Properties

Label 1080.2.m.c.539.32
Level $1080$
Weight $2$
Character 1080.539
Analytic conductor $8.624$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1080,2,Mod(539,1080)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1080, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1080.539");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1080 = 2^{3} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1080.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.62384341830\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 539.32
Character \(\chi\) \(=\) 1080.539
Dual form 1080.2.m.c.539.30

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.482315 + 1.32943i) q^{2} +(-1.53474 + 1.28240i) q^{4} +(1.17345 + 1.90342i) q^{5} +0.450397 q^{7} +(-2.44509 - 1.42181i) q^{8} +(-1.96449 + 2.47806i) q^{10} +5.11202i q^{11} +1.15380 q^{13} +(0.217233 + 0.598769i) q^{14} +(0.710884 - 3.93632i) q^{16} -6.13070 q^{17} +2.16656 q^{19} +(-4.24190 - 1.41644i) q^{20} +(-6.79605 + 2.46560i) q^{22} +0.211029i q^{23} +(-2.24604 + 4.46713i) q^{25} +(0.556495 + 1.53389i) q^{26} +(-0.691244 + 0.577590i) q^{28} +6.08377 q^{29} -0.417311i q^{31} +(5.57592 - 0.953480i) q^{32} +(-2.95693 - 8.15031i) q^{34} +(0.528517 + 0.857296i) q^{35} -9.60013 q^{37} +(1.04496 + 2.88028i) q^{38} +(-0.162881 - 6.32246i) q^{40} +9.71138i q^{41} -3.06432i q^{43} +(-6.55567 - 7.84565i) q^{44} +(-0.280547 + 0.101782i) q^{46} -2.65854i q^{47} -6.79714 q^{49} +(-7.02202 - 0.831385i) q^{50} +(-1.77079 + 1.47964i) q^{52} +8.81551i q^{53} +(-9.73034 + 5.99869i) q^{55} +(-1.10126 - 0.640377i) q^{56} +(2.93429 + 8.08792i) q^{58} -4.73857i q^{59} -7.64787i q^{61} +(0.554784 - 0.201275i) q^{62} +(3.95693 + 6.95289i) q^{64} +(1.35392 + 2.19617i) q^{65} -6.49513i q^{67} +(9.40907 - 7.86203i) q^{68} +(-0.884800 + 1.11611i) q^{70} +11.4430 q^{71} +13.8904i q^{73} +(-4.63028 - 12.7627i) q^{74} +(-3.32511 + 2.77840i) q^{76} +2.30244i q^{77} -13.7469i q^{79} +(8.32668 - 3.26595i) q^{80} +(-12.9106 + 4.68394i) q^{82} -5.22116 q^{83} +(-7.19405 - 11.6693i) q^{85} +(4.07379 - 1.47797i) q^{86} +(7.26831 - 12.4994i) q^{88} -1.39700i q^{89} +0.519668 q^{91} +(-0.270624 - 0.323875i) q^{92} +(3.53433 - 1.28225i) q^{94} +(2.54234 + 4.12388i) q^{95} +4.41107i q^{97} +(-3.27836 - 9.03630i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{4} - 4 q^{10} + 4 q^{16} - 16 q^{19} - 4 q^{34} + 16 q^{40} + 36 q^{46} + 48 q^{49} + 52 q^{64} + 28 q^{70} - 64 q^{76} + 92 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1080\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(541\) \(1001\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.482315 + 1.32943i 0.341048 + 0.940046i
\(3\) 0 0
\(4\) −1.53474 + 1.28240i −0.767372 + 0.641202i
\(5\) 1.17345 + 1.90342i 0.524781 + 0.851237i
\(6\) 0 0
\(7\) 0.450397 0.170234 0.0851170 0.996371i \(-0.472874\pi\)
0.0851170 + 0.996371i \(0.472874\pi\)
\(8\) −2.44509 1.42181i −0.864470 0.502685i
\(9\) 0 0
\(10\) −1.96449 + 2.47806i −0.621226 + 0.783631i
\(11\) 5.11202i 1.54133i 0.637239 + 0.770666i \(0.280076\pi\)
−0.637239 + 0.770666i \(0.719924\pi\)
\(12\) 0 0
\(13\) 1.15380 0.320007 0.160003 0.987116i \(-0.448849\pi\)
0.160003 + 0.987116i \(0.448849\pi\)
\(14\) 0.217233 + 0.598769i 0.0580580 + 0.160028i
\(15\) 0 0
\(16\) 0.710884 3.93632i 0.177721 0.984081i
\(17\) −6.13070 −1.48691 −0.743457 0.668784i \(-0.766815\pi\)
−0.743457 + 0.668784i \(0.766815\pi\)
\(18\) 0 0
\(19\) 2.16656 0.497043 0.248521 0.968626i \(-0.420055\pi\)
0.248521 + 0.968626i \(0.420055\pi\)
\(20\) −4.24190 1.41644i −0.948517 0.316725i
\(21\) 0 0
\(22\) −6.79605 + 2.46560i −1.44892 + 0.525668i
\(23\) 0.211029i 0.0440025i 0.999758 + 0.0220013i \(0.00700379\pi\)
−0.999758 + 0.0220013i \(0.992996\pi\)
\(24\) 0 0
\(25\) −2.24604 + 4.46713i −0.449209 + 0.893427i
\(26\) 0.556495 + 1.53389i 0.109138 + 0.300821i
\(27\) 0 0
\(28\) −0.691244 + 0.577590i −0.130633 + 0.109154i
\(29\) 6.08377 1.12973 0.564864 0.825184i \(-0.308929\pi\)
0.564864 + 0.825184i \(0.308929\pi\)
\(30\) 0 0
\(31\) 0.417311i 0.0749512i −0.999298 0.0374756i \(-0.988068\pi\)
0.999298 0.0374756i \(-0.0119317\pi\)
\(32\) 5.57592 0.953480i 0.985693 0.168553i
\(33\) 0 0
\(34\) −2.95693 8.15031i −0.507109 1.39777i
\(35\) 0.528517 + 0.857296i 0.0893356 + 0.144909i
\(36\) 0 0
\(37\) −9.60013 −1.57825 −0.789126 0.614232i \(-0.789466\pi\)
−0.789126 + 0.614232i \(0.789466\pi\)
\(38\) 1.04496 + 2.88028i 0.169515 + 0.467243i
\(39\) 0 0
\(40\) −0.162881 6.32246i −0.0257538 0.999668i
\(41\) 9.71138i 1.51666i 0.651869 + 0.758332i \(0.273985\pi\)
−0.651869 + 0.758332i \(0.726015\pi\)
\(42\) 0 0
\(43\) 3.06432i 0.467305i −0.972320 0.233652i \(-0.924932\pi\)
0.972320 0.233652i \(-0.0750678\pi\)
\(44\) −6.55567 7.84565i −0.988305 1.18278i
\(45\) 0 0
\(46\) −0.280547 + 0.101782i −0.0413644 + 0.0150070i
\(47\) 2.65854i 0.387788i −0.981023 0.193894i \(-0.937888\pi\)
0.981023 0.193894i \(-0.0621117\pi\)
\(48\) 0 0
\(49\) −6.79714 −0.971020
\(50\) −7.02202 0.831385i −0.993064 0.117576i
\(51\) 0 0
\(52\) −1.77079 + 1.47964i −0.245564 + 0.205189i
\(53\) 8.81551i 1.21090i 0.795882 + 0.605452i \(0.207008\pi\)
−0.795882 + 0.605452i \(0.792992\pi\)
\(54\) 0 0
\(55\) −9.73034 + 5.99869i −1.31204 + 0.808863i
\(56\) −1.10126 0.640377i −0.147162 0.0855740i
\(57\) 0 0
\(58\) 2.93429 + 8.08792i 0.385291 + 1.06200i
\(59\) 4.73857i 0.616910i −0.951239 0.308455i \(-0.900188\pi\)
0.951239 0.308455i \(-0.0998119\pi\)
\(60\) 0 0
\(61\) 7.64787i 0.979209i −0.871945 0.489605i \(-0.837141\pi\)
0.871945 0.489605i \(-0.162859\pi\)
\(62\) 0.554784 0.201275i 0.0704576 0.0255620i
\(63\) 0 0
\(64\) 3.95693 + 6.95289i 0.494616 + 0.869112i
\(65\) 1.35392 + 2.19617i 0.167934 + 0.272402i
\(66\) 0 0
\(67\) 6.49513i 0.793506i −0.917925 0.396753i \(-0.870137\pi\)
0.917925 0.396753i \(-0.129863\pi\)
\(68\) 9.40907 7.86203i 1.14102 0.953412i
\(69\) 0 0
\(70\) −0.884800 + 1.11611i −0.105754 + 0.133401i
\(71\) 11.4430 1.35803 0.679016 0.734124i \(-0.262407\pi\)
0.679016 + 0.734124i \(0.262407\pi\)
\(72\) 0 0
\(73\) 13.8904i 1.62574i 0.582443 + 0.812871i \(0.302097\pi\)
−0.582443 + 0.812871i \(0.697903\pi\)
\(74\) −4.63028 12.7627i −0.538260 1.48363i
\(75\) 0 0
\(76\) −3.32511 + 2.77840i −0.381417 + 0.318705i
\(77\) 2.30244i 0.262387i
\(78\) 0 0
\(79\) 13.7469i 1.54664i −0.634015 0.773321i \(-0.718594\pi\)
0.634015 0.773321i \(-0.281406\pi\)
\(80\) 8.32668 3.26595i 0.930951 0.365145i
\(81\) 0 0
\(82\) −12.9106 + 4.68394i −1.42573 + 0.517255i
\(83\) −5.22116 −0.573096 −0.286548 0.958066i \(-0.592508\pi\)
−0.286548 + 0.958066i \(0.592508\pi\)
\(84\) 0 0
\(85\) −7.19405 11.6693i −0.780305 1.26572i
\(86\) 4.07379 1.47797i 0.439288 0.159373i
\(87\) 0 0
\(88\) 7.26831 12.4994i 0.774804 1.33244i
\(89\) 1.39700i 0.148082i −0.997255 0.0740408i \(-0.976411\pi\)
0.997255 0.0740408i \(-0.0235895\pi\)
\(90\) 0 0
\(91\) 0.519668 0.0544761
\(92\) −0.270624 0.323875i −0.0282145 0.0337663i
\(93\) 0 0
\(94\) 3.53433 1.28225i 0.364538 0.132254i
\(95\) 2.54234 + 4.12388i 0.260839 + 0.423101i
\(96\) 0 0
\(97\) 4.41107i 0.447876i 0.974603 + 0.223938i \(0.0718913\pi\)
−0.974603 + 0.223938i \(0.928109\pi\)
\(98\) −3.27836 9.03630i −0.331165 0.912804i
\(99\) 0 0
\(100\) −2.28156 9.73625i −0.228156 0.973625i
\(101\) 12.5630 1.25006 0.625031 0.780600i \(-0.285086\pi\)
0.625031 + 0.780600i \(0.285086\pi\)
\(102\) 0 0
\(103\) 5.95376 0.586641 0.293320 0.956014i \(-0.405240\pi\)
0.293320 + 0.956014i \(0.405240\pi\)
\(104\) −2.82115 1.64048i −0.276636 0.160863i
\(105\) 0 0
\(106\) −11.7196 + 4.25185i −1.13831 + 0.412976i
\(107\) −8.98524 −0.868636 −0.434318 0.900760i \(-0.643011\pi\)
−0.434318 + 0.900760i \(0.643011\pi\)
\(108\) 0 0
\(109\) 11.7484i 1.12529i 0.826697 + 0.562647i \(0.190217\pi\)
−0.826697 + 0.562647i \(0.809783\pi\)
\(110\) −12.6679 10.0425i −1.20784 0.957516i
\(111\) 0 0
\(112\) 0.320180 1.77291i 0.0302542 0.167524i
\(113\) 0.926078 0.0871181 0.0435590 0.999051i \(-0.486130\pi\)
0.0435590 + 0.999051i \(0.486130\pi\)
\(114\) 0 0
\(115\) −0.401677 + 0.247631i −0.0374566 + 0.0230917i
\(116\) −9.33703 + 7.80184i −0.866922 + 0.724383i
\(117\) 0 0
\(118\) 6.29958 2.28548i 0.579923 0.210396i
\(119\) −2.76125 −0.253123
\(120\) 0 0
\(121\) −15.1328 −1.37571
\(122\) 10.1673 3.68868i 0.920502 0.333957i
\(123\) 0 0
\(124\) 0.535161 + 0.640466i 0.0480589 + 0.0575155i
\(125\) −11.1385 + 0.966769i −0.996254 + 0.0864704i
\(126\) 0 0
\(127\) 16.6083 1.47375 0.736873 0.676031i \(-0.236302\pi\)
0.736873 + 0.676031i \(0.236302\pi\)
\(128\) −7.33487 + 8.61393i −0.648317 + 0.761371i
\(129\) 0 0
\(130\) −2.26663 + 2.85919i −0.198797 + 0.250767i
\(131\) 13.5426i 1.18323i 0.806222 + 0.591613i \(0.201509\pi\)
−0.806222 + 0.591613i \(0.798491\pi\)
\(132\) 0 0
\(133\) 0.975811 0.0846136
\(134\) 8.63479 3.13270i 0.745932 0.270624i
\(135\) 0 0
\(136\) 14.9901 + 8.71668i 1.28539 + 0.747449i
\(137\) 8.89160 0.759661 0.379830 0.925056i \(-0.375982\pi\)
0.379830 + 0.925056i \(0.375982\pi\)
\(138\) 0 0
\(139\) 14.2713 1.21047 0.605236 0.796046i \(-0.293079\pi\)
0.605236 + 0.796046i \(0.293079\pi\)
\(140\) −1.91054 0.637959i −0.161470 0.0539174i
\(141\) 0 0
\(142\) 5.51912 + 15.2126i 0.463154 + 1.27661i
\(143\) 5.89826i 0.493237i
\(144\) 0 0
\(145\) 7.13898 + 11.5800i 0.592860 + 0.961666i
\(146\) −18.4662 + 6.69952i −1.52827 + 0.554456i
\(147\) 0 0
\(148\) 14.7337 12.3112i 1.21111 1.01198i
\(149\) 8.96593 0.734518 0.367259 0.930119i \(-0.380296\pi\)
0.367259 + 0.930119i \(0.380296\pi\)
\(150\) 0 0
\(151\) 15.5560i 1.26593i 0.774180 + 0.632966i \(0.218163\pi\)
−0.774180 + 0.632966i \(0.781837\pi\)
\(152\) −5.29743 3.08043i −0.429678 0.249856i
\(153\) 0 0
\(154\) −3.06092 + 1.11050i −0.246656 + 0.0894867i
\(155\) 0.794319 0.489692i 0.0638013 0.0393330i
\(156\) 0 0
\(157\) 13.2345 1.05623 0.528115 0.849173i \(-0.322899\pi\)
0.528115 + 0.849173i \(0.322899\pi\)
\(158\) 18.2754 6.63031i 1.45391 0.527479i
\(159\) 0 0
\(160\) 8.35792 + 9.49448i 0.660752 + 0.750605i
\(161\) 0.0950467i 0.00749073i
\(162\) 0 0
\(163\) 15.3659i 1.20355i −0.798666 0.601774i \(-0.794461\pi\)
0.798666 0.601774i \(-0.205539\pi\)
\(164\) −12.4539 14.9045i −0.972487 1.16385i
\(165\) 0 0
\(166\) −2.51824 6.94114i −0.195453 0.538737i
\(167\) 17.9401i 1.38824i 0.719857 + 0.694122i \(0.244207\pi\)
−0.719857 + 0.694122i \(0.755793\pi\)
\(168\) 0 0
\(169\) −11.6687 −0.897596
\(170\) 12.0437 15.1922i 0.923710 1.16519i
\(171\) 0 0
\(172\) 3.92970 + 4.70295i 0.299637 + 0.358597i
\(173\) 17.2609i 1.31232i −0.754622 0.656160i \(-0.772180\pi\)
0.754622 0.656160i \(-0.227820\pi\)
\(174\) 0 0
\(175\) −1.01161 + 2.01198i −0.0764706 + 0.152092i
\(176\) 20.1226 + 3.63405i 1.51680 + 0.273927i
\(177\) 0 0
\(178\) 1.85721 0.673793i 0.139203 0.0505029i
\(179\) 0.229984i 0.0171898i −0.999963 0.00859490i \(-0.997264\pi\)
0.999963 0.00859490i \(-0.00273588\pi\)
\(180\) 0 0
\(181\) 2.26929i 0.168675i 0.996437 + 0.0843377i \(0.0268774\pi\)
−0.996437 + 0.0843377i \(0.973123\pi\)
\(182\) 0.250644 + 0.690861i 0.0185790 + 0.0512100i
\(183\) 0 0
\(184\) 0.300042 0.515984i 0.0221194 0.0380389i
\(185\) −11.2652 18.2731i −0.828237 1.34347i
\(186\) 0 0
\(187\) 31.3403i 2.29183i
\(188\) 3.40932 + 4.08018i 0.248650 + 0.297578i
\(189\) 0 0
\(190\) −4.25618 + 5.36886i −0.308776 + 0.389498i
\(191\) 17.1688 1.24229 0.621145 0.783696i \(-0.286668\pi\)
0.621145 + 0.783696i \(0.286668\pi\)
\(192\) 0 0
\(193\) 0.900092i 0.0647901i −0.999475 0.0323950i \(-0.989687\pi\)
0.999475 0.0323950i \(-0.0103135\pi\)
\(194\) −5.86419 + 2.12752i −0.421024 + 0.152747i
\(195\) 0 0
\(196\) 10.4319 8.71668i 0.745134 0.622620i
\(197\) 1.61680i 0.115193i 0.998340 + 0.0575963i \(0.0183436\pi\)
−0.998340 + 0.0575963i \(0.981656\pi\)
\(198\) 0 0
\(199\) 13.9958i 0.992137i 0.868283 + 0.496069i \(0.165224\pi\)
−0.868283 + 0.496069i \(0.834776\pi\)
\(200\) 11.8432 7.72910i 0.837440 0.546530i
\(201\) 0 0
\(202\) 6.05931 + 16.7015i 0.426331 + 1.17512i
\(203\) 2.74011 0.192318
\(204\) 0 0
\(205\) −18.4849 + 11.3958i −1.29104 + 0.795917i
\(206\) 2.87158 + 7.91508i 0.200073 + 0.551469i
\(207\) 0 0
\(208\) 0.820219 4.54174i 0.0568719 0.314913i
\(209\) 11.0755i 0.766108i
\(210\) 0 0
\(211\) 24.9023 1.71435 0.857174 0.515028i \(-0.172218\pi\)
0.857174 + 0.515028i \(0.172218\pi\)
\(212\) −11.3050 13.5296i −0.776434 0.929214i
\(213\) 0 0
\(214\) −4.33371 11.9452i −0.296247 0.816557i
\(215\) 5.83270 3.59582i 0.397787 0.245233i
\(216\) 0 0
\(217\) 0.187956i 0.0127593i
\(218\) −15.6186 + 5.66643i −1.05783 + 0.383779i
\(219\) 0 0
\(220\) 7.24086 21.6847i 0.488179 1.46198i
\(221\) −7.07361 −0.475823
\(222\) 0 0
\(223\) 19.2003 1.28574 0.642872 0.765974i \(-0.277743\pi\)
0.642872 + 0.765974i \(0.277743\pi\)
\(224\) 2.51138 0.429444i 0.167798 0.0286935i
\(225\) 0 0
\(226\) 0.446661 + 1.23115i 0.0297114 + 0.0818950i
\(227\) 28.6073 1.89874 0.949368 0.314167i \(-0.101725\pi\)
0.949368 + 0.314167i \(0.101725\pi\)
\(228\) 0 0
\(229\) 3.59647i 0.237662i −0.992915 0.118831i \(-0.962085\pi\)
0.992915 0.118831i \(-0.0379146\pi\)
\(230\) −0.522942 0.414564i −0.0344818 0.0273355i
\(231\) 0 0
\(232\) −14.8754 8.64995i −0.976615 0.567897i
\(233\) −9.78036 −0.640733 −0.320366 0.947294i \(-0.603806\pi\)
−0.320366 + 0.947294i \(0.603806\pi\)
\(234\) 0 0
\(235\) 5.06033 3.11965i 0.330099 0.203504i
\(236\) 6.07676 + 7.27250i 0.395564 + 0.473400i
\(237\) 0 0
\(238\) −1.33179 3.67088i −0.0863272 0.237948i
\(239\) −17.5597 −1.13584 −0.567921 0.823083i \(-0.692252\pi\)
−0.567921 + 0.823083i \(0.692252\pi\)
\(240\) 0 0
\(241\) 11.7884 0.759356 0.379678 0.925119i \(-0.376035\pi\)
0.379678 + 0.925119i \(0.376035\pi\)
\(242\) −7.29876 20.1179i −0.469182 1.29323i
\(243\) 0 0
\(244\) 9.80765 + 11.7375i 0.627871 + 0.751418i
\(245\) −7.97609 12.9378i −0.509573 0.826569i
\(246\) 0 0
\(247\) 2.49978 0.159057
\(248\) −0.593336 + 1.02036i −0.0376768 + 0.0647931i
\(249\) 0 0
\(250\) −6.65749 14.3415i −0.421057 0.907034i
\(251\) 12.8261i 0.809578i 0.914410 + 0.404789i \(0.132655\pi\)
−0.914410 + 0.404789i \(0.867345\pi\)
\(252\) 0 0
\(253\) −1.07878 −0.0678226
\(254\) 8.01042 + 22.0795i 0.502618 + 1.38539i
\(255\) 0 0
\(256\) −14.9893 5.59654i −0.936831 0.349784i
\(257\) −7.70361 −0.480538 −0.240269 0.970706i \(-0.577236\pi\)
−0.240269 + 0.970706i \(0.577236\pi\)
\(258\) 0 0
\(259\) −4.32387 −0.268672
\(260\) −4.89431 1.63429i −0.303532 0.101354i
\(261\) 0 0
\(262\) −18.0039 + 6.53182i −1.11229 + 0.403537i
\(263\) 0.422058i 0.0260252i −0.999915 0.0130126i \(-0.995858\pi\)
0.999915 0.0130126i \(-0.00414215\pi\)
\(264\) 0 0
\(265\) −16.7797 + 10.3445i −1.03077 + 0.635460i
\(266\) 0.470648 + 1.29727i 0.0288573 + 0.0795406i
\(267\) 0 0
\(268\) 8.32938 + 9.96837i 0.508798 + 0.608915i
\(269\) 1.49688 0.0912663 0.0456332 0.998958i \(-0.485469\pi\)
0.0456332 + 0.998958i \(0.485469\pi\)
\(270\) 0 0
\(271\) 13.1516i 0.798904i −0.916754 0.399452i \(-0.869200\pi\)
0.916754 0.399452i \(-0.130800\pi\)
\(272\) −4.35822 + 24.1324i −0.264256 + 1.46324i
\(273\) 0 0
\(274\) 4.28855 + 11.8207i 0.259081 + 0.714116i
\(275\) −22.8361 11.4818i −1.37707 0.692380i
\(276\) 0 0
\(277\) 28.3454 1.70311 0.851556 0.524263i \(-0.175659\pi\)
0.851556 + 0.524263i \(0.175659\pi\)
\(278\) 6.88324 + 18.9726i 0.412829 + 1.13790i
\(279\) 0 0
\(280\) −0.0733613 2.84762i −0.00438417 0.170178i
\(281\) 28.0322i 1.67226i 0.548529 + 0.836132i \(0.315188\pi\)
−0.548529 + 0.836132i \(0.684812\pi\)
\(282\) 0 0
\(283\) 4.04108i 0.240217i 0.992761 + 0.120109i \(0.0383243\pi\)
−0.992761 + 0.120109i \(0.961676\pi\)
\(284\) −17.5621 + 14.6745i −1.04212 + 0.870772i
\(285\) 0 0
\(286\) −7.84129 + 2.84482i −0.463665 + 0.168218i
\(287\) 4.37398i 0.258188i
\(288\) 0 0
\(289\) 20.5855 1.21091
\(290\) −11.9515 + 15.0759i −0.701816 + 0.885290i
\(291\) 0 0
\(292\) −17.8130 21.3181i −1.04243 1.24755i
\(293\) 9.69326i 0.566287i 0.959078 + 0.283143i \(0.0913772\pi\)
−0.959078 + 0.283143i \(0.908623\pi\)
\(294\) 0 0
\(295\) 9.01951 5.56046i 0.525136 0.323743i
\(296\) 23.4732 + 13.6495i 1.36435 + 0.793363i
\(297\) 0 0
\(298\) 4.32440 + 11.9195i 0.250506 + 0.690480i
\(299\) 0.243485i 0.0140811i
\(300\) 0 0
\(301\) 1.38016i 0.0795512i
\(302\) −20.6806 + 7.50291i −1.19003 + 0.431744i
\(303\) 0 0
\(304\) 1.54017 8.52828i 0.0883349 0.489130i
\(305\) 14.5571 8.97437i 0.833539 0.513871i
\(306\) 0 0
\(307\) 30.4121i 1.73571i −0.496815 0.867856i \(-0.665497\pi\)
0.496815 0.867856i \(-0.334503\pi\)
\(308\) −2.95265 3.53366i −0.168243 0.201349i
\(309\) 0 0
\(310\) 1.03412 + 0.819803i 0.0587341 + 0.0465617i
\(311\) −1.93254 −0.109584 −0.0547921 0.998498i \(-0.517450\pi\)
−0.0547921 + 0.998498i \(0.517450\pi\)
\(312\) 0 0
\(313\) 22.8246i 1.29012i 0.764130 + 0.645062i \(0.223168\pi\)
−0.764130 + 0.645062i \(0.776832\pi\)
\(314\) 6.38321 + 17.5943i 0.360225 + 0.992905i
\(315\) 0 0
\(316\) 17.6290 + 21.0979i 0.991709 + 1.18685i
\(317\) 3.60376i 0.202407i −0.994866 0.101204i \(-0.967731\pi\)
0.994866 0.101204i \(-0.0322694\pi\)
\(318\) 0 0
\(319\) 31.1004i 1.74129i
\(320\) −8.59106 + 15.6906i −0.480255 + 0.877129i
\(321\) 0 0
\(322\) −0.126358 + 0.0458424i −0.00704163 + 0.00255470i
\(323\) −13.2825 −0.739060
\(324\) 0 0
\(325\) −2.59149 + 5.15418i −0.143750 + 0.285903i
\(326\) 20.4278 7.41119i 1.13139 0.410468i
\(327\) 0 0
\(328\) 13.8077 23.7452i 0.762403 1.31111i
\(329\) 1.19740i 0.0660147i
\(330\) 0 0
\(331\) −0.186551 −0.0102538 −0.00512689 0.999987i \(-0.501632\pi\)
−0.00512689 + 0.999987i \(0.501632\pi\)
\(332\) 8.01314 6.69563i 0.439778 0.367470i
\(333\) 0 0
\(334\) −23.8500 + 8.65276i −1.30501 + 0.473458i
\(335\) 12.3630 7.62169i 0.675462 0.416417i
\(336\) 0 0
\(337\) 15.2379i 0.830063i −0.909807 0.415032i \(-0.863770\pi\)
0.909807 0.415032i \(-0.136230\pi\)
\(338\) −5.62801 15.5127i −0.306123 0.843781i
\(339\) 0 0
\(340\) 26.0058 + 8.68376i 1.41036 + 0.470943i
\(341\) 2.13330 0.115525
\(342\) 0 0
\(343\) −6.21419 −0.335535
\(344\) −4.35687 + 7.49254i −0.234907 + 0.403971i
\(345\) 0 0
\(346\) 22.9470 8.32517i 1.23364 0.447564i
\(347\) −26.1263 −1.40253 −0.701266 0.712900i \(-0.747382\pi\)
−0.701266 + 0.712900i \(0.747382\pi\)
\(348\) 0 0
\(349\) 36.0891i 1.93180i −0.258910 0.965901i \(-0.583363\pi\)
0.258910 0.965901i \(-0.416637\pi\)
\(350\) −3.16270 0.374453i −0.169053 0.0200154i
\(351\) 0 0
\(352\) 4.87421 + 28.5042i 0.259796 + 1.51928i
\(353\) 9.70998 0.516810 0.258405 0.966037i \(-0.416803\pi\)
0.258405 + 0.966037i \(0.416803\pi\)
\(354\) 0 0
\(355\) 13.4277 + 21.7808i 0.712670 + 1.15601i
\(356\) 1.79152 + 2.14404i 0.0949501 + 0.113634i
\(357\) 0 0
\(358\) 0.305746 0.110925i 0.0161592 0.00586255i
\(359\) −33.8455 −1.78630 −0.893149 0.449761i \(-0.851509\pi\)
−0.893149 + 0.449761i \(0.851509\pi\)
\(360\) 0 0
\(361\) −14.3060 −0.752949
\(362\) −3.01686 + 1.09451i −0.158563 + 0.0575264i
\(363\) 0 0
\(364\) −0.797559 + 0.666425i −0.0418034 + 0.0349301i
\(365\) −26.4392 + 16.2996i −1.38389 + 0.853160i
\(366\) 0 0
\(367\) −2.14159 −0.111790 −0.0558949 0.998437i \(-0.517801\pi\)
−0.0558949 + 0.998437i \(0.517801\pi\)
\(368\) 0.830678 + 0.150017i 0.0433021 + 0.00782018i
\(369\) 0 0
\(370\) 18.8594 23.7897i 0.980451 1.23677i
\(371\) 3.97048i 0.206137i
\(372\) 0 0
\(373\) −14.6799 −0.760097 −0.380049 0.924967i \(-0.624093\pi\)
−0.380049 + 0.924967i \(0.624093\pi\)
\(374\) 41.6646 15.1159i 2.15442 0.781624i
\(375\) 0 0
\(376\) −3.77993 + 6.50037i −0.194935 + 0.335231i
\(377\) 7.01946 0.361521
\(378\) 0 0
\(379\) −4.44355 −0.228250 −0.114125 0.993466i \(-0.536406\pi\)
−0.114125 + 0.993466i \(0.536406\pi\)
\(380\) −9.19032 3.06880i −0.471454 0.157426i
\(381\) 0 0
\(382\) 8.28076 + 22.8246i 0.423680 + 1.16781i
\(383\) 15.1342i 0.773324i −0.922222 0.386662i \(-0.873628\pi\)
0.922222 0.386662i \(-0.126372\pi\)
\(384\) 0 0
\(385\) −4.38252 + 2.70179i −0.223354 + 0.137696i
\(386\) 1.19661 0.434128i 0.0609056 0.0220965i
\(387\) 0 0
\(388\) −5.65677 6.76986i −0.287179 0.343688i
\(389\) 27.0036 1.36914 0.684570 0.728948i \(-0.259990\pi\)
0.684570 + 0.728948i \(0.259990\pi\)
\(390\) 0 0
\(391\) 1.29375i 0.0654280i
\(392\) 16.6196 + 9.66423i 0.839418 + 0.488117i
\(393\) 0 0
\(394\) −2.14942 + 0.779808i −0.108286 + 0.0392862i
\(395\) 26.1661 16.1312i 1.31656 0.811649i
\(396\) 0 0
\(397\) −3.18855 −0.160029 −0.0800143 0.996794i \(-0.525497\pi\)
−0.0800143 + 0.996794i \(0.525497\pi\)
\(398\) −18.6064 + 6.75039i −0.932654 + 0.338366i
\(399\) 0 0
\(400\) 15.9874 + 12.0168i 0.799370 + 0.600839i
\(401\) 25.1792i 1.25739i −0.777652 0.628695i \(-0.783589\pi\)
0.777652 0.628695i \(-0.216411\pi\)
\(402\) 0 0
\(403\) 0.481494i 0.0239849i
\(404\) −19.2810 + 16.1108i −0.959264 + 0.801542i
\(405\) 0 0
\(406\) 1.32160 + 3.64277i 0.0655897 + 0.180788i
\(407\) 49.0761i 2.43261i
\(408\) 0 0
\(409\) −27.5416 −1.36185 −0.680923 0.732355i \(-0.738421\pi\)
−0.680923 + 0.732355i \(0.738421\pi\)
\(410\) −24.0654 19.0779i −1.18850 0.942191i
\(411\) 0 0
\(412\) −9.13750 + 7.63512i −0.450172 + 0.376155i
\(413\) 2.13424i 0.105019i
\(414\) 0 0
\(415\) −6.12675 9.93808i −0.300750 0.487841i
\(416\) 6.43350 1.10013i 0.315428 0.0539381i
\(417\) 0 0
\(418\) −14.7240 + 5.34188i −0.720177 + 0.261280i
\(419\) 27.5259i 1.34473i −0.740221 0.672364i \(-0.765279\pi\)
0.740221 0.672364i \(-0.234721\pi\)
\(420\) 0 0
\(421\) 29.6555i 1.44532i 0.691203 + 0.722660i \(0.257081\pi\)
−0.691203 + 0.722660i \(0.742919\pi\)
\(422\) 12.0108 + 33.1058i 0.584675 + 1.61157i
\(423\) 0 0
\(424\) 12.5340 21.5547i 0.608703 1.04679i
\(425\) 13.7698 27.3867i 0.667935 1.32845i
\(426\) 0 0
\(427\) 3.44458i 0.166695i
\(428\) 13.7900 11.5227i 0.666567 0.556971i
\(429\) 0 0
\(430\) 7.59357 + 6.01983i 0.366195 + 0.290302i
\(431\) −15.1134 −0.727986 −0.363993 0.931402i \(-0.618587\pi\)
−0.363993 + 0.931402i \(0.618587\pi\)
\(432\) 0 0
\(433\) 10.1697i 0.488726i 0.969684 + 0.244363i \(0.0785788\pi\)
−0.969684 + 0.244363i \(0.921421\pi\)
\(434\) 0.249873 0.0906537i 0.0119943 0.00435152i
\(435\) 0 0
\(436\) −15.0662 18.0308i −0.721540 0.863519i
\(437\) 0.457206i 0.0218711i
\(438\) 0 0
\(439\) 17.3055i 0.825947i −0.910743 0.412974i \(-0.864490\pi\)
0.910743 0.412974i \(-0.135510\pi\)
\(440\) 32.3205 0.832653i 1.54082 0.0396952i
\(441\) 0 0
\(442\) −3.41171 9.40384i −0.162278 0.447295i
\(443\) 28.5925 1.35847 0.679235 0.733921i \(-0.262312\pi\)
0.679235 + 0.733921i \(0.262312\pi\)
\(444\) 0 0
\(445\) 2.65908 1.63930i 0.126053 0.0777104i
\(446\) 9.26057 + 25.5253i 0.438501 + 1.20866i
\(447\) 0 0
\(448\) 1.78219 + 3.13156i 0.0842005 + 0.147952i
\(449\) 3.59276i 0.169553i 0.996400 + 0.0847763i \(0.0270176\pi\)
−0.996400 + 0.0847763i \(0.972982\pi\)
\(450\) 0 0
\(451\) −49.6448 −2.33768
\(452\) −1.42129 + 1.18761i −0.0668520 + 0.0558602i
\(453\) 0 0
\(454\) 13.7977 + 38.0313i 0.647560 + 1.78490i
\(455\) 0.609803 + 0.989149i 0.0285880 + 0.0463720i
\(456\) 0 0
\(457\) 11.2098i 0.524372i −0.965017 0.262186i \(-0.915557\pi\)
0.965017 0.262186i \(-0.0844434\pi\)
\(458\) 4.78124 1.73463i 0.223413 0.0810540i
\(459\) 0 0
\(460\) 0.298909 0.895163i 0.0139367 0.0417372i
\(461\) −29.8529 −1.39039 −0.695194 0.718823i \(-0.744681\pi\)
−0.695194 + 0.718823i \(0.744681\pi\)
\(462\) 0 0
\(463\) −34.4700 −1.60196 −0.800978 0.598694i \(-0.795687\pi\)
−0.800978 + 0.598694i \(0.795687\pi\)
\(464\) 4.32485 23.9477i 0.200776 1.11174i
\(465\) 0 0
\(466\) −4.71721 13.0023i −0.218521 0.602318i
\(467\) 15.7950 0.730907 0.365453 0.930830i \(-0.380914\pi\)
0.365453 + 0.930830i \(0.380914\pi\)
\(468\) 0 0
\(469\) 2.92539i 0.135082i
\(470\) 6.58802 + 5.22267i 0.303883 + 0.240904i
\(471\) 0 0
\(472\) −6.73734 + 11.5862i −0.310111 + 0.533300i
\(473\) 15.6649 0.720272
\(474\) 0 0
\(475\) −4.86619 + 9.67831i −0.223276 + 0.444071i
\(476\) 4.23781 3.54104i 0.194240 0.162303i
\(477\) 0 0
\(478\) −8.46929 23.3443i −0.387376 1.06774i
\(479\) −32.1810 −1.47039 −0.735194 0.677857i \(-0.762909\pi\)
−0.735194 + 0.677857i \(0.762909\pi\)
\(480\) 0 0
\(481\) −11.0766 −0.505051
\(482\) 5.68571 + 15.6718i 0.258977 + 0.713830i
\(483\) 0 0
\(484\) 23.2249 19.4063i 1.05568 0.882105i
\(485\) −8.39613 + 5.17615i −0.381249 + 0.235037i
\(486\) 0 0
\(487\) 35.6312 1.61460 0.807302 0.590139i \(-0.200927\pi\)
0.807302 + 0.590139i \(0.200927\pi\)
\(488\) −10.8738 + 18.6997i −0.492234 + 0.846497i
\(489\) 0 0
\(490\) 13.3529 16.8437i 0.603223 0.760922i
\(491\) 20.1909i 0.911201i −0.890184 0.455600i \(-0.849425\pi\)
0.890184 0.455600i \(-0.150575\pi\)
\(492\) 0 0
\(493\) −37.2978 −1.67981
\(494\) 1.20568 + 3.32327i 0.0542461 + 0.149521i
\(495\) 0 0
\(496\) −1.64267 0.296660i −0.0737581 0.0133204i
\(497\) 5.15388 0.231183
\(498\) 0 0
\(499\) 15.9850 0.715588 0.357794 0.933801i \(-0.383529\pi\)
0.357794 + 0.933801i \(0.383529\pi\)
\(500\) 15.8549 15.7677i 0.709053 0.705155i
\(501\) 0 0
\(502\) −17.0514 + 6.18623i −0.761041 + 0.276105i
\(503\) 2.13750i 0.0953062i −0.998864 0.0476531i \(-0.984826\pi\)
0.998864 0.0476531i \(-0.0151742\pi\)
\(504\) 0 0
\(505\) 14.7420 + 23.9127i 0.656010 + 1.06410i
\(506\) −0.520313 1.43416i −0.0231308 0.0637563i
\(507\) 0 0
\(508\) −25.4895 + 21.2985i −1.13091 + 0.944968i
\(509\) −9.67611 −0.428886 −0.214443 0.976736i \(-0.568794\pi\)
−0.214443 + 0.976736i \(0.568794\pi\)
\(510\) 0 0
\(511\) 6.25617i 0.276757i
\(512\) 0.210627 22.6264i 0.00930847 0.999957i
\(513\) 0 0
\(514\) −3.71557 10.2414i −0.163887 0.451728i
\(515\) 6.98642 + 11.3325i 0.307858 + 0.499371i
\(516\) 0 0
\(517\) 13.5905 0.597710
\(518\) −2.08547 5.74826i −0.0916301 0.252564i
\(519\) 0 0
\(520\) −0.187933 7.29486i −0.00824140 0.319901i
\(521\) 3.11652i 0.136537i −0.997667 0.0682687i \(-0.978252\pi\)
0.997667 0.0682687i \(-0.0217475\pi\)
\(522\) 0 0
\(523\) 23.5599i 1.03020i 0.857129 + 0.515102i \(0.172246\pi\)
−0.857129 + 0.515102i \(0.827754\pi\)
\(524\) −17.3671 20.7845i −0.758687 0.907976i
\(525\) 0 0
\(526\) 0.561094 0.203565i 0.0244649 0.00887584i
\(527\) 2.55841i 0.111446i
\(528\) 0 0
\(529\) 22.9555 0.998064
\(530\) −21.8454 17.3180i −0.948902 0.752245i
\(531\) 0 0
\(532\) −1.49762 + 1.25138i −0.0649301 + 0.0542544i
\(533\) 11.2050i 0.485343i
\(534\) 0 0
\(535\) −10.5437 17.1027i −0.455844 0.739415i
\(536\) −9.23482 + 15.8812i −0.398884 + 0.685962i
\(537\) 0 0
\(538\) 0.721967 + 1.98999i 0.0311262 + 0.0857945i
\(539\) 34.7471i 1.49667i
\(540\) 0 0
\(541\) 21.4076i 0.920384i −0.887819 0.460192i \(-0.847781\pi\)
0.887819 0.460192i \(-0.152219\pi\)
\(542\) 17.4841 6.34322i 0.751006 0.272465i
\(543\) 0 0
\(544\) −34.1843 + 5.84550i −1.46564 + 0.250624i
\(545\) −22.3622 + 13.7861i −0.957892 + 0.590533i
\(546\) 0 0
\(547\) 7.81382i 0.334095i 0.985949 + 0.167047i \(0.0534233\pi\)
−0.985949 + 0.167047i \(0.946577\pi\)
\(548\) −13.6463 + 11.4026i −0.582943 + 0.487096i
\(549\) 0 0
\(550\) 4.25006 35.8967i 0.181223 1.53064i
\(551\) 13.1808 0.561523
\(552\) 0 0
\(553\) 6.19154i 0.263291i
\(554\) 13.6714 + 37.6832i 0.580843 + 1.60100i
\(555\) 0 0
\(556\) −21.9027 + 18.3015i −0.928883 + 0.776157i
\(557\) 26.4914i 1.12248i −0.827655 0.561238i \(-0.810325\pi\)
0.827655 0.561238i \(-0.189675\pi\)
\(558\) 0 0
\(559\) 3.53562i 0.149541i
\(560\) 3.75031 1.47098i 0.158479 0.0621600i
\(561\) 0 0
\(562\) −37.2668 + 13.5204i −1.57200 + 0.570322i
\(563\) 40.0138 1.68638 0.843191 0.537614i \(-0.180674\pi\)
0.843191 + 0.537614i \(0.180674\pi\)
\(564\) 0 0
\(565\) 1.08670 + 1.76272i 0.0457179 + 0.0741581i
\(566\) −5.37231 + 1.94907i −0.225815 + 0.0819256i
\(567\) 0 0
\(568\) −27.9791 16.2697i −1.17398 0.682662i
\(569\) 17.5658i 0.736397i −0.929747 0.368198i \(-0.879975\pi\)
0.929747 0.368198i \(-0.120025\pi\)
\(570\) 0 0
\(571\) 31.8630 1.33342 0.666712 0.745315i \(-0.267701\pi\)
0.666712 + 0.745315i \(0.267701\pi\)
\(572\) −7.56394 9.05232i −0.316264 0.378497i
\(573\) 0 0
\(574\) −5.81488 + 2.10963i −0.242708 + 0.0880544i
\(575\) −0.942694 0.473980i −0.0393130 0.0197663i
\(576\) 0 0
\(577\) 13.2498i 0.551596i −0.961216 0.275798i \(-0.911058\pi\)
0.961216 0.275798i \(-0.0889421\pi\)
\(578\) 9.92870 + 27.3669i 0.412980 + 1.13831i
\(579\) 0 0
\(580\) −25.8067 8.61728i −1.07157 0.357813i
\(581\) −2.35159 −0.0975605
\(582\) 0 0
\(583\) −45.0651 −1.86641
\(584\) 19.7494 33.9632i 0.817236 1.40541i
\(585\) 0 0
\(586\) −12.8865 + 4.67520i −0.532335 + 0.193131i
\(587\) −21.1959 −0.874848 −0.437424 0.899255i \(-0.644109\pi\)
−0.437424 + 0.899255i \(0.644109\pi\)
\(588\) 0 0
\(589\) 0.904128i 0.0372540i
\(590\) 11.7425 + 9.30888i 0.483430 + 0.383240i
\(591\) 0 0
\(592\) −6.82458 + 37.7892i −0.280488 + 1.55313i
\(593\) −24.0661 −0.988275 −0.494137 0.869384i \(-0.664516\pi\)
−0.494137 + 0.869384i \(0.664516\pi\)
\(594\) 0 0
\(595\) −3.24018 5.25583i −0.132834 0.215468i
\(596\) −13.7604 + 11.4979i −0.563649 + 0.470974i
\(597\) 0 0
\(598\) −0.323696 + 0.117437i −0.0132369 + 0.00480234i
\(599\) −37.1635 −1.51846 −0.759231 0.650822i \(-0.774425\pi\)
−0.759231 + 0.650822i \(0.774425\pi\)
\(600\) 0 0
\(601\) 23.4082 0.954841 0.477421 0.878675i \(-0.341572\pi\)
0.477421 + 0.878675i \(0.341572\pi\)
\(602\) 1.83482 0.665672i 0.0747817 0.0271308i
\(603\) 0 0
\(604\) −19.9491 23.8745i −0.811718 0.971442i
\(605\) −17.7575 28.8041i −0.721945 1.17105i
\(606\) 0 0
\(607\) 11.7302 0.476114 0.238057 0.971251i \(-0.423490\pi\)
0.238057 + 0.971251i \(0.423490\pi\)
\(608\) 12.0806 2.06577i 0.489931 0.0837780i
\(609\) 0 0
\(610\) 18.9519 + 15.0242i 0.767339 + 0.608311i
\(611\) 3.06743i 0.124095i
\(612\) 0 0
\(613\) −10.9631 −0.442797 −0.221399 0.975183i \(-0.571062\pi\)
−0.221399 + 0.975183i \(0.571062\pi\)
\(614\) 40.4307 14.6682i 1.63165 0.591961i
\(615\) 0 0
\(616\) 3.27362 5.62967i 0.131898 0.226826i
\(617\) −13.0317 −0.524635 −0.262318 0.964982i \(-0.584487\pi\)
−0.262318 + 0.964982i \(0.584487\pi\)
\(618\) 0 0
\(619\) −36.3769 −1.46211 −0.731056 0.682317i \(-0.760972\pi\)
−0.731056 + 0.682317i \(0.760972\pi\)
\(620\) −0.591095 + 1.77019i −0.0237389 + 0.0710926i
\(621\) 0 0
\(622\) −0.932092 2.56917i −0.0373735 0.103014i
\(623\) 0.629204i 0.0252085i
\(624\) 0 0
\(625\) −14.9106 20.0668i −0.596423 0.802671i
\(626\) −30.3436 + 11.0087i −1.21278 + 0.439994i
\(627\) 0 0
\(628\) −20.3116 + 16.9720i −0.810522 + 0.677256i
\(629\) 58.8555 2.34672
\(630\) 0 0
\(631\) 42.0264i 1.67304i −0.547933 0.836522i \(-0.684585\pi\)
0.547933 0.836522i \(-0.315415\pi\)
\(632\) −19.5454 + 33.6123i −0.777473 + 1.33703i
\(633\) 0 0
\(634\) 4.79093 1.73815i 0.190272 0.0690306i
\(635\) 19.4889 + 31.6126i 0.773394 + 1.25451i
\(636\) 0 0
\(637\) −7.84255 −0.310733
\(638\) −41.3456 + 15.0002i −1.63689 + 0.593862i
\(639\) 0 0
\(640\) −25.0030 3.85338i −0.988332 0.152318i
\(641\) 39.2028i 1.54842i −0.632931 0.774208i \(-0.718148\pi\)
0.632931 0.774208i \(-0.281852\pi\)
\(642\) 0 0
\(643\) 40.0866i 1.58086i 0.612552 + 0.790431i \(0.290143\pi\)
−0.612552 + 0.790431i \(0.709857\pi\)
\(644\) −0.121888 0.145872i −0.00480307 0.00574818i
\(645\) 0 0
\(646\) −6.40636 17.6581i −0.252055 0.694750i
\(647\) 10.2214i 0.401844i 0.979607 + 0.200922i \(0.0643938\pi\)
−0.979607 + 0.200922i \(0.935606\pi\)
\(648\) 0 0
\(649\) 24.2237 0.950863
\(650\) −8.10202 0.959253i −0.317787 0.0376250i
\(651\) 0 0
\(652\) 19.7052 + 23.5827i 0.771717 + 0.923570i
\(653\) 33.7435i 1.32049i −0.751052 0.660243i \(-0.770453\pi\)
0.751052 0.660243i \(-0.229547\pi\)
\(654\) 0 0
\(655\) −25.7774 + 15.8916i −1.00721 + 0.620935i
\(656\) 38.2271 + 6.90367i 1.49252 + 0.269543i
\(657\) 0 0
\(658\) 1.59185 0.577522i 0.0620568 0.0225142i
\(659\) 7.62965i 0.297209i −0.988897 0.148604i \(-0.952522\pi\)
0.988897 0.148604i \(-0.0474781\pi\)
\(660\) 0 0
\(661\) 27.2772i 1.06096i −0.847698 0.530480i \(-0.822012\pi\)
0.847698 0.530480i \(-0.177988\pi\)
\(662\) −0.0899764 0.248006i −0.00349703 0.00963902i
\(663\) 0 0
\(664\) 12.7662 + 7.42348i 0.495425 + 0.288087i
\(665\) 1.14506 + 1.85738i 0.0444036 + 0.0720262i
\(666\) 0 0
\(667\) 1.28385i 0.0497109i
\(668\) −23.0064 27.5334i −0.890144 1.06530i
\(669\) 0 0
\(670\) 16.0953 + 12.7596i 0.621816 + 0.492947i
\(671\) 39.0961 1.50929
\(672\) 0 0
\(673\) 3.17561i 0.122411i −0.998125 0.0612055i \(-0.980506\pi\)
0.998125 0.0612055i \(-0.0194945\pi\)
\(674\) 20.2577 7.34948i 0.780298 0.283092i
\(675\) 0 0
\(676\) 17.9085 14.9640i 0.688790 0.575540i
\(677\) 32.1530i 1.23574i 0.786280 + 0.617870i \(0.212004\pi\)
−0.786280 + 0.617870i \(0.787996\pi\)
\(678\) 0 0
\(679\) 1.98673i 0.0762437i
\(680\) 0.998577 + 38.7611i 0.0382937 + 1.48642i
\(681\) 0 0
\(682\) 1.02892 + 2.83607i 0.0393995 + 0.108599i
\(683\) −25.5185 −0.976437 −0.488219 0.872721i \(-0.662353\pi\)
−0.488219 + 0.872721i \(0.662353\pi\)
\(684\) 0 0
\(685\) 10.4338 + 16.9245i 0.398656 + 0.646651i
\(686\) −2.99720 8.26130i −0.114433 0.315418i
\(687\) 0 0
\(688\) −12.0622 2.17838i −0.459866 0.0830498i
\(689\) 10.1714i 0.387498i
\(690\) 0 0
\(691\) 32.6320 1.24138 0.620691 0.784056i \(-0.286852\pi\)
0.620691 + 0.784056i \(0.286852\pi\)
\(692\) 22.1354 + 26.4910i 0.841462 + 1.00704i
\(693\) 0 0
\(694\) −12.6011 34.7330i −0.478331 1.31844i
\(695\) 16.7466 + 27.1643i 0.635234 + 1.03040i
\(696\) 0 0
\(697\) 59.5376i 2.25515i
\(698\) 47.9777 17.4063i 1.81598 0.658838i
\(699\) 0 0
\(700\) −1.02761 4.38517i −0.0388399 0.165744i
\(701\) −35.0817 −1.32502 −0.662509 0.749054i \(-0.730508\pi\)
−0.662509 + 0.749054i \(0.730508\pi\)
\(702\) 0 0
\(703\) −20.7992 −0.784458
\(704\) −35.5433 + 20.2279i −1.33959 + 0.762368i
\(705\) 0 0
\(706\) 4.68326 + 12.9087i 0.176257 + 0.485825i
\(707\) 5.65832 0.212803
\(708\) 0 0
\(709\) 17.6779i 0.663907i 0.943296 + 0.331954i \(0.107708\pi\)
−0.943296 + 0.331954i \(0.892292\pi\)
\(710\) −22.4796 + 28.3564i −0.843645 + 1.06420i
\(711\) 0 0
\(712\) −1.98626 + 3.41579i −0.0744383 + 0.128012i
\(713\) 0.0880646 0.00329805
\(714\) 0 0
\(715\) −11.2269 + 6.92129i −0.419862 + 0.258842i
\(716\) 0.294932 + 0.352967i 0.0110221 + 0.0131910i
\(717\) 0 0
\(718\) −16.3242 44.9951i −0.609213 1.67920i
\(719\) −21.9011 −0.816773 −0.408386 0.912809i \(-0.633908\pi\)
−0.408386 + 0.912809i \(0.633908\pi\)
\(720\) 0 0
\(721\) 2.68155 0.0998662
\(722\) −6.90001 19.0188i −0.256792 0.707806i
\(723\) 0 0
\(724\) −2.91015 3.48279i −0.108155 0.129437i
\(725\) −13.6644 + 27.1770i −0.507484 + 1.00933i
\(726\) 0 0
\(727\) 34.2800 1.27138 0.635688 0.771946i \(-0.280717\pi\)
0.635688 + 0.771946i \(0.280717\pi\)
\(728\) −1.27064 0.738868i −0.0470929 0.0273843i
\(729\) 0 0
\(730\) −34.4211 27.2875i −1.27398 1.00995i
\(731\) 18.7864i 0.694842i
\(732\) 0 0
\(733\) 16.8179 0.621182 0.310591 0.950544i \(-0.399473\pi\)
0.310591 + 0.950544i \(0.399473\pi\)
\(734\) −1.03292 2.84708i −0.0381257 0.105088i
\(735\) 0 0
\(736\) 0.201212 + 1.17668i 0.00741676 + 0.0433730i
\(737\) 33.2032 1.22306
\(738\) 0 0
\(739\) −25.4981 −0.937964 −0.468982 0.883208i \(-0.655379\pi\)
−0.468982 + 0.883208i \(0.655379\pi\)
\(740\) 40.7228 + 13.5980i 1.49700 + 0.499872i
\(741\) 0 0
\(742\) −5.27846 + 1.91502i −0.193778 + 0.0703026i
\(743\) 2.19747i 0.0806172i −0.999187 0.0403086i \(-0.987166\pi\)
0.999187 0.0403086i \(-0.0128341\pi\)
\(744\) 0 0
\(745\) 10.5210 + 17.0660i 0.385461 + 0.625249i
\(746\) −7.08034 19.5159i −0.259230 0.714526i
\(747\) 0 0
\(748\) 40.1909 + 48.0993i 1.46952 + 1.75869i
\(749\) −4.04692 −0.147871
\(750\) 0 0
\(751\) 34.8488i 1.27165i 0.771832 + 0.635826i \(0.219340\pi\)
−0.771832 + 0.635826i \(0.780660\pi\)
\(752\) −10.4649 1.88991i −0.381614 0.0689180i
\(753\) 0 0
\(754\) 3.38559 + 9.33185i 0.123296 + 0.339846i
\(755\) −29.6097 + 18.2542i −1.07761 + 0.664338i
\(756\) 0 0
\(757\) 21.5026 0.781527 0.390763 0.920491i \(-0.372211\pi\)
0.390763 + 0.920491i \(0.372211\pi\)
\(758\) −2.14319 5.90737i −0.0778441 0.214565i
\(759\) 0 0
\(760\) −0.352892 13.6980i −0.0128007 0.496878i
\(761\) 6.95386i 0.252077i 0.992025 + 0.126039i \(0.0402263\pi\)
−0.992025 + 0.126039i \(0.959774\pi\)
\(762\) 0 0
\(763\) 5.29145i 0.191563i
\(764\) −26.3497 + 22.0173i −0.953299 + 0.796558i
\(765\) 0 0
\(766\) 20.1198 7.29947i 0.726960 0.263741i
\(767\) 5.46737i 0.197415i
\(768\) 0 0
\(769\) −15.1190 −0.545205 −0.272602 0.962127i \(-0.587884\pi\)
−0.272602 + 0.962127i \(0.587884\pi\)
\(770\) −5.70558 4.52312i −0.205615 0.163002i
\(771\) 0 0
\(772\) 1.15428 + 1.38141i 0.0415435 + 0.0497181i
\(773\) 13.0796i 0.470439i 0.971942 + 0.235220i \(0.0755810\pi\)
−0.971942 + 0.235220i \(0.924419\pi\)
\(774\) 0 0
\(775\) 1.86418 + 0.937299i 0.0669634 + 0.0336688i
\(776\) 6.27169 10.7855i 0.225140 0.387175i
\(777\) 0 0
\(778\) 13.0243 + 35.8993i 0.466942 + 1.28705i
\(779\) 21.0403i 0.753846i
\(780\) 0 0
\(781\) 58.4968i 2.09318i
\(782\) 1.71995 0.623997i 0.0615053 0.0223141i
\(783\) 0 0
\(784\) −4.83198 + 26.7558i −0.172571 + 0.955563i
\(785\) 15.5300 + 25.1909i 0.554290 + 0.899102i
\(786\) 0 0
\(787\) 25.0403i 0.892591i 0.894886 + 0.446296i \(0.147257\pi\)
−0.894886 + 0.446296i \(0.852743\pi\)
\(788\) −2.07339 2.48138i −0.0738616 0.0883956i
\(789\) 0 0
\(790\) 34.0655 + 27.0055i 1.21200 + 0.960814i
\(791\) 0.417102 0.0148305
\(792\) 0 0
\(793\) 8.82412i 0.313354i
\(794\) −1.53788 4.23894i −0.0545775 0.150434i
\(795\) 0 0
\(796\) −17.9483 21.4800i −0.636160 0.761339i
\(797\) 29.0728i 1.02981i −0.857247 0.514905i \(-0.827827\pi\)
0.857247 0.514905i \(-0.172173\pi\)
\(798\) 0 0
\(799\) 16.2987i 0.576607i
\(800\) −8.26444 + 27.0499i −0.292192 + 0.956360i
\(801\) 0 0
\(802\) 33.4739 12.1443i 1.18200 0.428831i
\(803\) −71.0078 −2.50581
\(804\) 0 0
\(805\) −0.180914 + 0.111532i −0.00637639 + 0.00393100i
\(806\) 0.640110 0.232232i 0.0225469 0.00818001i
\(807\) 0 0
\(808\) −30.7176 17.8621i −1.08064 0.628387i
\(809\) 17.8537i 0.627702i 0.949472 + 0.313851i \(0.101619\pi\)
−0.949472 + 0.313851i \(0.898381\pi\)
\(810\) 0 0
\(811\) −47.8173 −1.67909 −0.839546 0.543289i \(-0.817179\pi\)
−0.839546 + 0.543289i \(0.817179\pi\)
\(812\) −4.20537 + 3.51393i −0.147580 + 0.123315i
\(813\) 0 0
\(814\) 65.2430 23.6701i 2.28677 0.829637i
\(815\) 29.2478 18.0310i 1.02450 0.631600i
\(816\) 0 0
\(817\) 6.63903i 0.232270i
\(818\) −13.2837 36.6146i −0.464455 1.28020i
\(819\) 0 0
\(820\) 13.7556 41.1947i 0.480365 1.43858i
\(821\) −0.00469899 −0.000163996 −8.19979e−5 1.00000i \(-0.500026\pi\)
−8.19979e−5 1.00000i \(0.500026\pi\)
\(822\) 0 0
\(823\) 15.1981 0.529773 0.264887 0.964280i \(-0.414665\pi\)
0.264887 + 0.964280i \(0.414665\pi\)
\(824\) −14.5575 8.46509i −0.507133 0.294895i
\(825\) 0 0
\(826\) 2.83731 1.02937i 0.0987227 0.0358165i
\(827\) −3.42753 −0.119187 −0.0595934 0.998223i \(-0.518980\pi\)
−0.0595934 + 0.998223i \(0.518980\pi\)
\(828\) 0 0
\(829\) 16.1960i 0.562511i 0.959633 + 0.281256i \(0.0907509\pi\)
−0.959633 + 0.281256i \(0.909249\pi\)
\(830\) 10.2569 12.9383i 0.356023 0.449096i
\(831\) 0 0
\(832\) 4.56551 + 8.02226i 0.158281 + 0.278122i
\(833\) 41.6713 1.44382
\(834\) 0 0
\(835\) −34.1475 + 21.0517i −1.18172 + 0.728525i
\(836\) −14.2033 16.9981i −0.491230 0.587890i
\(837\) 0 0
\(838\) 36.5936 13.2761i 1.26411 0.458617i
\(839\) 12.9846 0.448279 0.224139 0.974557i \(-0.428043\pi\)
0.224139 + 0.974557i \(0.428043\pi\)
\(840\) 0 0
\(841\) 8.01224 0.276284
\(842\) −39.4248 + 14.3033i −1.35867 + 0.492924i
\(843\) 0 0
\(844\) −38.2187 + 31.9348i −1.31554 + 1.09924i
\(845\) −13.6926 22.2106i −0.471041 0.764067i
\(846\) 0 0
\(847\) −6.81575 −0.234192
\(848\) 34.7007 + 6.26681i 1.19163 + 0.215203i
\(849\) 0 0
\(850\) 43.0499 + 5.09697i 1.47660 + 0.174825i
\(851\) 2.02590i 0.0694471i
\(852\) 0 0
\(853\) 15.9478 0.546044 0.273022 0.962008i \(-0.411977\pi\)
0.273022 + 0.962008i \(0.411977\pi\)
\(854\) 4.57931 1.66137i 0.156701 0.0568509i
\(855\) 0 0
\(856\) 21.9697 + 12.7753i 0.750909 + 0.436650i
\(857\) −36.3078 −1.24025 −0.620126 0.784502i \(-0.712919\pi\)
−0.620126 + 0.784502i \(0.712919\pi\)
\(858\) 0 0
\(859\) 16.7215 0.570530 0.285265 0.958449i \(-0.407918\pi\)
0.285265 + 0.958449i \(0.407918\pi\)
\(860\) −4.34042 + 12.9985i −0.148007 + 0.443247i
\(861\) 0 0
\(862\) −7.28941 20.0921i −0.248278 0.684340i
\(863\) 32.0732i 1.09178i 0.837856 + 0.545892i \(0.183809\pi\)
−0.837856 + 0.545892i \(0.816191\pi\)
\(864\) 0 0
\(865\) 32.8548 20.2547i 1.11710 0.688681i
\(866\) −13.5199 + 4.90501i −0.459424 + 0.166679i
\(867\) 0 0
\(868\) 0.241035 + 0.288464i 0.00818125 + 0.00979110i
\(869\) 70.2742 2.38389
\(870\) 0 0
\(871\) 7.49409i 0.253928i
\(872\) 16.7040 28.7259i 0.565668 0.972782i
\(873\) 0 0
\(874\) −0.607822 + 0.220517i −0.0205599 + 0.00745911i
\(875\) −5.01673 + 0.435430i −0.169596 + 0.0147202i
\(876\) 0 0
\(877\) 24.1662 0.816035 0.408018 0.912974i \(-0.366220\pi\)
0.408018 + 0.912974i \(0.366220\pi\)
\(878\) 23.0064 8.34671i 0.776428 0.281688i
\(879\) 0 0
\(880\) 16.6956 + 42.5662i 0.562809 + 1.43490i
\(881\) 16.3886i 0.552146i 0.961137 + 0.276073i \(0.0890332\pi\)
−0.961137 + 0.276073i \(0.910967\pi\)
\(882\) 0 0
\(883\) 17.3417i 0.583595i −0.956480 0.291798i \(-0.905747\pi\)
0.956480 0.291798i \(-0.0942534\pi\)
\(884\) 10.8562 9.07122i 0.365133 0.305098i
\(885\) 0 0
\(886\) 13.7906 + 38.0116i 0.463304 + 1.27702i
\(887\) 47.8185i 1.60559i 0.596256 + 0.802794i \(0.296654\pi\)
−0.596256 + 0.802794i \(0.703346\pi\)
\(888\) 0 0
\(889\) 7.48031 0.250882
\(890\) 3.46185 + 2.74439i 0.116041 + 0.0919921i
\(891\) 0 0
\(892\) −29.4675 + 24.6225i −0.986645 + 0.824421i
\(893\) 5.75988i 0.192747i
\(894\) 0 0
\(895\) 0.437757 0.269874i 0.0146326 0.00902089i
\(896\) −3.30360 + 3.87968i −0.110366 + 0.129611i
\(897\) 0 0
\(898\) −4.77630 + 1.73284i −0.159387 + 0.0578256i
\(899\) 2.53882i 0.0846745i
\(900\) 0 0
\(901\) 54.0453i 1.80051i
\(902\) −23.9444 65.9991i −0.797262 2.19753i
\(903\) 0 0
\(904\) −2.26434 1.31670i −0.0753109 0.0437929i
\(905\) −4.31943 + 2.66290i −0.143583 + 0.0885177i
\(906\) 0 0
\(907\) 8.22699i 0.273173i 0.990628 + 0.136586i \(0.0436131\pi\)
−0.990628 + 0.136586i \(0.956387\pi\)
\(908\) −43.9050 + 36.6861i −1.45704 + 1.21747i
\(909\) 0 0
\(910\) −1.02088 + 1.28777i −0.0338420 + 0.0426891i
\(911\) −22.9871 −0.761597 −0.380798 0.924658i \(-0.624351\pi\)
−0.380798 + 0.924658i \(0.624351\pi\)
\(912\) 0 0
\(913\) 26.6907i 0.883332i
\(914\) 14.9026 5.40665i 0.492934 0.178836i
\(915\) 0 0
\(916\) 4.61213 + 5.51967i 0.152389 + 0.182375i
\(917\) 6.09957i 0.201425i
\(918\) 0 0
\(919\) 34.6477i 1.14292i −0.820629 0.571461i \(-0.806377\pi\)
0.820629 0.571461i \(-0.193623\pi\)
\(920\) 1.33422 0.0343727i 0.0439879 0.00113323i
\(921\) 0 0
\(922\) −14.3985 39.6872i −0.474189 1.30703i
\(923\) 13.2029 0.434579
\(924\) 0 0
\(925\) 21.5623 42.8851i 0.708965 1.41005i
\(926\) −16.6254 45.8253i −0.546344 1.50591i
\(927\) 0 0
\(928\) 33.9226 5.80075i 1.11356 0.190419i
\(929\) 37.7103i 1.23723i 0.785692 + 0.618617i \(0.212307\pi\)
−0.785692 + 0.618617i \(0.787693\pi\)
\(930\) 0 0
\(931\) −14.7264 −0.482639
\(932\) 15.0104 12.5424i 0.491681 0.410839i
\(933\) 0 0
\(934\) 7.61818 + 20.9983i 0.249274 + 0.687086i
\(935\) 59.6539 36.7762i 1.95089 1.20271i
\(936\) 0 0
\(937\) 27.9404i 0.912773i −0.889782 0.456386i \(-0.849143\pi\)
0.889782 0.456386i \(-0.150857\pi\)
\(938\) 3.88908 1.41096i 0.126983 0.0460694i
\(939\) 0 0
\(940\) −3.76565 + 11.2773i −0.122822 + 0.367823i
\(941\) −30.4349 −0.992148 −0.496074 0.868280i \(-0.665226\pi\)
−0.496074 + 0.868280i \(0.665226\pi\)
\(942\) 0 0
\(943\) −2.04938 −0.0667370
\(944\) −18.6526 3.36858i −0.607089 0.109638i
\(945\) 0 0
\(946\) 7.55540 + 20.8253i 0.245647 + 0.677089i
\(947\) 35.3004 1.14711 0.573554 0.819167i \(-0.305564\pi\)
0.573554 + 0.819167i \(0.305564\pi\)
\(948\) 0 0
\(949\) 16.0267i 0.520249i
\(950\) −15.2136 1.80124i −0.493595 0.0584401i
\(951\) 0 0
\(952\) 6.75150 + 3.92596i 0.218817 + 0.127241i
\(953\) −12.1033 −0.392064 −0.196032 0.980598i \(-0.562806\pi\)
−0.196032 + 0.980598i \(0.562806\pi\)
\(954\) 0 0
\(955\) 20.1467 + 32.6795i 0.651930 + 1.05748i
\(956\) 26.9496 22.5186i 0.871613 0.728303i
\(957\) 0 0
\(958\) −15.5214 42.7823i −0.501473 1.38223i
\(959\) 4.00475 0.129320
\(960\) 0 0
\(961\) 30.8259 0.994382
\(962\) −5.34243 14.7256i −0.172247 0.474771i
\(963\) 0 0
\(964\) −18.0922 + 15.1175i −0.582709 + 0.486900i
\(965\) 1.71326 1.05621i 0.0551517 0.0340006i
\(966\) 0 0
\(967\) −30.6826 −0.986687 −0.493344 0.869834i \(-0.664226\pi\)
−0.493344 + 0.869834i \(0.664226\pi\)
\(968\) 37.0010 + 21.5159i 1.18926 + 0.691547i
\(969\) 0 0
\(970\) −10.9309 8.66550i −0.350970 0.278232i
\(971\) 4.77033i 0.153087i 0.997066 + 0.0765436i \(0.0243884\pi\)
−0.997066 + 0.0765436i \(0.975612\pi\)
\(972\) 0 0
\(973\) 6.42773 0.206064
\(974\) 17.1855 + 47.3690i 0.550658 + 1.51780i
\(975\) 0 0
\(976\) −30.1045 5.43675i −0.963621 0.174026i
\(977\) 28.1550 0.900760 0.450380 0.892837i \(-0.351289\pi\)
0.450380 + 0.892837i \(0.351289\pi\)
\(978\) 0 0
\(979\) 7.14149 0.228243
\(980\) 28.8328 + 9.62773i 0.921030 + 0.307547i
\(981\) 0 0
\(982\) 26.8422 9.73835i 0.856570 0.310763i
\(983\) 24.2134i 0.772288i 0.922439 + 0.386144i \(0.126193\pi\)
−0.922439 + 0.386144i \(0.873807\pi\)
\(984\) 0 0
\(985\) −3.07746 + 1.89723i −0.0980561 + 0.0604509i
\(986\) −17.9893 49.5846i −0.572895 1.57910i
\(987\) 0 0
\(988\) −3.83652 + 3.20572i −0.122056 + 0.101988i
\(989\) 0.646660 0.0205626
\(990\) 0 0
\(991\) 18.6181i 0.591424i −0.955277 0.295712i \(-0.904443\pi\)
0.955277 0.295712i \(-0.0955569\pi\)
\(992\) −0.397897 2.32689i −0.0126333 0.0738789i
\(993\) 0 0
\(994\) 2.48579 + 6.85170i 0.0788446 + 0.217323i
\(995\) −26.6400 + 16.4233i −0.844544 + 0.520655i
\(996\) 0 0
\(997\) −13.7405 −0.435167 −0.217584 0.976042i \(-0.569817\pi\)
−0.217584 + 0.976042i \(0.569817\pi\)
\(998\) 7.70981 + 21.2509i 0.244050 + 0.672685i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1080.2.m.c.539.32 yes 48
3.2 odd 2 inner 1080.2.m.c.539.17 48
4.3 odd 2 4320.2.m.c.2159.35 48
5.4 even 2 inner 1080.2.m.c.539.18 yes 48
8.3 odd 2 inner 1080.2.m.c.539.29 yes 48
8.5 even 2 4320.2.m.c.2159.14 48
12.11 even 2 4320.2.m.c.2159.13 48
15.14 odd 2 inner 1080.2.m.c.539.31 yes 48
20.19 odd 2 4320.2.m.c.2159.34 48
24.5 odd 2 4320.2.m.c.2159.36 48
24.11 even 2 inner 1080.2.m.c.539.20 yes 48
40.19 odd 2 inner 1080.2.m.c.539.19 yes 48
40.29 even 2 4320.2.m.c.2159.15 48
60.59 even 2 4320.2.m.c.2159.16 48
120.29 odd 2 4320.2.m.c.2159.33 48
120.59 even 2 inner 1080.2.m.c.539.30 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1080.2.m.c.539.17 48 3.2 odd 2 inner
1080.2.m.c.539.18 yes 48 5.4 even 2 inner
1080.2.m.c.539.19 yes 48 40.19 odd 2 inner
1080.2.m.c.539.20 yes 48 24.11 even 2 inner
1080.2.m.c.539.29 yes 48 8.3 odd 2 inner
1080.2.m.c.539.30 yes 48 120.59 even 2 inner
1080.2.m.c.539.31 yes 48 15.14 odd 2 inner
1080.2.m.c.539.32 yes 48 1.1 even 1 trivial
4320.2.m.c.2159.13 48 12.11 even 2
4320.2.m.c.2159.14 48 8.5 even 2
4320.2.m.c.2159.15 48 40.29 even 2
4320.2.m.c.2159.16 48 60.59 even 2
4320.2.m.c.2159.33 48 120.29 odd 2
4320.2.m.c.2159.34 48 20.19 odd 2
4320.2.m.c.2159.35 48 4.3 odd 2
4320.2.m.c.2159.36 48 24.5 odd 2