Properties

Label 4320.2.m.b.2159.8
Level $4320$
Weight $2$
Character 4320.2159
Analytic conductor $34.495$
Analytic rank $0$
Dimension $40$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4320,2,Mod(2159,4320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4320.2159");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4320 = 2^{5} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4320.m (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.4953736732\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: no (minimal twist has level 1080)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2159.8
Character \(\chi\) \(=\) 4320.2159
Dual form 4320.2.m.b.2159.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.94670 + 1.10016i) q^{5} +1.41383 q^{7} -1.85786i q^{11} -5.28485 q^{13} +3.39687 q^{17} -0.958964 q^{19} +1.26014i q^{23} +(2.57929 - 4.28337i) q^{25} +6.97811 q^{29} +8.83008i q^{31} +(-2.75230 + 1.55544i) q^{35} -7.01845 q^{37} -9.81991i q^{41} +7.74226i q^{43} -6.43323i q^{47} -5.00109 q^{49} -1.38393i q^{53} +(2.04394 + 3.61669i) q^{55} -1.37865i q^{59} -6.88857i q^{61} +(10.2880 - 5.81419i) q^{65} -6.08777i q^{67} -3.62010 q^{71} +9.30568i q^{73} -2.62669i q^{77} -7.07671i q^{79} +8.12610 q^{83} +(-6.61269 + 3.73711i) q^{85} -16.1673i q^{89} -7.47186 q^{91} +(1.86682 - 1.05502i) q^{95} -16.1841i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 24 q^{19} + 40 q^{25} + 104 q^{49}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4320\mathbb{Z}\right)^\times\).

\(n\) \(2081\) \(2431\) \(3457\) \(3781\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.94670 + 1.10016i −0.870591 + 0.492007i
\(6\) 0 0
\(7\) 1.41383 0.534377 0.267188 0.963644i \(-0.413905\pi\)
0.267188 + 0.963644i \(0.413905\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.85786i 0.560165i −0.959976 0.280082i \(-0.909638\pi\)
0.959976 0.280082i \(-0.0903618\pi\)
\(12\) 0 0
\(13\) −5.28485 −1.46575 −0.732876 0.680362i \(-0.761823\pi\)
−0.732876 + 0.680362i \(0.761823\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.39687 0.823862 0.411931 0.911215i \(-0.364855\pi\)
0.411931 + 0.911215i \(0.364855\pi\)
\(18\) 0 0
\(19\) −0.958964 −0.220002 −0.110001 0.993932i \(-0.535085\pi\)
−0.110001 + 0.993932i \(0.535085\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.26014i 0.262757i 0.991332 + 0.131378i \(0.0419403\pi\)
−0.991332 + 0.131378i \(0.958060\pi\)
\(24\) 0 0
\(25\) 2.57929 4.28337i 0.515858 0.856674i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.97811 1.29580 0.647901 0.761725i \(-0.275647\pi\)
0.647901 + 0.761725i \(0.275647\pi\)
\(30\) 0 0
\(31\) 8.83008i 1.58593i 0.609267 + 0.792965i \(0.291464\pi\)
−0.609267 + 0.792965i \(0.708536\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.75230 + 1.55544i −0.465224 + 0.262917i
\(36\) 0 0
\(37\) −7.01845 −1.15383 −0.576913 0.816805i \(-0.695743\pi\)
−0.576913 + 0.816805i \(0.695743\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 9.81991i 1.53361i −0.641879 0.766806i \(-0.721845\pi\)
0.641879 0.766806i \(-0.278155\pi\)
\(42\) 0 0
\(43\) 7.74226i 1.18068i 0.807153 + 0.590342i \(0.201007\pi\)
−0.807153 + 0.590342i \(0.798993\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.43323i 0.938383i −0.883096 0.469192i \(-0.844545\pi\)
0.883096 0.469192i \(-0.155455\pi\)
\(48\) 0 0
\(49\) −5.00109 −0.714442
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.38393i 0.190098i −0.995473 0.0950488i \(-0.969699\pi\)
0.995473 0.0950488i \(-0.0303007\pi\)
\(54\) 0 0
\(55\) 2.04394 + 3.61669i 0.275605 + 0.487675i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.37865i 0.179485i −0.995965 0.0897426i \(-0.971396\pi\)
0.995965 0.0897426i \(-0.0286044\pi\)
\(60\) 0 0
\(61\) 6.88857i 0.881991i −0.897509 0.440996i \(-0.854625\pi\)
0.897509 0.440996i \(-0.145375\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 10.2880 5.81419i 1.27607 0.721161i
\(66\) 0 0
\(67\) 6.08777i 0.743740i −0.928285 0.371870i \(-0.878717\pi\)
0.928285 0.371870i \(-0.121283\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −3.62010 −0.429627 −0.214813 0.976655i \(-0.568914\pi\)
−0.214813 + 0.976655i \(0.568914\pi\)
\(72\) 0 0
\(73\) 9.30568i 1.08915i 0.838713 + 0.544573i \(0.183308\pi\)
−0.838713 + 0.544573i \(0.816692\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.62669i 0.299339i
\(78\) 0 0
\(79\) 7.07671i 0.796192i −0.917344 0.398096i \(-0.869671\pi\)
0.917344 0.398096i \(-0.130329\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 8.12610 0.891956 0.445978 0.895044i \(-0.352856\pi\)
0.445978 + 0.895044i \(0.352856\pi\)
\(84\) 0 0
\(85\) −6.61269 + 3.73711i −0.717247 + 0.405346i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 16.1673i 1.71373i −0.515541 0.856865i \(-0.672409\pi\)
0.515541 0.856865i \(-0.327591\pi\)
\(90\) 0 0
\(91\) −7.47186 −0.783264
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.86682 1.05502i 0.191531 0.108242i
\(96\) 0 0
\(97\) 16.1841i 1.64325i −0.570031 0.821623i \(-0.693069\pi\)
0.570031 0.821623i \(-0.306931\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.26292 0.822191 0.411096 0.911592i \(-0.365146\pi\)
0.411096 + 0.911592i \(0.365146\pi\)
\(102\) 0 0
\(103\) 7.01845 0.691549 0.345774 0.938318i \(-0.387616\pi\)
0.345774 + 0.938318i \(0.387616\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 13.6459 1.31920 0.659601 0.751616i \(-0.270725\pi\)
0.659601 + 0.751616i \(0.270725\pi\)
\(108\) 0 0
\(109\) 3.05122i 0.292254i −0.989266 0.146127i \(-0.953319\pi\)
0.989266 0.146127i \(-0.0466808\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.34103 0.314298 0.157149 0.987575i \(-0.449770\pi\)
0.157149 + 0.987575i \(0.449770\pi\)
\(114\) 0 0
\(115\) −1.38636 2.45311i −0.129278 0.228754i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 4.80259 0.440253
\(120\) 0 0
\(121\) 7.54837 0.686215
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −0.308701 + 11.1761i −0.0276110 + 0.999619i
\(126\) 0 0
\(127\) 10.2948 0.913517 0.456758 0.889591i \(-0.349010\pi\)
0.456758 + 0.889591i \(0.349010\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 11.1492i 0.974107i −0.873372 0.487054i \(-0.838072\pi\)
0.873372 0.487054i \(-0.161928\pi\)
\(132\) 0 0
\(133\) −1.35581 −0.117564
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −9.44890 −0.807274 −0.403637 0.914919i \(-0.632254\pi\)
−0.403637 + 0.914919i \(0.632254\pi\)
\(138\) 0 0
\(139\) 14.7721 1.25295 0.626477 0.779440i \(-0.284496\pi\)
0.626477 + 0.779440i \(0.284496\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 9.81849i 0.821063i
\(144\) 0 0
\(145\) −13.5843 + 7.67705i −1.12811 + 0.637544i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −15.2225 −1.24708 −0.623540 0.781792i \(-0.714306\pi\)
−0.623540 + 0.781792i \(0.714306\pi\)
\(150\) 0 0
\(151\) 13.8353i 1.12590i 0.826491 + 0.562951i \(0.190334\pi\)
−0.826491 + 0.562951i \(0.809666\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −9.71452 17.1895i −0.780289 1.38070i
\(156\) 0 0
\(157\) 7.94053 0.633723 0.316862 0.948472i \(-0.397371\pi\)
0.316862 + 0.948472i \(0.397371\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.78162i 0.140411i
\(162\) 0 0
\(163\) 9.26632i 0.725794i 0.931829 + 0.362897i \(0.118212\pi\)
−0.931829 + 0.362897i \(0.881788\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 24.7574i 1.91578i 0.287129 + 0.957892i \(0.407299\pi\)
−0.287129 + 0.957892i \(0.592701\pi\)
\(168\) 0 0
\(169\) 14.9296 1.14843
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.42769i 0.184574i 0.995732 + 0.0922870i \(0.0294177\pi\)
−0.995732 + 0.0922870i \(0.970582\pi\)
\(174\) 0 0
\(175\) 3.64667 6.05595i 0.275662 0.457787i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 26.4664i 1.97819i −0.147272 0.989096i \(-0.547049\pi\)
0.147272 0.989096i \(-0.452951\pi\)
\(180\) 0 0
\(181\) 16.4205i 1.22052i −0.792199 0.610262i \(-0.791064\pi\)
0.792199 0.610262i \(-0.208936\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 13.6628 7.72143i 1.00451 0.567691i
\(186\) 0 0
\(187\) 6.31090i 0.461498i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −0.528127 −0.0382140 −0.0191070 0.999817i \(-0.506082\pi\)
−0.0191070 + 0.999817i \(0.506082\pi\)
\(192\) 0 0
\(193\) 3.21790i 0.231630i −0.993271 0.115815i \(-0.963052\pi\)
0.993271 0.115815i \(-0.0369479\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.79418i 0.127830i 0.997955 + 0.0639149i \(0.0203586\pi\)
−0.997955 + 0.0639149i \(0.979641\pi\)
\(198\) 0 0
\(199\) 16.5191i 1.17101i −0.810669 0.585505i \(-0.800896\pi\)
0.810669 0.585505i \(-0.199104\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 9.86584 0.692446
\(204\) 0 0
\(205\) 10.8035 + 19.1164i 0.754548 + 1.33515i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.78162i 0.123237i
\(210\) 0 0
\(211\) −12.8886 −0.887286 −0.443643 0.896204i \(-0.646314\pi\)
−0.443643 + 0.896204i \(0.646314\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −8.51774 15.0719i −0.580905 1.02789i
\(216\) 0 0
\(217\) 12.4842i 0.847484i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −17.9519 −1.20758
\(222\) 0 0
\(223\) 7.01845 0.469990 0.234995 0.971997i \(-0.424493\pi\)
0.234995 + 0.971997i \(0.424493\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 26.0959 1.73204 0.866022 0.500006i \(-0.166669\pi\)
0.866022 + 0.500006i \(0.166669\pi\)
\(228\) 0 0
\(229\) 27.3805i 1.80935i −0.426098 0.904677i \(-0.640112\pi\)
0.426098 0.904677i \(-0.359888\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 9.60062 0.628957 0.314479 0.949265i \(-0.398170\pi\)
0.314479 + 0.949265i \(0.398170\pi\)
\(234\) 0 0
\(235\) 7.07760 + 12.5236i 0.461691 + 0.816948i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 17.6898 1.14426 0.572130 0.820163i \(-0.306117\pi\)
0.572130 + 0.820163i \(0.306117\pi\)
\(240\) 0 0
\(241\) 3.99330 0.257231 0.128615 0.991695i \(-0.458947\pi\)
0.128615 + 0.991695i \(0.458947\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 9.73563 5.50201i 0.621986 0.351510i
\(246\) 0 0
\(247\) 5.06798 0.322468
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 19.6398i 1.23965i −0.784738 0.619827i \(-0.787203\pi\)
0.784738 0.619827i \(-0.212797\pi\)
\(252\) 0 0
\(253\) 2.34116 0.147187
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −0.736991 −0.0459723 −0.0229861 0.999736i \(-0.507317\pi\)
−0.0229861 + 0.999736i \(0.507317\pi\)
\(258\) 0 0
\(259\) −9.92289 −0.616578
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 10.6712i 0.658016i −0.944327 0.329008i \(-0.893286\pi\)
0.944327 0.329008i \(-0.106714\pi\)
\(264\) 0 0
\(265\) 1.52255 + 2.69410i 0.0935294 + 0.165497i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 22.0409 1.34386 0.671928 0.740616i \(-0.265466\pi\)
0.671928 + 0.740616i \(0.265466\pi\)
\(270\) 0 0
\(271\) 14.4928i 0.880373i 0.897906 + 0.440186i \(0.145088\pi\)
−0.897906 + 0.440186i \(0.854912\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −7.95789 4.79195i −0.479879 0.288965i
\(276\) 0 0
\(277\) −8.92588 −0.536304 −0.268152 0.963377i \(-0.586413\pi\)
−0.268152 + 0.963377i \(0.586413\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 11.9703i 0.714091i −0.934087 0.357046i \(-0.883784\pi\)
0.934087 0.357046i \(-0.116216\pi\)
\(282\) 0 0
\(283\) 17.0086i 1.01106i −0.862810 0.505528i \(-0.831298\pi\)
0.862810 0.505528i \(-0.168702\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 13.8837i 0.819526i
\(288\) 0 0
\(289\) −5.46128 −0.321252
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 9.28221i 0.542272i −0.962541 0.271136i \(-0.912601\pi\)
0.962541 0.271136i \(-0.0873994\pi\)
\(294\) 0 0
\(295\) 1.51674 + 2.68382i 0.0883080 + 0.156258i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.65964i 0.385137i
\(300\) 0 0
\(301\) 10.9462i 0.630930i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 7.57854 + 13.4100i 0.433946 + 0.767854i
\(306\) 0 0
\(307\) 28.2257i 1.61093i 0.592646 + 0.805463i \(0.298083\pi\)
−0.592646 + 0.805463i \(0.701917\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 27.3716 1.55210 0.776050 0.630671i \(-0.217220\pi\)
0.776050 + 0.630671i \(0.217220\pi\)
\(312\) 0 0
\(313\) 27.1781i 1.53620i −0.640332 0.768098i \(-0.721203\pi\)
0.640332 0.768098i \(-0.278797\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.01745i 0.113311i −0.998394 0.0566555i \(-0.981956\pi\)
0.998394 0.0566555i \(-0.0180437\pi\)
\(318\) 0 0
\(319\) 12.9643i 0.725863i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −3.25748 −0.181251
\(324\) 0 0
\(325\) −13.6311 + 22.6370i −0.756120 + 1.25567i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 9.09548i 0.501450i
\(330\) 0 0
\(331\) 25.5573 1.40475 0.702377 0.711805i \(-0.252122\pi\)
0.702377 + 0.711805i \(0.252122\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.69754 + 11.8511i 0.365925 + 0.647493i
\(336\) 0 0
\(337\) 2.38790i 0.130077i −0.997883 0.0650385i \(-0.979283\pi\)
0.997883 0.0650385i \(-0.0207170\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 16.4050 0.888382
\(342\) 0 0
\(343\) −16.9675 −0.916158
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 17.6403 0.946980 0.473490 0.880799i \(-0.342994\pi\)
0.473490 + 0.880799i \(0.342994\pi\)
\(348\) 0 0
\(349\) 3.06501i 0.164066i −0.996630 0.0820332i \(-0.973859\pi\)
0.996630 0.0820332i \(-0.0261414\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 10.9754 0.584162 0.292081 0.956394i \(-0.405652\pi\)
0.292081 + 0.956394i \(0.405652\pi\)
\(354\) 0 0
\(355\) 7.04725 3.98269i 0.374029 0.211379i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −21.1071 −1.11399 −0.556996 0.830515i \(-0.688046\pi\)
−0.556996 + 0.830515i \(0.688046\pi\)
\(360\) 0 0
\(361\) −18.0804 −0.951599
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −10.2377 18.1154i −0.535868 0.948202i
\(366\) 0 0
\(367\) −26.1942 −1.36733 −0.683664 0.729797i \(-0.739615\pi\)
−0.683664 + 0.729797i \(0.739615\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.95664i 0.101584i
\(372\) 0 0
\(373\) 6.92866 0.358753 0.179376 0.983781i \(-0.442592\pi\)
0.179376 + 0.983781i \(0.442592\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −36.8782 −1.89932
\(378\) 0 0
\(379\) −23.3481 −1.19931 −0.599656 0.800258i \(-0.704696\pi\)
−0.599656 + 0.800258i \(0.704696\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 10.6684i 0.545129i −0.962138 0.272564i \(-0.912128\pi\)
0.962138 0.272564i \(-0.0878718\pi\)
\(384\) 0 0
\(385\) 2.88978 + 5.11338i 0.147277 + 0.260602i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −15.8584 −0.804054 −0.402027 0.915628i \(-0.631694\pi\)
−0.402027 + 0.915628i \(0.631694\pi\)
\(390\) 0 0
\(391\) 4.28052i 0.216475i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 7.78553 + 13.7762i 0.391732 + 0.693158i
\(396\) 0 0
\(397\) 22.5850 1.13351 0.566754 0.823887i \(-0.308199\pi\)
0.566754 + 0.823887i \(0.308199\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 15.2185i 0.759973i −0.924992 0.379987i \(-0.875929\pi\)
0.924992 0.379987i \(-0.124071\pi\)
\(402\) 0 0
\(403\) 46.6656i 2.32458i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 13.0393i 0.646333i
\(408\) 0 0
\(409\) −16.1485 −0.798494 −0.399247 0.916843i \(-0.630728\pi\)
−0.399247 + 0.916843i \(0.630728\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.94918i 0.0959127i
\(414\) 0 0
\(415\) −15.8191 + 8.94003i −0.776529 + 0.438849i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 12.9802i 0.634123i 0.948405 + 0.317062i \(0.102696\pi\)
−0.948405 + 0.317062i \(0.897304\pi\)
\(420\) 0 0
\(421\) 3.77558i 0.184010i 0.995759 + 0.0920052i \(0.0293276\pi\)
−0.995759 + 0.0920052i \(0.970672\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 8.76150 14.5501i 0.424995 0.705781i
\(426\) 0 0
\(427\) 9.73926i 0.471316i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −9.99810 −0.481591 −0.240796 0.970576i \(-0.577408\pi\)
−0.240796 + 0.970576i \(0.577408\pi\)
\(432\) 0 0
\(433\) 18.9200i 0.909238i 0.890686 + 0.454619i \(0.150225\pi\)
−0.890686 + 0.454619i \(0.849775\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.20843i 0.0578069i
\(438\) 0 0
\(439\) 35.3788i 1.68854i −0.535920 0.844269i \(-0.680035\pi\)
0.535920 0.844269i \(-0.319965\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −24.6061 −1.16907 −0.584536 0.811368i \(-0.698723\pi\)
−0.584536 + 0.811368i \(0.698723\pi\)
\(444\) 0 0
\(445\) 17.7866 + 31.4729i 0.843168 + 1.49196i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 4.53892i 0.214205i 0.994248 + 0.107102i \(0.0341573\pi\)
−0.994248 + 0.107102i \(0.965843\pi\)
\(450\) 0 0
\(451\) −18.2440 −0.859076
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 14.5455 8.22026i 0.681903 0.385372i
\(456\) 0 0
\(457\) 8.34915i 0.390557i 0.980748 + 0.195278i \(0.0625610\pi\)
−0.980748 + 0.195278i \(0.937439\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −10.5909 −0.493269 −0.246635 0.969109i \(-0.579325\pi\)
−0.246635 + 0.969109i \(0.579325\pi\)
\(462\) 0 0
\(463\) −20.7805 −0.965751 −0.482875 0.875689i \(-0.660408\pi\)
−0.482875 + 0.875689i \(0.660408\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 15.4779 0.716233 0.358116 0.933677i \(-0.383419\pi\)
0.358116 + 0.933677i \(0.383419\pi\)
\(468\) 0 0
\(469\) 8.60706i 0.397437i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 14.3840 0.661378
\(474\) 0 0
\(475\) −2.47345 + 4.10760i −0.113489 + 0.188470i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −38.1553 −1.74336 −0.871680 0.490075i \(-0.836969\pi\)
−0.871680 + 0.490075i \(0.836969\pi\)
\(480\) 0 0
\(481\) 37.0915 1.69122
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 17.8051 + 31.5056i 0.808489 + 1.43060i
\(486\) 0 0
\(487\) −32.2405 −1.46096 −0.730478 0.682937i \(-0.760703\pi\)
−0.730478 + 0.682937i \(0.760703\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 12.2064i 0.550865i 0.961320 + 0.275433i \(0.0888211\pi\)
−0.961320 + 0.275433i \(0.911179\pi\)
\(492\) 0 0
\(493\) 23.7037 1.06756
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −5.11819 −0.229582
\(498\) 0 0
\(499\) 38.3721 1.71777 0.858886 0.512167i \(-0.171157\pi\)
0.858886 + 0.512167i \(0.171157\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 10.4283i 0.464974i 0.972600 + 0.232487i \(0.0746863\pi\)
−0.972600 + 0.232487i \(0.925314\pi\)
\(504\) 0 0
\(505\) −16.0854 + 9.09055i −0.715792 + 0.404524i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 9.51620 0.421798 0.210899 0.977508i \(-0.432361\pi\)
0.210899 + 0.977508i \(0.432361\pi\)
\(510\) 0 0
\(511\) 13.1566i 0.582015i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −13.6628 + 7.72143i −0.602056 + 0.340247i
\(516\) 0 0
\(517\) −11.9520 −0.525649
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 12.3260i 0.540010i −0.962859 0.270005i \(-0.912975\pi\)
0.962859 0.270005i \(-0.0870253\pi\)
\(522\) 0 0
\(523\) 26.5712i 1.16188i 0.813947 + 0.580939i \(0.197315\pi\)
−0.813947 + 0.580939i \(0.802685\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 29.9946i 1.30659i
\(528\) 0 0
\(529\) 21.4121 0.930959
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 51.8967i 2.24790i
\(534\) 0 0
\(535\) −26.5646 + 15.0127i −1.14849 + 0.649057i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 9.29131i 0.400205i
\(540\) 0 0
\(541\) 36.6675i 1.57646i 0.615382 + 0.788229i \(0.289002\pi\)
−0.615382 + 0.788229i \(0.710998\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.35684 + 5.93982i 0.143791 + 0.254434i
\(546\) 0 0
\(547\) 27.7063i 1.18463i −0.805705 0.592317i \(-0.798213\pi\)
0.805705 0.592317i \(-0.201787\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −6.69175 −0.285078
\(552\) 0 0
\(553\) 10.0052i 0.425466i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 17.7763i 0.753206i −0.926375 0.376603i \(-0.877092\pi\)
0.926375 0.376603i \(-0.122908\pi\)
\(558\) 0 0
\(559\) 40.9167i 1.73059i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −36.7044 −1.54690 −0.773452 0.633854i \(-0.781472\pi\)
−0.773452 + 0.633854i \(0.781472\pi\)
\(564\) 0 0
\(565\) −6.50399 + 3.67567i −0.273625 + 0.154637i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.97856i 0.250634i −0.992117 0.125317i \(-0.960005\pi\)
0.992117 0.125317i \(-0.0399949\pi\)
\(570\) 0 0
\(571\) −26.6100 −1.11359 −0.556796 0.830649i \(-0.687970\pi\)
−0.556796 + 0.830649i \(0.687970\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5.39764 + 3.25026i 0.225097 + 0.135545i
\(576\) 0 0
\(577\) 47.2797i 1.96828i 0.177398 + 0.984139i \(0.443232\pi\)
−0.177398 + 0.984139i \(0.556768\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 11.4889 0.476640
\(582\) 0 0
\(583\) −2.57115 −0.106486
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 9.59894 0.396191 0.198095 0.980183i \(-0.436524\pi\)
0.198095 + 0.980183i \(0.436524\pi\)
\(588\) 0 0
\(589\) 8.46774i 0.348907i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 34.4142 1.41322 0.706610 0.707603i \(-0.250223\pi\)
0.706610 + 0.707603i \(0.250223\pi\)
\(594\) 0 0
\(595\) −9.34920 + 5.28362i −0.383280 + 0.216607i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −3.71332 −0.151722 −0.0758611 0.997118i \(-0.524171\pi\)
−0.0758611 + 0.997118i \(0.524171\pi\)
\(600\) 0 0
\(601\) −45.0267 −1.83668 −0.918338 0.395797i \(-0.870468\pi\)
−0.918338 + 0.395797i \(0.870468\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −14.6944 + 8.30443i −0.597413 + 0.337623i
\(606\) 0 0
\(607\) 4.98395 0.202292 0.101146 0.994872i \(-0.467749\pi\)
0.101146 + 0.994872i \(0.467749\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 33.9986i 1.37544i
\(612\) 0 0
\(613\) −14.1267 −0.570572 −0.285286 0.958442i \(-0.592089\pi\)
−0.285286 + 0.958442i \(0.592089\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −34.3479 −1.38279 −0.691396 0.722476i \(-0.743004\pi\)
−0.691396 + 0.722476i \(0.743004\pi\)
\(618\) 0 0
\(619\) 35.3327 1.42014 0.710071 0.704130i \(-0.248663\pi\)
0.710071 + 0.704130i \(0.248663\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 22.8578i 0.915777i
\(624\) 0 0
\(625\) −11.6945 22.0961i −0.467782 0.883844i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −23.8408 −0.950594
\(630\) 0 0
\(631\) 7.89084i 0.314129i 0.987588 + 0.157065i \(0.0502031\pi\)
−0.987588 + 0.157065i \(0.949797\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −20.0409 + 11.3260i −0.795299 + 0.449457i
\(636\) 0 0
\(637\) 26.4300 1.04719
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 48.6371i 1.92105i 0.278195 + 0.960525i \(0.410264\pi\)
−0.278195 + 0.960525i \(0.589736\pi\)
\(642\) 0 0
\(643\) 18.4399i 0.727200i 0.931555 + 0.363600i \(0.118453\pi\)
−0.931555 + 0.363600i \(0.881547\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 36.7711i 1.44562i −0.691046 0.722811i \(-0.742850\pi\)
0.691046 0.722811i \(-0.257150\pi\)
\(648\) 0 0
\(649\) −2.56134 −0.100541
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 8.74915i 0.342381i 0.985238 + 0.171190i \(0.0547613\pi\)
−0.985238 + 0.171190i \(0.945239\pi\)
\(654\) 0 0
\(655\) 12.2659 + 21.7041i 0.479268 + 0.848049i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 13.4862i 0.525349i 0.964885 + 0.262674i \(0.0846045\pi\)
−0.964885 + 0.262674i \(0.915395\pi\)
\(660\) 0 0
\(661\) 11.8459i 0.460751i 0.973102 + 0.230375i \(0.0739954\pi\)
−0.973102 + 0.230375i \(0.926005\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.63936 1.49161i 0.102350 0.0578422i
\(666\) 0 0
\(667\) 8.79338i 0.340481i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −12.7980 −0.494061
\(672\) 0 0
\(673\) 3.43550i 0.132429i −0.997805 0.0662144i \(-0.978908\pi\)
0.997805 0.0662144i \(-0.0210921\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 40.8927i 1.57163i −0.618459 0.785817i \(-0.712243\pi\)
0.618459 0.785817i \(-0.287757\pi\)
\(678\) 0 0
\(679\) 22.8815i 0.878112i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −44.9939 −1.72164 −0.860822 0.508906i \(-0.830050\pi\)
−0.860822 + 0.508906i \(0.830050\pi\)
\(684\) 0 0
\(685\) 18.3942 10.3953i 0.702806 0.397185i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 7.31386i 0.278636i
\(690\) 0 0
\(691\) 42.6781 1.62355 0.811776 0.583969i \(-0.198501\pi\)
0.811776 + 0.583969i \(0.198501\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −28.7569 + 16.2517i −1.09081 + 0.616463i
\(696\) 0 0
\(697\) 33.3569i 1.26348i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 3.25752 0.123035 0.0615174 0.998106i \(-0.480406\pi\)
0.0615174 + 0.998106i \(0.480406\pi\)
\(702\) 0 0
\(703\) 6.73045 0.253844
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 11.6823 0.439360
\(708\) 0 0
\(709\) 42.0351i 1.57866i −0.613968 0.789331i \(-0.710428\pi\)
0.613968 0.789331i \(-0.289572\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −11.1271 −0.416714
\(714\) 0 0
\(715\) −10.8019 19.1137i −0.403969 0.714810i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 42.2143 1.57433 0.787163 0.616745i \(-0.211549\pi\)
0.787163 + 0.616745i \(0.211549\pi\)
\(720\) 0 0
\(721\) 9.92289 0.369548
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 17.9985 29.8898i 0.668449 1.11008i
\(726\) 0 0
\(727\) 36.5526 1.35566 0.677830 0.735219i \(-0.262921\pi\)
0.677830 + 0.735219i \(0.262921\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 26.2995i 0.972720i
\(732\) 0 0
\(733\) 27.9037 1.03065 0.515323 0.856996i \(-0.327672\pi\)
0.515323 + 0.856996i \(0.327672\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −11.3102 −0.416617
\(738\) 0 0
\(739\) −4.57103 −0.168148 −0.0840740 0.996460i \(-0.526793\pi\)
−0.0840740 + 0.996460i \(0.526793\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 31.6650i 1.16168i −0.814019 0.580839i \(-0.802725\pi\)
0.814019 0.580839i \(-0.197275\pi\)
\(744\) 0 0
\(745\) 29.6337 16.7473i 1.08570 0.613572i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 19.2930 0.704951
\(750\) 0 0
\(751\) 24.8129i 0.905434i −0.891654 0.452717i \(-0.850455\pi\)
0.891654 0.452717i \(-0.149545\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −15.2211 26.9332i −0.553952 0.980200i
\(756\) 0 0
\(757\) −25.9889 −0.944584 −0.472292 0.881442i \(-0.656573\pi\)
−0.472292 + 0.881442i \(0.656573\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 33.5362i 1.21569i 0.794057 + 0.607843i \(0.207965\pi\)
−0.794057 + 0.607843i \(0.792035\pi\)
\(762\) 0 0
\(763\) 4.31390i 0.156174i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 7.28596i 0.263081i
\(768\) 0 0
\(769\) 6.84258 0.246750 0.123375 0.992360i \(-0.460628\pi\)
0.123375 + 0.992360i \(0.460628\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 38.3944i 1.38095i −0.723355 0.690476i \(-0.757401\pi\)
0.723355 0.690476i \(-0.242599\pi\)
\(774\) 0 0
\(775\) 37.8225 + 22.7753i 1.35863 + 0.818114i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 9.41694i 0.337397i
\(780\) 0 0
\(781\) 6.72562i 0.240662i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −15.4578 + 8.73587i −0.551714 + 0.311796i
\(786\) 0 0
\(787\) 37.3993i 1.33314i 0.745442 + 0.666571i \(0.232239\pi\)
−0.745442 + 0.666571i \(0.767761\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 4.72364 0.167953
\(792\) 0 0
\(793\) 36.4051i 1.29278i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 29.6980i 1.05196i 0.850497 + 0.525979i \(0.176301\pi\)
−0.850497 + 0.525979i \(0.823699\pi\)
\(798\) 0 0
\(799\) 21.8528i 0.773098i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 17.2886 0.610102
\(804\) 0 0
\(805\) −1.96007 3.46828i −0.0690833 0.122241i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 41.0881i 1.44458i 0.691590 + 0.722290i \(0.256911\pi\)
−0.691590 + 0.722290i \(0.743089\pi\)
\(810\) 0 0
\(811\) −30.7023 −1.07810 −0.539052 0.842272i \(-0.681217\pi\)
−0.539052 + 0.842272i \(0.681217\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −10.1944 18.0387i −0.357096 0.631870i
\(816\) 0 0
\(817\) 7.42455i 0.259752i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −13.3388 −0.465528 −0.232764 0.972533i \(-0.574777\pi\)
−0.232764 + 0.972533i \(0.574777\pi\)
\(822\) 0 0
\(823\) 8.08650 0.281877 0.140939 0.990018i \(-0.454988\pi\)
0.140939 + 0.990018i \(0.454988\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 22.7070 0.789601 0.394800 0.918767i \(-0.370814\pi\)
0.394800 + 0.918767i \(0.370814\pi\)
\(828\) 0 0
\(829\) 46.8393i 1.62680i −0.581708 0.813398i \(-0.697615\pi\)
0.581708 0.813398i \(-0.302385\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −16.9881 −0.588601
\(834\) 0 0
\(835\) −27.2371 48.1952i −0.942580 1.66786i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 51.3436 1.77258 0.886289 0.463132i \(-0.153274\pi\)
0.886289 + 0.463132i \(0.153274\pi\)
\(840\) 0 0
\(841\) 19.6940 0.679102
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −29.0635 + 16.4250i −0.999814 + 0.565036i
\(846\) 0 0
\(847\) 10.6721 0.366697
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 8.84422i 0.303176i
\(852\) 0 0
\(853\) −48.8546 −1.67275 −0.836375 0.548158i \(-0.815329\pi\)
−0.836375 + 0.548158i \(0.815329\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −23.8972 −0.816312 −0.408156 0.912912i \(-0.633828\pi\)
−0.408156 + 0.912912i \(0.633828\pi\)
\(858\) 0 0
\(859\) −18.7193 −0.638696 −0.319348 0.947638i \(-0.603464\pi\)
−0.319348 + 0.947638i \(0.603464\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 43.0074i 1.46399i 0.681311 + 0.731994i \(0.261410\pi\)
−0.681311 + 0.731994i \(0.738590\pi\)
\(864\) 0 0
\(865\) −2.67085 4.72599i −0.0908117 0.160688i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −13.1475 −0.445999
\(870\) 0 0
\(871\) 32.1729i 1.09014i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −0.436450 + 15.8010i −0.0147547 + 0.534173i
\(876\) 0 0
\(877\) 21.5156 0.726531 0.363265 0.931686i \(-0.381662\pi\)
0.363265 + 0.931686i \(0.381662\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 8.76271i 0.295223i 0.989045 + 0.147612i \(0.0471586\pi\)
−0.989045 + 0.147612i \(0.952841\pi\)
\(882\) 0 0
\(883\) 34.2208i 1.15162i 0.817583 + 0.575811i \(0.195313\pi\)
−0.817583 + 0.575811i \(0.804687\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 3.61165i 0.121267i 0.998160 + 0.0606337i \(0.0193121\pi\)
−0.998160 + 0.0606337i \(0.980688\pi\)
\(888\) 0 0
\(889\) 14.5551 0.488162
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 6.16924i 0.206446i
\(894\) 0 0
\(895\) 29.1173 + 51.5222i 0.973285 + 1.72220i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 61.6173i 2.05505i
\(900\) 0 0
\(901\) 4.70103i 0.156614i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 18.0652 + 31.9658i 0.600507 + 1.06258i
\(906\) 0 0
\(907\) 0.296316i 0.00983900i −0.999988 0.00491950i \(-0.998434\pi\)
0.999988 0.00491950i \(-0.00156593\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −38.2561 −1.26748 −0.633741 0.773545i \(-0.718482\pi\)
−0.633741 + 0.773545i \(0.718482\pi\)
\(912\) 0 0
\(913\) 15.0971i 0.499642i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 15.7630i 0.520540i
\(918\) 0 0
\(919\) 27.0814i 0.893332i −0.894701 0.446666i \(-0.852611\pi\)
0.894701 0.446666i \(-0.147389\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 19.1317 0.629726
\(924\) 0 0
\(925\) −18.1026 + 30.0626i −0.595210 + 0.988454i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 2.41533i 0.0792443i 0.999215 + 0.0396222i \(0.0126154\pi\)
−0.999215 + 0.0396222i \(0.987385\pi\)
\(930\) 0 0
\(931\) 4.79587 0.157178
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 6.94301 + 12.2854i 0.227061 + 0.401776i
\(936\) 0 0
\(937\) 14.7062i 0.480432i −0.970720 0.240216i \(-0.922782\pi\)
0.970720 0.240216i \(-0.0772182\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 22.6540 0.738500 0.369250 0.929330i \(-0.379615\pi\)
0.369250 + 0.929330i \(0.379615\pi\)
\(942\) 0 0
\(943\) 12.3744 0.402967
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −39.0269 −1.26820 −0.634101 0.773250i \(-0.718630\pi\)
−0.634101 + 0.773250i \(0.718630\pi\)
\(948\) 0 0
\(949\) 49.1791i 1.59642i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −9.05724 −0.293393 −0.146696 0.989182i \(-0.546864\pi\)
−0.146696 + 0.989182i \(0.546864\pi\)
\(954\) 0 0
\(955\) 1.02811 0.581026i 0.0332687 0.0188015i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −13.3591 −0.431389
\(960\) 0 0
\(961\) −46.9704 −1.51517
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 3.54021 + 6.26429i 0.113963 + 0.201655i
\(966\) 0 0
\(967\) 0.330822 0.0106385 0.00531926 0.999986i \(-0.498307\pi\)
0.00531926 + 0.999986i \(0.498307\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 3.23651i 0.103865i 0.998651 + 0.0519323i \(0.0165380\pi\)
−0.998651 + 0.0519323i \(0.983462\pi\)
\(972\) 0 0
\(973\) 20.8852 0.669550
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −34.3972 −1.10046 −0.550231 0.835012i \(-0.685460\pi\)
−0.550231 + 0.835012i \(0.685460\pi\)
\(978\) 0 0
\(979\) −30.0365 −0.959971
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 4.15590i 0.132553i 0.997801 + 0.0662763i \(0.0211119\pi\)
−0.997801 + 0.0662763i \(0.978888\pi\)
\(984\) 0 0
\(985\) −1.97388 3.49272i −0.0628932 0.111287i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −9.75632 −0.310233
\(990\) 0 0
\(991\) 21.0947i 0.670095i −0.942201 0.335047i \(-0.891248\pi\)
0.942201 0.335047i \(-0.108752\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 18.1737 + 32.1578i 0.576145 + 1.01947i
\(996\) 0 0
\(997\) −27.0375 −0.856288 −0.428144 0.903711i \(-0.640832\pi\)
−0.428144 + 0.903711i \(0.640832\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4320.2.m.b.2159.8 40
3.2 odd 2 inner 4320.2.m.b.2159.34 40
4.3 odd 2 1080.2.m.b.539.23 yes 40
5.4 even 2 inner 4320.2.m.b.2159.5 40
8.3 odd 2 inner 4320.2.m.b.2159.33 40
8.5 even 2 1080.2.m.b.539.22 yes 40
12.11 even 2 1080.2.m.b.539.18 yes 40
15.14 odd 2 inner 4320.2.m.b.2159.35 40
20.19 odd 2 1080.2.m.b.539.17 40
24.5 odd 2 1080.2.m.b.539.19 yes 40
24.11 even 2 inner 4320.2.m.b.2159.7 40
40.19 odd 2 inner 4320.2.m.b.2159.36 40
40.29 even 2 1080.2.m.b.539.20 yes 40
60.59 even 2 1080.2.m.b.539.24 yes 40
120.29 odd 2 1080.2.m.b.539.21 yes 40
120.59 even 2 inner 4320.2.m.b.2159.6 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1080.2.m.b.539.17 40 20.19 odd 2
1080.2.m.b.539.18 yes 40 12.11 even 2
1080.2.m.b.539.19 yes 40 24.5 odd 2
1080.2.m.b.539.20 yes 40 40.29 even 2
1080.2.m.b.539.21 yes 40 120.29 odd 2
1080.2.m.b.539.22 yes 40 8.5 even 2
1080.2.m.b.539.23 yes 40 4.3 odd 2
1080.2.m.b.539.24 yes 40 60.59 even 2
4320.2.m.b.2159.5 40 5.4 even 2 inner
4320.2.m.b.2159.6 40 120.59 even 2 inner
4320.2.m.b.2159.7 40 24.11 even 2 inner
4320.2.m.b.2159.8 40 1.1 even 1 trivial
4320.2.m.b.2159.33 40 8.3 odd 2 inner
4320.2.m.b.2159.34 40 3.2 odd 2 inner
4320.2.m.b.2159.35 40 15.14 odd 2 inner
4320.2.m.b.2159.36 40 40.19 odd 2 inner