Properties

Label 1080.2.m.b.539.19
Level $1080$
Weight $2$
Character 1080.539
Analytic conductor $8.624$
Analytic rank $0$
Dimension $40$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1080,2,Mod(539,1080)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1080, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1080.539");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1080 = 2^{3} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1080.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.62384341830\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 539.19
Character \(\chi\) \(=\) 1080.539
Dual form 1080.2.m.b.539.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.205826 + 1.39916i) q^{2} +(-1.91527 - 0.575965i) q^{4} +(-1.94670 + 1.10016i) q^{5} +1.41383 q^{7} +(1.20008 - 2.56121i) q^{8} +(-1.13862 - 2.95018i) q^{10} -1.85786i q^{11} +5.28485 q^{13} +(-0.291002 + 1.97816i) q^{14} +(3.33653 + 2.20626i) q^{16} -3.39687 q^{17} +0.958964 q^{19} +(4.36211 - 0.985877i) q^{20} +(2.59943 + 0.382395i) q^{22} -1.26014i q^{23} +(2.57929 - 4.28337i) q^{25} +(-1.08776 + 7.39432i) q^{26} +(-2.70786 - 0.814315i) q^{28} +6.97811 q^{29} +8.83008i q^{31} +(-3.77364 + 4.21422i) q^{32} +(0.699164 - 4.75275i) q^{34} +(-2.75230 + 1.55544i) q^{35} +7.01845 q^{37} +(-0.197380 + 1.34174i) q^{38} +(0.481558 + 6.30620i) q^{40} +9.81991i q^{41} -7.74226i q^{43} +(-1.07006 + 3.55830i) q^{44} +(1.76313 + 0.259369i) q^{46} +6.43323i q^{47} -5.00109 q^{49} +(5.46222 + 4.49045i) q^{50} +(-10.1219 - 3.04389i) q^{52} -1.38393i q^{53} +(2.04394 + 3.61669i) q^{55} +(1.69670 - 3.62111i) q^{56} +(-1.43628 + 9.76345i) q^{58} -1.37865i q^{59} +6.88857i q^{61} +(-12.3547 - 1.81746i) q^{62} +(-5.11963 - 6.14731i) q^{64} +(-10.2880 + 5.81419i) q^{65} +6.08777i q^{67} +(6.50593 + 1.95648i) q^{68} +(-1.60981 - 4.17104i) q^{70} +3.62010 q^{71} +9.30568i q^{73} +(-1.44458 + 9.81991i) q^{74} +(-1.83668 - 0.552330i) q^{76} -2.62669i q^{77} -7.07671i q^{79} +(-8.92246 - 0.624204i) q^{80} +(-13.7396 - 2.02119i) q^{82} +8.12610 q^{83} +(6.61269 - 3.73711i) q^{85} +(10.8326 + 1.59356i) q^{86} +(-4.75837 - 2.22957i) q^{88} +16.1673i q^{89} +7.47186 q^{91} +(-0.725795 + 2.41351i) q^{92} +(-9.00109 - 1.32413i) q^{94} +(-1.86682 + 1.05502i) q^{95} -16.1841i q^{97} +(1.02935 - 6.99730i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 4 q^{4} - 2 q^{10} - 28 q^{16} + 24 q^{19} + 40 q^{25} + 56 q^{34} + 18 q^{40} - 32 q^{46} + 104 q^{49} - 100 q^{64} + 10 q^{70} - 120 q^{76} - 56 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1080\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(541\) \(1001\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.205826 + 1.39916i −0.145541 + 0.989352i
\(3\) 0 0
\(4\) −1.91527 0.575965i −0.957636 0.287982i
\(5\) −1.94670 + 1.10016i −0.870591 + 0.492007i
\(6\) 0 0
\(7\) 1.41383 0.534377 0.267188 0.963644i \(-0.413905\pi\)
0.267188 + 0.963644i \(0.413905\pi\)
\(8\) 1.20008 2.56121i 0.424291 0.905526i
\(9\) 0 0
\(10\) −1.13862 2.95018i −0.360062 0.932928i
\(11\) 1.85786i 0.560165i −0.959976 0.280082i \(-0.909638\pi\)
0.959976 0.280082i \(-0.0903618\pi\)
\(12\) 0 0
\(13\) 5.28485 1.46575 0.732876 0.680362i \(-0.238177\pi\)
0.732876 + 0.680362i \(0.238177\pi\)
\(14\) −0.291002 + 1.97816i −0.0777737 + 0.528687i
\(15\) 0 0
\(16\) 3.33653 + 2.20626i 0.834132 + 0.551565i
\(17\) −3.39687 −0.823862 −0.411931 0.911215i \(-0.635145\pi\)
−0.411931 + 0.911215i \(0.635145\pi\)
\(18\) 0 0
\(19\) 0.958964 0.220002 0.110001 0.993932i \(-0.464915\pi\)
0.110001 + 0.993932i \(0.464915\pi\)
\(20\) 4.36211 0.985877i 0.975399 0.220449i
\(21\) 0 0
\(22\) 2.59943 + 0.382395i 0.554200 + 0.0815269i
\(23\) 1.26014i 0.262757i −0.991332 0.131378i \(-0.958060\pi\)
0.991332 0.131378i \(-0.0419403\pi\)
\(24\) 0 0
\(25\) 2.57929 4.28337i 0.515858 0.856674i
\(26\) −1.08776 + 7.39432i −0.213327 + 1.45015i
\(27\) 0 0
\(28\) −2.70786 0.814315i −0.511738 0.153891i
\(29\) 6.97811 1.29580 0.647901 0.761725i \(-0.275647\pi\)
0.647901 + 0.761725i \(0.275647\pi\)
\(30\) 0 0
\(31\) 8.83008i 1.58593i 0.609267 + 0.792965i \(0.291464\pi\)
−0.609267 + 0.792965i \(0.708536\pi\)
\(32\) −3.77364 + 4.21422i −0.667092 + 0.744975i
\(33\) 0 0
\(34\) 0.699164 4.75275i 0.119906 0.815090i
\(35\) −2.75230 + 1.55544i −0.465224 + 0.262917i
\(36\) 0 0
\(37\) 7.01845 1.15383 0.576913 0.816805i \(-0.304257\pi\)
0.576913 + 0.816805i \(0.304257\pi\)
\(38\) −0.197380 + 1.34174i −0.0320192 + 0.217659i
\(39\) 0 0
\(40\) 0.481558 + 6.30620i 0.0761411 + 0.997097i
\(41\) 9.81991i 1.53361i 0.641879 + 0.766806i \(0.278155\pi\)
−0.641879 + 0.766806i \(0.721845\pi\)
\(42\) 0 0
\(43\) 7.74226i 1.18068i −0.807153 0.590342i \(-0.798993\pi\)
0.807153 0.590342i \(-0.201007\pi\)
\(44\) −1.07006 + 3.55830i −0.161318 + 0.536434i
\(45\) 0 0
\(46\) 1.76313 + 0.259369i 0.259959 + 0.0382419i
\(47\) 6.43323i 0.938383i 0.883096 + 0.469192i \(0.155455\pi\)
−0.883096 + 0.469192i \(0.844545\pi\)
\(48\) 0 0
\(49\) −5.00109 −0.714442
\(50\) 5.46222 + 4.49045i 0.772474 + 0.635046i
\(51\) 0 0
\(52\) −10.1219 3.04389i −1.40366 0.422111i
\(53\) 1.38393i 0.190098i −0.995473 0.0950488i \(-0.969699\pi\)
0.995473 0.0950488i \(-0.0303007\pi\)
\(54\) 0 0
\(55\) 2.04394 + 3.61669i 0.275605 + 0.487675i
\(56\) 1.69670 3.62111i 0.226731 0.483892i
\(57\) 0 0
\(58\) −1.43628 + 9.76345i −0.188592 + 1.28200i
\(59\) 1.37865i 0.179485i −0.995965 0.0897426i \(-0.971396\pi\)
0.995965 0.0897426i \(-0.0286044\pi\)
\(60\) 0 0
\(61\) 6.88857i 0.881991i 0.897509 + 0.440996i \(0.145375\pi\)
−0.897509 + 0.440996i \(0.854625\pi\)
\(62\) −12.3547 1.81746i −1.56904 0.230818i
\(63\) 0 0
\(64\) −5.11963 6.14731i −0.639954 0.768413i
\(65\) −10.2880 + 5.81419i −1.27607 + 0.721161i
\(66\) 0 0
\(67\) 6.08777i 0.743740i 0.928285 + 0.371870i \(0.121283\pi\)
−0.928285 + 0.371870i \(0.878717\pi\)
\(68\) 6.50593 + 1.95648i 0.788959 + 0.237258i
\(69\) 0 0
\(70\) −1.60981 4.17104i −0.192409 0.498535i
\(71\) 3.62010 0.429627 0.214813 0.976655i \(-0.431086\pi\)
0.214813 + 0.976655i \(0.431086\pi\)
\(72\) 0 0
\(73\) 9.30568i 1.08915i 0.838713 + 0.544573i \(0.183308\pi\)
−0.838713 + 0.544573i \(0.816692\pi\)
\(74\) −1.44458 + 9.81991i −0.167929 + 1.14154i
\(75\) 0 0
\(76\) −1.83668 0.552330i −0.210681 0.0633566i
\(77\) 2.62669i 0.299339i
\(78\) 0 0
\(79\) 7.07671i 0.796192i −0.917344 0.398096i \(-0.869671\pi\)
0.917344 0.398096i \(-0.130329\pi\)
\(80\) −8.92246 0.624204i −0.997562 0.0697881i
\(81\) 0 0
\(82\) −13.7396 2.02119i −1.51728 0.223203i
\(83\) 8.12610 0.891956 0.445978 0.895044i \(-0.352856\pi\)
0.445978 + 0.895044i \(0.352856\pi\)
\(84\) 0 0
\(85\) 6.61269 3.73711i 0.717247 0.405346i
\(86\) 10.8326 + 1.59356i 1.16811 + 0.171838i
\(87\) 0 0
\(88\) −4.75837 2.22957i −0.507244 0.237673i
\(89\) 16.1673i 1.71373i 0.515541 + 0.856865i \(0.327591\pi\)
−0.515541 + 0.856865i \(0.672409\pi\)
\(90\) 0 0
\(91\) 7.47186 0.783264
\(92\) −0.725795 + 2.41351i −0.0756694 + 0.251625i
\(93\) 0 0
\(94\) −9.00109 1.32413i −0.928392 0.136573i
\(95\) −1.86682 + 1.05502i −0.191531 + 0.108242i
\(96\) 0 0
\(97\) 16.1841i 1.64325i −0.570031 0.821623i \(-0.693069\pi\)
0.570031 0.821623i \(-0.306931\pi\)
\(98\) 1.02935 6.99730i 0.103980 0.706834i
\(99\) 0 0
\(100\) −7.40711 + 6.71824i −0.740711 + 0.671824i
\(101\) 8.26292 0.822191 0.411096 0.911592i \(-0.365146\pi\)
0.411096 + 0.911592i \(0.365146\pi\)
\(102\) 0 0
\(103\) 7.01845 0.691549 0.345774 0.938318i \(-0.387616\pi\)
0.345774 + 0.938318i \(0.387616\pi\)
\(104\) 6.34222 13.5356i 0.621906 1.32728i
\(105\) 0 0
\(106\) 1.93633 + 0.284849i 0.188073 + 0.0276670i
\(107\) 13.6459 1.31920 0.659601 0.751616i \(-0.270725\pi\)
0.659601 + 0.751616i \(0.270725\pi\)
\(108\) 0 0
\(109\) 3.05122i 0.292254i 0.989266 + 0.146127i \(0.0466808\pi\)
−0.989266 + 0.146127i \(0.953319\pi\)
\(110\) −5.48101 + 2.11538i −0.522594 + 0.201694i
\(111\) 0 0
\(112\) 4.71728 + 3.11927i 0.445741 + 0.294743i
\(113\) −3.34103 −0.314298 −0.157149 0.987575i \(-0.550230\pi\)
−0.157149 + 0.987575i \(0.550230\pi\)
\(114\) 0 0
\(115\) 1.38636 + 2.45311i 0.129278 + 0.228754i
\(116\) −13.3650 4.01914i −1.24091 0.373168i
\(117\) 0 0
\(118\) 1.92895 + 0.283762i 0.177574 + 0.0261224i
\(119\) −4.80259 −0.440253
\(120\) 0 0
\(121\) 7.54837 0.686215
\(122\) −9.63818 1.41785i −0.872600 0.128366i
\(123\) 0 0
\(124\) 5.08582 16.9120i 0.456720 1.51874i
\(125\) −0.308701 + 11.1761i −0.0276110 + 0.999619i
\(126\) 0 0
\(127\) 10.2948 0.913517 0.456758 0.889591i \(-0.349010\pi\)
0.456758 + 0.889591i \(0.349010\pi\)
\(128\) 9.65479 5.89788i 0.853371 0.521304i
\(129\) 0 0
\(130\) −6.01741 15.5912i −0.527762 1.36744i
\(131\) 11.1492i 0.974107i −0.873372 0.487054i \(-0.838072\pi\)
0.873372 0.487054i \(-0.161928\pi\)
\(132\) 0 0
\(133\) 1.35581 0.117564
\(134\) −8.51774 1.25302i −0.735821 0.108245i
\(135\) 0 0
\(136\) −4.07650 + 8.70011i −0.349557 + 0.746028i
\(137\) 9.44890 0.807274 0.403637 0.914919i \(-0.367746\pi\)
0.403637 + 0.914919i \(0.367746\pi\)
\(138\) 0 0
\(139\) −14.7721 −1.25295 −0.626477 0.779440i \(-0.715504\pi\)
−0.626477 + 0.779440i \(0.715504\pi\)
\(140\) 6.16728 1.39386i 0.521230 0.117803i
\(141\) 0 0
\(142\) −0.745110 + 5.06508i −0.0625282 + 0.425052i
\(143\) 9.81849i 0.821063i
\(144\) 0 0
\(145\) −13.5843 + 7.67705i −1.12811 + 0.637544i
\(146\) −13.0201 1.91535i −1.07755 0.158515i
\(147\) 0 0
\(148\) −13.4422 4.04238i −1.10495 0.332282i
\(149\) −15.2225 −1.24708 −0.623540 0.781792i \(-0.714306\pi\)
−0.623540 + 0.781792i \(0.714306\pi\)
\(150\) 0 0
\(151\) 13.8353i 1.12590i 0.826491 + 0.562951i \(0.190334\pi\)
−0.826491 + 0.562951i \(0.809666\pi\)
\(152\) 1.15083 2.45611i 0.0933447 0.199217i
\(153\) 0 0
\(154\) 3.67515 + 0.540641i 0.296152 + 0.0435661i
\(155\) −9.71452 17.1895i −0.780289 1.38070i
\(156\) 0 0
\(157\) −7.94053 −0.633723 −0.316862 0.948472i \(-0.602629\pi\)
−0.316862 + 0.948472i \(0.602629\pi\)
\(158\) 9.90142 + 1.45657i 0.787714 + 0.115879i
\(159\) 0 0
\(160\) 2.70983 12.3554i 0.214231 0.976783i
\(161\) 1.78162i 0.140411i
\(162\) 0 0
\(163\) 9.26632i 0.725794i −0.931829 0.362897i \(-0.881788\pi\)
0.931829 0.362897i \(-0.118212\pi\)
\(164\) 5.65592 18.8078i 0.441653 1.46864i
\(165\) 0 0
\(166\) −1.67256 + 11.3697i −0.129816 + 0.882458i
\(167\) 24.7574i 1.91578i −0.287129 0.957892i \(-0.592701\pi\)
0.287129 0.957892i \(-0.407299\pi\)
\(168\) 0 0
\(169\) 14.9296 1.14843
\(170\) 3.86773 + 10.0214i 0.296641 + 0.768604i
\(171\) 0 0
\(172\) −4.45927 + 14.8285i −0.340016 + 1.13066i
\(173\) 2.42769i 0.184574i 0.995732 + 0.0922870i \(0.0294177\pi\)
−0.995732 + 0.0922870i \(0.970582\pi\)
\(174\) 0 0
\(175\) 3.64667 6.05595i 0.275662 0.457787i
\(176\) 4.09891 6.19879i 0.308967 0.467252i
\(177\) 0 0
\(178\) −22.6206 3.32765i −1.69548 0.249418i
\(179\) 26.4664i 1.97819i −0.147272 0.989096i \(-0.547049\pi\)
0.147272 0.989096i \(-0.452951\pi\)
\(180\) 0 0
\(181\) 16.4205i 1.22052i 0.792199 + 0.610262i \(0.208936\pi\)
−0.792199 + 0.610262i \(0.791064\pi\)
\(182\) −1.53790 + 10.4543i −0.113997 + 0.774924i
\(183\) 0 0
\(184\) −3.22748 1.51226i −0.237933 0.111486i
\(185\) −13.6628 + 7.72143i −1.00451 + 0.567691i
\(186\) 0 0
\(187\) 6.31090i 0.461498i
\(188\) 3.70532 12.3214i 0.270238 0.898629i
\(189\) 0 0
\(190\) −1.09189 2.82912i −0.0792142 0.205246i
\(191\) 0.528127 0.0382140 0.0191070 0.999817i \(-0.493918\pi\)
0.0191070 + 0.999817i \(0.493918\pi\)
\(192\) 0 0
\(193\) 3.21790i 0.231630i −0.993271 0.115815i \(-0.963052\pi\)
0.993271 0.115815i \(-0.0369479\pi\)
\(194\) 22.6441 + 3.33111i 1.62575 + 0.239160i
\(195\) 0 0
\(196\) 9.57845 + 2.88045i 0.684175 + 0.205747i
\(197\) 1.79418i 0.127830i 0.997955 + 0.0639149i \(0.0203586\pi\)
−0.997955 + 0.0639149i \(0.979641\pi\)
\(198\) 0 0
\(199\) 16.5191i 1.17101i −0.810669 0.585505i \(-0.800896\pi\)
0.810669 0.585505i \(-0.199104\pi\)
\(200\) −7.87529 11.7465i −0.556867 0.830602i
\(201\) 0 0
\(202\) −1.70072 + 11.5611i −0.119662 + 0.813437i
\(203\) 9.86584 0.692446
\(204\) 0 0
\(205\) −10.8035 19.1164i −0.754548 1.33515i
\(206\) −1.44458 + 9.81991i −0.100649 + 0.684185i
\(207\) 0 0
\(208\) 17.6330 + 11.6597i 1.22263 + 0.808457i
\(209\) 1.78162i 0.123237i
\(210\) 0 0
\(211\) 12.8886 0.887286 0.443643 0.896204i \(-0.353686\pi\)
0.443643 + 0.896204i \(0.353686\pi\)
\(212\) −0.797096 + 2.65060i −0.0547448 + 0.182044i
\(213\) 0 0
\(214\) −2.80869 + 19.0928i −0.191998 + 1.30516i
\(215\) 8.51774 + 15.0719i 0.580905 + 1.02789i
\(216\) 0 0
\(217\) 12.4842i 0.847484i
\(218\) −4.26913 0.628021i −0.289142 0.0425349i
\(219\) 0 0
\(220\) −1.83162 8.10418i −0.123488 0.546384i
\(221\) −17.9519 −1.20758
\(222\) 0 0
\(223\) 7.01845 0.469990 0.234995 0.971997i \(-0.424493\pi\)
0.234995 + 0.971997i \(0.424493\pi\)
\(224\) −5.33528 + 5.95818i −0.356478 + 0.398097i
\(225\) 0 0
\(226\) 0.687671 4.67462i 0.0457432 0.310951i
\(227\) 26.0959 1.73204 0.866022 0.500006i \(-0.166669\pi\)
0.866022 + 0.500006i \(0.166669\pi\)
\(228\) 0 0
\(229\) 27.3805i 1.80935i 0.426098 + 0.904677i \(0.359888\pi\)
−0.426098 + 0.904677i \(0.640112\pi\)
\(230\) −3.71763 + 1.43481i −0.245133 + 0.0946088i
\(231\) 0 0
\(232\) 8.37426 17.8724i 0.549797 1.17338i
\(233\) −9.60062 −0.628957 −0.314479 0.949265i \(-0.601830\pi\)
−0.314479 + 0.949265i \(0.601830\pi\)
\(234\) 0 0
\(235\) −7.07760 12.5236i −0.461691 0.816948i
\(236\) −0.794055 + 2.64049i −0.0516886 + 0.171881i
\(237\) 0 0
\(238\) 0.988497 6.71957i 0.0640748 0.435565i
\(239\) −17.6898 −1.14426 −0.572130 0.820163i \(-0.693883\pi\)
−0.572130 + 0.820163i \(0.693883\pi\)
\(240\) 0 0
\(241\) 3.99330 0.257231 0.128615 0.991695i \(-0.458947\pi\)
0.128615 + 0.991695i \(0.458947\pi\)
\(242\) −1.55365 + 10.5613i −0.0998724 + 0.678909i
\(243\) 0 0
\(244\) 3.96758 13.1935i 0.253998 0.844626i
\(245\) 9.73563 5.50201i 0.621986 0.351510i
\(246\) 0 0
\(247\) 5.06798 0.322468
\(248\) 22.6157 + 10.5968i 1.43610 + 0.672896i
\(249\) 0 0
\(250\) −15.5735 2.73225i −0.984956 0.172802i
\(251\) 19.6398i 1.23965i −0.784738 0.619827i \(-0.787203\pi\)
0.784738 0.619827i \(-0.212797\pi\)
\(252\) 0 0
\(253\) −2.34116 −0.147187
\(254\) −2.11894 + 14.4040i −0.132954 + 0.903790i
\(255\) 0 0
\(256\) 6.26485 + 14.7225i 0.391553 + 0.920156i
\(257\) 0.736991 0.0459723 0.0229861 0.999736i \(-0.492683\pi\)
0.0229861 + 0.999736i \(0.492683\pi\)
\(258\) 0 0
\(259\) 9.92289 0.616578
\(260\) 23.0531 5.21021i 1.42969 0.323123i
\(261\) 0 0
\(262\) 15.5994 + 2.29479i 0.963735 + 0.141772i
\(263\) 10.6712i 0.658016i 0.944327 + 0.329008i \(0.106714\pi\)
−0.944327 + 0.329008i \(0.893286\pi\)
\(264\) 0 0
\(265\) 1.52255 + 2.69410i 0.0935294 + 0.165497i
\(266\) −0.279061 + 1.89699i −0.0171103 + 0.116312i
\(267\) 0 0
\(268\) 3.50634 11.6597i 0.214184 0.712232i
\(269\) 22.0409 1.34386 0.671928 0.740616i \(-0.265466\pi\)
0.671928 + 0.740616i \(0.265466\pi\)
\(270\) 0 0
\(271\) 14.4928i 0.880373i 0.897906 + 0.440186i \(0.145088\pi\)
−0.897906 + 0.440186i \(0.854912\pi\)
\(272\) −11.3338 7.49437i −0.687210 0.454413i
\(273\) 0 0
\(274\) −1.94483 + 13.2205i −0.117491 + 0.798679i
\(275\) −7.95789 4.79195i −0.479879 0.288965i
\(276\) 0 0
\(277\) 8.92588 0.536304 0.268152 0.963377i \(-0.413587\pi\)
0.268152 + 0.963377i \(0.413587\pi\)
\(278\) 3.04049 20.6685i 0.182356 1.23961i
\(279\) 0 0
\(280\) 0.680840 + 8.91587i 0.0406880 + 0.532825i
\(281\) 11.9703i 0.714091i 0.934087 + 0.357046i \(0.116216\pi\)
−0.934087 + 0.357046i \(0.883784\pi\)
\(282\) 0 0
\(283\) 17.0086i 1.01106i 0.862810 + 0.505528i \(0.168702\pi\)
−0.862810 + 0.505528i \(0.831298\pi\)
\(284\) −6.93347 2.08505i −0.411426 0.123725i
\(285\) 0 0
\(286\) 13.7376 + 2.02090i 0.812321 + 0.119498i
\(287\) 13.8837i 0.819526i
\(288\) 0 0
\(289\) −5.46128 −0.321252
\(290\) −7.94538 20.5867i −0.466569 1.20889i
\(291\) 0 0
\(292\) 5.35974 17.8229i 0.313655 1.04301i
\(293\) 9.28221i 0.542272i −0.962541 0.271136i \(-0.912601\pi\)
0.962541 0.271136i \(-0.0873994\pi\)
\(294\) 0 0
\(295\) 1.51674 + 2.68382i 0.0883080 + 0.156258i
\(296\) 8.42269 17.9758i 0.489559 1.04482i
\(297\) 0 0
\(298\) 3.13319 21.2987i 0.181501 1.23380i
\(299\) 6.65964i 0.385137i
\(300\) 0 0
\(301\) 10.9462i 0.630930i
\(302\) −19.3577 2.84767i −1.11391 0.163865i
\(303\) 0 0
\(304\) 3.19961 + 2.11572i 0.183510 + 0.121345i
\(305\) −7.57854 13.4100i −0.433946 0.767854i
\(306\) 0 0
\(307\) 28.2257i 1.61093i −0.592646 0.805463i \(-0.701917\pi\)
0.592646 0.805463i \(-0.298083\pi\)
\(308\) −1.51288 + 5.03082i −0.0862044 + 0.286658i
\(309\) 0 0
\(310\) 26.0503 10.0541i 1.47956 0.571033i
\(311\) −27.3716 −1.55210 −0.776050 0.630671i \(-0.782780\pi\)
−0.776050 + 0.630671i \(0.782780\pi\)
\(312\) 0 0
\(313\) 27.1781i 1.53620i −0.640332 0.768098i \(-0.721203\pi\)
0.640332 0.768098i \(-0.278797\pi\)
\(314\) 1.63437 11.1100i 0.0922327 0.626976i
\(315\) 0 0
\(316\) −4.07594 + 13.5538i −0.229289 + 0.762462i
\(317\) 2.01745i 0.113311i −0.998394 0.0566555i \(-0.981956\pi\)
0.998394 0.0566555i \(-0.0180437\pi\)
\(318\) 0 0
\(319\) 12.9643i 0.725863i
\(320\) 16.7294 + 6.33455i 0.935203 + 0.354112i
\(321\) 0 0
\(322\) 2.49276 + 0.366703i 0.138916 + 0.0204356i
\(323\) −3.25748 −0.181251
\(324\) 0 0
\(325\) 13.6311 22.6370i 0.756120 1.25567i
\(326\) 12.9650 + 1.90725i 0.718066 + 0.105633i
\(327\) 0 0
\(328\) 25.1509 + 11.7846i 1.38873 + 0.650698i
\(329\) 9.09548i 0.501450i
\(330\) 0 0
\(331\) −25.5573 −1.40475 −0.702377 0.711805i \(-0.747878\pi\)
−0.702377 + 0.711805i \(0.747878\pi\)
\(332\) −15.5637 4.68035i −0.854168 0.256868i
\(333\) 0 0
\(334\) 34.6394 + 5.09571i 1.89539 + 0.278825i
\(335\) −6.69754 11.8511i −0.365925 0.647493i
\(336\) 0 0
\(337\) 2.38790i 0.130077i −0.997883 0.0650385i \(-0.979283\pi\)
0.997883 0.0650385i \(-0.0207170\pi\)
\(338\) −3.07290 + 20.8888i −0.167144 + 1.13620i
\(339\) 0 0
\(340\) −14.8175 + 3.34889i −0.803594 + 0.181619i
\(341\) 16.4050 0.888382
\(342\) 0 0
\(343\) −16.9675 −0.916158
\(344\) −19.8296 9.29131i −1.06914 0.500954i
\(345\) 0 0
\(346\) −3.39672 0.499682i −0.182609 0.0268631i
\(347\) 17.6403 0.946980 0.473490 0.880799i \(-0.342994\pi\)
0.473490 + 0.880799i \(0.342994\pi\)
\(348\) 0 0
\(349\) 3.06501i 0.164066i 0.996630 + 0.0820332i \(0.0261414\pi\)
−0.996630 + 0.0820332i \(0.973859\pi\)
\(350\) 7.72264 + 6.34873i 0.412792 + 0.339354i
\(351\) 0 0
\(352\) 7.82941 + 7.01089i 0.417309 + 0.373682i
\(353\) −10.9754 −0.584162 −0.292081 0.956394i \(-0.594348\pi\)
−0.292081 + 0.956394i \(0.594348\pi\)
\(354\) 0 0
\(355\) −7.04725 + 3.98269i −0.374029 + 0.211379i
\(356\) 9.31180 30.9648i 0.493524 1.64113i
\(357\) 0 0
\(358\) 37.0306 + 5.44747i 1.95713 + 0.287908i
\(359\) 21.1071 1.11399 0.556996 0.830515i \(-0.311954\pi\)
0.556996 + 0.830515i \(0.311954\pi\)
\(360\) 0 0
\(361\) −18.0804 −0.951599
\(362\) −22.9748 3.37976i −1.20753 0.177636i
\(363\) 0 0
\(364\) −14.3106 4.30353i −0.750082 0.225566i
\(365\) −10.2377 18.1154i −0.535868 0.948202i
\(366\) 0 0
\(367\) −26.1942 −1.36733 −0.683664 0.729797i \(-0.739615\pi\)
−0.683664 + 0.729797i \(0.739615\pi\)
\(368\) 2.78019 4.20449i 0.144927 0.219174i
\(369\) 0 0
\(370\) −7.99132 20.7057i −0.415449 1.07644i
\(371\) 1.95664i 0.101584i
\(372\) 0 0
\(373\) −6.92866 −0.358753 −0.179376 0.983781i \(-0.557408\pi\)
−0.179376 + 0.983781i \(0.557408\pi\)
\(374\) −8.82993 1.29895i −0.456585 0.0671669i
\(375\) 0 0
\(376\) 16.4769 + 7.72037i 0.849730 + 0.398148i
\(377\) 36.8782 1.89932
\(378\) 0 0
\(379\) 23.3481 1.19931 0.599656 0.800258i \(-0.295304\pi\)
0.599656 + 0.800258i \(0.295304\pi\)
\(380\) 4.18311 0.945421i 0.214589 0.0484991i
\(381\) 0 0
\(382\) −0.108702 + 0.738932i −0.00556170 + 0.0378071i
\(383\) 10.6684i 0.545129i 0.962138 + 0.272564i \(0.0878718\pi\)
−0.962138 + 0.272564i \(0.912128\pi\)
\(384\) 0 0
\(385\) 2.88978 + 5.11338i 0.147277 + 0.260602i
\(386\) 4.50235 + 0.662328i 0.229163 + 0.0337116i
\(387\) 0 0
\(388\) −9.32147 + 30.9969i −0.473226 + 1.57363i
\(389\) −15.8584 −0.804054 −0.402027 0.915628i \(-0.631694\pi\)
−0.402027 + 0.915628i \(0.631694\pi\)
\(390\) 0 0
\(391\) 4.28052i 0.216475i
\(392\) −6.00169 + 12.8089i −0.303131 + 0.646945i
\(393\) 0 0
\(394\) −2.51033 0.369288i −0.126469 0.0186045i
\(395\) 7.78553 + 13.7762i 0.391732 + 0.693158i
\(396\) 0 0
\(397\) −22.5850 −1.13351 −0.566754 0.823887i \(-0.691801\pi\)
−0.566754 + 0.823887i \(0.691801\pi\)
\(398\) 23.1128 + 3.40007i 1.15854 + 0.170430i
\(399\) 0 0
\(400\) 18.0561 8.60102i 0.902805 0.430051i
\(401\) 15.2185i 0.759973i 0.924992 + 0.379987i \(0.124071\pi\)
−0.924992 + 0.379987i \(0.875929\pi\)
\(402\) 0 0
\(403\) 46.6656i 2.32458i
\(404\) −15.8257 4.75915i −0.787359 0.236777i
\(405\) 0 0
\(406\) −2.03065 + 13.8038i −0.100779 + 0.685073i
\(407\) 13.0393i 0.646333i
\(408\) 0 0
\(409\) −16.1485 −0.798494 −0.399247 0.916843i \(-0.630728\pi\)
−0.399247 + 0.916843i \(0.630728\pi\)
\(410\) 28.9705 11.1811i 1.43075 0.552195i
\(411\) 0 0
\(412\) −13.4422 4.04238i −0.662252 0.199154i
\(413\) 1.94918i 0.0959127i
\(414\) 0 0
\(415\) −15.8191 + 8.94003i −0.776529 + 0.438849i
\(416\) −19.9431 + 22.2715i −0.977792 + 1.09195i
\(417\) 0 0
\(418\) 2.49276 + 0.366703i 0.121925 + 0.0179360i
\(419\) 12.9802i 0.634123i 0.948405 + 0.317062i \(0.102696\pi\)
−0.948405 + 0.317062i \(0.897304\pi\)
\(420\) 0 0
\(421\) 3.77558i 0.184010i −0.995759 0.0920052i \(-0.970672\pi\)
0.995759 0.0920052i \(-0.0293276\pi\)
\(422\) −2.65280 + 18.0331i −0.129136 + 0.877838i
\(423\) 0 0
\(424\) −3.54454 1.66082i −0.172138 0.0806567i
\(425\) −8.76150 + 14.5501i −0.424995 + 0.705781i
\(426\) 0 0
\(427\) 9.73926i 0.471316i
\(428\) −26.1357 7.85958i −1.26332 0.379907i
\(429\) 0 0
\(430\) −22.8411 + 8.81546i −1.10149 + 0.425119i
\(431\) 9.99810 0.481591 0.240796 0.970576i \(-0.422592\pi\)
0.240796 + 0.970576i \(0.422592\pi\)
\(432\) 0 0
\(433\) 18.9200i 0.909238i 0.890686 + 0.454619i \(0.150225\pi\)
−0.890686 + 0.454619i \(0.849775\pi\)
\(434\) −17.4674 2.56958i −0.838460 0.123344i
\(435\) 0 0
\(436\) 1.75740 5.84392i 0.0841641 0.279873i
\(437\) 1.20843i 0.0578069i
\(438\) 0 0
\(439\) 35.3788i 1.68854i −0.535920 0.844269i \(-0.680035\pi\)
0.535920 0.844269i \(-0.319965\pi\)
\(440\) 11.7160 0.894666i 0.558539 0.0426515i
\(441\) 0 0
\(442\) 3.69497 25.1175i 0.175752 1.19472i
\(443\) −24.6061 −1.16907 −0.584536 0.811368i \(-0.698723\pi\)
−0.584536 + 0.811368i \(0.698723\pi\)
\(444\) 0 0
\(445\) −17.7866 31.4729i −0.843168 1.49196i
\(446\) −1.44458 + 9.81991i −0.0684028 + 0.464986i
\(447\) 0 0
\(448\) −7.23828 8.69123i −0.341976 0.410622i
\(449\) 4.53892i 0.214205i −0.994248 0.107102i \(-0.965843\pi\)
0.994248 0.107102i \(-0.0341573\pi\)
\(450\) 0 0
\(451\) 18.2440 0.859076
\(452\) 6.39898 + 1.92432i 0.300983 + 0.0905122i
\(453\) 0 0
\(454\) −5.37121 + 36.5122i −0.252083 + 1.71360i
\(455\) −14.5455 + 8.22026i −0.681903 + 0.385372i
\(456\) 0 0
\(457\) 8.34915i 0.390557i 0.980748 + 0.195278i \(0.0625610\pi\)
−0.980748 + 0.195278i \(0.937439\pi\)
\(458\) −38.3096 5.63562i −1.79009 0.263335i
\(459\) 0 0
\(460\) −1.24234 5.49687i −0.0579244 0.256293i
\(461\) −10.5909 −0.493269 −0.246635 0.969109i \(-0.579325\pi\)
−0.246635 + 0.969109i \(0.579325\pi\)
\(462\) 0 0
\(463\) −20.7805 −0.965751 −0.482875 0.875689i \(-0.660408\pi\)
−0.482875 + 0.875689i \(0.660408\pi\)
\(464\) 23.2826 + 15.3955i 1.08087 + 0.714718i
\(465\) 0 0
\(466\) 1.97606 13.4328i 0.0915390 0.622260i
\(467\) 15.4779 0.716233 0.358116 0.933677i \(-0.383419\pi\)
0.358116 + 0.933677i \(0.383419\pi\)
\(468\) 0 0
\(469\) 8.60706i 0.397437i
\(470\) 18.9792 7.32498i 0.875444 0.337876i
\(471\) 0 0
\(472\) −3.53102 1.65449i −0.162528 0.0761540i
\(473\) −14.3840 −0.661378
\(474\) 0 0
\(475\) 2.47345 4.10760i 0.113489 0.188470i
\(476\) 9.19826 + 2.76612i 0.421602 + 0.126785i
\(477\) 0 0
\(478\) 3.64103 24.7508i 0.166537 1.13208i
\(479\) 38.1553 1.74336 0.871680 0.490075i \(-0.163031\pi\)
0.871680 + 0.490075i \(0.163031\pi\)
\(480\) 0 0
\(481\) 37.0915 1.69122
\(482\) −0.821924 + 5.58724i −0.0374376 + 0.254492i
\(483\) 0 0
\(484\) −14.4572 4.34760i −0.657144 0.197618i
\(485\) 17.8051 + 31.5056i 0.808489 + 1.43060i
\(486\) 0 0
\(487\) −32.2405 −1.46096 −0.730478 0.682937i \(-0.760703\pi\)
−0.730478 + 0.682937i \(0.760703\pi\)
\(488\) 17.6431 + 8.26682i 0.798666 + 0.374221i
\(489\) 0 0
\(490\) 5.69432 + 14.7541i 0.257243 + 0.666523i
\(491\) 12.2064i 0.550865i 0.961320 + 0.275433i \(0.0888211\pi\)
−0.961320 + 0.275433i \(0.911179\pi\)
\(492\) 0 0
\(493\) −23.7037 −1.06756
\(494\) −1.04312 + 7.09089i −0.0469323 + 0.319034i
\(495\) 0 0
\(496\) −19.4814 + 29.4618i −0.874743 + 1.32288i
\(497\) 5.11819 0.229582
\(498\) 0 0
\(499\) −38.3721 −1.71777 −0.858886 0.512167i \(-0.828843\pi\)
−0.858886 + 0.512167i \(0.828843\pi\)
\(500\) 7.02827 21.2274i 0.314314 0.949319i
\(501\) 0 0
\(502\) 27.4792 + 4.04238i 1.22645 + 0.180420i
\(503\) 10.4283i 0.464974i −0.972600 0.232487i \(-0.925314\pi\)
0.972600 0.232487i \(-0.0746863\pi\)
\(504\) 0 0
\(505\) −16.0854 + 9.09055i −0.715792 + 0.404524i
\(506\) 0.481871 3.27564i 0.0214218 0.145620i
\(507\) 0 0
\(508\) −19.7174 5.92945i −0.874816 0.263077i
\(509\) 9.51620 0.421798 0.210899 0.977508i \(-0.432361\pi\)
0.210899 + 0.977508i \(0.432361\pi\)
\(510\) 0 0
\(511\) 13.1566i 0.582015i
\(512\) −21.8885 + 5.73522i −0.967345 + 0.253463i
\(513\) 0 0
\(514\) −0.151692 + 1.03117i −0.00669085 + 0.0454828i
\(515\) −13.6628 + 7.72143i −0.602056 + 0.340247i
\(516\) 0 0
\(517\) 11.9520 0.525649
\(518\) −2.04239 + 13.8837i −0.0897374 + 0.610013i
\(519\) 0 0
\(520\) 2.54496 + 33.3273i 0.111604 + 1.46150i
\(521\) 12.3260i 0.540010i 0.962859 + 0.270005i \(0.0870253\pi\)
−0.962859 + 0.270005i \(0.912975\pi\)
\(522\) 0 0
\(523\) 26.5712i 1.16188i −0.813947 0.580939i \(-0.802685\pi\)
0.813947 0.580939i \(-0.197315\pi\)
\(524\) −6.42153 + 21.3537i −0.280526 + 0.932840i
\(525\) 0 0
\(526\) −14.9307 2.19641i −0.651009 0.0957682i
\(527\) 29.9946i 1.30659i
\(528\) 0 0
\(529\) 21.4121 0.930959
\(530\) −4.08284 + 1.57577i −0.177347 + 0.0684469i
\(531\) 0 0
\(532\) −2.59674 0.780899i −0.112583 0.0338563i
\(533\) 51.8967i 2.24790i
\(534\) 0 0
\(535\) −26.5646 + 15.0127i −1.14849 + 0.649057i
\(536\) 15.5921 + 7.30580i 0.673476 + 0.315562i
\(537\) 0 0
\(538\) −4.53659 + 30.8386i −0.195586 + 1.32955i
\(539\) 9.29131i 0.400205i
\(540\) 0 0
\(541\) 36.6675i 1.57646i −0.615382 0.788229i \(-0.710998\pi\)
0.615382 0.788229i \(-0.289002\pi\)
\(542\) −20.2776 2.98299i −0.870999 0.128130i
\(543\) 0 0
\(544\) 12.8186 14.3151i 0.549592 0.613757i
\(545\) −3.35684 5.93982i −0.143791 0.254434i
\(546\) 0 0
\(547\) 27.7063i 1.18463i 0.805705 + 0.592317i \(0.201787\pi\)
−0.805705 + 0.592317i \(0.798213\pi\)
\(548\) −18.0972 5.44224i −0.773075 0.232481i
\(549\) 0 0
\(550\) 8.34262 10.1480i 0.355731 0.432713i
\(551\) 6.69175 0.285078
\(552\) 0 0
\(553\) 10.0052i 0.425466i
\(554\) −1.83718 + 12.4887i −0.0780542 + 0.530593i
\(555\) 0 0
\(556\) 28.2926 + 8.50822i 1.19987 + 0.360829i
\(557\) 17.7763i 0.753206i −0.926375 0.376603i \(-0.877092\pi\)
0.926375 0.376603i \(-0.122908\pi\)
\(558\) 0 0
\(559\) 40.9167i 1.73059i
\(560\) −12.6148 0.882517i −0.533074 0.0372931i
\(561\) 0 0
\(562\) −16.7484 2.46381i −0.706488 0.103929i
\(563\) −36.7044 −1.54690 −0.773452 0.633854i \(-0.781472\pi\)
−0.773452 + 0.633854i \(0.781472\pi\)
\(564\) 0 0
\(565\) 6.50399 3.67567i 0.273625 0.154637i
\(566\) −23.7976 3.50081i −1.00029 0.147150i
\(567\) 0 0
\(568\) 4.34440 9.27184i 0.182287 0.389038i
\(569\) 5.97856i 0.250634i 0.992117 + 0.125317i \(0.0399949\pi\)
−0.992117 + 0.125317i \(0.960005\pi\)
\(570\) 0 0
\(571\) 26.6100 1.11359 0.556796 0.830649i \(-0.312030\pi\)
0.556796 + 0.830649i \(0.312030\pi\)
\(572\) −5.65511 + 18.8051i −0.236452 + 0.786279i
\(573\) 0 0
\(574\) −19.4254 2.85762i −0.810800 0.119275i
\(575\) −5.39764 3.25026i −0.225097 0.135545i
\(576\) 0 0
\(577\) 47.2797i 1.96828i 0.177398 + 0.984139i \(0.443232\pi\)
−0.177398 + 0.984139i \(0.556768\pi\)
\(578\) 1.12407 7.64118i 0.0467553 0.317831i
\(579\) 0 0
\(580\) 30.4393 6.87955i 1.26392 0.285658i
\(581\) 11.4889 0.476640
\(582\) 0 0
\(583\) −2.57115 −0.106486
\(584\) 23.8338 + 11.1675i 0.986251 + 0.462116i
\(585\) 0 0
\(586\) 12.9873 + 1.91052i 0.536498 + 0.0789228i
\(587\) 9.59894 0.396191 0.198095 0.980183i \(-0.436524\pi\)
0.198095 + 0.980183i \(0.436524\pi\)
\(588\) 0 0
\(589\) 8.46774i 0.348907i
\(590\) −4.06727 + 1.56975i −0.167447 + 0.0646258i
\(591\) 0 0
\(592\) 23.4173 + 15.4845i 0.962444 + 0.636410i
\(593\) −34.4142 −1.41322 −0.706610 0.707603i \(-0.749777\pi\)
−0.706610 + 0.707603i \(0.749777\pi\)
\(594\) 0 0
\(595\) 9.34920 5.28362i 0.383280 0.216607i
\(596\) 29.1553 + 8.76765i 1.19425 + 0.359137i
\(597\) 0 0
\(598\) 9.31787 + 1.37073i 0.381036 + 0.0560532i
\(599\) 3.71332 0.151722 0.0758611 0.997118i \(-0.475829\pi\)
0.0758611 + 0.997118i \(0.475829\pi\)
\(600\) 0 0
\(601\) −45.0267 −1.83668 −0.918338 0.395797i \(-0.870468\pi\)
−0.918338 + 0.395797i \(0.870468\pi\)
\(602\) 15.3155 + 2.25302i 0.624212 + 0.0918261i
\(603\) 0 0
\(604\) 7.96865 26.4984i 0.324240 1.07820i
\(605\) −14.6944 + 8.30443i −0.597413 + 0.337623i
\(606\) 0 0
\(607\) 4.98395 0.202292 0.101146 0.994872i \(-0.467749\pi\)
0.101146 + 0.994872i \(0.467749\pi\)
\(608\) −3.61879 + 4.04128i −0.146761 + 0.163896i
\(609\) 0 0
\(610\) 20.3225 7.84344i 0.822835 0.317571i
\(611\) 33.9986i 1.37544i
\(612\) 0 0
\(613\) 14.1267 0.570572 0.285286 0.958442i \(-0.407911\pi\)
0.285286 + 0.958442i \(0.407911\pi\)
\(614\) 39.4921 + 5.80958i 1.59377 + 0.234456i
\(615\) 0 0
\(616\) −6.72751 3.15223i −0.271059 0.127007i
\(617\) 34.3479 1.38279 0.691396 0.722476i \(-0.256996\pi\)
0.691396 + 0.722476i \(0.256996\pi\)
\(618\) 0 0
\(619\) −35.3327 −1.42014 −0.710071 0.704130i \(-0.751337\pi\)
−0.710071 + 0.704130i \(0.751337\pi\)
\(620\) 8.70538 + 38.5178i 0.349616 + 1.54691i
\(621\) 0 0
\(622\) 5.63378 38.2971i 0.225894 1.53557i
\(623\) 22.8578i 0.915777i
\(624\) 0 0
\(625\) −11.6945 22.0961i −0.467782 0.883844i
\(626\) 38.0264 + 5.59396i 1.51984 + 0.223580i
\(627\) 0 0
\(628\) 15.2083 + 4.57347i 0.606876 + 0.182501i
\(629\) −23.8408 −0.950594
\(630\) 0 0
\(631\) 7.89084i 0.314129i 0.987588 + 0.157065i \(0.0502031\pi\)
−0.987588 + 0.157065i \(0.949797\pi\)
\(632\) −18.1250 8.49260i −0.720972 0.337817i
\(633\) 0 0
\(634\) 2.82272 + 0.415243i 0.112105 + 0.0164914i
\(635\) −20.0409 + 11.3260i −0.795299 + 0.449457i
\(636\) 0 0
\(637\) −26.4300 −1.04719
\(638\) 18.1391 + 2.66839i 0.718134 + 0.105643i
\(639\) 0 0
\(640\) −12.3064 + 22.1032i −0.486452 + 0.873707i
\(641\) 48.6371i 1.92105i −0.278195 0.960525i \(-0.589736\pi\)
0.278195 0.960525i \(-0.410264\pi\)
\(642\) 0 0
\(643\) 18.4399i 0.727200i −0.931555 0.363600i \(-0.881547\pi\)
0.931555 0.363600i \(-0.118453\pi\)
\(644\) −1.02615 + 3.41228i −0.0404360 + 0.134463i
\(645\) 0 0
\(646\) 0.670473 4.55772i 0.0263794 0.179321i
\(647\) 36.7711i 1.44562i 0.691046 + 0.722811i \(0.257150\pi\)
−0.691046 + 0.722811i \(0.742850\pi\)
\(648\) 0 0
\(649\) −2.56134 −0.100541
\(650\) 28.8670 + 23.7314i 1.13226 + 0.930821i
\(651\) 0 0
\(652\) −5.33707 + 17.7475i −0.209016 + 0.695046i
\(653\) 8.74915i 0.342381i 0.985238 + 0.171190i \(0.0547613\pi\)
−0.985238 + 0.171190i \(0.945239\pi\)
\(654\) 0 0
\(655\) 12.2659 + 21.7041i 0.479268 + 0.848049i
\(656\) −21.6653 + 32.7644i −0.845886 + 1.27924i
\(657\) 0 0
\(658\) −12.7260 1.87209i −0.496111 0.0729815i
\(659\) 13.4862i 0.525349i 0.964885 + 0.262674i \(0.0846045\pi\)
−0.964885 + 0.262674i \(0.915395\pi\)
\(660\) 0 0
\(661\) 11.8459i 0.460751i −0.973102 0.230375i \(-0.926005\pi\)
0.973102 0.230375i \(-0.0739954\pi\)
\(662\) 5.26035 35.7586i 0.204449 1.38980i
\(663\) 0 0
\(664\) 9.75195 20.8127i 0.378449 0.807689i
\(665\) −2.63936 + 1.49161i −0.102350 + 0.0578422i
\(666\) 0 0
\(667\) 8.79338i 0.340481i
\(668\) −14.2594 + 47.4171i −0.551712 + 1.83462i
\(669\) 0 0
\(670\) 17.9600 6.93163i 0.693856 0.267792i
\(671\) 12.7980 0.494061
\(672\) 0 0
\(673\) 3.43550i 0.132429i −0.997805 0.0662144i \(-0.978908\pi\)
0.997805 0.0662144i \(-0.0210921\pi\)
\(674\) 3.34104 + 0.491491i 0.128692 + 0.0189315i
\(675\) 0 0
\(676\) −28.5942 8.59893i −1.09978 0.330728i
\(677\) 40.8927i 1.57163i −0.618459 0.785817i \(-0.712243\pi\)
0.618459 0.785817i \(-0.287757\pi\)
\(678\) 0 0
\(679\) 22.8815i 0.878112i
\(680\) −1.63579 21.4213i −0.0627297 0.821470i
\(681\) 0 0
\(682\) −3.37658 + 22.9532i −0.129296 + 0.878923i
\(683\) −44.9939 −1.72164 −0.860822 0.508906i \(-0.830050\pi\)
−0.860822 + 0.508906i \(0.830050\pi\)
\(684\) 0 0
\(685\) −18.3942 + 10.3953i −0.702806 + 0.397185i
\(686\) 3.49235 23.7401i 0.133338 0.906403i
\(687\) 0 0
\(688\) 17.0814 25.8323i 0.651223 0.984846i
\(689\) 7.31386i 0.278636i
\(690\) 0 0
\(691\) −42.6781 −1.62355 −0.811776 0.583969i \(-0.801499\pi\)
−0.811776 + 0.583969i \(0.801499\pi\)
\(692\) 1.39827 4.64969i 0.0531541 0.176755i
\(693\) 0 0
\(694\) −3.63083 + 24.6815i −0.137824 + 0.936897i
\(695\) 28.7569 16.2517i 1.09081 0.616463i
\(696\) 0 0
\(697\) 33.3569i 1.26348i
\(698\) −4.28843 0.630859i −0.162319 0.0238784i
\(699\) 0 0
\(700\) −10.4724 + 9.49843i −0.395819 + 0.359007i
\(701\) 3.25752 0.123035 0.0615174 0.998106i \(-0.480406\pi\)
0.0615174 + 0.998106i \(0.480406\pi\)
\(702\) 0 0
\(703\) 6.73045 0.253844
\(704\) −11.4208 + 9.51154i −0.430438 + 0.358480i
\(705\) 0 0
\(706\) 2.25903 15.3563i 0.0850195 0.577942i
\(707\) 11.6823 0.439360
\(708\) 0 0
\(709\) 42.0351i 1.57866i 0.613968 + 0.789331i \(0.289572\pi\)
−0.613968 + 0.789331i \(0.710428\pi\)
\(710\) −4.12190 10.6799i −0.154692 0.400811i
\(711\) 0 0
\(712\) 41.4079 + 19.4020i 1.55183 + 0.727121i
\(713\) 11.1271 0.416714
\(714\) 0 0
\(715\) 10.8019 + 19.1137i 0.403969 + 0.714810i
\(716\) −15.2437 + 50.6904i −0.569685 + 1.89439i
\(717\) 0 0
\(718\) −4.34440 + 29.5322i −0.162131 + 1.10213i
\(719\) −42.2143 −1.57433 −0.787163 0.616745i \(-0.788451\pi\)
−0.787163 + 0.616745i \(0.788451\pi\)
\(720\) 0 0
\(721\) 9.92289 0.369548
\(722\) 3.72141 25.2973i 0.138497 0.941467i
\(723\) 0 0
\(724\) 9.45762 31.4497i 0.351490 1.16882i
\(725\) 17.9985 29.8898i 0.668449 1.11008i
\(726\) 0 0
\(727\) 36.5526 1.35566 0.677830 0.735219i \(-0.262921\pi\)
0.677830 + 0.735219i \(0.262921\pi\)
\(728\) 8.96681 19.1370i 0.332332 0.709266i
\(729\) 0 0
\(730\) 27.4534 10.5956i 1.01610 0.392160i
\(731\) 26.2995i 0.972720i
\(732\) 0 0
\(733\) −27.9037 −1.03065 −0.515323 0.856996i \(-0.672328\pi\)
−0.515323 + 0.856996i \(0.672328\pi\)
\(734\) 5.39146 36.6498i 0.199002 1.35277i
\(735\) 0 0
\(736\) 5.31050 + 4.75531i 0.195747 + 0.175283i
\(737\) 11.3102 0.416617
\(738\) 0 0
\(739\) 4.57103 0.168148 0.0840740 0.996460i \(-0.473207\pi\)
0.0840740 + 0.996460i \(0.473207\pi\)
\(740\) 30.6153 6.91933i 1.12544 0.254360i
\(741\) 0 0
\(742\) 2.73764 + 0.402727i 0.100502 + 0.0147846i
\(743\) 31.6650i 1.16168i 0.814019 + 0.580839i \(0.197275\pi\)
−0.814019 + 0.580839i \(0.802725\pi\)
\(744\) 0 0
\(745\) 29.6337 16.7473i 1.08570 0.613572i
\(746\) 1.42610 9.69428i 0.0522132 0.354933i
\(747\) 0 0
\(748\) 3.63486 12.0871i 0.132903 0.441947i
\(749\) 19.2930 0.704951
\(750\) 0 0
\(751\) 24.8129i 0.905434i −0.891654 0.452717i \(-0.850455\pi\)
0.891654 0.452717i \(-0.149545\pi\)
\(752\) −14.1934 + 21.4647i −0.517579 + 0.782736i
\(753\) 0 0
\(754\) −7.59049 + 51.5984i −0.276430 + 1.87910i
\(755\) −15.2211 26.9332i −0.553952 0.980200i
\(756\) 0 0
\(757\) 25.9889 0.944584 0.472292 0.881442i \(-0.343427\pi\)
0.472292 + 0.881442i \(0.343427\pi\)
\(758\) −4.80565 + 32.6676i −0.174549 + 1.18654i
\(759\) 0 0
\(760\) 0.461797 + 6.04742i 0.0167511 + 0.219363i
\(761\) 33.5362i 1.21569i −0.794057 0.607843i \(-0.792035\pi\)
0.794057 0.607843i \(-0.207965\pi\)
\(762\) 0 0
\(763\) 4.31390i 0.156174i
\(764\) −1.01151 0.304183i −0.0365951 0.0110050i
\(765\) 0 0
\(766\) −14.9267 2.19583i −0.539324 0.0793386i
\(767\) 7.28596i 0.263081i
\(768\) 0 0
\(769\) 6.84258 0.246750 0.123375 0.992360i \(-0.460628\pi\)
0.123375 + 0.992360i \(0.460628\pi\)
\(770\) −7.74920 + 2.99079i −0.279262 + 0.107781i
\(771\) 0 0
\(772\) −1.85340 + 6.16316i −0.0667053 + 0.221817i
\(773\) 38.3944i 1.38095i −0.723355 0.690476i \(-0.757401\pi\)
0.723355 0.690476i \(-0.242599\pi\)
\(774\) 0 0
\(775\) 37.8225 + 22.7753i 1.35863 + 0.818114i
\(776\) −41.4509 19.4222i −1.48800 0.697215i
\(777\) 0 0
\(778\) 3.26408 22.1884i 0.117023 0.795493i
\(779\) 9.41694i 0.337397i
\(780\) 0 0
\(781\) 6.72562i 0.240662i
\(782\) −5.98912 0.881043i −0.214170 0.0315060i
\(783\) 0 0
\(784\) −16.6863 11.0337i −0.595939 0.394061i
\(785\) 15.4578 8.73587i 0.551714 0.311796i
\(786\) 0 0
\(787\) 37.3993i 1.33314i −0.745442 0.666571i \(-0.767761\pi\)
0.745442 0.666571i \(-0.232239\pi\)
\(788\) 1.03338 3.43633i 0.0368127 0.122414i
\(789\) 0 0
\(790\) −20.8776 + 8.05765i −0.742790 + 0.286678i
\(791\) −4.72364 −0.167953
\(792\) 0 0
\(793\) 36.4051i 1.29278i
\(794\) 4.64858 31.5999i 0.164972 1.12144i
\(795\) 0 0
\(796\) −9.51444 + 31.6386i −0.337230 + 1.12140i
\(797\) 29.6980i 1.05196i 0.850497 + 0.525979i \(0.176301\pi\)
−0.850497 + 0.525979i \(0.823699\pi\)
\(798\) 0 0
\(799\) 21.8528i 0.773098i
\(800\) 8.31774 + 27.0336i 0.294077 + 0.955782i
\(801\) 0 0
\(802\) −21.2930 3.13235i −0.751881 0.110607i
\(803\) 17.2886 0.610102
\(804\) 0 0
\(805\) 1.96007 + 3.46828i 0.0690833 + 0.122241i
\(806\) −65.2925 9.60500i −2.29983 0.338322i
\(807\) 0 0
\(808\) 9.91614 21.1631i 0.348849 0.744515i
\(809\) 41.0881i 1.44458i −0.691590 0.722290i \(-0.743089\pi\)
0.691590 0.722290i \(-0.256911\pi\)
\(810\) 0 0
\(811\) 30.7023 1.07810 0.539052 0.842272i \(-0.318783\pi\)
0.539052 + 0.842272i \(0.318783\pi\)
\(812\) −18.8958 5.68238i −0.663111 0.199412i
\(813\) 0 0
\(814\) 18.2440 + 2.68382i 0.639451 + 0.0940679i
\(815\) 10.1944 + 18.0387i 0.357096 + 0.631870i
\(816\) 0 0
\(817\) 7.42455i 0.259752i
\(818\) 3.32379 22.5943i 0.116214 0.789991i
\(819\) 0 0
\(820\) 9.68122 + 42.8356i 0.338083 + 1.49588i
\(821\) −13.3388 −0.465528 −0.232764 0.972533i \(-0.574777\pi\)
−0.232764 + 0.972533i \(0.574777\pi\)
\(822\) 0 0
\(823\) 8.08650 0.281877 0.140939 0.990018i \(-0.454988\pi\)
0.140939 + 0.990018i \(0.454988\pi\)
\(824\) 8.42269 17.9758i 0.293418 0.626215i
\(825\) 0 0
\(826\) 2.72720 + 0.401191i 0.0948914 + 0.0139592i
\(827\) 22.7070 0.789601 0.394800 0.918767i \(-0.370814\pi\)
0.394800 + 0.918767i \(0.370814\pi\)
\(828\) 0 0
\(829\) 46.8393i 1.62680i 0.581708 + 0.813398i \(0.302385\pi\)
−0.581708 + 0.813398i \(0.697615\pi\)
\(830\) −9.25251 23.9735i −0.321159 0.832131i
\(831\) 0 0
\(832\) −27.0565 32.4876i −0.938014 1.12630i
\(833\) 16.9881 0.588601
\(834\) 0 0
\(835\) 27.2371 + 48.1952i 0.942580 + 1.66786i
\(836\) −1.02615 + 3.41228i −0.0354901 + 0.118016i
\(837\) 0 0
\(838\) −18.1613 2.67166i −0.627371 0.0922909i
\(839\) −51.3436 −1.77258 −0.886289 0.463132i \(-0.846726\pi\)
−0.886289 + 0.463132i \(0.846726\pi\)
\(840\) 0 0
\(841\) 19.6940 0.679102
\(842\) 5.28262 + 0.777112i 0.182051 + 0.0267810i
\(843\) 0 0
\(844\) −24.6851 7.42336i −0.849696 0.255523i
\(845\) −29.0635 + 16.4250i −0.999814 + 0.565036i
\(846\) 0 0
\(847\) 10.6721 0.366697
\(848\) 3.05331 4.61753i 0.104851 0.158566i
\(849\) 0 0
\(850\) −18.5544 15.2535i −0.636412 0.523190i
\(851\) 8.84422i 0.303176i
\(852\) 0 0
\(853\) 48.8546 1.67275 0.836375 0.548158i \(-0.184671\pi\)
0.836375 + 0.548158i \(0.184671\pi\)
\(854\) −13.6267 2.00459i −0.466297 0.0685957i
\(855\) 0 0
\(856\) 16.3762 34.9502i 0.559726 1.19457i
\(857\) 23.8972 0.816312 0.408156 0.912912i \(-0.366172\pi\)
0.408156 + 0.912912i \(0.366172\pi\)
\(858\) 0 0
\(859\) 18.7193 0.638696 0.319348 0.947638i \(-0.396536\pi\)
0.319348 + 0.947638i \(0.396536\pi\)
\(860\) −7.63292 33.7726i −0.260280 1.15164i
\(861\) 0 0
\(862\) −2.05787 + 13.9889i −0.0700913 + 0.476463i
\(863\) 43.0074i 1.46399i −0.681311 0.731994i \(-0.738590\pi\)
0.681311 0.731994i \(-0.261410\pi\)
\(864\) 0 0
\(865\) −2.67085 4.72599i −0.0908117 0.160688i
\(866\) −26.4721 3.89423i −0.899557 0.132331i
\(867\) 0 0
\(868\) 7.19047 23.9107i 0.244061 0.811581i
\(869\) −13.1475 −0.445999
\(870\) 0 0
\(871\) 32.1729i 1.09014i
\(872\) 7.81483 + 3.66170i 0.264644 + 0.124001i
\(873\) 0 0
\(874\) 1.69078 + 0.248726i 0.0571914 + 0.00841327i
\(875\) −0.436450 + 15.8010i −0.0147547 + 0.534173i
\(876\) 0 0
\(877\) −21.5156 −0.726531 −0.363265 0.931686i \(-0.618338\pi\)
−0.363265 + 0.931686i \(0.618338\pi\)
\(878\) 49.5004 + 7.28187i 1.67056 + 0.245751i
\(879\) 0 0
\(880\) −1.15968 + 16.5767i −0.0390929 + 0.558799i
\(881\) 8.76271i 0.295223i −0.989045 0.147612i \(-0.952841\pi\)
0.989045 0.147612i \(-0.0471586\pi\)
\(882\) 0 0
\(883\) 34.2208i 1.15162i −0.817583 0.575811i \(-0.804687\pi\)
0.817583 0.575811i \(-0.195313\pi\)
\(884\) 34.3828 + 10.3397i 1.15642 + 0.347761i
\(885\) 0 0
\(886\) 5.06458 34.4278i 0.170148 1.15662i
\(887\) 3.61165i 0.121267i −0.998160 0.0606337i \(-0.980688\pi\)
0.998160 0.0606337i \(-0.0193121\pi\)
\(888\) 0 0
\(889\) 14.5551 0.488162
\(890\) 47.6964 18.4083i 1.59879 0.617049i
\(891\) 0 0
\(892\) −13.4422 4.04238i −0.450080 0.135349i
\(893\) 6.16924i 0.206446i
\(894\) 0 0
\(895\) 29.1173 + 51.5222i 0.973285 + 1.72220i
\(896\) 13.6502 8.33859i 0.456022 0.278573i
\(897\) 0 0
\(898\) 6.35066 + 0.934228i 0.211924 + 0.0311756i
\(899\) 61.6173i 2.05505i
\(900\) 0 0
\(901\) 4.70103i 0.156614i
\(902\) −3.75509 + 25.5262i −0.125031 + 0.849928i
\(903\) 0 0
\(904\) −4.00949 + 8.55709i −0.133354 + 0.284605i
\(905\) −18.0652 31.9658i −0.600507 1.06258i
\(906\) 0 0
\(907\) 0.296316i 0.00983900i 0.999988 + 0.00491950i \(0.00156593\pi\)
−0.999988 + 0.00491950i \(0.998434\pi\)
\(908\) −49.9807 15.0303i −1.65867 0.498798i
\(909\) 0 0
\(910\) −8.50758 22.0433i −0.282024 0.730729i
\(911\) 38.2561 1.26748 0.633741 0.773545i \(-0.281518\pi\)
0.633741 + 0.773545i \(0.281518\pi\)
\(912\) 0 0
\(913\) 15.0971i 0.499642i
\(914\) −11.6818 1.71847i −0.386398 0.0568420i
\(915\) 0 0
\(916\) 15.7702 52.4411i 0.521062 1.73270i
\(917\) 15.7630i 0.520540i
\(918\) 0 0
\(919\) 27.0814i 0.893332i −0.894701 0.446666i \(-0.852611\pi\)
0.894701 0.446666i \(-0.147389\pi\)
\(920\) 7.94668 0.606830i 0.261994 0.0200066i
\(921\) 0 0
\(922\) 2.17989 14.8184i 0.0717908 0.488017i
\(923\) 19.1317 0.629726
\(924\) 0 0
\(925\) 18.1026 30.0626i 0.595210 0.988454i
\(926\) 4.27716 29.0751i 0.140556 0.955468i
\(927\) 0 0
\(928\) −26.3329 + 29.4072i −0.864419 + 0.965340i
\(929\) 2.41533i 0.0792443i −0.999215 0.0396222i \(-0.987385\pi\)
0.999215 0.0396222i \(-0.0126154\pi\)
\(930\) 0 0
\(931\) −4.79587 −0.157178
\(932\) 18.3878 + 5.52962i 0.602312 + 0.181129i
\(933\) 0 0
\(934\) −3.18576 + 21.6560i −0.104241 + 0.708606i
\(935\) −6.94301 12.2854i −0.227061 0.401776i
\(936\) 0 0
\(937\) 14.7062i 0.480432i −0.970720 0.240216i \(-0.922782\pi\)
0.970720 0.240216i \(-0.0772182\pi\)
\(938\) −12.0426 1.77156i −0.393205 0.0578434i
\(939\) 0 0
\(940\) 6.34237 + 28.0625i 0.206865 + 0.915298i
\(941\) 22.6540 0.738500 0.369250 0.929330i \(-0.379615\pi\)
0.369250 + 0.929330i \(0.379615\pi\)
\(942\) 0 0
\(943\) 12.3744 0.402967
\(944\) 3.04166 4.59991i 0.0989977 0.149714i
\(945\) 0 0
\(946\) 2.96060 20.1255i 0.0962575 0.654335i
\(947\) −39.0269 −1.26820 −0.634101 0.773250i \(-0.718630\pi\)
−0.634101 + 0.773250i \(0.718630\pi\)
\(948\) 0 0
\(949\) 49.1791i 1.59642i
\(950\) 5.23807 + 4.30619i 0.169945 + 0.139711i
\(951\) 0 0
\(952\) −5.76348 + 12.3005i −0.186795 + 0.398660i
\(953\) 9.05724 0.293393 0.146696 0.989182i \(-0.453136\pi\)
0.146696 + 0.989182i \(0.453136\pi\)
\(954\) 0 0
\(955\) −1.02811 + 0.581026i −0.0332687 + 0.0188015i
\(956\) 33.8809 + 10.1887i 1.09579 + 0.329527i
\(957\) 0 0
\(958\) −7.85335 + 53.3852i −0.253730 + 1.72480i
\(959\) 13.3591 0.431389
\(960\) 0 0
\(961\) −46.9704 −1.51517
\(962\) −7.63438 + 51.8967i −0.246142 + 1.67322i
\(963\) 0 0
\(964\) −7.64825 2.30000i −0.246334 0.0740780i
\(965\) 3.54021 + 6.26429i 0.113963 + 0.201655i
\(966\) 0 0
\(967\) 0.330822 0.0106385 0.00531926 0.999986i \(-0.498307\pi\)
0.00531926 + 0.999986i \(0.498307\pi\)
\(968\) 9.05862 19.3330i 0.291155 0.621386i
\(969\) 0 0
\(970\) −47.7460 + 18.4275i −1.53303 + 0.591670i
\(971\) 3.23651i 0.103865i 0.998651 + 0.0519323i \(0.0165380\pi\)
−0.998651 + 0.0519323i \(0.983462\pi\)
\(972\) 0 0
\(973\) −20.8852 −0.669550
\(974\) 6.63593 45.1094i 0.212629 1.44540i
\(975\) 0 0
\(976\) −15.1980 + 22.9839i −0.486475 + 0.735697i
\(977\) 34.3972 1.10046 0.550231 0.835012i \(-0.314540\pi\)
0.550231 + 0.835012i \(0.314540\pi\)
\(978\) 0 0
\(979\) 30.0365 0.959971
\(980\) −21.8153 + 4.93046i −0.696865 + 0.157498i
\(981\) 0 0
\(982\) −17.0786 2.51239i −0.545000 0.0801735i
\(983\) 4.15590i 0.132553i −0.997801 0.0662763i \(-0.978888\pi\)
0.997801 0.0662763i \(-0.0211119\pi\)
\(984\) 0 0
\(985\) −1.97388 3.49272i −0.0628932 0.111287i
\(986\) 4.87884 33.1652i 0.155374 1.05619i
\(987\) 0 0
\(988\) −9.70656 2.91898i −0.308807 0.0928651i
\(989\) −9.75632 −0.310233
\(990\) 0 0
\(991\) 21.0947i 0.670095i −0.942201 0.335047i \(-0.891248\pi\)
0.942201 0.335047i \(-0.108752\pi\)
\(992\) −37.2119 33.3216i −1.18148 1.05796i
\(993\) 0 0
\(994\) −1.05346 + 7.16115i −0.0334136 + 0.227138i
\(995\) 18.1737 + 32.1578i 0.576145 + 1.01947i
\(996\) 0 0
\(997\) 27.0375 0.856288 0.428144 0.903711i \(-0.359168\pi\)
0.428144 + 0.903711i \(0.359168\pi\)
\(998\) 7.89798 53.6885i 0.250006 1.69948i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1080.2.m.b.539.19 yes 40
3.2 odd 2 inner 1080.2.m.b.539.22 yes 40
4.3 odd 2 4320.2.m.b.2159.7 40
5.4 even 2 inner 1080.2.m.b.539.21 yes 40
8.3 odd 2 inner 1080.2.m.b.539.18 yes 40
8.5 even 2 4320.2.m.b.2159.34 40
12.11 even 2 4320.2.m.b.2159.33 40
15.14 odd 2 inner 1080.2.m.b.539.20 yes 40
20.19 odd 2 4320.2.m.b.2159.6 40
24.5 odd 2 4320.2.m.b.2159.8 40
24.11 even 2 inner 1080.2.m.b.539.23 yes 40
40.19 odd 2 inner 1080.2.m.b.539.24 yes 40
40.29 even 2 4320.2.m.b.2159.35 40
60.59 even 2 4320.2.m.b.2159.36 40
120.29 odd 2 4320.2.m.b.2159.5 40
120.59 even 2 inner 1080.2.m.b.539.17 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1080.2.m.b.539.17 40 120.59 even 2 inner
1080.2.m.b.539.18 yes 40 8.3 odd 2 inner
1080.2.m.b.539.19 yes 40 1.1 even 1 trivial
1080.2.m.b.539.20 yes 40 15.14 odd 2 inner
1080.2.m.b.539.21 yes 40 5.4 even 2 inner
1080.2.m.b.539.22 yes 40 3.2 odd 2 inner
1080.2.m.b.539.23 yes 40 24.11 even 2 inner
1080.2.m.b.539.24 yes 40 40.19 odd 2 inner
4320.2.m.b.2159.5 40 120.29 odd 2
4320.2.m.b.2159.6 40 20.19 odd 2
4320.2.m.b.2159.7 40 4.3 odd 2
4320.2.m.b.2159.8 40 24.5 odd 2
4320.2.m.b.2159.33 40 12.11 even 2
4320.2.m.b.2159.34 40 8.5 even 2
4320.2.m.b.2159.35 40 40.29 even 2
4320.2.m.b.2159.36 40 60.59 even 2