Properties

Label 357.2.k.b.106.8
Level $357$
Weight $2$
Character 357.106
Analytic conductor $2.851$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [357,2,Mod(64,357)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(357, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("357.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 357 = 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 357.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.85065935216\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 32 x^{18} + 426 x^{16} + 3072 x^{14} + 13121 x^{12} + 34148 x^{10} + 53608 x^{8} + 48276 x^{6} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 106.8
Root \(1.71520i\) of defining polynomial
Character \(\chi\) \(=\) 357.106
Dual form 357.2.k.b.64.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.71520i q^{2} +(-0.707107 + 0.707107i) q^{3} -0.941909 q^{4} +(2.50881 - 2.50881i) q^{5} +(-1.21283 - 1.21283i) q^{6} +(-0.707107 - 0.707107i) q^{7} +1.81484i q^{8} -1.00000i q^{9} +O(q^{10})\) \(q+1.71520i q^{2} +(-0.707107 + 0.707107i) q^{3} -0.941909 q^{4} +(2.50881 - 2.50881i) q^{5} +(-1.21283 - 1.21283i) q^{6} +(-0.707107 - 0.707107i) q^{7} +1.81484i q^{8} -1.00000i q^{9} +(4.30311 + 4.30311i) q^{10} +(1.81437 + 1.81437i) q^{11} +(0.666030 - 0.666030i) q^{12} +3.70620 q^{13} +(1.21283 - 1.21283i) q^{14} +3.54799i q^{15} -4.99663 q^{16} +(3.33822 + 2.41998i) q^{17} +1.71520 q^{18} +6.90985i q^{19} +(-2.36307 + 2.36307i) q^{20} +1.00000 q^{21} +(-3.11200 + 3.11200i) q^{22} +(-5.39938 - 5.39938i) q^{23} +(-1.28328 - 1.28328i) q^{24} -7.58826i q^{25} +6.35687i q^{26} +(0.707107 + 0.707107i) q^{27} +(0.666030 + 0.666030i) q^{28} +(6.87048 - 6.87048i) q^{29} -6.08552 q^{30} +(-0.818937 + 0.818937i) q^{31} -4.94054i q^{32} -2.56590 q^{33} +(-4.15075 + 5.72571i) q^{34} -3.54799 q^{35} +0.941909i q^{36} +(-6.42994 + 6.42994i) q^{37} -11.8518 q^{38} +(-2.62068 + 2.62068i) q^{39} +(4.55308 + 4.55308i) q^{40} +(-6.03201 - 6.03201i) q^{41} +1.71520i q^{42} +1.71992i q^{43} +(-1.70897 - 1.70897i) q^{44} +(-2.50881 - 2.50881i) q^{45} +(9.26101 - 9.26101i) q^{46} -0.699863 q^{47} +(3.53315 - 3.53315i) q^{48} +1.00000i q^{49} +13.0154 q^{50} +(-4.07166 + 0.649291i) q^{51} -3.49090 q^{52} +3.38235i q^{53} +(-1.21283 + 1.21283i) q^{54} +9.10380 q^{55} +(1.28328 - 1.28328i) q^{56} +(-4.88600 - 4.88600i) q^{57} +(11.7842 + 11.7842i) q^{58} -10.9220i q^{59} -3.34189i q^{60} +(3.62531 + 3.62531i) q^{61} +(-1.40464 - 1.40464i) q^{62} +(-0.707107 + 0.707107i) q^{63} -1.51925 q^{64} +(9.29814 - 9.29814i) q^{65} -4.40103i q^{66} -2.86834 q^{67} +(-3.14430 - 2.27940i) q^{68} +7.63588 q^{69} -6.08552i q^{70} +(9.13401 - 9.13401i) q^{71} +1.81484 q^{72} +(1.00706 - 1.00706i) q^{73} +(-11.0286 - 11.0286i) q^{74} +(5.36571 + 5.36571i) q^{75} -6.50846i q^{76} -2.56590i q^{77} +(-4.49498 - 4.49498i) q^{78} +(-7.80162 - 7.80162i) q^{79} +(-12.5356 + 12.5356i) q^{80} -1.00000 q^{81} +(10.3461 - 10.3461i) q^{82} +8.11587i q^{83} -0.941909 q^{84} +(14.4462 - 2.30368i) q^{85} -2.95001 q^{86} +9.71633i q^{87} +(-3.29278 + 3.29278i) q^{88} -11.1085 q^{89} +(4.30311 - 4.30311i) q^{90} +(-2.62068 - 2.62068i) q^{91} +(5.08573 + 5.08573i) q^{92} -1.15815i q^{93} -1.20040i q^{94} +(17.3355 + 17.3355i) q^{95} +(3.49349 + 3.49349i) q^{96} +(1.25205 - 1.25205i) q^{97} -1.71520 q^{98} +(1.81437 - 1.81437i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 24 q^{4} + 8 q^{5} - 4 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 24 q^{4} + 8 q^{5} - 4 q^{6} + 16 q^{10} + 4 q^{11} - 12 q^{13} + 4 q^{14} + 40 q^{16} + 4 q^{17} + 8 q^{18} - 52 q^{20} + 20 q^{21} - 24 q^{22} - 4 q^{23} + 4 q^{24} - 8 q^{29} + 8 q^{31} - 4 q^{33} - 44 q^{34} + 12 q^{35} + 24 q^{37} - 64 q^{38} - 12 q^{39} - 52 q^{40} - 20 q^{41} + 72 q^{44} - 8 q^{45} + 28 q^{46} - 32 q^{47} + 32 q^{48} + 104 q^{50} + 8 q^{51} + 48 q^{52} - 4 q^{54} - 36 q^{55} - 4 q^{56} - 16 q^{57} - 60 q^{58} + 28 q^{61} + 36 q^{62} - 112 q^{64} - 4 q^{65} + 40 q^{67} - 52 q^{68} + 36 q^{69} + 16 q^{71} - 24 q^{72} - 72 q^{73} - 24 q^{74} - 8 q^{75} + 40 q^{78} - 8 q^{79} + 120 q^{80} - 20 q^{81} + 108 q^{82} - 24 q^{84} + 40 q^{85} - 28 q^{88} - 64 q^{89} + 16 q^{90} - 12 q^{91} - 56 q^{92} + 60 q^{95} + 16 q^{96} + 60 q^{97} - 8 q^{98} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/357\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(190\) \(239\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.71520i 1.21283i 0.795149 + 0.606415i \(0.207393\pi\)
−0.795149 + 0.606415i \(0.792607\pi\)
\(3\) −0.707107 + 0.707107i −0.408248 + 0.408248i
\(4\) −0.941909 −0.470955
\(5\) 2.50881 2.50881i 1.12197 1.12197i 0.130530 0.991444i \(-0.458332\pi\)
0.991444 0.130530i \(-0.0416679\pi\)
\(6\) −1.21283 1.21283i −0.495135 0.495135i
\(7\) −0.707107 0.707107i −0.267261 0.267261i
\(8\) 1.81484i 0.641642i
\(9\) 1.00000i 0.333333i
\(10\) 4.30311 + 4.30311i 1.36076 + 1.36076i
\(11\) 1.81437 + 1.81437i 0.547052 + 0.547052i 0.925587 0.378535i \(-0.123572\pi\)
−0.378535 + 0.925587i \(0.623572\pi\)
\(12\) 0.666030 0.666030i 0.192266 0.192266i
\(13\) 3.70620 1.02791 0.513957 0.857816i \(-0.328179\pi\)
0.513957 + 0.857816i \(0.328179\pi\)
\(14\) 1.21283 1.21283i 0.324142 0.324142i
\(15\) 3.54799i 0.916088i
\(16\) −4.99663 −1.24916
\(17\) 3.33822 + 2.41998i 0.809637 + 0.586932i
\(18\) 1.71520 0.404276
\(19\) 6.90985i 1.58523i 0.609723 + 0.792615i \(0.291281\pi\)
−0.609723 + 0.792615i \(0.708719\pi\)
\(20\) −2.36307 + 2.36307i −0.528399 + 0.528399i
\(21\) 1.00000 0.218218
\(22\) −3.11200 + 3.11200i −0.663481 + 0.663481i
\(23\) −5.39938 5.39938i −1.12585 1.12585i −0.990845 0.135004i \(-0.956895\pi\)
−0.135004 0.990845i \(-0.543105\pi\)
\(24\) −1.28328 1.28328i −0.261949 0.261949i
\(25\) 7.58826i 1.51765i
\(26\) 6.35687i 1.24668i
\(27\) 0.707107 + 0.707107i 0.136083 + 0.136083i
\(28\) 0.666030 + 0.666030i 0.125868 + 0.125868i
\(29\) 6.87048 6.87048i 1.27582 1.27582i 0.332830 0.942987i \(-0.391997\pi\)
0.942987 0.332830i \(-0.108003\pi\)
\(30\) −6.08552 −1.11106
\(31\) −0.818937 + 0.818937i −0.147086 + 0.147086i −0.776815 0.629729i \(-0.783166\pi\)
0.629729 + 0.776815i \(0.283166\pi\)
\(32\) 4.94054i 0.873372i
\(33\) −2.56590 −0.446666
\(34\) −4.15075 + 5.72571i −0.711848 + 0.981951i
\(35\) −3.54799 −0.599721
\(36\) 0.941909i 0.156985i
\(37\) −6.42994 + 6.42994i −1.05708 + 1.05708i −0.0588066 + 0.998269i \(0.518730\pi\)
−0.998269 + 0.0588066i \(0.981270\pi\)
\(38\) −11.8518 −1.92261
\(39\) −2.62068 + 2.62068i −0.419644 + 0.419644i
\(40\) 4.55308 + 4.55308i 0.719905 + 0.719905i
\(41\) −6.03201 6.03201i −0.942042 0.942042i 0.0563678 0.998410i \(-0.482048\pi\)
−0.998410 + 0.0563678i \(0.982048\pi\)
\(42\) 1.71520i 0.264661i
\(43\) 1.71992i 0.262286i 0.991363 + 0.131143i \(0.0418647\pi\)
−0.991363 + 0.131143i \(0.958135\pi\)
\(44\) −1.70897 1.70897i −0.257637 0.257637i
\(45\) −2.50881 2.50881i −0.373991 0.373991i
\(46\) 9.26101 9.26101i 1.36546 1.36546i
\(47\) −0.699863 −0.102086 −0.0510428 0.998696i \(-0.516254\pi\)
−0.0510428 + 0.998696i \(0.516254\pi\)
\(48\) 3.53315 3.53315i 0.509966 0.509966i
\(49\) 1.00000i 0.142857i
\(50\) 13.0154 1.84065
\(51\) −4.07166 + 0.649291i −0.570147 + 0.0909189i
\(52\) −3.49090 −0.484101
\(53\) 3.38235i 0.464602i 0.972644 + 0.232301i \(0.0746255\pi\)
−0.972644 + 0.232301i \(0.925375\pi\)
\(54\) −1.21283 + 1.21283i −0.165045 + 0.165045i
\(55\) 9.10380 1.22756
\(56\) 1.28328 1.28328i 0.171486 0.171486i
\(57\) −4.88600 4.88600i −0.647167 0.647167i
\(58\) 11.7842 + 11.7842i 1.54735 + 1.54735i
\(59\) 10.9220i 1.42193i −0.703228 0.710965i \(-0.748259\pi\)
0.703228 0.710965i \(-0.251741\pi\)
\(60\) 3.34189i 0.431436i
\(61\) 3.62531 + 3.62531i 0.464173 + 0.464173i 0.900021 0.435847i \(-0.143551\pi\)
−0.435847 + 0.900021i \(0.643551\pi\)
\(62\) −1.40464 1.40464i −0.178390 0.178390i
\(63\) −0.707107 + 0.707107i −0.0890871 + 0.0890871i
\(64\) −1.51925 −0.189906
\(65\) 9.29814 9.29814i 1.15329 1.15329i
\(66\) 4.40103i 0.541730i
\(67\) −2.86834 −0.350423 −0.175212 0.984531i \(-0.556061\pi\)
−0.175212 + 0.984531i \(0.556061\pi\)
\(68\) −3.14430 2.27940i −0.381302 0.276418i
\(69\) 7.63588 0.919252
\(70\) 6.08552i 0.727359i
\(71\) 9.13401 9.13401i 1.08401 1.08401i 0.0878766 0.996131i \(-0.471992\pi\)
0.996131 0.0878766i \(-0.0280081\pi\)
\(72\) 1.81484 0.213881
\(73\) 1.00706 1.00706i 0.117867 0.117867i −0.645713 0.763580i \(-0.723440\pi\)
0.763580 + 0.645713i \(0.223440\pi\)
\(74\) −11.0286 11.0286i −1.28205 1.28205i
\(75\) 5.36571 + 5.36571i 0.619579 + 0.619579i
\(76\) 6.50846i 0.746571i
\(77\) 2.56590i 0.292412i
\(78\) −4.49498 4.49498i −0.508957 0.508957i
\(79\) −7.80162 7.80162i −0.877751 0.877751i 0.115551 0.993302i \(-0.463137\pi\)
−0.993302 + 0.115551i \(0.963137\pi\)
\(80\) −12.5356 + 12.5356i −1.40152 + 1.40152i
\(81\) −1.00000 −0.111111
\(82\) 10.3461 10.3461i 1.14254 1.14254i
\(83\) 8.11587i 0.890832i 0.895324 + 0.445416i \(0.146944\pi\)
−0.895324 + 0.445416i \(0.853056\pi\)
\(84\) −0.941909 −0.102771
\(85\) 14.4462 2.30368i 1.56691 0.249869i
\(86\) −2.95001 −0.318108
\(87\) 9.71633i 1.04170i
\(88\) −3.29278 + 3.29278i −0.351011 + 0.351011i
\(89\) −11.1085 −1.17750 −0.588752 0.808314i \(-0.700381\pi\)
−0.588752 + 0.808314i \(0.700381\pi\)
\(90\) 4.30311 4.30311i 0.453588 0.453588i
\(91\) −2.62068 2.62068i −0.274722 0.274722i
\(92\) 5.08573 + 5.08573i 0.530224 + 0.530224i
\(93\) 1.15815i 0.120095i
\(94\) 1.20040i 0.123812i
\(95\) 17.3355 + 17.3355i 1.77859 + 1.77859i
\(96\) 3.49349 + 3.49349i 0.356552 + 0.356552i
\(97\) 1.25205 1.25205i 0.127127 0.127127i −0.640681 0.767808i \(-0.721348\pi\)
0.767808 + 0.640681i \(0.221348\pi\)
\(98\) −1.71520 −0.173261
\(99\) 1.81437 1.81437i 0.182351 0.182351i
\(100\) 7.14746i 0.714746i
\(101\) 9.90253 0.985339 0.492669 0.870217i \(-0.336021\pi\)
0.492669 + 0.870217i \(0.336021\pi\)
\(102\) −1.11366 6.98371i −0.110269 0.691490i
\(103\) −5.57897 −0.549712 −0.274856 0.961485i \(-0.588630\pi\)
−0.274856 + 0.961485i \(0.588630\pi\)
\(104\) 6.72614i 0.659552i
\(105\) 2.50881 2.50881i 0.244835 0.244835i
\(106\) −5.80141 −0.563483
\(107\) −3.97950 + 3.97950i −0.384713 + 0.384713i −0.872797 0.488084i \(-0.837696\pi\)
0.488084 + 0.872797i \(0.337696\pi\)
\(108\) −0.666030 0.666030i −0.0640888 0.0640888i
\(109\) −11.4638 11.4638i −1.09803 1.09803i −0.994641 0.103390i \(-0.967031\pi\)
−0.103390 0.994641i \(-0.532969\pi\)
\(110\) 15.6148i 1.48882i
\(111\) 9.09331i 0.863099i
\(112\) 3.53315 + 3.53315i 0.333851 + 0.333851i
\(113\) 6.84563 + 6.84563i 0.643983 + 0.643983i 0.951532 0.307549i \(-0.0995089\pi\)
−0.307549 + 0.951532i \(0.599509\pi\)
\(114\) 8.38047 8.38047i 0.784903 0.784903i
\(115\) −27.0920 −2.52635
\(116\) −6.47137 + 6.47137i −0.600852 + 0.600852i
\(117\) 3.70620i 0.342638i
\(118\) 18.7335 1.72456
\(119\) −0.649291 4.07166i −0.0595204 0.373249i
\(120\) −6.43903 −0.587800
\(121\) 4.41615i 0.401468i
\(122\) −6.21813 + 6.21813i −0.562963 + 0.562963i
\(123\) 8.53056 0.769174
\(124\) 0.771365 0.771365i 0.0692706 0.0692706i
\(125\) −6.49347 6.49347i −0.580793 0.580793i
\(126\) −1.21283 1.21283i −0.108047 0.108047i
\(127\) 1.97182i 0.174971i 0.996166 + 0.0874855i \(0.0278831\pi\)
−0.996166 + 0.0874855i \(0.972117\pi\)
\(128\) 12.4869i 1.10369i
\(129\) −1.21617 1.21617i −0.107078 0.107078i
\(130\) 15.9482 + 15.9482i 1.39875 + 1.39875i
\(131\) −6.05141 + 6.05141i −0.528714 + 0.528714i −0.920189 0.391475i \(-0.871965\pi\)
0.391475 + 0.920189i \(0.371965\pi\)
\(132\) 2.41685 0.210360
\(133\) 4.88600 4.88600i 0.423670 0.423670i
\(134\) 4.91977i 0.425004i
\(135\) 3.54799 0.305363
\(136\) −4.39187 + 6.05832i −0.376600 + 0.519497i
\(137\) −18.7573 −1.60254 −0.801270 0.598303i \(-0.795842\pi\)
−0.801270 + 0.598303i \(0.795842\pi\)
\(138\) 13.0971i 1.11490i
\(139\) −4.56390 + 4.56390i −0.387105 + 0.387105i −0.873654 0.486548i \(-0.838256\pi\)
0.486548 + 0.873654i \(0.338256\pi\)
\(140\) 3.34189 0.282441
\(141\) 0.494878 0.494878i 0.0416762 0.0416762i
\(142\) 15.6667 + 15.6667i 1.31472 + 1.31472i
\(143\) 6.72440 + 6.72440i 0.562322 + 0.562322i
\(144\) 4.99663i 0.416385i
\(145\) 34.4735i 2.86287i
\(146\) 1.72731 + 1.72731i 0.142953 + 0.142953i
\(147\) −0.707107 0.707107i −0.0583212 0.0583212i
\(148\) 6.05642 6.05642i 0.497835 0.497835i
\(149\) −15.4004 −1.26165 −0.630824 0.775926i \(-0.717283\pi\)
−0.630824 + 0.775926i \(0.717283\pi\)
\(150\) −9.20327 + 9.20327i −0.751444 + 0.751444i
\(151\) 10.0010i 0.813872i −0.913457 0.406936i \(-0.866597\pi\)
0.913457 0.406936i \(-0.133403\pi\)
\(152\) −12.5403 −1.01715
\(153\) 2.41998 3.33822i 0.195644 0.269879i
\(154\) 4.40103 0.354645
\(155\) 4.10912i 0.330052i
\(156\) 2.46844 2.46844i 0.197633 0.197633i
\(157\) −7.69824 −0.614387 −0.307193 0.951647i \(-0.599390\pi\)
−0.307193 + 0.951647i \(0.599390\pi\)
\(158\) 13.3813 13.3813i 1.06456 1.06456i
\(159\) −2.39169 2.39169i −0.189673 0.189673i
\(160\) −12.3949 12.3949i −0.979901 0.979901i
\(161\) 7.63588i 0.601791i
\(162\) 1.71520i 0.134759i
\(163\) 4.17446 + 4.17446i 0.326969 + 0.326969i 0.851433 0.524464i \(-0.175734\pi\)
−0.524464 + 0.851433i \(0.675734\pi\)
\(164\) 5.68161 + 5.68161i 0.443659 + 0.443659i
\(165\) −6.43736 + 6.43736i −0.501148 + 0.501148i
\(166\) −13.9203 −1.08043
\(167\) −2.28192 + 2.28192i −0.176580 + 0.176580i −0.789863 0.613283i \(-0.789848\pi\)
0.613283 + 0.789863i \(0.289848\pi\)
\(168\) 1.81484i 0.140018i
\(169\) 0.735888 0.0566068
\(170\) 3.95127 + 24.7782i 0.303049 + 1.90040i
\(171\) 6.90985 0.528410
\(172\) 1.62001i 0.123525i
\(173\) 15.8344 15.8344i 1.20387 1.20387i 0.230891 0.972980i \(-0.425836\pi\)
0.972980 0.230891i \(-0.0741641\pi\)
\(174\) −16.6654 −1.26340
\(175\) −5.36571 + 5.36571i −0.405610 + 0.405610i
\(176\) −9.06571 9.06571i −0.683354 0.683354i
\(177\) 7.72305 + 7.72305i 0.580500 + 0.580500i
\(178\) 19.0534i 1.42811i
\(179\) 14.0892i 1.05308i −0.850152 0.526538i \(-0.823490\pi\)
0.850152 0.526538i \(-0.176510\pi\)
\(180\) 2.36307 + 2.36307i 0.176133 + 0.176133i
\(181\) 14.7689 + 14.7689i 1.09776 + 1.09776i 0.994672 + 0.103090i \(0.0328731\pi\)
0.103090 + 0.994672i \(0.467127\pi\)
\(182\) 4.49498 4.49498i 0.333190 0.333190i
\(183\) −5.12696 −0.378996
\(184\) 9.79899 9.79899i 0.722391 0.722391i
\(185\) 32.2630i 2.37202i
\(186\) 1.98646 0.145654
\(187\) 1.66602 + 10.4475i 0.121831 + 0.763995i
\(188\) 0.659207 0.0480776
\(189\) 1.00000i 0.0727393i
\(190\) −29.7339 + 29.7339i −2.15712 + 2.15712i
\(191\) 4.70406 0.340373 0.170187 0.985412i \(-0.445563\pi\)
0.170187 + 0.985412i \(0.445563\pi\)
\(192\) 1.07427 1.07427i 0.0775287 0.0775287i
\(193\) 3.60875 + 3.60875i 0.259763 + 0.259763i 0.824958 0.565194i \(-0.191199\pi\)
−0.565194 + 0.824958i \(0.691199\pi\)
\(194\) 2.14752 + 2.14752i 0.154183 + 0.154183i
\(195\) 13.1496i 0.941660i
\(196\) 0.941909i 0.0672792i
\(197\) −9.53476 9.53476i −0.679323 0.679323i 0.280524 0.959847i \(-0.409492\pi\)
−0.959847 + 0.280524i \(0.909492\pi\)
\(198\) 3.11200 + 3.11200i 0.221160 + 0.221160i
\(199\) −2.96534 + 2.96534i −0.210208 + 0.210208i −0.804356 0.594148i \(-0.797489\pi\)
0.594148 + 0.804356i \(0.297489\pi\)
\(200\) 13.7715 0.973789
\(201\) 2.02822 2.02822i 0.143060 0.143060i
\(202\) 16.9848i 1.19505i
\(203\) −9.71633 −0.681953
\(204\) 3.83514 0.611573i 0.268513 0.0428187i
\(205\) −30.2664 −2.11389
\(206\) 9.56904i 0.666707i
\(207\) −5.39938 + 5.39938i −0.375283 + 0.375283i
\(208\) −18.5185 −1.28403
\(209\) −12.5370 + 12.5370i −0.867203 + 0.867203i
\(210\) 4.30311 + 4.30311i 0.296943 + 0.296943i
\(211\) −12.6378 12.6378i −0.870022 0.870022i 0.122453 0.992474i \(-0.460924\pi\)
−0.992474 + 0.122453i \(0.960924\pi\)
\(212\) 3.18587i 0.218807i
\(213\) 12.9174i 0.885089i
\(214\) −6.82564 6.82564i −0.466591 0.466591i
\(215\) 4.31497 + 4.31497i 0.294278 + 0.294278i
\(216\) −1.28328 + 1.28328i −0.0873164 + 0.0873164i
\(217\) 1.15815 0.0786205
\(218\) 19.6627 19.6627i 1.33172 1.33172i
\(219\) 1.42420i 0.0962382i
\(220\) −8.57496 −0.578124
\(221\) 12.3721 + 8.96892i 0.832237 + 0.603315i
\(222\) 15.5968 1.04679
\(223\) 1.60272i 0.107326i 0.998559 + 0.0536632i \(0.0170897\pi\)
−0.998559 + 0.0536632i \(0.982910\pi\)
\(224\) −3.49349 + 3.49349i −0.233418 + 0.233418i
\(225\) −7.58826 −0.505884
\(226\) −11.7416 + 11.7416i −0.781041 + 0.781041i
\(227\) 8.30778 + 8.30778i 0.551407 + 0.551407i 0.926847 0.375440i \(-0.122508\pi\)
−0.375440 + 0.926847i \(0.622508\pi\)
\(228\) 4.60217 + 4.60217i 0.304786 + 0.304786i
\(229\) 1.47791i 0.0976633i 0.998807 + 0.0488317i \(0.0155498\pi\)
−0.998807 + 0.0488317i \(0.984450\pi\)
\(230\) 46.4683i 3.06403i
\(231\) 1.81437 + 1.81437i 0.119377 + 0.119377i
\(232\) 12.4688 + 12.4688i 0.818617 + 0.818617i
\(233\) −9.73346 + 9.73346i −0.637660 + 0.637660i −0.949978 0.312318i \(-0.898895\pi\)
0.312318 + 0.949978i \(0.398895\pi\)
\(234\) 6.35687 0.415561
\(235\) −1.75582 + 1.75582i −0.114537 + 0.114537i
\(236\) 10.2876i 0.669664i
\(237\) 11.0332 0.716681
\(238\) 6.98371 1.11366i 0.452687 0.0721881i
\(239\) 13.6486 0.882852 0.441426 0.897298i \(-0.354473\pi\)
0.441426 + 0.897298i \(0.354473\pi\)
\(240\) 17.7280i 1.14434i
\(241\) 12.2558 12.2558i 0.789465 0.789465i −0.191941 0.981406i \(-0.561478\pi\)
0.981406 + 0.191941i \(0.0614783\pi\)
\(242\) 7.57458 0.486912
\(243\) 0.707107 0.707107i 0.0453609 0.0453609i
\(244\) −3.41471 3.41471i −0.218605 0.218605i
\(245\) 2.50881 + 2.50881i 0.160282 + 0.160282i
\(246\) 14.6316i 0.932877i
\(247\) 25.6093i 1.62948i
\(248\) −1.48624 1.48624i −0.0943762 0.0943762i
\(249\) −5.73879 5.73879i −0.363681 0.363681i
\(250\) 11.1376 11.1376i 0.704403 0.704403i
\(251\) 16.8092 1.06099 0.530493 0.847690i \(-0.322007\pi\)
0.530493 + 0.847690i \(0.322007\pi\)
\(252\) 0.666030 0.666030i 0.0419560 0.0419560i
\(253\) 19.5929i 1.23180i
\(254\) −3.38207 −0.212210
\(255\) −8.58608 + 11.8440i −0.537681 + 0.741698i
\(256\) 18.3790 1.14869
\(257\) 6.87575i 0.428897i −0.976735 0.214449i \(-0.931205\pi\)
0.976735 0.214449i \(-0.0687955\pi\)
\(258\) 2.08597 2.08597i 0.129867 0.129867i
\(259\) 9.09331 0.565031
\(260\) −8.75801 + 8.75801i −0.543149 + 0.543149i
\(261\) −6.87048 6.87048i −0.425272 0.425272i
\(262\) −10.3794 10.3794i −0.641240 0.641240i
\(263\) 0.998666i 0.0615804i −0.999526 0.0307902i \(-0.990198\pi\)
0.999526 0.0307902i \(-0.00980237\pi\)
\(264\) 4.65669i 0.286600i
\(265\) 8.48569 + 8.48569i 0.521272 + 0.521272i
\(266\) 8.38047 + 8.38047i 0.513840 + 0.513840i
\(267\) 7.85493 7.85493i 0.480714 0.480714i
\(268\) 2.70172 0.165034
\(269\) −1.72281 + 1.72281i −0.105041 + 0.105041i −0.757674 0.652633i \(-0.773664\pi\)
0.652633 + 0.757674i \(0.273664\pi\)
\(270\) 6.08552i 0.370353i
\(271\) 11.8042 0.717056 0.358528 0.933519i \(-0.383279\pi\)
0.358528 + 0.933519i \(0.383279\pi\)
\(272\) −16.6798 12.0917i −1.01136 0.733169i
\(273\) 3.70620 0.224309
\(274\) 32.1724i 1.94361i
\(275\) 13.7679 13.7679i 0.830235 0.830235i
\(276\) −7.19230 −0.432926
\(277\) −9.09657 + 9.09657i −0.546560 + 0.546560i −0.925444 0.378884i \(-0.876308\pi\)
0.378884 + 0.925444i \(0.376308\pi\)
\(278\) −7.82801 7.82801i −0.469493 0.469493i
\(279\) 0.818937 + 0.818937i 0.0490285 + 0.0490285i
\(280\) 6.43903i 0.384806i
\(281\) 17.9398i 1.07020i 0.844790 + 0.535098i \(0.179725\pi\)
−0.844790 + 0.535098i \(0.820275\pi\)
\(282\) 0.848814 + 0.848814i 0.0505462 + 0.0505462i
\(283\) 13.4859 + 13.4859i 0.801652 + 0.801652i 0.983354 0.181702i \(-0.0581606\pi\)
−0.181702 + 0.983354i \(0.558161\pi\)
\(284\) −8.60341 + 8.60341i −0.510519 + 0.510519i
\(285\) −24.5161 −1.45221
\(286\) −11.5337 + 11.5337i −0.682001 + 0.682001i
\(287\) 8.53056i 0.503543i
\(288\) −4.94054 −0.291124
\(289\) 5.28739 + 16.1568i 0.311023 + 0.950402i
\(290\) 59.1289 3.47217
\(291\) 1.77067i 0.103799i
\(292\) −0.948558 + 0.948558i −0.0555102 + 0.0555102i
\(293\) 16.9285 0.988974 0.494487 0.869185i \(-0.335356\pi\)
0.494487 + 0.869185i \(0.335356\pi\)
\(294\) 1.21283 1.21283i 0.0707336 0.0707336i
\(295\) −27.4014 27.4014i −1.59537 1.59537i
\(296\) −11.6693 11.6693i −0.678264 0.678264i
\(297\) 2.56590i 0.148889i
\(298\) 26.4147i 1.53016i
\(299\) −20.0112 20.0112i −1.15728 1.15728i
\(300\) −5.05402 5.05402i −0.291794 0.291794i
\(301\) 1.21617 1.21617i 0.0700989 0.0700989i
\(302\) 17.1537 0.987087
\(303\) −7.00215 + 7.00215i −0.402263 + 0.402263i
\(304\) 34.5260i 1.98020i
\(305\) 18.1904 1.04158
\(306\) 5.72571 + 4.15075i 0.327317 + 0.237283i
\(307\) −21.9034 −1.25010 −0.625048 0.780587i \(-0.714921\pi\)
−0.625048 + 0.780587i \(0.714921\pi\)
\(308\) 2.41685i 0.137713i
\(309\) 3.94492 3.94492i 0.224419 0.224419i
\(310\) −7.04796 −0.400297
\(311\) 19.2492 19.2492i 1.09152 1.09152i 0.0961569 0.995366i \(-0.469345\pi\)
0.995366 0.0961569i \(-0.0306551\pi\)
\(312\) −4.75610 4.75610i −0.269261 0.269261i
\(313\) 5.09144 + 5.09144i 0.287785 + 0.287785i 0.836204 0.548419i \(-0.184770\pi\)
−0.548419 + 0.836204i \(0.684770\pi\)
\(314\) 13.2040i 0.745146i
\(315\) 3.54799i 0.199907i
\(316\) 7.34842 + 7.34842i 0.413381 + 0.413381i
\(317\) −13.1297 13.1297i −0.737435 0.737435i 0.234646 0.972081i \(-0.424607\pi\)
−0.972081 + 0.234646i \(0.924607\pi\)
\(318\) 4.10222 4.10222i 0.230041 0.230041i
\(319\) 24.9311 1.39588
\(320\) −3.81150 + 3.81150i −0.213069 + 0.213069i
\(321\) 5.62786i 0.314117i
\(322\) −13.0971 −0.729870
\(323\) −16.7217 + 23.0666i −0.930421 + 1.28346i
\(324\) 0.941909 0.0523283
\(325\) 28.1236i 1.56002i
\(326\) −7.16003 + 7.16003i −0.396557 + 0.396557i
\(327\) 16.2122 0.896539
\(328\) 10.9471 10.9471i 0.604454 0.604454i
\(329\) 0.494878 + 0.494878i 0.0272835 + 0.0272835i
\(330\) −11.0414 11.0414i −0.607807 0.607807i
\(331\) 8.06322i 0.443194i 0.975138 + 0.221597i \(0.0711270\pi\)
−0.975138 + 0.221597i \(0.928873\pi\)
\(332\) 7.64441i 0.419542i
\(333\) 6.42994 + 6.42994i 0.352359 + 0.352359i
\(334\) −3.91394 3.91394i −0.214161 0.214161i
\(335\) −7.19612 + 7.19612i −0.393166 + 0.393166i
\(336\) −4.99663 −0.272588
\(337\) −18.8066 + 18.8066i −1.02446 + 1.02446i −0.0247668 + 0.999693i \(0.507884\pi\)
−0.999693 + 0.0247668i \(0.992116\pi\)
\(338\) 1.26220i 0.0686544i
\(339\) −9.68119 −0.525810
\(340\) −13.6070 + 2.16986i −0.737945 + 0.117677i
\(341\) −2.97171 −0.160927
\(342\) 11.8518i 0.640871i
\(343\) 0.707107 0.707107i 0.0381802 0.0381802i
\(344\) −3.12138 −0.168294
\(345\) 19.1570 19.1570i 1.03138 1.03138i
\(346\) 27.1592 + 27.1592i 1.46009 + 1.46009i
\(347\) 14.0310 + 14.0310i 0.753225 + 0.753225i 0.975080 0.221854i \(-0.0712109\pi\)
−0.221854 + 0.975080i \(0.571211\pi\)
\(348\) 9.15190i 0.490593i
\(349\) 10.8244i 0.579418i 0.957115 + 0.289709i \(0.0935585\pi\)
−0.957115 + 0.289709i \(0.906441\pi\)
\(350\) −9.20327 9.20327i −0.491935 0.491935i
\(351\) 2.62068 + 2.62068i 0.139881 + 0.139881i
\(352\) 8.96394 8.96394i 0.477780 0.477780i
\(353\) −25.1471 −1.33845 −0.669224 0.743061i \(-0.733373\pi\)
−0.669224 + 0.743061i \(0.733373\pi\)
\(354\) −13.2466 + 13.2466i −0.704048 + 0.704048i
\(355\) 45.8310i 2.43246i
\(356\) 10.4632 0.554551
\(357\) 3.33822 + 2.41998i 0.176677 + 0.128079i
\(358\) 24.1658 1.27720
\(359\) 20.1240i 1.06210i 0.847340 + 0.531051i \(0.178203\pi\)
−0.847340 + 0.531051i \(0.821797\pi\)
\(360\) 4.55308 4.55308i 0.239968 0.239968i
\(361\) −28.7461 −1.51295
\(362\) −25.3316 + 25.3316i −1.33140 + 1.33140i
\(363\) 3.12269 + 3.12269i 0.163899 + 0.163899i
\(364\) 2.46844 + 2.46844i 0.129381 + 0.129381i
\(365\) 5.05304i 0.264488i
\(366\) 8.79376i 0.459657i
\(367\) 19.3902 + 19.3902i 1.01216 + 1.01216i 0.999925 + 0.0122356i \(0.00389481\pi\)
0.0122356 + 0.999925i \(0.496105\pi\)
\(368\) 26.9787 + 26.9787i 1.40636 + 1.40636i
\(369\) −6.03201 + 6.03201i −0.314014 + 0.314014i
\(370\) −55.3375 −2.87686
\(371\) 2.39169 2.39169i 0.124170 0.124170i
\(372\) 1.09087i 0.0565592i
\(373\) 9.01770 0.466919 0.233460 0.972367i \(-0.424995\pi\)
0.233460 + 0.972367i \(0.424995\pi\)
\(374\) −17.9195 + 2.85755i −0.926596 + 0.147760i
\(375\) 9.18315 0.474216
\(376\) 1.27014i 0.0655023i
\(377\) 25.4634 25.4634i 1.31143 1.31143i
\(378\) 1.71520 0.0882203
\(379\) −2.83907 + 2.83907i −0.145833 + 0.145833i −0.776254 0.630421i \(-0.782882\pi\)
0.630421 + 0.776254i \(0.282882\pi\)
\(380\) −16.3285 16.3285i −0.837634 0.837634i
\(381\) −1.39429 1.39429i −0.0714316 0.0714316i
\(382\) 8.06839i 0.412815i
\(383\) 7.39041i 0.377632i −0.982012 0.188816i \(-0.939535\pi\)
0.982012 0.188816i \(-0.0604651\pi\)
\(384\) 8.82956 + 8.82956i 0.450582 + 0.450582i
\(385\) −6.43736 6.43736i −0.328078 0.328078i
\(386\) −6.18972 + 6.18972i −0.315048 + 0.315048i
\(387\) 1.71992 0.0874287
\(388\) −1.17932 + 1.17932i −0.0598710 + 0.0598710i
\(389\) 16.1413i 0.818397i 0.912445 + 0.409199i \(0.134192\pi\)
−0.912445 + 0.409199i \(0.865808\pi\)
\(390\) −22.5541 −1.14207
\(391\) −4.95791 31.0907i −0.250732 1.57232i
\(392\) −1.81484 −0.0916631
\(393\) 8.55799i 0.431693i
\(394\) 16.3540 16.3540i 0.823903 0.823903i
\(395\) −39.1456 −1.96963
\(396\) −1.70897 + 1.70897i −0.0858789 + 0.0858789i
\(397\) 4.74649 + 4.74649i 0.238220 + 0.238220i 0.816113 0.577893i \(-0.196125\pi\)
−0.577893 + 0.816113i \(0.696125\pi\)
\(398\) −5.08616 5.08616i −0.254946 0.254946i
\(399\) 6.90985i 0.345925i
\(400\) 37.9157i 1.89579i
\(401\) 1.40149 + 1.40149i 0.0699868 + 0.0699868i 0.741234 0.671247i \(-0.234241\pi\)
−0.671247 + 0.741234i \(0.734241\pi\)
\(402\) 3.47881 + 3.47881i 0.173507 + 0.173507i
\(403\) −3.03514 + 3.03514i −0.151191 + 0.151191i
\(404\) −9.32729 −0.464050
\(405\) −2.50881 + 2.50881i −0.124664 + 0.124664i
\(406\) 16.6654i 0.827092i
\(407\) −23.3325 −1.15655
\(408\) −1.17836 7.38940i −0.0583374 0.365830i
\(409\) −15.3390 −0.758464 −0.379232 0.925302i \(-0.623812\pi\)
−0.379232 + 0.925302i \(0.623812\pi\)
\(410\) 51.9129i 2.56379i
\(411\) 13.2634 13.2634i 0.654234 0.654234i
\(412\) 5.25488 0.258889
\(413\) −7.72305 + 7.72305i −0.380027 + 0.380027i
\(414\) −9.26101 9.26101i −0.455154 0.455154i
\(415\) 20.3612 + 20.3612i 0.999491 + 0.999491i
\(416\) 18.3106i 0.897751i
\(417\) 6.45433i 0.316070i
\(418\) −21.5035 21.5035i −1.05177 1.05177i
\(419\) −0.188870 0.188870i −0.00922690 0.00922690i 0.702478 0.711705i \(-0.252077\pi\)
−0.711705 + 0.702478i \(0.752077\pi\)
\(420\) −2.36307 + 2.36307i −0.115306 + 0.115306i
\(421\) 16.4415 0.801309 0.400655 0.916229i \(-0.368783\pi\)
0.400655 + 0.916229i \(0.368783\pi\)
\(422\) 21.6763 21.6763i 1.05519 1.05519i
\(423\) 0.699863i 0.0340285i
\(424\) −6.13842 −0.298108
\(425\) 18.3635 25.3313i 0.890758 1.22875i
\(426\) −22.1560 −1.07346
\(427\) 5.12696i 0.248111i
\(428\) 3.74833 3.74833i 0.181182 0.181182i
\(429\) −9.50973 −0.459134
\(430\) −7.40103 + 7.40103i −0.356909 + 0.356909i
\(431\) −1.52988 1.52988i −0.0736917 0.0736917i 0.669300 0.742992i \(-0.266594\pi\)
−0.742992 + 0.669300i \(0.766594\pi\)
\(432\) −3.53315 3.53315i −0.169989 0.169989i
\(433\) 5.65283i 0.271658i 0.990732 + 0.135829i \(0.0433697\pi\)
−0.990732 + 0.135829i \(0.956630\pi\)
\(434\) 1.98646i 0.0953532i
\(435\) 24.3764 + 24.3764i 1.16876 + 1.16876i
\(436\) 10.7978 + 10.7978i 0.517123 + 0.517123i
\(437\) 37.3089 37.3089i 1.78473 1.78473i
\(438\) −2.44278 −0.116721
\(439\) 1.35600 1.35600i 0.0647184 0.0647184i −0.674007 0.738725i \(-0.735428\pi\)
0.738725 + 0.674007i \(0.235428\pi\)
\(440\) 16.5219i 0.787652i
\(441\) 1.00000 0.0476190
\(442\) −15.3835 + 21.2206i −0.731718 + 1.00936i
\(443\) 28.4710 1.35270 0.676348 0.736582i \(-0.263562\pi\)
0.676348 + 0.736582i \(0.263562\pi\)
\(444\) 8.56508i 0.406480i
\(445\) −27.8692 + 27.8692i −1.32113 + 1.32113i
\(446\) −2.74899 −0.130169
\(447\) 10.8897 10.8897i 0.515066 0.515066i
\(448\) 1.07427 + 1.07427i 0.0507544 + 0.0507544i
\(449\) 9.23165 + 9.23165i 0.435669 + 0.435669i 0.890551 0.454883i \(-0.150319\pi\)
−0.454883 + 0.890551i \(0.650319\pi\)
\(450\) 13.0154i 0.613551i
\(451\) 21.8886i 1.03069i
\(452\) −6.44797 6.44797i −0.303287 0.303287i
\(453\) 7.07179 + 7.07179i 0.332262 + 0.332262i
\(454\) −14.2495 + 14.2495i −0.668763 + 0.668763i
\(455\) −13.1496 −0.616461
\(456\) 8.86730 8.86730i 0.415249 0.415249i
\(457\) 8.80710i 0.411979i −0.978554 0.205989i \(-0.933959\pi\)
0.978554 0.205989i \(-0.0660412\pi\)
\(458\) −2.53492 −0.118449
\(459\) 0.649291 + 4.07166i 0.0303063 + 0.190049i
\(460\) 25.5183 1.18979
\(461\) 8.14899i 0.379536i 0.981829 + 0.189768i \(0.0607736\pi\)
−0.981829 + 0.189768i \(0.939226\pi\)
\(462\) −3.11200 + 3.11200i −0.144783 + 0.144783i
\(463\) 0.328011 0.0152440 0.00762199 0.999971i \(-0.497574\pi\)
0.00762199 + 0.999971i \(0.497574\pi\)
\(464\) −34.3292 + 34.3292i −1.59369 + 1.59369i
\(465\) −2.90559 2.90559i −0.134743 0.134743i
\(466\) −16.6948 16.6948i −0.773373 0.773373i
\(467\) 23.0220i 1.06533i 0.846326 + 0.532666i \(0.178810\pi\)
−0.846326 + 0.532666i \(0.821190\pi\)
\(468\) 3.49090i 0.161367i
\(469\) 2.02822 + 2.02822i 0.0936546 + 0.0936546i
\(470\) −3.01159 3.01159i −0.138914 0.138914i
\(471\) 5.44348 5.44348i 0.250822 0.250822i
\(472\) 19.8217 0.912369
\(473\) −3.12057 + 3.12057i −0.143484 + 0.143484i
\(474\) 18.9241i 0.869211i
\(475\) 52.4338 2.40583
\(476\) 0.611573 + 3.83514i 0.0280314 + 0.175783i
\(477\) 3.38235 0.154867
\(478\) 23.4100i 1.07075i
\(479\) −19.5440 + 19.5440i −0.892986 + 0.892986i −0.994803 0.101817i \(-0.967534\pi\)
0.101817 + 0.994803i \(0.467534\pi\)
\(480\) 17.5290 0.800085
\(481\) −23.8306 + 23.8306i −1.08658 + 1.08658i
\(482\) 21.0211 + 21.0211i 0.957486 + 0.957486i
\(483\) −5.39938 5.39938i −0.245680 0.245680i
\(484\) 4.15961i 0.189073i
\(485\) 6.28234i 0.285266i
\(486\) 1.21283 + 1.21283i 0.0550150 + 0.0550150i
\(487\) −1.54988 1.54988i −0.0702319 0.0702319i 0.671118 0.741350i \(-0.265814\pi\)
−0.741350 + 0.671118i \(0.765814\pi\)
\(488\) −6.57934 + 6.57934i −0.297833 + 0.297833i
\(489\) −5.90357 −0.266969
\(490\) −4.30311 + 4.30311i −0.194395 + 0.194395i
\(491\) 8.04025i 0.362851i −0.983405 0.181426i \(-0.941929\pi\)
0.983405 0.181426i \(-0.0580712\pi\)
\(492\) −8.03501 −0.362246
\(493\) 39.5616 6.30873i 1.78176 0.284131i
\(494\) −43.9250 −1.97628
\(495\) 9.10380i 0.409186i
\(496\) 4.09192 4.09192i 0.183733 0.183733i
\(497\) −12.9174 −0.579427
\(498\) 9.84316 9.84316i 0.441083 0.441083i
\(499\) 8.08881 + 8.08881i 0.362105 + 0.362105i 0.864587 0.502482i \(-0.167580\pi\)
−0.502482 + 0.864587i \(0.667580\pi\)
\(500\) 6.11626 + 6.11626i 0.273527 + 0.273527i
\(501\) 3.22712i 0.144177i
\(502\) 28.8311i 1.28679i
\(503\) 5.61907 + 5.61907i 0.250542 + 0.250542i 0.821193 0.570651i \(-0.193309\pi\)
−0.570651 + 0.821193i \(0.693309\pi\)
\(504\) −1.28328 1.28328i −0.0571620 0.0571620i
\(505\) 24.8436 24.8436i 1.10552 1.10552i
\(506\) 33.6057 1.49396
\(507\) −0.520352 + 0.520352i −0.0231096 + 0.0231096i
\(508\) 1.85728i 0.0824034i
\(509\) 23.7079 1.05083 0.525417 0.850845i \(-0.323909\pi\)
0.525417 + 0.850845i \(0.323909\pi\)
\(510\) −20.3148 14.7268i −0.899554 0.652115i
\(511\) −1.42420 −0.0630027
\(512\) 6.54989i 0.289467i
\(513\) −4.88600 + 4.88600i −0.215722 + 0.215722i
\(514\) 11.7933 0.520179
\(515\) −13.9966 + 13.9966i −0.616763 + 0.616763i
\(516\) 1.14552 + 1.14552i 0.0504288 + 0.0504288i
\(517\) −1.26981 1.26981i −0.0558461 0.0558461i
\(518\) 15.5968i 0.685286i
\(519\) 22.3933i 0.982956i
\(520\) 16.8746 + 16.8746i 0.740001 + 0.740001i
\(521\) −5.55277 5.55277i −0.243271 0.243271i 0.574931 0.818202i \(-0.305029\pi\)
−0.818202 + 0.574931i \(0.805029\pi\)
\(522\) 11.7842 11.7842i 0.515783 0.515783i
\(523\) −7.79018 −0.340641 −0.170320 0.985389i \(-0.554480\pi\)
−0.170320 + 0.985389i \(0.554480\pi\)
\(524\) 5.69988 5.69988i 0.249000 0.249000i
\(525\) 7.58826i 0.331179i
\(526\) 1.71291 0.0746865
\(527\) −4.71560 + 0.751978i −0.205415 + 0.0327567i
\(528\) 12.8208 0.557956
\(529\) 35.3066i 1.53507i
\(530\) −14.5546 + 14.5546i −0.632213 + 0.632213i
\(531\) −10.9220 −0.473977
\(532\) −4.60217 + 4.60217i −0.199530 + 0.199530i
\(533\) −22.3558 22.3558i −0.968338 0.968338i
\(534\) 13.4728 + 13.4728i 0.583024 + 0.583024i
\(535\) 19.9676i 0.863276i
\(536\) 5.20557i 0.224846i
\(537\) 9.96257 + 9.96257i 0.429916 + 0.429916i
\(538\) −2.95496 2.95496i −0.127397 0.127397i
\(539\) −1.81437 + 1.81437i −0.0781503 + 0.0781503i
\(540\) −3.34189 −0.143812
\(541\) 9.70894 9.70894i 0.417420 0.417420i −0.466894 0.884313i \(-0.654627\pi\)
0.884313 + 0.466894i \(0.154627\pi\)
\(542\) 20.2466i 0.869666i
\(543\) −20.8864 −0.896319
\(544\) 11.9560 16.4926i 0.512609 0.707114i
\(545\) −57.5209 −2.46393
\(546\) 6.35687i 0.272049i
\(547\) 14.8748 14.8748i 0.636002 0.636002i −0.313564 0.949567i \(-0.601523\pi\)
0.949567 + 0.313564i \(0.101523\pi\)
\(548\) 17.6676 0.754724
\(549\) 3.62531 3.62531i 0.154724 0.154724i
\(550\) 23.6147 + 23.6147i 1.00693 + 1.00693i
\(551\) 47.4740 + 47.4740i 2.02246 + 2.02246i
\(552\) 13.8579i 0.589830i
\(553\) 11.0332i 0.469178i
\(554\) −15.6024 15.6024i −0.662884 0.662884i
\(555\) −22.8134 22.8134i −0.968375 0.968375i
\(556\) 4.29878 4.29878i 0.182309 0.182309i
\(557\) −18.9903 −0.804645 −0.402323 0.915498i \(-0.631797\pi\)
−0.402323 + 0.915498i \(0.631797\pi\)
\(558\) −1.40464 + 1.40464i −0.0594632 + 0.0594632i
\(559\) 6.37438i 0.269607i
\(560\) 17.7280 0.749145
\(561\) −8.56554 6.20943i −0.361637 0.262162i
\(562\) −30.7703 −1.29797
\(563\) 17.8871i 0.753851i −0.926244 0.376925i \(-0.876981\pi\)
0.926244 0.376925i \(-0.123019\pi\)
\(564\) −0.466130 + 0.466130i −0.0196276 + 0.0196276i
\(565\) 34.3488 1.44506
\(566\) −23.1310 + 23.1310i −0.972266 + 0.972266i
\(567\) 0.707107 + 0.707107i 0.0296957 + 0.0296957i
\(568\) 16.5767 + 16.5767i 0.695545 + 0.695545i
\(569\) 17.6081i 0.738170i −0.929396 0.369085i \(-0.879671\pi\)
0.929396 0.369085i \(-0.120329\pi\)
\(570\) 42.0500i 1.76128i
\(571\) −11.5255 11.5255i −0.482328 0.482328i 0.423546 0.905875i \(-0.360785\pi\)
−0.905875 + 0.423546i \(0.860785\pi\)
\(572\) −6.33377 6.33377i −0.264828 0.264828i
\(573\) −3.32627 + 3.32627i −0.138957 + 0.138957i
\(574\) −14.6316 −0.610711
\(575\) −40.9719 + 40.9719i −1.70865 + 1.70865i
\(576\) 1.51925i 0.0633019i
\(577\) 18.0748 0.752464 0.376232 0.926526i \(-0.377220\pi\)
0.376232 + 0.926526i \(0.377220\pi\)
\(578\) −27.7122 + 9.06892i −1.15268 + 0.377217i
\(579\) −5.10354 −0.212096
\(580\) 32.4709i 1.34828i
\(581\) 5.73879 5.73879i 0.238085 0.238085i
\(582\) −3.03706 −0.125890
\(583\) −6.13683 + 6.13683i −0.254162 + 0.254162i
\(584\) 1.82765 + 1.82765i 0.0756286 + 0.0756286i
\(585\) −9.29814 9.29814i −0.384431 0.384431i
\(586\) 29.0358i 1.19946i
\(587\) 5.40978i 0.223286i 0.993748 + 0.111643i \(0.0356113\pi\)
−0.993748 + 0.111643i \(0.964389\pi\)
\(588\) 0.666030 + 0.666030i 0.0274666 + 0.0274666i
\(589\) −5.65874 5.65874i −0.233164 0.233164i
\(590\) 46.9988 46.9988i 1.93491 1.93491i
\(591\) 13.4842 0.554665
\(592\) 32.1280 32.1280i 1.32045 1.32045i
\(593\) 8.20619i 0.336988i 0.985703 + 0.168494i \(0.0538904\pi\)
−0.985703 + 0.168494i \(0.946110\pi\)
\(594\) −4.40103 −0.180577
\(595\) −11.8440 8.58608i −0.485556 0.351995i
\(596\) 14.5058 0.594179
\(597\) 4.19363i 0.171634i
\(598\) 34.3231 34.3231i 1.40358 1.40358i
\(599\) −16.5369 −0.675681 −0.337840 0.941203i \(-0.609696\pi\)
−0.337840 + 0.941203i \(0.609696\pi\)
\(600\) −9.73789 + 9.73789i −0.397548 + 0.397548i
\(601\) 21.8842 + 21.8842i 0.892673 + 0.892673i 0.994774 0.102101i \(-0.0325564\pi\)
−0.102101 + 0.994774i \(0.532556\pi\)
\(602\) 2.08597 + 2.08597i 0.0850180 + 0.0850180i
\(603\) 2.86834i 0.116808i
\(604\) 9.42006i 0.383297i
\(605\) −11.0793 11.0793i −0.450437 0.450437i
\(606\) −12.0101 12.0101i −0.487876 0.487876i
\(607\) −6.89084 + 6.89084i −0.279691 + 0.279691i −0.832986 0.553295i \(-0.813370\pi\)
0.553295 + 0.832986i \(0.313370\pi\)
\(608\) 34.1384 1.38449
\(609\) 6.87048 6.87048i 0.278406 0.278406i
\(610\) 31.2002i 1.26326i
\(611\) −2.59383 −0.104935
\(612\) −2.27940 + 3.14430i −0.0921394 + 0.127101i
\(613\) 41.7672 1.68696 0.843480 0.537160i \(-0.180503\pi\)
0.843480 + 0.537160i \(0.180503\pi\)
\(614\) 37.5688i 1.51615i
\(615\) 21.4016 21.4016i 0.862994 0.862994i
\(616\) 4.65669 0.187623
\(617\) 27.4160 27.4160i 1.10373 1.10373i 0.109769 0.993957i \(-0.464989\pi\)
0.993957 0.109769i \(-0.0350113\pi\)
\(618\) 6.76633 + 6.76633i 0.272182 + 0.272182i
\(619\) −31.4963 31.4963i −1.26594 1.26594i −0.948166 0.317777i \(-0.897064\pi\)
−0.317777 0.948166i \(-0.602936\pi\)
\(620\) 3.87042i 0.155440i
\(621\) 7.63588i 0.306417i
\(622\) 33.0163 + 33.0163i 1.32383 + 1.32383i
\(623\) 7.85493 + 7.85493i 0.314701 + 0.314701i
\(624\) 13.0945 13.0945i 0.524201 0.524201i
\(625\) 5.35957 0.214383
\(626\) −8.73283 + 8.73283i −0.349034 + 0.349034i
\(627\) 17.7300i 0.708068i
\(628\) 7.25105 0.289348
\(629\) −37.0249 + 5.90421i −1.47628 + 0.235416i
\(630\) −6.08552 −0.242453
\(631\) 7.99744i 0.318373i 0.987249 + 0.159186i \(0.0508871\pi\)
−0.987249 + 0.159186i \(0.949113\pi\)
\(632\) 14.1587 14.1587i 0.563202 0.563202i
\(633\) 17.8725 0.710370
\(634\) 22.5200 22.5200i 0.894383 0.894383i
\(635\) 4.94693 + 4.94693i 0.196313 + 0.196313i
\(636\) 2.25275 + 2.25275i 0.0893274 + 0.0893274i
\(637\) 3.70620i 0.146845i
\(638\) 42.7619i 1.69296i
\(639\) −9.13401 9.13401i −0.361336 0.361336i
\(640\) −31.3272 31.3272i −1.23832 1.23832i
\(641\) −27.5919 + 27.5919i −1.08982 + 1.08982i −0.0942694 + 0.995547i \(0.530051\pi\)
−0.995547 + 0.0942694i \(0.969949\pi\)
\(642\) 9.65291 0.380970
\(643\) −4.16724 + 4.16724i −0.164340 + 0.164340i −0.784486 0.620146i \(-0.787073\pi\)
0.620146 + 0.784486i \(0.287073\pi\)
\(644\) 7.19230i 0.283416i
\(645\) −6.10228 −0.240277
\(646\) −39.5638 28.6811i −1.55662 1.12844i
\(647\) −27.4242 −1.07816 −0.539079 0.842255i \(-0.681228\pi\)
−0.539079 + 0.842255i \(0.681228\pi\)
\(648\) 1.81484i 0.0712935i
\(649\) 19.8166 19.8166i 0.777870 0.777870i
\(650\) 48.2376 1.89203
\(651\) −0.818937 + 0.818937i −0.0320967 + 0.0320967i
\(652\) −3.93196 3.93196i −0.153987 0.153987i
\(653\) −15.1507 15.1507i −0.592891 0.592891i 0.345520 0.938411i \(-0.387702\pi\)
−0.938411 + 0.345520i \(0.887702\pi\)
\(654\) 27.8072i 1.08735i
\(655\) 30.3637i 1.18641i
\(656\) 30.1397 + 30.1397i 1.17676 + 1.17676i
\(657\) −1.00706 1.00706i −0.0392891 0.0392891i
\(658\) −0.848814 + 0.848814i −0.0330902 + 0.0330902i
\(659\) 10.2775 0.400356 0.200178 0.979760i \(-0.435848\pi\)
0.200178 + 0.979760i \(0.435848\pi\)
\(660\) 6.06341 6.06341i 0.236018 0.236018i
\(661\) 5.90247i 0.229580i 0.993390 + 0.114790i \(0.0366195\pi\)
−0.993390 + 0.114790i \(0.963381\pi\)
\(662\) −13.8300 −0.537519
\(663\) −15.0904 + 2.40640i −0.586062 + 0.0934568i
\(664\) −14.7290 −0.571595
\(665\) 24.5161i 0.950695i
\(666\) −11.0286 + 11.0286i −0.427351 + 0.427351i
\(667\) −74.1927 −2.87275
\(668\) 2.14936 2.14936i 0.0831612 0.0831612i
\(669\) −1.13330 1.13330i −0.0438158 0.0438158i
\(670\) −12.3428 12.3428i −0.476843 0.476843i
\(671\) 13.1553i 0.507854i
\(672\) 4.94054i 0.190585i
\(673\) 2.65833 + 2.65833i 0.102471 + 0.102471i 0.756484 0.654013i \(-0.226916\pi\)
−0.654013 + 0.756484i \(0.726916\pi\)
\(674\) −32.2570 32.2570i −1.24250 1.24250i
\(675\) 5.36571 5.36571i 0.206526 0.206526i
\(676\) −0.693140 −0.0266592
\(677\) 13.4750 13.4750i 0.517885 0.517885i −0.399046 0.916931i \(-0.630659\pi\)
0.916931 + 0.399046i \(0.130659\pi\)
\(678\) 16.6052i 0.637718i
\(679\) −1.77067 −0.0679522
\(680\) 4.18080 + 26.2175i 0.160327 + 1.00540i
\(681\) −11.7490 −0.450222
\(682\) 5.09707i 0.195177i
\(683\) 27.5713 27.5713i 1.05499 1.05499i 0.0565907 0.998397i \(-0.481977\pi\)
0.998397 0.0565907i \(-0.0180230\pi\)
\(684\) −6.50846 −0.248857
\(685\) −47.0584 + 47.0584i −1.79801 + 1.79801i
\(686\) 1.21283 + 1.21283i 0.0463060 + 0.0463060i
\(687\) −1.04504 1.04504i −0.0398709 0.0398709i
\(688\) 8.59382i 0.327636i
\(689\) 12.5357i 0.477571i
\(690\) 32.8580 + 32.8580i 1.25088 + 1.25088i
\(691\) −10.7045 10.7045i −0.407218 0.407218i 0.473549 0.880767i \(-0.342973\pi\)
−0.880767 + 0.473549i \(0.842973\pi\)
\(692\) −14.9146 + 14.9146i −0.566969 + 0.566969i
\(693\) −2.56590 −0.0974705
\(694\) −24.0660 + 24.0660i −0.913534 + 0.913534i
\(695\) 22.8999i 0.868644i
\(696\) −17.6336 −0.668398
\(697\) −5.53881 34.7335i −0.209798 1.31563i
\(698\) −18.5660 −0.702735
\(699\) 13.7652i 0.520647i
\(700\) 5.05402 5.05402i 0.191024 0.191024i
\(701\) −4.53361 −0.171232 −0.0856160 0.996328i \(-0.527286\pi\)
−0.0856160 + 0.996328i \(0.527286\pi\)
\(702\) −4.49498 + 4.49498i −0.169652 + 0.169652i
\(703\) −44.4300 44.4300i −1.67571 1.67571i
\(704\) −2.75647 2.75647i −0.103888 0.103888i
\(705\) 2.48311i 0.0935193i
\(706\) 43.1324i 1.62331i
\(707\) −7.00215 7.00215i −0.263343 0.263343i
\(708\) −7.27442 7.27442i −0.273389 0.273389i
\(709\) 28.5897 28.5897i 1.07371 1.07371i 0.0766494 0.997058i \(-0.475578\pi\)
0.997058 0.0766494i \(-0.0244222\pi\)
\(710\) 78.6093 2.95016
\(711\) −7.80162 + 7.80162i −0.292584 + 0.292584i
\(712\) 20.1602i 0.755535i
\(713\) 8.84351 0.331192
\(714\) −4.15075 + 5.72571i −0.155338 + 0.214279i
\(715\) 33.7405 1.26182
\(716\) 13.2707i 0.495951i
\(717\) −9.65099 + 9.65099i −0.360423 + 0.360423i
\(718\) −34.5166 −1.28815
\(719\) 33.6094 33.6094i 1.25342 1.25342i 0.299244 0.954177i \(-0.403265\pi\)
0.954177 0.299244i \(-0.0967345\pi\)
\(720\) 12.5356 + 12.5356i 0.467174 + 0.467174i
\(721\) 3.94492 + 3.94492i 0.146917 + 0.146917i
\(722\) 49.3053i 1.83495i
\(723\) 17.3323i 0.644596i
\(724\) −13.9109 13.9109i −0.516996 0.516996i
\(725\) −52.1350 52.1350i −1.93625 1.93625i
\(726\) −5.35603 + 5.35603i −0.198781 + 0.198781i
\(727\) −12.1751 −0.451549 −0.225774 0.974180i \(-0.572491\pi\)
−0.225774 + 0.974180i \(0.572491\pi\)
\(728\) 4.75610 4.75610i 0.176273 0.176273i
\(729\) 1.00000i 0.0370370i
\(730\) 8.66697 0.320779
\(731\) −4.16218 + 5.74148i −0.153944 + 0.212356i
\(732\) 4.82913 0.178490
\(733\) 16.4228i 0.606589i 0.952897 + 0.303294i \(0.0980865\pi\)
−0.952897 + 0.303294i \(0.901913\pi\)
\(734\) −33.2581 + 33.2581i −1.22758 + 1.22758i
\(735\) −3.54799 −0.130870
\(736\) −26.6758 + 26.6758i −0.983284 + 0.983284i
\(737\) −5.20422 5.20422i −0.191700 0.191700i
\(738\) −10.3461 10.3461i −0.380845 0.380845i
\(739\) 14.0884i 0.518249i 0.965844 + 0.259125i \(0.0834340\pi\)
−0.965844 + 0.259125i \(0.916566\pi\)
\(740\) 30.3888i 1.11712i
\(741\) −18.1085 18.1085i −0.665232 0.665232i
\(742\) 4.10222 + 4.10222i 0.150597 + 0.150597i
\(743\) −37.0522 + 37.0522i −1.35931 + 1.35931i −0.484551 + 0.874763i \(0.661017\pi\)
−0.874763 + 0.484551i \(0.838983\pi\)
\(744\) 2.10186 0.0770578
\(745\) −38.6366 + 38.6366i −1.41554 + 1.41554i
\(746\) 15.4672i 0.566293i
\(747\) 8.11587 0.296944
\(748\) −1.56924 9.84058i −0.0573770 0.359807i
\(749\) 5.62786 0.205638
\(750\) 15.7509i 0.575143i
\(751\) −13.5973 + 13.5973i −0.496174 + 0.496174i −0.910245 0.414071i \(-0.864107\pi\)
0.414071 + 0.910245i \(0.364107\pi\)
\(752\) 3.49695 0.127521
\(753\) −11.8859 + 11.8859i −0.433145 + 0.433145i
\(754\) 43.6747 + 43.6747i 1.59054 + 1.59054i
\(755\) −25.0907 25.0907i −0.913143 0.913143i
\(756\) 0.941909i 0.0342569i
\(757\) 28.7663i 1.04553i 0.852477 + 0.522764i \(0.175099\pi\)
−0.852477 + 0.522764i \(0.824901\pi\)
\(758\) −4.86957 4.86957i −0.176871 0.176871i
\(759\) 13.8543 + 13.8543i 0.502878 + 0.502878i
\(760\) −31.4611 + 31.4611i −1.14122 + 1.14122i
\(761\) 39.8043 1.44291 0.721453 0.692463i \(-0.243475\pi\)
0.721453 + 0.692463i \(0.243475\pi\)
\(762\) 2.39148 2.39148i 0.0866344 0.0866344i
\(763\) 16.2122i 0.586922i
\(764\) −4.43079 −0.160300
\(765\) −2.30368 14.4462i −0.0832898 0.522305i
\(766\) 12.6760 0.458004
\(767\) 40.4793i 1.46162i
\(768\) −12.9959 + 12.9959i −0.468950 + 0.468950i
\(769\) −1.97929 −0.0713750 −0.0356875 0.999363i \(-0.511362\pi\)
−0.0356875 + 0.999363i \(0.511362\pi\)
\(770\) 11.0414 11.0414i 0.397903 0.397903i
\(771\) 4.86189 + 4.86189i 0.175097 + 0.175097i
\(772\) −3.39911 3.39911i −0.122337 0.122337i
\(773\) 30.2810i 1.08913i 0.838718 + 0.544565i \(0.183305\pi\)
−0.838718 + 0.544565i \(0.816695\pi\)
\(774\) 2.95001i 0.106036i
\(775\) 6.21431 + 6.21431i 0.223225 + 0.223225i
\(776\) 2.27227 + 2.27227i 0.0815699 + 0.0815699i
\(777\) −6.42994 + 6.42994i −0.230673 + 0.230673i
\(778\) −27.6856 −0.992576
\(779\) 41.6803 41.6803i 1.49335 1.49335i
\(780\) 12.3857i 0.443479i
\(781\) 33.1449 1.18602
\(782\) 53.3268 8.50380i 1.90696 0.304095i
\(783\) 9.71633 0.347233
\(784\) 4.99663i 0.178451i
\(785\) −19.3134 + 19.3134i −0.689326 + 0.689326i
\(786\) 14.6787 0.523570
\(787\) 37.6231 37.6231i 1.34112 1.34112i 0.446167 0.894950i \(-0.352789\pi\)
0.894950 0.446167i \(-0.147211\pi\)
\(788\) 8.98088 + 8.98088i 0.319930 + 0.319930i
\(789\) 0.706163 + 0.706163i 0.0251401 + 0.0251401i
\(790\) 67.1425i 2.38882i
\(791\) 9.68119i 0.344223i
\(792\) 3.29278 + 3.29278i 0.117004 + 0.117004i
\(793\) 13.4361 + 13.4361i 0.477130 + 0.477130i
\(794\) −8.14118 + 8.14118i −0.288920 + 0.288920i
\(795\) −12.0006 −0.425616
\(796\) 2.79309 2.79309i 0.0989983 0.0989983i
\(797\) 39.2847i 1.39154i −0.718266 0.695768i \(-0.755064\pi\)
0.718266 0.695768i \(-0.244936\pi\)
\(798\) −11.8518 −0.419548
\(799\) −2.33629 1.69365i −0.0826522 0.0599172i
\(800\) −37.4901 −1.32547
\(801\) 11.1085i 0.392501i
\(802\) −2.40383 + 2.40383i −0.0848821 + 0.0848821i
\(803\) 3.65435 0.128959
\(804\) −1.91040 + 1.91040i −0.0673747 + 0.0673747i
\(805\) 19.1570 + 19.1570i 0.675195 + 0.675195i
\(806\) −5.20588 5.20588i −0.183369 0.183369i
\(807\) 2.43642i 0.0857660i
\(808\) 17.9715i 0.632234i
\(809\) 32.7701 + 32.7701i 1.15214 + 1.15214i 0.986123 + 0.166014i \(0.0530896\pi\)
0.166014 + 0.986123i \(0.446910\pi\)
\(810\) −4.30311 4.30311i −0.151196 0.151196i
\(811\) 32.4710 32.4710i 1.14021 1.14021i 0.151802 0.988411i \(-0.451492\pi\)
0.988411 0.151802i \(-0.0485075\pi\)
\(812\) 9.15190 0.321169
\(813\) −8.34685 + 8.34685i −0.292737 + 0.292737i
\(814\) 40.0200i 1.40270i
\(815\) 20.9458 0.733701
\(816\) 20.3446 3.24426i 0.712202 0.113572i
\(817\) −11.8844 −0.415784
\(818\) 26.3094i 0.919887i
\(819\) −2.62068 + 2.62068i −0.0915738 + 0.0915738i
\(820\) 28.5082 0.995549
\(821\) −25.0935 + 25.0935i −0.875768 + 0.875768i −0.993094 0.117325i \(-0.962568\pi\)
0.117325 + 0.993094i \(0.462568\pi\)
\(822\) 22.7493 + 22.7493i 0.793475 + 0.793475i
\(823\) −7.45205 7.45205i −0.259762 0.259762i 0.565195 0.824957i \(-0.308801\pi\)
−0.824957 + 0.565195i \(0.808801\pi\)
\(824\) 10.1249i 0.352718i
\(825\) 19.4707i 0.677884i
\(826\) −13.2466 13.2466i −0.460907 0.460907i
\(827\) −39.0403 39.0403i −1.35757 1.35757i −0.876909 0.480656i \(-0.840399\pi\)
−0.480656 0.876909i \(-0.659601\pi\)
\(828\) 5.08573 5.08573i 0.176741 0.176741i
\(829\) 37.2823 1.29487 0.647435 0.762121i \(-0.275842\pi\)
0.647435 + 0.762121i \(0.275842\pi\)
\(830\) −34.9235 + 34.9235i −1.21221 + 1.21221i
\(831\) 12.8645i 0.446264i
\(832\) −5.63062 −0.195207
\(833\) −2.41998 + 3.33822i −0.0838474 + 0.115662i
\(834\) 11.0705 0.383339
\(835\) 11.4498i 0.396237i
\(836\) 11.8087 11.8087i 0.408413 0.408413i
\(837\) −1.15815 −0.0400316
\(838\) 0.323950 0.323950i 0.0111907 0.0111907i
\(839\) 16.4347 + 16.4347i 0.567387 + 0.567387i 0.931396 0.364008i \(-0.118592\pi\)
−0.364008 + 0.931396i \(0.618592\pi\)
\(840\) 4.55308 + 4.55308i 0.157096 + 0.157096i
\(841\) 65.4071i 2.25542i
\(842\) 28.2004i 0.971851i
\(843\) −12.6853 12.6853i −0.436906 0.436906i
\(844\) 11.9037 + 11.9037i 0.409741 + 0.409741i
\(845\) 1.84620 1.84620i 0.0635114 0.0635114i
\(846\) −1.20040 −0.0412708
\(847\) −3.12269 + 3.12269i −0.107297 + 0.107297i
\(848\) 16.9004i 0.580361i
\(849\) −19.0719 −0.654546
\(850\) 43.4482 + 31.4970i 1.49026 + 1.08034i
\(851\) 69.4354 2.38022
\(852\) 12.1671i 0.416837i
\(853\) −9.97344 + 9.97344i −0.341484 + 0.341484i −0.856925 0.515441i \(-0.827628\pi\)
0.515441 + 0.856925i \(0.327628\pi\)
\(854\) 8.79376 0.300916
\(855\) 17.3355 17.3355i 0.592862 0.592862i
\(856\) −7.22214 7.22214i −0.246848 0.246848i
\(857\) −25.6259 25.6259i −0.875362 0.875362i 0.117688 0.993051i \(-0.462452\pi\)
−0.993051 + 0.117688i \(0.962452\pi\)
\(858\) 16.3111i 0.556851i
\(859\) 35.1436i 1.19908i −0.800343 0.599542i \(-0.795349\pi\)
0.800343 0.599542i \(-0.204651\pi\)
\(860\) −4.06431 4.06431i −0.138592 0.138592i
\(861\) −6.03201 6.03201i −0.205570 0.205570i
\(862\) 2.62405 2.62405i 0.0893754 0.0893754i
\(863\) 18.5693 0.632106 0.316053 0.948742i \(-0.397642\pi\)
0.316053 + 0.948742i \(0.397642\pi\)
\(864\) 3.49349 3.49349i 0.118851 0.118851i
\(865\) 79.4513i 2.70142i
\(866\) −9.69573 −0.329474
\(867\) −15.1634 7.68587i −0.514975 0.261026i
\(868\) −1.09087 −0.0370267
\(869\) 28.3100i 0.960351i
\(870\) −41.8104 + 41.8104i −1.41751 + 1.41751i
\(871\) −10.6306 −0.360205
\(872\) 20.8049 20.8049i 0.704542 0.704542i
\(873\) −1.25205 1.25205i −0.0423756 0.0423756i
\(874\) 63.9923 + 63.9923i 2.16457 + 2.16457i
\(875\) 9.18315i 0.310447i
\(876\) 1.34146i 0.0453239i
\(877\) −12.7084 12.7084i −0.429133 0.429133i 0.459200 0.888333i \(-0.348136\pi\)
−0.888333 + 0.459200i \(0.848136\pi\)
\(878\) 2.32581 + 2.32581i 0.0784924 + 0.0784924i
\(879\) −11.9703 + 11.9703i −0.403747 + 0.403747i
\(880\) −45.4883 −1.53341
\(881\) 24.4657 24.4657i 0.824269 0.824269i −0.162448 0.986717i \(-0.551939\pi\)
0.986717 + 0.162448i \(0.0519390\pi\)
\(882\) 1.71520i 0.0577538i
\(883\) 20.3212 0.683863 0.341931 0.939725i \(-0.388919\pi\)
0.341931 + 0.939725i \(0.388919\pi\)
\(884\) −11.6534 8.44791i −0.391946 0.284134i
\(885\) 38.7514 1.30261
\(886\) 48.8334i 1.64059i
\(887\) 13.5104 13.5104i 0.453634 0.453634i −0.442925 0.896559i \(-0.646059\pi\)
0.896559 + 0.442925i \(0.146059\pi\)
\(888\) 16.5029 0.553800
\(889\) 1.39429 1.39429i 0.0467630 0.0467630i
\(890\) −47.8013 47.8013i −1.60230 1.60230i
\(891\) −1.81437 1.81437i −0.0607836 0.0607836i
\(892\) 1.50962i 0.0505459i
\(893\) 4.83595i 0.161829i
\(894\) 18.6780 + 18.6780i 0.624687 + 0.624687i
\(895\) −35.3471 35.3471i −1.18152 1.18152i
\(896\) −8.82956 + 8.82956i −0.294975 + 0.294975i
\(897\) 28.3001 0.944911
\(898\) −15.8341 + 15.8341i −0.528392 + 0.528392i
\(899\) 11.2530i 0.375308i
\(900\) 7.14746 0.238249
\(901\) −8.18523 + 11.2910i −0.272690 + 0.376159i
\(902\) 37.5433 1.25005
\(903\) 1.71992i 0.0572355i
\(904\) −12.4237 + 12.4237i −0.413206 + 0.413206i
\(905\) 74.1047 2.46332
\(906\) −12.1295 + 12.1295i −0.402977 + 0.402977i
\(907\) −41.1761 41.1761i −1.36723 1.36723i −0.864364 0.502867i \(-0.832278\pi\)
−0.502867 0.864364i \(-0.667722\pi\)
\(908\) −7.82518 7.82518i −0.259688 0.259688i
\(909\) 9.90253i 0.328446i
\(910\) 22.5541i 0.747662i
\(911\) 1.65907 + 1.65907i 0.0549673 + 0.0549673i 0.734056 0.679089i \(-0.237625\pi\)
−0.679089 + 0.734056i \(0.737625\pi\)
\(912\) 24.4135 + 24.4135i 0.808413 + 0.808413i
\(913\) −14.7252 + 14.7252i −0.487332 + 0.487332i
\(914\) 15.1059 0.499660
\(915\) −12.8626 + 12.8626i −0.425224 + 0.425224i
\(916\) 1.39206i 0.0459950i
\(917\) 8.55799 0.282610
\(918\) −6.98371 + 1.11366i −0.230497 + 0.0367564i
\(919\) −0.903634 −0.0298081 −0.0149041 0.999889i \(-0.504744\pi\)
−0.0149041 + 0.999889i \(0.504744\pi\)
\(920\) 49.1676i 1.62101i
\(921\) 15.4881 15.4881i 0.510349 0.510349i
\(922\) −13.9771 −0.460313
\(923\) 33.8524 33.8524i 1.11427 1.11427i
\(924\) −1.70897 1.70897i −0.0562209 0.0562209i
\(925\) 48.7921 + 48.7921i 1.60427 + 1.60427i
\(926\) 0.562605i 0.0184883i
\(927\) 5.57897i 0.183237i
\(928\) −33.9439 33.9439i −1.11426 1.11426i
\(929\) 19.7422 + 19.7422i 0.647721 + 0.647721i 0.952442 0.304721i \(-0.0985631\pi\)
−0.304721 + 0.952442i \(0.598563\pi\)
\(930\) 4.98366 4.98366i 0.163421 0.163421i
\(931\) −6.90985 −0.226461
\(932\) 9.16804 9.16804i 0.300309 0.300309i
\(933\) 27.2225i 0.891225i
\(934\) −39.4873 −1.29206
\(935\) 30.3905 + 22.0310i 0.993875 + 0.720492i
\(936\) 6.72614 0.219851
\(937\) 36.6825i 1.19836i 0.800613 + 0.599182i \(0.204507\pi\)
−0.800613 + 0.599182i \(0.795493\pi\)
\(938\) −3.47881 + 3.47881i −0.113587 + 0.113587i
\(939\) −7.20038 −0.234976
\(940\) 1.65383 1.65383i 0.0539419 0.0539419i
\(941\) −23.5785 23.5785i −0.768636 0.768636i 0.209230 0.977866i \(-0.432904\pi\)
−0.977866 + 0.209230i \(0.932904\pi\)
\(942\) 9.33666 + 9.33666i 0.304205 + 0.304205i
\(943\) 65.1383i 2.12119i
\(944\) 54.5734i 1.77621i
\(945\) −2.50881 2.50881i −0.0816116 0.0816116i
\(946\) −5.35241 5.35241i −0.174022 0.174022i
\(947\) −13.9732 + 13.9732i −0.454068 + 0.454068i −0.896702 0.442634i \(-0.854044\pi\)
0.442634 + 0.896702i \(0.354044\pi\)
\(948\) −10.3922 −0.337524
\(949\) 3.73236 3.73236i 0.121157 0.121157i
\(950\) 89.9344i 2.91786i
\(951\) 18.5681 0.602113
\(952\) 7.38940 1.17836i 0.239492 0.0381908i
\(953\) 36.5884 1.18521 0.592607 0.805491i \(-0.298099\pi\)
0.592607 + 0.805491i \(0.298099\pi\)
\(954\) 5.80141i 0.187828i
\(955\) 11.8016 11.8016i 0.381890 0.381890i
\(956\) −12.8557 −0.415783
\(957\) −17.6290 + 17.6290i −0.569864 + 0.569864i
\(958\) −33.5218 33.5218i −1.08304 1.08304i
\(959\) 13.2634 + 13.2634i 0.428297 + 0.428297i
\(960\) 5.39027i 0.173970i
\(961\) 29.6587i 0.956732i
\(962\) −40.8743 40.8743i −1.31784 1.31784i
\(963\) 3.97950 + 3.97950i 0.128238 + 0.128238i
\(964\) −11.5438 + 11.5438i −0.371802 + 0.371802i
\(965\) 18.1073 0.582895
\(966\) 9.26101 9.26101i 0.297968 0.297968i
\(967\) 29.3184i 0.942815i −0.881915 0.471408i \(-0.843746\pi\)
0.881915 0.471408i \(-0.156254\pi\)
\(968\) 8.01459 0.257599
\(969\) −4.48651 28.1346i −0.144127 0.903813i
\(970\) 10.7755 0.345979
\(971\) 30.8608i 0.990370i 0.868788 + 0.495185i \(0.164900\pi\)
−0.868788 + 0.495185i \(0.835100\pi\)
\(972\) −0.666030 + 0.666030i −0.0213629 + 0.0213629i
\(973\) 6.45433 0.206916
\(974\) 2.65836 2.65836i 0.0851793 0.0851793i
\(975\) 19.8864 + 19.8864i 0.636874 + 0.636874i
\(976\) −18.1143 18.1143i −0.579825 0.579825i
\(977\) 54.9490i 1.75797i 0.476847 + 0.878987i \(0.341780\pi\)
−0.476847 + 0.878987i \(0.658220\pi\)
\(978\) 10.1258i 0.323788i
\(979\) −20.1550 20.1550i −0.644156 0.644156i
\(980\) −2.36307 2.36307i −0.0754856 0.0754856i
\(981\) −11.4638 + 11.4638i −0.366010 + 0.366010i
\(982\) 13.7906 0.440077
\(983\) −8.91428 + 8.91428i −0.284321 + 0.284321i −0.834830 0.550508i \(-0.814434\pi\)
0.550508 + 0.834830i \(0.314434\pi\)
\(984\) 15.4816i 0.493534i
\(985\) −47.8418 −1.52437
\(986\) 10.8207 + 67.8560i 0.344602 + 2.16098i
\(987\) −0.699863 −0.0222769
\(988\) 24.1216i 0.767411i
\(989\) 9.28653 9.28653i 0.295294 0.295294i
\(990\) 15.6148 0.496272
\(991\) 6.73346 6.73346i 0.213895 0.213895i −0.592024 0.805920i \(-0.701671\pi\)
0.805920 + 0.592024i \(0.201671\pi\)
\(992\) 4.04599 + 4.04599i 0.128460 + 0.128460i
\(993\) −5.70156 5.70156i −0.180933 0.180933i
\(994\) 22.1560i 0.702746i
\(995\) 14.8790i 0.471695i
\(996\) 5.40542 + 5.40542i 0.171277 + 0.171277i
\(997\) 39.9524 + 39.9524i 1.26531 + 1.26531i 0.948485 + 0.316821i \(0.102615\pi\)
0.316821 + 0.948485i \(0.397385\pi\)
\(998\) −13.8739 + 13.8739i −0.439172 + 0.439172i
\(999\) −9.09331 −0.287700
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 357.2.k.b.106.8 yes 20
3.2 odd 2 1071.2.n.b.820.3 20
17.8 even 8 6069.2.a.be.1.8 10
17.9 even 8 6069.2.a.bd.1.8 10
17.13 even 4 inner 357.2.k.b.64.3 20
51.47 odd 4 1071.2.n.b.64.8 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
357.2.k.b.64.3 20 17.13 even 4 inner
357.2.k.b.106.8 yes 20 1.1 even 1 trivial
1071.2.n.b.64.8 20 51.47 odd 4
1071.2.n.b.820.3 20 3.2 odd 2
6069.2.a.bd.1.8 10 17.9 even 8
6069.2.a.be.1.8 10 17.8 even 8