(51\) 0 0
\(52\) −3.49090 −0.484101
\(53\) 3.38235i 0.464602i −0.972644 0.232301i \(-0.925375\pi\)
0.972644 0.232301i \(-0.0746255\pi\)
\(54\) 0 0
\(55\) 9.10380 1.22756
\(56\) −1.28328 + 1.28328i −0.171486 + 0.171486i
\(57\) 0 0
\(58\) 11.7842 + 11.7842i 1.54735 + 1.54735i
\(59\) 10.9220i 1.42193i 0.703228 + 0.710965i \(0.251741\pi\)
−0.703228 + 0.710965i \(0.748259\pi\)
\(60\) 0 0
\(61\) 3.62531 + 3.62531i 0.464173 + 0.464173i 0.900021 0.435847i \(-0.143551\pi\)
−0.435847 + 0.900021i \(0.643551\pi\)
\(62\) 1.40464 + 1.40464i 0.178390 + 0.178390i
\(63\) 0 0
\(64\) −1.51925 −0.189906
\(65\) −9.29814 + 9.29814i −1.15329 + 1.15329i
\(66\) 0 0
\(67\) −2.86834 −0.350423 −0.175212 0.984531i \(-0.556061\pi\)
−0.175212 + 0.984531i \(0.556061\pi\)
\(68\) 3.14430 + 2.27940i 0.381302 + 0.276418i
\(69\) 0 0
\(70\) 6.08552i 0.727359i
\(71\) −9.13401 + 9.13401i −1.08401 + 1.08401i −0.0878766 + 0.996131i \(0.528008\pi\)
−0.996131 + 0.0878766i \(0.971992\pi\)
\(72\) 0 0
\(73\) 1.00706 1.00706i 0.117867 0.117867i −0.645713 0.763580i \(-0.723440\pi\)
0.763580 + 0.645713i \(0.223440\pi\)
\(74\) 11.0286 + 11.0286i 1.28205 + 1.28205i
\(75\) 0 0
\(76\) 6.50846i 0.746571i
\(77\) 2.56590i 0.292412i
\(78\) 0 0
\(79\) −7.80162 7.80162i −0.877751 0.877751i 0.115551 0.993302i \(-0.463137\pi\)
−0.993302 + 0.115551i \(0.963137\pi\)
\(80\) 12.5356 12.5356i 1.40152 1.40152i
\(81\) 0 0
\(82\) 10.3461 10.3461i 1.14254 1.14254i
\(83\) 8.11587i 0.890832i −0.895324 0.445416i \(-0.853056\pi\)
0.895324 0.445416i \(-0.146944\pi\)
\(84\) 0 0
\(85\) 14.4462 2.30368i 1.56691 0.249869i
\(86\) 2.95001 0.318108
\(87\) 0 0
\(88\) −3.29278 + 3.29278i −0.351011 + 0.351011i
\(89\) 11.1085 1.17750 0.588752 0.808314i \(-0.299619\pi\)
0.588752 + 0.808314i \(0.299619\pi\)
\(90\) 0 0
\(91\) −2.62068 2.62068i −0.274722 0.274722i
\(92\) −5.08573 5.08573i −0.530224 0.530224i
\(93\) 0 0
\(94\) 1.20040i 0.123812i
\(95\) −17.3355 17.3355i −1.77859 1.77859i
\(96\) 0 0
\(97\) 1.25205 1.25205i 0.127127 0.127127i −0.640681 0.767808i \(-0.721348\pi\)
0.767808 + 0.640681i \(0.221348\pi\)
\(98\) 1.71520 0.173261
\(99\) 0 0
\(100\) 7.14746i 0.714746i
\(101\) −9.90253 −0.985339 −0.492669 0.870217i \(-0.663979\pi\)
−0.492669 + 0.870217i \(0.663979\pi\)
\(102\) 0 0
\(103\) −5.57897 −0.549712 −0.274856 0.961485i \(-0.588630\pi\)
−0.274856 + 0.961485i \(0.588630\pi\)
\(104\) 6.72614i 0.659552i
\(105\) 0 0
\(106\) −5.80141 −0.563483
\(107\) 3.97950 3.97950i 0.384713 0.384713i −0.488084 0.872797i \(-0.662304\pi\)
0.872797 + 0.488084i \(0.162304\pi\)
\(108\) 0 0
\(109\) −11.4638 11.4638i −1.09803 1.09803i −0.994641 0.103390i \(-0.967031\pi\)
−0.103390 0.994641i \(-0.532969\pi\)
\(110\) 15.6148i 1.48882i
\(111\) 0 0
\(112\) 3.53315 + 3.53315i 0.333851 + 0.333851i
\(113\) −6.84563 6.84563i −0.643983 0.643983i 0.307549 0.951532i \(-0.400491\pi\)
−0.951532 + 0.307549i \(0.900491\pi\)
\(114\) 0 0
\(115\) −27.0920 −2.52635
\(116\) 6.47137 6.47137i 0.600852 0.600852i
\(117\) 0 0
\(118\) 18.7335 1.72456
\(119\) 0.649291 + 4.07166i 0.0595204 + 0.373249i
\(120\) 0 0
\(121\) 4.41615i 0.401468i
\(122\) 6.21813 6.21813i 0.562963 0.562963i
\(123\) 0 0
\(124\) 0.771365 0.771365i 0.0692706 0.0692706i
\(125\) 6.49347 + 6.49347i 0.580793 + 0.580793i
\(126\) 0 0
\(127\) 1.97182i 0.174971i 0.996166 + 0.0874855i \(0.0278831\pi\)
−0.996166 + 0.0874855i \(0.972117\pi\)
\(128\) 12.4869i 1.10369i
\(129\) 0 0
\(130\) 15.9482 + 15.9482i 1.39875 + 1.39875i
\(131\) 6.05141 6.05141i 0.528714 0.528714i −0.391475 0.920189i \(-0.628035\pi\)
0.920189 + 0.391475i \(0.128035\pi\)
\(132\) 0 0
\(133\) 4.88600 4.88600i 0.423670 0.423670i
\(134\) 4.91977i 0.425004i
\(135\) 0 0
\(136\) −4.39187 + 6.05832i −0.376600 + 0.519497i
\(137\) 18.7573 1.60254 0.801270 0.598303i \(-0.204158\pi\)
0.801270 + 0.598303i \(0.204158\pi\)
\(138\) 0 0
\(139\) −4.56390 + 4.56390i −0.387105 + 0.387105i −0.873654 0.486548i \(-0.838256\pi\)
0.486548 + 0.873654i \(0.338256\pi\)
\(140\) −3.34189 −0.282441
\(141\) 0 0
\(142\) 15.6667 + 15.6667i 1.31472 + 1.31472i
\(143\) −6.72440 6.72440i −0.562322 0.562322i
\(144\) 0 0
\(145\) 34.4735i 2.86287i
\(146\) −1.72731 1.72731i −0.142953 0.142953i
\(147\) 0 0
\(148\) 6.05642 6.05642i 0.497835 0.497835i
\(149\) 15.4004 1.26165 0.630824 0.775926i \(-0.282717\pi\)
0.630824 + 0.775926i \(0.282717\pi\)
\(150\) 0 0
\(151\) 10.0010i 0.813872i −0.913457 0.406936i \(-0.866597\pi\)
0.913457 0.406936i \(-0.133403\pi\)
\(152\) 12.5403 1.01715
\(153\) 0 0
\(154\) 4.40103 0.354645
\(155\) 4.10912i 0.330052i
\(156\) 0 0
\(157\) −7.69824 −0.614387 −0.307193 0.951647i \(-0.599390\pi\)
−0.307193 + 0.951647i \(0.599390\pi\)
\(158\) −13.3813 + 13.3813i −1.06456 + 1.06456i
\(159\) 0 0
\(160\) −12.3949 12.3949i −0.979901 0.979901i
\(161\) 7.63588i 0.601791i
\(162\) 0 0
\(163\) 4.17446 + 4.17446i 0.326969 + 0.326969i 0.851433 0.524464i \(-0.175734\pi\)
−0.524464 + 0.851433i \(0.675734\pi\)
\(164\) −5.68161 5.68161i −0.443659 0.443659i
\(165\) 0 0
\(166\) −13.9203 −1.08043
\(167\) 2.28192 2.28192i 0.176580 0.176580i −0.613283 0.789863i \(-0.710152\pi\)
0.789863 + 0.613283i \(0.210152\pi\)
\(168\) 0 0
\(169\) 0.735888 0.0566068
\(170\) −3.95127 24.7782i −0.303049 1.90040i
\(171\) 0 0
\(172\) 1.62001i 0.123525i
\(173\) −15.8344 + 15.8344i −1.20387 + 1.20387i −0.230891 + 0.972980i \(0.574164\pi\)
−0.972980 + 0.230891i \(0.925836\pi\)
\(174\) 0 0
\(175\) −5.36571 + 5.36571i −0.405610 + 0.405610i
\(176\) 9.06571 + 9.06571i 0.683354 + 0.683354i
\(177\) 0 0
\(178\) 19.0534i 1.42811i
\(179\) 14.0892i 1.05308i 0.850152 + 0.526538i \(0.176510\pi\)
−0.850152 + 0.526538i \(0.823490\pi\)
\(180\) 0 0
\(181\) 14.7689 + 14.7689i 1.09776 + 1.09776i 0.994672 + 0.103090i \(0.0328731\pi\)
0.103090 + 0.994672i \(0.467127\pi\)
\(182\) −4.49498 + 4.49498i −0.333190 + 0.333190i
\(183\) 0 0
\(184\) 9.79899 9.79899i 0.722391 0.722391i
\(185\) 32.2630i 2.37202i
\(186\) 0 0
\(187\) 1.66602 + 10.4475i 0.121831 + 0.763995i
\(188\) −0.659207 −0.0480776
\(189\) 0 0
\(190\) −29.7339 + 29.7339i −2.15712 + 2.15712i
\(191\) −4.70406 −0.340373 −0.170187 0.985412i \(-0.554437\pi\)
−0.170187 + 0.985412i \(0.554437\pi\)
\(192\) 0 0
\(193\) 3.60875 + 3.60875i 0.259763 + 0.259763i 0.824958 0.565194i \(-0.191199\pi\)
−0.565194 + 0.824958i \(0.691199\pi\)
\(194\) −2.14752 2.14752i −0.154183 0.154183i
\(195\) 0 0
\(196\) 0.941909i 0.0672792i
\(197\) 9.53476 + 9.53476i 0.679323 + 0.679323i 0.959847 0.280524i \(-0.0905082\pi\)
−0.280524 + 0.959847i \(0.590508\pi\)
\(198\) 0 0
\(199\) −2.96534 + 2.96534i −0.210208 + 0.210208i −0.804356 0.594148i \(-0.797489\pi\)
0.594148 + 0.804356i \(0.297489\pi\)
\(200\) −13.7715 −0.973789
\(201\) 0 0
\(202\) 16.9848i 1.19505i
\(203\) 9.71633 0.681953
\(204\) 0 0
\(205\) −30.2664 −2.11389
\(206\) 9.56904i 0.666707i
\(207\) 0 0
\(208\) −18.5185 −1.28403
\(209\) 12.5370 12.5370i 0.867203 0.867203i
\(210\) 0 0
\(211\) −12.6378 12.6378i −0.870022 0.870022i 0.122453 0.992474i \(-0.460924\pi\)
−0.992474 + 0.122453i \(0.960924\pi\)
\(212\) 3.18587i 0.218807i
\(213\) 0 0
\(214\) −6.82564 6.82564i −0.466591 0.466591i
\(215\) −4.31497 4.31497i −0.294278 0.294278i
\(216\) 0 0
\(217\) 1.15815 0.0786205
\(218\) −19.6627 + 19.6627i −1.33172 + 1.33172i
\(219\) 0 0
\(220\) −8.57496 −0.578124
\(221\) −12.3721 8.96892i −0.832237 0.603315i
\(222\) 0 0
\(223\) 1.60272i 0.107326i 0.998559 + 0.0536632i \(0.0170897\pi\)
−0.998559 + 0.0536632i \(0.982910\pi\)
\(224\) 3.49349 3.49349i 0.233418 0.233418i
\(225\) 0 0
\(226\) −11.7416 + 11.7416i −0.781041 + 0.781041i
\(227\) −8.30778 8.30778i −0.551407 0.551407i 0.375440 0.926847i \(-0.377492\pi\)
−0.926847 + 0.375440i \(0.877492\pi\)
\(228\) 0 0
\(229\) 1.47791i 0.0976633i 0.998807 + 0.0488317i \(0.0155498\pi\)
−0.998807 + 0.0488317i \(0.984450\pi\)
\(230\) 46.4683i 3.06403i
\(231\) 0 0
\(232\) 12.4688 + 12.4688i 0.818617 + 0.818617i
\(233\) 9.73346 9.73346i 0.637660 0.637660i −0.312318 0.949978i \(-0.601105\pi\)
0.949978 + 0.312318i \(0.101105\pi\)
\(234\) 0 0
\(235\) −1.75582 + 1.75582i −0.114537 + 0.114537i
\(236\) 10.2876i 0.669664i
\(237\) 0 0
\(238\) 6.98371 1.11366i 0.452687 0.0721881i
\(239\) −13.6486 −0.882852 −0.441426 0.897298i \(-0.645527\pi\)
−0.441426 + 0.897298i \(0.645527\pi\)
\(240\) 0 0
\(241\) 12.2558 12.2558i 0.789465 0.789465i −0.191941 0.981406i \(-0.561478\pi\)
0.981406 + 0.191941i \(0.0614783\pi\)
\(242\) −7.57458 −0.486912
\(243\) 0 0
\(244\) −3.41471 3.41471i −0.218605 0.218605i
\(245\) −2.50881 2.50881i −0.160282 0.160282i
\(246\) 0 0
\(247\) 25.6093i 1.62948i
\(248\) 1.48624 + 1.48624i 0.0943762 + 0.0943762i
\(249\) 0 0
\(250\) 11.1376 11.1376i 0.704403 0.704403i
\(251\) −16.8092 −1.06099 −0.530493 0.847690i \(-0.677993\pi\)
−0.530493 + 0.847690i \(0.677993\pi\)
\(252\) 0 0
\(253\) 19.5929i 1.23180i
\(254\) 3.38207 0.212210
\(255\) 0 0
\(256\) 18.3790 1.14869
\(257\) 6.87575i 0.428897i 0.976735 + 0.214449i \(0.0687955\pi\)
−0.976735 + 0.214449i \(0.931205\pi\)
\(258\) 0 0
\(259\) 9.09331 0.565031
\(260\) 8.75801 8.75801i 0.543149 0.543149i
\(261\) 0 0
\(262\) −10.3794 10.3794i −0.641240 0.641240i
\(263\) 0.998666i 0.0615804i 0.999526 + 0.0307902i \(0.00980237\pi\)
−0.999526 + 0.0307902i \(0.990198\pi\)
\(264\) 0 0
\(265\) 8.48569 + 8.48569i 0.521272 + 0.521272i
\(266\) −8.38047 8.38047i −0.513840 0.513840i
\(267\) 0 0
\(268\) 2.70172 0.165034
\(269\) 1.72281 1.72281i 0.105041 0.105041i −0.652633 0.757674i \(-0.726336\pi\)
0.757674 + 0.652633i \(0.226336\pi\)
\(270\) 0 0
\(271\) 11.8042 0.717056 0.358528 0.933519i \(-0.383279\pi\)
0.358528 + 0.933519i \(0.383279\pi\)
\(272\) 16.6798 + 12.0917i 1.01136 + 0.733169i
\(273\) 0 0
\(274\) 32.1724i 1.94361i
\(275\) −13.7679 + 13.7679i −0.830235 + 0.830235i
\(276\) 0 0
\(277\) −9.09657 + 9.09657i −0.546560 + 0.546560i −0.925444 0.378884i \(-0.876308\pi\)
0.378884 + 0.925444i \(0.376308\pi\)
\(278\) 7.82801 + 7.82801i 0.469493 + 0.469493i
\(279\) 0 0
\(280\) 6.43903i 0.384806i
\(281\) 17.9398i 1.07020i −0.844790 0.535098i \(-0.820275\pi\)
0.844790 0.535098i \(-0.179725\pi\)
\(282\) 0 0
\(283\) 13.4859 + 13.4859i 0.801652 + 0.801652i 0.983354 0.181702i \(-0.0581606\pi\)
−0.181702 + 0.983354i \(0.558161\pi\)
\(284\) 8.60341 8.60341i 0.510519 0.510519i
\(285\) 0 0
\(286\) −11.5337 + 11.5337i −0.682001 + 0.682001i
\(287\) 8.53056i 0.503543i
\(288\) 0 0
\(289\) 5.28739 + 16.1568i 0.311023 + 0.950402i
\(290\) −59.1289 −3.47217
\(291\) 0 0
\(292\) −0.948558 + 0.948558i −0.0555102 + 0.0555102i
\(293\) −16.9285 −0.988974 −0.494487 0.869185i \(-0.664644\pi\)
−0.494487 + 0.869185i \(0.664644\pi\)
\(294\) 0 0
\(295\) −27.4014 27.4014i −1.59537 1.59537i
\(296\) 11.6693 + 11.6693i 0.678264 + 0.678264i
\(297\) 0 0
\(298\) 26.4147i 1.53016i
\(299\) 20.0112 + 20.0112i 1.15728 + 1.15728i
\(300\) 0 0
\(301\) 1.21617 1.21617i 0.0700989 0.0700989i
\(302\) −17.1537 −0.987087
\(303\) 0 0
\(304\) 34.5260i 1.98020i
\(305\) −18.1904 −1.04158
\(306\) 0 0
\(307\) −21.9034 −1.25010 −0.625048 0.780587i \(-0.714921\pi\)
−0.625048 + 0.780587i \(0.714921\pi\)
\(308\) 2.41685i 0.137713i
\(309\) 0 0
\(310\) −7.04796 −0.400297
\(311\) −19.2492 + 19.2492i −1.09152 + 1.09152i −0.0961569 + 0.995366i \(0.530655\pi\)
−0.995366 + 0.0961569i \(0.969345\pi\)
\(312\) 0 0
\(313\) 5.09144 + 5.09144i 0.287785 + 0.287785i 0.836204 0.548419i \(-0.184770\pi\)
−0.548419 + 0.836204i \(0.684770\pi\)
\(314\) 13.2040i 0.745146i
\(315\) 0 0
\(316\) 7.34842 + 7.34842i 0.413381 + 0.413381i
\(317\) 13.1297 + 13.1297i 0.737435 + 0.737435i 0.972081 0.234646i \(-0.0753930\pi\)
−0.234646 + 0.972081i \(0.575393\pi\)
\(318\) 0 0
\(319\) 24.9311 1.39588
\(320\) 3.81150 3.81150i 0.213069 0.213069i
\(321\) 0 0
\(322\) −13.0971 −0.729870
\(323\) 16.7217 23.0666i 0.930421 1.28346i
\(324\) 0 0
\(325\) 28.1236i 1.56002i
\(326\) 7.16003 7.16003i 0.396557 0.396557i
\(327\) 0 0
\(328\) 10.9471 10.9471i 0.604454 0.604454i
\(329\) −0.494878 0.494878i −0.0272835 0.0272835i
\(330\) 0 0
\(331\) 8.06322i 0.443194i 0.975138 + 0.221597i \(0.0711270\pi\)
−0.975138 + 0.221597i \(0.928873\pi\)
\(332\) 7.64441i 0.419542i
\(333\) 0 0
\(334\) −3.91394 3.91394i −0.214161 0.214161i
\(335\) 7.19612 7.19612i 0.393166 0.393166i
\(336\) 0 0
\(337\) −18.8066 + 18.8066i −1.02446 + 1.02446i −0.0247668 + 0.999693i \(0.507884\pi\)
−0.999693 + 0.0247668i \(0.992116\pi\)
\(338\) 1.26220i 0.0686544i
\(339\) 0 0
\(340\) −13.6070 + 2.16986i −0.737945 + 0.117677i
\(341\) 2.97171 0.160927
\(342\) 0 0
\(343\) 0.707107 0.707107i 0.0381802 0.0381802i
\(344\) 3.12138 0.168294
\(345\) 0 0
\(346\) 27.1592 + 27.1592i 1.46009 + 1.46009i
\(347\) −14.0310 14.0310i −0.753225 0.753225i 0.221854 0.975080i \(-0.428789\pi\)
−0.975080 + 0.221854i \(0.928789\pi\)
\(348\) 0 0
\(349\) 10.8244i 0.579418i 0.957115 + 0.289709i \(0.0935585\pi\)
−0.957115 + 0.289709i \(0.906441\pi\)
\(350\) 9.20327 + 9.20327i 0.491935 + 0.491935i
\(351\) 0 0
\(352\) 8.96394 8.96394i 0.477780 0.477780i
\(353\) 25.1471 1.33845 0.669224 0.743061i \(-0.266627\pi\)
0.669224 + 0.743061i \(0.266627\pi\)
\(354\) 0 0
\(355\) 45.8310i 2.43246i
\(356\) −10.4632 −0.554551
\(357\) 0 0
\(358\) 24.1658 1.27720
\(359\) 20.1240i 1.06210i −0.847340 0.531051i \(-0.821797\pi\)
0.847340 0.531051i \(-0.178203\pi\)
\(360\) 0 0
\(361\) −28.7461 −1.51295
\(362\) 25.3316 25.3316i 1.33140 1.33140i
\(363\) 0 0
\(364\) 2.46844 + 2.46844i 0.129381 + 0.129381i
\(365\) 5.05304i 0.264488i
\(366\) 0 0
\(367\) 19.3902 + 19.3902i 1.01216 + 1.01216i 0.999925 + 0.0122356i \(0.00389481\pi\)
0.0122356 + 0.999925i \(0.496105\pi\)
\(368\) −26.9787 26.9787i −1.40636 1.40636i
\(369\) 0 0
\(370\) −55.3375 −2.87686
\(371\) −2.39169 + 2.39169i −0.124170 + 0.124170i
\(372\) 0 0
\(373\) 9.01770 0.466919 0.233460 0.972367i \(-0.424995\pi\)
0.233460 + 0.972367i \(0.424995\pi\)
\(374\) 17.9195 2.85755i 0.926596 0.147760i
\(375\) 0 0
\(376\) 1.27014i 0.0655023i
\(377\) −25.4634 + 25.4634i −1.31143 + 1.31143i
\(378\) 0 0
\(379\) −2.83907 + 2.83907i −0.145833 + 0.145833i −0.776254 0.630421i \(-0.782882\pi\)
0.630421 + 0.776254i \(0.282882\pi\)
\(380\) 16.3285 + 16.3285i 0.837634 + 0.837634i
\(381\) 0 0
\(382\) 8.06839i 0.412815i
\(383\) 7.39041i 0.377632i 0.982012 + 0.188816i \(0.0604651\pi\)
−0.982012 + 0.188816i \(0.939535\pi\)
\(384\) 0 0
\(385\) −6.43736 6.43736i −0.328078 0.328078i
\(386\) 6.18972 6.18972i 0.315048 0.315048i
\(387\) 0 0
\(388\) −1.17932 + 1.17932i −0.0598710 + 0.0598710i
\(389\) 16.1413i 0.818397i −0.912445 0.409199i \(-0.865808\pi\)
0.912445 0.409199i \(-0.134192\pi\)
\(390\) 0 0
\(391\) −4.95791 31.0907i −0.250732 1.57232i
\(392\) 1.81484 0.0916631
\(393\) 0 0
\(394\) 16.3540 16.3540i 0.823903 0.823903i
\(395\) 39.1456 1.96963
\(396\) 0 0
\(397\) 4.74649 + 4.74649i 0.238220 + 0.238220i 0.816113 0.577893i \(-0.196125\pi\)
−0.577893 + 0.816113i \(0.696125\pi\)
\(398\) 5.08616 + 5.08616i 0.254946 + 0.254946i
\(399\) 0 0
\(400\) 37.9157i 1.89579i
\(401\) −1.40149 1.40149i −0.0699868 0.0699868i 0.671247 0.741234i \(-0.265759\pi\)
−0.741234 + 0.671247i \(0.765759\pi\)
\(402\) 0 0
\(403\) −3.03514 + 3.03514i −0.151191 + 0.151191i
\(404\) 9.32729 0.464050
\(405\) 0 0
\(406\) 16.6654i 0.827092i
\(407\) 23.3325 1.15655
\(408\) 0 0
\(409\) −15.3390 −0.758464 −0.379232 0.925302i \(-0.623812\pi\)
−0.379232 + 0.925302i \(0.623812\pi\)
\(410\) 51.9129i 2.56379i
\(411\) 0 0
\(412\) 5.25488 0.258889
\(413\) 7.72305 7.72305i 0.380027 0.380027i
\(414\) 0 0
\(415\) 20.3612 + 20.3612i 0.999491 + 0.999491i
\(416\) 18.3106i 0.897751i
\(417\) 0 0
\(418\) −21.5035 21.5035i −1.05177 1.05177i
\(419\) 0.188870 + 0.188870i 0.00922690 + 0.00922690i 0.711705 0.702478i \(-0.247923\pi\)
−0.702478 + 0.711705i \(0.747923\pi\)
\(420\) 0 0
\(421\) 16.4415 0.801309 0.400655 0.916229i \(-0.368783\pi\)
0.400655 + 0.916229i \(0.368783\pi\)
\(422\) −21.6763 + 21.6763i −1.05519 + 1.05519i
\(423\) 0 0
\(424\) −6.13842 −0.298108
\(425\) −18.3635 + 25.3313i −0.890758 + 1.22875i
\(426\) 0 0
\(427\) 5.12696i 0.248111i
\(428\) −3.74833 + 3.74833i −0.181182 + 0.181182i
\(429\) 0 0
\(430\) −7.40103 + 7.40103i −0.356909 + 0.356909i
\(431\) 1.52988 + 1.52988i 0.0736917 + 0.0736917i 0.742992 0.669300i \(-0.233406\pi\)
−0.669300 + 0.742992i \(0.733406\pi\)
\(432\) 0 0
\(433\) 5.65283i 0.271658i 0.990732 + 0.135829i \(0.0433697\pi\)
−0.990732 + 0.135829i \(0.956630\pi\)
\(434\) 1.98646i 0.0953532i
\(435\) 0 0
\(436\) 10.7978 + 10.7978i 0.517123 + 0.517123i
\(437\) −37.3089 + 37.3089i −1.78473 + 1.78473i
\(438\) 0 0
\(439\) 1.35600 1.35600i 0.0647184 0.0647184i −0.674007 0.738725i \(-0.735428\pi\)
0.738725 + 0.674007i \(0.235428\pi\)
\(440\) 16.5219i 0.787652i
\(441\) 0 0
\(442\) −15.3835 + 21.2206i −0.731718 + 1.00936i
\(443\) −28.4710 −1.35270 −0.676348 0.736582i \(-0.736438\pi\)
−0.676348 + 0.736582i \(0.736438\pi\)
\(444\) 0 0
\(445\) −27.8692 + 27.8692i −1.32113 + 1.32113i
\(446\) 2.74899 0.130169
\(447\) 0 0
\(448\) 1.07427 + 1.07427i 0.0507544 + 0.0507544i
\(449\) −9.23165 9.23165i −0.435669 0.435669i 0.454883 0.890551i \(-0.349681\pi\)
−0.890551 + 0.454883i \(0.849681\pi\)
\(450\) 0 0
\(451\) 21.8886i 1.03069i
\(452\) 6.44797 + 6.44797i 0.303287 + 0.303287i
\(453\) 0 0
\(454\) −14.2495 + 14.2495i −0.668763 + 0.668763i
\(455\) 13.1496 0.616461
\(456\) 0 0
\(457\) 8.80710i 0.411979i −0.978554 0.205989i \(-0.933959\pi\)
0.978554 0.205989i \(-0.0660412\pi\)
\(458\) 2.53492 0.118449
\(459\) 0 0
\(460\) 25.5183 1.18979
\(461\) 8.14899i 0.379536i −0.981829 0.189768i \(-0.939226\pi\)
0.981829 0.189768i \(-0.0607736\pi\)
\(462\) 0 0
\(463\) 0.328011 0.0152440 0.00762199 0.999971i \(-0.497574\pi\)
0.00762199 + 0.999971i \(0.497574\pi\)
\(464\) 34.3292 34.3292i 1.59369 1.59369i
\(465\) 0 0
\(466\) −16.6948 16.6948i −0.773373 0.773373i
\(467\) 23.0220i 1.06533i −0.846326 0.532666i \(-0.821190\pi\)
0.846326 0.532666i \(-0.178810\pi\)
\(468\) 0 0
\(469\) 2.02822 + 2.02822i 0.0936546 + 0.0936546i
\(470\) 3.01159 + 3.01159i 0.138914 + 0.138914i
\(471\) 0 0
\(472\) 19.8217 0.912369
\(473\) 3.12057 3.12057i 0.143484 0.143484i
\(474\) 0 0
\(475\) 52.4338 2.40583
\(476\) −0.611573 3.83514i −0.0280314 0.175783i
\(477\) 0 0
\(478\) 23.4100i 1.07075i
\(479\) 19.5440 19.5440i 0.892986 0.892986i −0.101817 0.994803i \(-0.532466\pi\)
0.994803 + 0.101817i \(0.0324655\pi\)
\(480\) 0 0
\(481\) −23.8306 + 23.8306i −1.08658 + 1.08658i
\(482\) −21.0211 21.0211i −0.957486 0.957486i
\(483\) 0 0
\(484\) 4.15961i 0.189073i
\(485\) 6.28234i 0.285266i
\(486\) 0 0
\(487\) −1.54988 1.54988i −0.0702319 0.0702319i 0.671118 0.741350i \(-0.265814\pi\)
−0.741350 + 0.671118i \(0.765814\pi\)
\(488\) 6.57934 6.57934i 0.297833 0.297833i
\(489\) 0 0
\(490\) −4.30311 + 4.30311i −0.194395 + 0.194395i
\(491\) 8.04025i 0.362851i 0.983405 + 0.181426i \(0.0580712\pi\)
−0.983405 + 0.181426i \(0.941929\pi\)
\(492\) 0 0
\(493\) 39.5616 6.30873i 1.78176 0.284131i
\(494\) 43.9250 1.97628
\(495\) 0 0
\(496\) 4.09192 4.09192i 0.183733 0.183733i
\(497\) 12.9174 0.579427
\(498\) 0 0
\(499\) 8.08881 + 8.08881i 0.362105 + 0.362105i 0.864587 0.502482i \(-0.167580\pi\)
−0.502482 + 0.864587i \(0.667580\pi\)
\(500\) −6.11626 6.11626i −0.273527 0.273527i
\(501\) 0 0
\(502\) 28.8311i 1.28679i
\(503\) −5.61907 5.61907i −0.250542 0.250542i 0.570651 0.821193i \(-0.306691\pi\)
−0.821193 + 0.570651i \(0.806691\pi\)
\(504\) 0 0
\(505\) 24.8436 24.8436i 1.10552 1.10552i
\(506\) −33.6057 −1.49396
\(507\) 0 0
\(508\) 1.85728i 0.0824034i
\(509\) −23.7079 −1.05083 −0.525417 0.850845i \(-0.676091\pi\)
−0.525417 + 0.850845i \(0.676091\pi\)
\(510\) 0 0
\(511\) −1.42420 −0.0630027
\(512\) 6.54989i 0.289467i
\(513\) 0 0
\(514\) 11.7933 0.520179
\(515\) 13.9966 13.9966i 0.616763 0.616763i
\(516\) 0 0
\(517\) −1.26981 1.26981i −0.0558461 0.0558461i
\(518\) 15.5968i 0.685286i
\(519\) 0 0
\(520\) 16.8746 + 16.8746i 0.740001 + 0.740001i
\(521\) 5.55277 + 5.55277i 0.243271 + 0.243271i 0.818202 0.574931i \(-0.194971\pi\)
−0.574931 + 0.818202i \(0.694971\pi\)
\(522\) 0 0
\(523\) −7.79018 −0.340641 −0.170320 0.985389i \(-0.554480\pi\)
−0.170320 + 0.985389i \(0.554480\pi\)
\(524\) −5.69988 + 5.69988i −0.249000 + 0.249000i
\(525\) 0 0
\(526\) 1.71291 0.0746865
\(527\) 4.71560 0.751978i 0.205415 0.0327567i
\(528\) 0 0
\(529\) 35.3066i 1.53507i
\(530\) 14.5546 14.5546i 0.632213 0.632213i
\(531\) 0 0
\(532\) −4.60217 + 4.60217i −0.199530 + 0.199530i
\(533\) 22.3558 + 22.3558i 0.968338 + 0.968338i
\(534\) 0 0
\(535\) 19.9676i 0.863276i
\(536\) 5.20557i 0.224846i
\(537\) 0 0
\(538\) −2.95496 2.95496i −0.127397 0.127397i
\(539\) 1.81437 1.81437i 0.0781503 0.0781503i
\(540\) 0 0
\(541\) 9.70894 9.70894i 0.417420 0.417420i −0.466894 0.884313i \(-0.654627\pi\)
0.884313 + 0.466894i \(0.154627\pi\)
\(542\) 20.2466i 0.869666i
\(543\) 0 0
\(544\) 11.9560 16.4926i 0.512609 0.707114i
\(545\) 57.5209 2.46393
\(546\) 0 0
\(547\) 14.8748 14.8748i 0.636002 0.636002i −0.313564 0.949567i \(-0.601523\pi\)
0.949567 + 0.313564i \(0.101523\pi\)
\(548\) −17.6676 −0.754724
\(549\) 0 0
\(550\) 23.6147 + 23.6147i 1.00693 + 1.00693i
\(551\) −47.4740 47.4740i −2.02246 2.02246i
\(552\) 0 0
\(553\) 11.0332i 0.469178i
\(554\) 15.6024 + 15.6024i 0.662884 + 0.662884i
\(555\) 0 0
\(556\) 4.29878 4.29878i 0.182309 0.182309i
\(557\) 18.9903 0.804645 0.402323 0.915498i \(-0.368203\pi\)
0.402323 + 0.915498i \(0.368203\pi\)
\(558\) 0 0
\(559\) 6.37438i 0.269607i
\(560\) −17.7280 −0.749145
\(561\) 0 0
\(562\) −30.7703 −1.29797
\(563\) 17.8871i 0.753851i 0.926244 + 0.376925i \(0.123019\pi\)
−0.926244 + 0.376925i \(0.876981\pi\)
\(564\) 0 0
\(565\) 34.3488 1.44506
\(566\) 23.1310 23.1310i 0.972266 0.972266i
\(567\) 0 0
\(568\) 16.5767 + 16.5767i 0.695545 + 0.695545i
\(569\) 17.6081i 0.738170i 0.929396 + 0.369085i \(0.120329\pi\)
−0.929396 + 0.369085i \(0.879671\pi\)
\(570\) 0 0
\(571\) −11.5255 11.5255i −0.482328 0.482328i 0.423546 0.905875i \(-0.360785\pi\)
−0.905875 + 0.423546i \(0.860785\pi\)
\(572\) 6.33377 + 6.33377i 0.264828 + 0.264828i
\(573\) 0 0
\(574\) −14.6316 −0.610711
\(575\) 40.9719 40.9719i 1.70865 1.70865i
\(576\) 0 0
\(577\) 18.0748 0.752464 0.376232 0.926526i \(-0.377220\pi\)
0.376232 + 0.926526i \(0.377220\pi\)
\(578\) 27.7122 9.06892i 1.15268 0.377217i
\(579\) 0 0
\(580\) 32.4709i 1.34828i
\(581\) −5.73879 + 5.73879i −0.238085 + 0.238085i
\(582\) 0 0
\(583\) −6.13683 + 6.13683i −0.254162 + 0.254162i
\(584\) −1.82765 1.82765i −0.0756286 0.0756286i
\(585\) 0 0
\(586\) 29.0358i 1.19946i
\(587\) 5.40978i 0.223286i −0.993748 0.111643i \(-0.964389\pi\)
0.993748 0.111643i \(-0.0356113\pi\)
\(588\) 0 0
\(589\) −5.65874 5.65874i −0.233164 0.233164i
\(590\) −46.9988 + 46.9988i −1.93491 + 1.93491i
\(591\) 0 0
\(592\) 32.1280 32.1280i 1.32045 1.32045i
\(593\) 8.20619i 0.336988i −0.985703 0.168494i \(-0.946110\pi\)
0.985703 0.168494i \(-0.0538904\pi\)
\(594\) 0 0
\(595\) −11.8440 8.58608i −0.485556 0.351995i
\(596\) −14.5058 −0.594179
\(597\) 0 0
\(598\) 34.3231 34.3231i 1.40358 1.40358i
\(599\) 16.5369 0.675681 0.337840 0.941203i \(-0.390304\pi\)
0.337840 + 0.941203i \(0.390304\pi\)
\(600\) 0 0
\(601\) 21.8842 + 21.8842i 0.892673 + 0.892673i 0.994774 0.102101i \(-0.0325564\pi\)
−0.102101 + 0.994774i \(0.532556\pi\)
\(602\) −2.08597 2.08597i −0.0850180 0.0850180i
\(603\) 0 0
\(604\) 9.42006i 0.383297i
\(605\) 11.0793 + 11.0793i 0.450437 + 0.450437i
\(606\) 0 0
\(607\) −6.89084 + 6.89084i −0.279691 + 0.279691i −0.832986 0.553295i \(-0.813370\pi\)
0.553295 + 0.832986i \(0.313370\pi\)
\(608\) −34.1384 −1.38449
\(609\) 0 0
\(610\) 31.2002i 1.26326i
\(611\) 2.59383 0.104935
\(612\) 0 0
\(613\) 41.7672 1.68696 0.843480 0.537160i \(-0.180503\pi\)
0.843480 + 0.537160i \(0.180503\pi\)
\(614\) 37.5688i 1.51615i
\(615\) 0 0
\(616\) 4.65669 0.187623
\(617\) −27.4160 + 27.4160i −1.10373 + 1.10373i −0.109769 + 0.993957i \(0.535011\pi\)
−0.993957 + 0.109769i \(0.964989\pi\)
\(618\) 0 0
\(619\) −31.4963 31.4963i −1.26594 1.26594i −0.948166 0.317777i \(-0.897064\pi\)
−0.317777 0.948166i \(-0.602936\pi\)
\(620\) 3.87042i 0.155440i
\(621\) 0 0
\(622\) 33.0163 + 33.0163i 1.32383 + 1.32383i
\(623\) −7.85493 7.85493i −0.314701 0.314701i
\(624\) 0 0
\(625\) 5.35957 0.214383
\(626\) 8.73283 8.73283i 0.349034 0.349034i
\(627\) 0 0
\(628\) 7.25105 0.289348
\(629\) 37.0249 5.90421i 1.47628 0.235416i
\(630\) 0 0
\(631\) 7.99744i 0.318373i 0.987249 + 0.159186i \(0.0508871\pi\)
−0.987249 + 0.159186i \(0.949113\pi\)
\(632\) −14.1587 + 14.1587i −0.563202 + 0.563202i
\(633\) 0 0
\(634\) 22.5200 22.5200i 0.894383 0.894383i
\(635\) −4.94693 4.94693i −0.196313 0.196313i
\(636\) 0 0
\(637\) 3.70620i 0.146845i
\(638\) 42.7619i 1.69296i
\(639\) 0 0
\(640\) −31.3272 31.3272i −1.23832 1.23832i
\(641\) 27.5919 27.5919i 1.08982 1.08982i 0.0942694 0.995547i \(-0.469949\pi\)
0.995547 0.0942694i \(-0.0300515\pi\)
\(642\) 0 0
\(643\) −4.16724 + 4.16724i −0.164340 + 0.164340i −0.784486 0.620146i \(-0.787073\pi\)
0.620146 + 0.784486i \(0.287073\pi\)
\(644\) 7.19230i 0.283416i
\(645\) 0 0
\(646\) −39.5638 28.6811i −1.55662 1.12844i
\(647\) 27.4242 1.07816 0.539079 0.842255i \(-0.318772\pi\)
0.539079 + 0.842255i \(0.318772\pi\)
\(648\) 0 0
\(649\) 19.8166 19.8166i 0.777870 0.777870i
\(650\) −48.2376 −1.89203
\(651\) 0 0
\(652\) −3.93196 3.93196i −0.153987 0.153987i
\(653\) 15.1507 + 15.1507i 0.592891 + 0.592891i 0.938411 0.345520i \(-0.112298\pi\)
−0.345520 + 0.938411i \(0.612298\pi\)
\(654\) 0 0
\(655\) 30.3637i 1.18641i
\(656\) −30.1397 30.1397i −1.17676 1.17676i
\(657\) 0 0
\(658\) −0.848814 + 0.848814i −0.0330902 + 0.0330902i
\(659\) −10.2775 −0.400356 −0.200178 0.979760i \(-0.564152\pi\)
−0.200178 + 0.979760i \(0.564152\pi\)
\(660\) 0 0
\(661\) 5.90247i 0.229580i 0.993390 + 0.114790i \(0.0366195\pi\)
−0.993390 + 0.114790i \(0.963381\pi\)
\(662\) 13.8300 0.537519
\(663\) 0 0
\(664\) −14.7290 −0.571595
\(665\) 24.5161i 0.950695i
\(666\) 0 0
\(667\) −74.1927 −2.87275
\(668\) −2.14936 + 2.14936i −0.0831612 + 0.0831612i
\(669\) 0 0
\(670\) −12.3428 12.3428i −0.476843 0.476843i
\(671\) 13.1553i 0.507854i
\(672\) 0 0
\(673\) 2.65833 + 2.65833i 0.102471 + 0.102471i 0.756484 0.654013i \(-0.226916\pi\)
−0.654013 + 0.756484i \(0.726916\pi\)
\(674\) 32.2570 + 32.2570i 1.24250 + 1.24250i
\(675\) 0 0
\(676\) −0.693140 −0.0266592
\(677\) −13.4750 + 13.4750i −0.517885 + 0.517885i −0.916931 0.399046i \(-0.869341\pi\)
0.399046 + 0.916931i \(0.369341\pi\)
\(678\) 0 0
\(679\) −1.77067 −0.0679522
\(680\) −4.18080 26.2175i −0.160327 1.00540i
\(681\) 0 0
\(682\) 5.09707i 0.195177i
\(683\) −27.5713 + 27.5713i −1.05499 + 1.05499i −0.0565907 + 0.998397i \(0.518023\pi\)
−0.998397 + 0.0565907i \(0.981977\pi\)
\(684\) 0 0
\(685\) −47.0584 + 47.0584i −1.79801 + 1.79801i
\(686\) −1.21283 1.21283i −0.0463060 0.0463060i
\(687\) 0 0
\(688\) 8.59382i 0.327636i
\(689\) 12.5357i 0.477571i
\(690\) 0 0
\(691\) −10.7045 10.7045i −0.407218 0.407218i 0.473549 0.880767i \(-0.342973\pi\)
−0.880767 + 0.473549i \(0.842973\pi\)
\(692\) 14.9146 14.9146i 0.566969 0.566969i
\(693\) 0 0
\(694\) −24.0660 + 24.0660i −0.913534 + 0.913534i
\(695\) 22.8999i 0.868644i
\(696\) 0 0
\(697\) −5.53881 34.7335i −0.209798 1.31563i
\(698\) 18.5660 0.702735
\(699\) 0 0
\(700\) 5.05402 5.05402i 0.191024 0.191024i
\(701\) 4.53361 0.171232 0.0856160 0.996328i \(-0.472714\pi\)
0.0856160 + 0.996328i \(0.472714\pi\)
\(702\) 0 0
\(703\) −44.4300 44.4300i −1.67571 1.67571i
\(704\) 2.75647 + 2.75647i 0.103888 + 0.103888i
\(705\) 0 0
\(706\) 43.1324i 1.62331i
\(707\) 7.00215 + 7.00215i 0.263343 + 0.263343i
\(708\) 0 0
\(709\) 28.5897 28.5897i 1.07371 1.07371i 0.0766494 0.997058i \(-0.475578\pi\)
0.997058 0.0766494i \(-0.0244222\pi\)
\(710\) −78.6093 −2.95016
\(711\) 0 0
\(712\) 20.1602i 0.755535i
\(713\) −8.84351 −0.331192
\(714\) 0 0
\(715\) 33.7405 1.26182
\(716\) 13.2707i 0.495951i
\(717\) 0 0
\(718\) −34.5166 −1.28815
\(719\) −33.6094 + 33.6094i −1.25342 + 1.25342i −0.299244 + 0.954177i \(0.596735\pi\)
−0.954177 + 0.299244i \(0.903265\pi\)
\(720\) 0 0
\(721\) 3.94492 + 3.94492i 0.146917 + 0.146917i
\(722\) 49.3053i 1.83495i
\(723\) 0 0
\(724\) −13.9109 13.9109i −0.516996 0.516996i
\(725\) 52.1350 + 52.1350i 1.93625 + 1.93625i
\(726\) 0 0
\(727\) −12.1751 −0.451549 −0.225774 0.974180i \(-0.572491\pi\)
−0.225774 + 0.974180i \(0.572491\pi\)
\(728\) −4.75610 + 4.75610i −0.176273 + 0.176273i
\(729\) 0 0
\(730\) 8.66697 0.320779
\(731\) 4.16218 5.74148i 0.153944 0.212356i
\(732\) 0 0
\(733\) 16.4228i 0.606589i 0.952897 + 0.303294i \(0.0980865\pi\)
−0.952897 + 0.303294i \(0.901913\pi\)
\(734\) 33.2581 33.2581i 1.22758 1.22758i
\(735\) 0 0
\(736\) −26.6758 + 26.6758i −0.983284 + 0.983284i
\(737\) 5.20422 + 5.20422i 0.191700 + 0.191700i
\(738\) 0 0
\(739\) 14.0884i 0.518249i 0.965844 + 0.259125i \(0.0834340\pi\)
−0.965844 + 0.259125i \(0.916566\pi\)
\(740\) 30.3888i 1.11712i
\(741\) 0 0
\(742\) 4.10222 + 4.10222i 0.150597 + 0.150597i
\(743\) 37.0522 37.0522i 1.35931 1.35931i 0.484551 0.874763i \(-0.338983\pi\)
0.874763 0.484551i \(-0.161017\pi\)
\(744\) 0 0
\(745\) −38.6366 + 38.6366i −1.41554 + 1.41554i
\(746\) 15.4672i 0.566293i
\(747\) 0 0
\(748\) −1.56924 9.84058i −0.0573770 0.359807i
\(749\) −5.62786 −0.205638
\(750\) 0 0
\(751\) −13.5973 + 13.5973i −0.496174 + 0.496174i −0.910245 0.414071i \(-0.864107\pi\)
0.414071 + 0.910245i \(0.364107\pi\)
\(752\) −3.49695 −0.127521
\(753\) 0 0
\(754\) 43.6747 + 43.6747i 1.59054 + 1.59054i
\(755\) 25.0907 + 25.0907i 0.913143 + 0.913143i
\(756\) 0 0
\(757\) 28.7663i 1.04553i 0.852477 + 0.522764i \(0.175099\pi\)
−0.852477 + 0.522764i \(0.824901\pi\)
\(758\) 4.86957 + 4.86957i 0.176871 + 0.176871i
\(759\) 0 0
\(760\) −31.4611 + 31.4611i −1.14122 + 1.14122i
\(761\) −39.8043 −1.44291 −0.721453 0.692463i \(-0.756525\pi\)
−0.721453 + 0.692463i \(0.756525\pi\)
\(762\) 0 0
\(763\) 16.2122i 0.586922i
\(764\) 4.43079 0.160300
\(765\) 0 0
\(766\) 12.6760 0.458004
\(767\) 40.4793i 1.46162i
\(768\) 0 0
\(769\) −1.97929 −0.0713750 −0.0356875 0.999363i \(-0.511362\pi\)
−0.0356875 + 0.999363i \(0.511362\pi\)
\(770\) −11.0414 + 11.0414i −0.397903 + 0.397903i
\(771\) 0 0
\(772\) −3.39911 3.39911i −0.122337 0.122337i
\(773\) 30.2810i 1.08913i −0.838718 0.544565i \(-0.816695\pi\)
0.838718 0.544565i \(-0.183305\pi\)
\(774\) 0 0
\(775\) 6.21431 + 6.21431i 0.223225 + 0.223225i
\(776\) −2.27227 2.27227i −0.0815699 0.0815699i
\(777\) 0 0
\(778\) −27.6856 −0.992576
\(779\) −41.6803 + 41.6803i −1.49335 + 1.49335i
\(780\) 0 0
\(781\) 33.1449 1.18602
\(782\) −53.3268 + 8.50380i −1.90696 + 0.304095i
\(783\) 0 0
\(784\) 4.99663i 0.178451i
\(785\) 19.3134 19.3134i 0.689326 0.689326i
\(786\) 0 0
\(787\) 37.6231 37.6231i 1.34112 1.34112i 0.446167 0.894950i \(-0.352789\pi\)
0.894950 0.446167i \(-0.147211\pi\)
\(788\) −8.98088 8.98088i −0.319930 0.319930i
\(789\) 0 0
\(790\) 67.1425i 2.38882i
\(791\) 9.68119i 0.344223i
\(792\) 0 0
\(793\) 13.4361 + 13.4361i 0.477130 + 0.477130i
\(794\) 8.14118 8.14118i 0.288920 0.288920i
\(795\) 0 0
\(796\) 2.79309 2.79309i 0.0989983 0.0989983i
\(797\) 39.2847i 1.39154i 0.718266 + 0.695768i \(0.244936\pi\)
−0.718266 + 0.695768i \(0.755064\pi\)
\(798\) 0 0
\(799\) −2.33629 1.69365i −0.0826522 0.0599172i
\(800\) 37.4901 1.32547
\(801\) 0 0
\(802\) −2.40383 + 2.40383i −0.0848821 + 0.0848821i
\(803\) −3.65435 −0.128959
\(804\) 0 0
\(805\) 19.1570 + 19.1570i 0.675195 + 0.675195i
\(806\) 5.20588 + 5.20588i 0.183369 + 0.183369i
\(807\) 0 0
\(808\) 17.9715i 0.632234i
\(809\) −32.7701 32.7701i −1.15214 1.15214i −0.986123 0.166014i \(-0.946910\pi\)
−0.166014 0.986123i \(-0.553090\pi\)
\(810\) 0 0
\(811\) 32.4710 32.4710i 1.14021 1.14021i 0.151802 0.988411i \(-0.451492\pi\)
0.988411 0.151802i \(-0.0485075\pi\)
\(812\) −9.15190 −0.321169
\(813\) 0 0
\(814\) 40.0200i 1.40270i
\(815\) −20.9458 −0.733701
\(816\) 0 0
\(817\) −11.8844 −0.415784
\(818\) 26.3094i 0.919887i
\(819\) 0 0
\(820\) 28.5082 0.995549
\(821\) 25.0935 25.0935i 0.875768 0.875768i −0.117325 0.993094i \(-0.537432\pi\)
0.993094 + 0.117325i \(0.0374320\pi\)
\(822\) 0 0
\(823\) −7.45205 7.45205i −0.259762 0.259762i 0.565195 0.824957i \(-0.308801\pi\)
−0.824957 + 0.565195i \(0.808801\pi\)
\(824\) 10.1249i 0.352718i
\(825\) 0 0
\(826\) −13.2466 13.2466i −0.460907 0.460907i
\(827\) 39.0403 + 39.0403i 1.35757 + 1.35757i 0.876909 + 0.480656i \(0.159601\pi\)
0.480656 + 0.876909i \(0.340399\pi\)
\(828\) 0 0
\(829\) 37.2823 1.29487 0.647435 0.762121i \(-0.275842\pi\)
0.647435 + 0.762121i \(0.275842\pi\)
\(830\) 34.9235 34.9235i 1.21221 1.21221i
\(831\) 0 0
\(832\) −5.63062 −0.195207
\(833\) 2.41998 3.33822i 0.0838474 0.115662i
\(834\) 0 0
\(835\) 11.4498i 0.396237i
\(836\) −11.8087 + 11.8087i −0.408413 + 0.408413i
\(837\) 0 0
\(838\) 0.323950 0.323950i 0.0111907 0.0111907i
\(839\) −16.4347 16.4347i −0.567387 0.567387i 0.364008 0.931396i \(-0.381408\pi\)
−0.931396 + 0.364008i \(0.881408\pi\)
\(840\) 0 0
\(841\) 65.4071i 2.25542i
\(842\) 28.2004i 0.971851i
\(843\) 0 0
\(844\) 11.9037 + 11.9037i 0.409741 + 0.409741i
\(845\) −1.84620 + 1.84620i −0.0635114 + 0.0635114i
\(846\) 0 0
\(847\) −3.12269 + 3.12269i −0.107297 + 0.107297i
\(848\) 16.9004i 0.580361i
\(849\) 0 0
\(850\) 43.4482 + 31.4970i 1.49026 + 1.08034i
\(851\) −69.4354 −2.38022
\(852\) 0 0
\(853\) −9.97344 + 9.97344i −0.341484 + 0.341484i −0.856925 0.515441i \(-0.827628\pi\)
0.515441 + 0.856925i \(0.327628\pi\)
\(854\) −8.79376 −0.300916
\(855\) 0 0
\(856\) −7.22214 7.22214i −0.246848 0.246848i
\(857\) 25.6259 + 25.6259i 0.875362 + 0.875362i 0.993051 0.117688i \(-0.0375483\pi\)
−0.117688 + 0.993051i \(0.537548\pi\)
\(858\) 0 0
\(859\) 35.1436i 1.19908i −0.800343 0.599542i \(-0.795349\pi\)
0.800343 0.599542i \(-0.204651\pi\)
\(860\) 4.06431 + 4.06431i 0.138592 + 0.138592i
\(861\) 0 0
\(862\) 2.62405 2.62405i 0.0893754 0.0893754i
\(863\) −18.5693 −0.632106 −0.316053 0.948742i \(-0.602358\pi\)
−0.316053 + 0.948742i \(0.602358\pi\)
\(864\) 0 0
\(865\) 79.4513i 2.70142i
\(866\) 9.69573 0.329474
\(867\) 0 0
\(868\) −1.09087 −0.0370267
\(869\) 28.3100i 0.960351i
\(870\) 0 0
\(871\) −10.6306 −0.360205
\(872\) −20.8049 + 20.8049i −0.704542 + 0.704542i
\(873\) 0 0
\(874\) 63.9923 + 63.9923i 2.16457 + 2.16457i
\(875\) 9.18315i 0.310447i
\(876\) 0 0
\(877\) −12.7084 12.7084i −0.429133 0.429133i 0.459200 0.888333i \(-0.348136\pi\)
−0.888333 + 0.459200i \(0.848136\pi\)
\(878\) −2.32581 2.32581i −0.0784924 0.0784924i
\(879\) 0 0
\(880\) −45.4883 −1.53341
\(881\) −24.4657 + 24.4657i −0.824269 + 0.824269i −0.986717 0.162448i \(-0.948061\pi\)
0.162448 + 0.986717i \(0.448061\pi\)
\(882\) 0 0
\(883\) 20.3212 0.683863 0.341931 0.939725i \(-0.388919\pi\)
0.341931 + 0.939725i \(0.388919\pi\)
\(884\) 11.6534 + 8.44791i 0.391946 + 0.284134i
\(885\) 0 0
\(886\) 48.8334i 1.64059i
\(887\) −13.5104 + 13.5104i −0.453634 + 0.453634i −0.896559 0.442925i \(-0.853941\pi\)
0.442925 + 0.896559i \(0.353941\pi\)
\(888\) 0 0
\(889\) 1.39429 1.39429i 0.0467630 0.0467630i
\(890\) 47.8013 + 47.8013i 1.60230 + 1.60230i
\(891\) 0 0
\(892\) 1.50962i 0.0505459i
\(893\) 4.83595i 0.161829i
\(894\) 0 0
\(895\) −35.3471 35.3471i −1.18152 1.18152i
\(896\) 8.82956 8.82956i 0.294975 0.294975i
\(897\) 0 0
\(898\) −15.8341 + 15.8341i −0.528392 + 0.528392i
\(899\) 11.2530i 0.375308i
\(900\) 0 0
\(901\) −8.18523 + 11.2910i −0.272690 + 0.376159i
\(902\) −37.5433 −1.25005
\(903\) 0 0
\(904\) −12.4237 + 12.4237i −0.413206 + 0.413206i
\(905\) −74.1047 −2.46332
\(906\) 0 0
\(907\) −41.1761 41.1761i −1.36723 1.36723i −0.864364 0.502867i \(-0.832278\pi\)
−0.502867 0.864364i \(-0.667722\pi\)
\(908\) 7.82518 + 7.82518i 0.259688 + 0.259688i
\(909\) 0 0
\(910\) 22.5541i 0.747662i
\(911\) −1.65907 1.65907i −0.0549673 0.0549673i 0.679089 0.734056i \(-0.262375\pi\)
−0.734056 + 0.679089i \(0.762375\pi\)
\(912\) 0 0
\(913\) −14.7252 + 14.7252i −0.487332 + 0.487332i
\(914\) −15.1059 −0.499660
\(915\) 0 0
\(916\) 1.39206i 0.0459950i
\(917\) −8.55799 −0.282610
\(918\) 0 0
\(919\) −0.903634 −0.0298081 −0.0149041 0.999889i \(-0.504744\pi\)
−0.0149041 + 0.999889i \(0.504744\pi\)
\(920\) 49.1676i 1.62101i
\(921\) 0 0
\(922\) −13.9771 −0.460313
\(923\) −33.8524 + 33.8524i −1.11427 + 1.11427i
\(924\) 0 0
\(925\) 48.7921 + 48.7921i 1.60427 + 1.60427i
\(926\) 0.562605i 0.0184883i
\(927\) 0 0
\(928\) −33.9439 33.9439i −1.11426 1.11426i
\(929\) −19.7422 19.7422i −0.647721 0.647721i 0.304721 0.952442i \(-0.401437\pi\)
−0.952442 + 0.304721i \(0.901437\pi\)
\(930\) 0 0
\(931\) −6.90985 −0.226461
\(932\) −9.16804 + 9.16804i −0.300309 + 0.300309i
\(933\) 0 0
\(934\) −39.4873 −1.29206
\(935\) −30.3905 22.0310i −0.993875 0.720492i
\(936\) 0 0
\(937\) 36.6825i 1.19836i 0.800613 + 0.599182i \(0.204507\pi\)
−0.800613 + 0.599182i \(0.795493\pi\)
\(938\) 3.47881 3.47881i 0.113587 0.113587i
\(939\) 0 0
\(940\) 1.65383 1.65383i 0.0539419 0.0539419i
\(941\) 23.5785 + 23.5785i 0.768636 + 0.768636i 0.977866 0.209230i \(-0.0670959\pi\)
−0.209230 + 0.977866i \(0.567096\pi\)
\(942\) 0 0
\(943\) 65.1383i 2.12119i
\(944\) 54.5734i 1.77621i
\(945\) 0 0
\(946\) −5.35241 5.35241i −0.174022 0.174022i
\(947\) 13.9732 13.9732i 0.454068 0.454068i −0.442634 0.896702i \(-0.645956\pi\)
0.896702 + 0.442634i \(0.145956\pi\)
\(948\) 0 0
\(949\) 3.73236 3.73236i 0.121157 0.121157i
\(950\) 89.9344i 2.91786i
\(951\) 0 0
\(952\) 7.38940 1.17836i 0.239492 0.0381908i
\(953\) −36.5884 −1.18521 −0.592607 0.805491i \(-0.701901\pi\)
−0.592607 + 0.805491i \(0.701901\pi\)
\(954\) 0 0
\(955\) 11.8016 11.8016i 0.381890 0.381890i
\(956\) 12.8557 0.415783
\(957\) 0 0
\(958\) −33.5218 33.5218i −1.08304 1.08304i
\(959\) −13.2634 13.2634i −0.428297 0.428297i
\(960\) 0 0
\(961\) 29.6587i 0.956732i
\(962\) 40.8743 + 40.8743i 1.31784 + 1.31784i
\(963\) 0 0
\(964\) −11.5438 + 11.5438i −0.371802 + 0.371802i
\(965\) −18.1073 −0.582895
\(966\) 0 0
\(967\) 29.3184i 0.942815i −0.881915 0.471408i \(-0.843746\pi\)
0.881915 0.471408i \(-0.156254\pi\)
\(968\) −8.01459 −0.257599
\(969\) 0 0
\(970\) 10.7755 0.345979
\(971\) 30.8608i 0.990370i −0.868788 0.495185i \(-0.835100\pi\)
0.868788 0.495185i \(-0.164900\pi\)
\(972\) 0 0
\(973\) 6.45433 0.206916
\(974\) −2.65836 + 2.65836i −0.0851793 + 0.0851793i
\(975\) 0 0
\(976\) −18.1143 18.1143i −0.579825 0.579825i
\(977\) 54.9490i 1.75797i −0.476847 0.878987i \(-0.658220\pi\)
0.476847 0.878987i \(-0.341780\pi\)
\(978\) 0 0
\(979\) −20.1550 20.1550i −0.644156 0.644156i
\(980\) 2.36307 + 2.36307i 0.0754856 + 0.0754856i
\(981\) 0 0
\(982\) 13.7906 0.440077
\(983\) 8.91428 8.91428i 0.284321 0.284321i −0.550508 0.834830i \(-0.685566\pi\)
0.834830 + 0.550508i \(0.185566\pi\)
\(984\) 0 0
\(985\) −47.8418 −1.52437
\(986\) −10.8207 67.8560i −0.344602 2.16098i
\(987\) 0 0
\(988\) 24.1216i 0.767411i
\(989\) −9.28653 + 9.28653i −0.295294 + 0.295294i
\(990\) 0 0
\(991\) 6.73346 6.73346i 0.213895 0.213895i −0.592024 0.805920i \(-0.701671\pi\)
0.805920 + 0.592024i \(0.201671\pi\)
\(992\) −4.04599 4.04599i −0.128460 0.128460i
\(993\) 0 0
\(994\) 22.1560i 0.702746i
\(995\) 14.8790i 0.471695i
\(996\) 0 0
\(997\) 39.9524 + 39.9524i 1.26531 + 1.26531i 0.948485 + 0.316821i \(0.102615\pi\)
0.316821 + 0.948485i \(0.397385\pi\)
\(998\) 13.8739 13.8739i 0.439172 0.439172i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1071.2.n.b.820.3 20
3.2 odd 2 357.2.k.b.106.8 yes 20
17.13 even 4 inner 1071.2.n.b.64.8 20
51.8 odd 8 6069.2.a.be.1.8 10
51.26 odd 8 6069.2.a.bd.1.8 10
51.47 odd 4 357.2.k.b.64.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
357.2.k.b.64.3 20 51.47 odd 4
357.2.k.b.106.8 yes 20 3.2 odd 2
1071.2.n.b.64.8 20 17.13 even 4 inner
1071.2.n.b.820.3 20 1.1 even 1 trivial
6069.2.a.bd.1.8 10 51.26 odd 8
6069.2.a.be.1.8 10 51.8 odd 8