Properties

Label 4320.2.m.c.2159.15
Level $4320$
Weight $2$
Character 4320.2159
Analytic conductor $34.495$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4320,2,Mod(2159,4320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4320.2159");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4320 = 2^{5} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4320.m (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.4953736732\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: no (minimal twist has level 1080)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2159.15
Character \(\chi\) \(=\) 4320.2159
Dual form 4320.2.m.c.2159.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.17345 + 1.90342i) q^{5} -0.450397 q^{7} -5.11202i q^{11} +1.15380 q^{13} +6.13070 q^{17} -2.16656 q^{19} -0.211029i q^{23} +(-2.24604 - 4.46713i) q^{25} -6.08377 q^{29} -0.417311i q^{31} +(0.528517 - 0.857296i) q^{35} -9.60013 q^{37} +9.71138i q^{41} -3.06432i q^{43} +2.65854i q^{47} -6.79714 q^{49} +8.81551i q^{53} +(9.73034 + 5.99869i) q^{55} +4.73857i q^{59} +7.64787i q^{61} +(-1.35392 + 2.19617i) q^{65} -6.49513i q^{67} +11.4430 q^{71} -13.8904i q^{73} +2.30244i q^{77} -13.7469i q^{79} -5.22116 q^{83} +(-7.19405 + 11.6693i) q^{85} -1.39700i q^{89} -0.519668 q^{91} +(2.54234 - 4.12388i) q^{95} -4.41107i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 16 q^{19} + 48 q^{49}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4320\mathbb{Z}\right)^\times\).

\(n\) \(2081\) \(2431\) \(3457\) \(3781\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.17345 + 1.90342i −0.524781 + 0.851237i
\(6\) 0 0
\(7\) −0.450397 −0.170234 −0.0851170 0.996371i \(-0.527126\pi\)
−0.0851170 + 0.996371i \(0.527126\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.11202i 1.54133i −0.637239 0.770666i \(-0.719924\pi\)
0.637239 0.770666i \(-0.280076\pi\)
\(12\) 0 0
\(13\) 1.15380 0.320007 0.160003 0.987116i \(-0.448849\pi\)
0.160003 + 0.987116i \(0.448849\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.13070 1.48691 0.743457 0.668784i \(-0.233185\pi\)
0.743457 + 0.668784i \(0.233185\pi\)
\(18\) 0 0
\(19\) −2.16656 −0.497043 −0.248521 0.968626i \(-0.579945\pi\)
−0.248521 + 0.968626i \(0.579945\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.211029i 0.0440025i −0.999758 0.0220013i \(-0.992996\pi\)
0.999758 0.0220013i \(-0.00700379\pi\)
\(24\) 0 0
\(25\) −2.24604 4.46713i −0.449209 0.893427i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.08377 −1.12973 −0.564864 0.825184i \(-0.691071\pi\)
−0.564864 + 0.825184i \(0.691071\pi\)
\(30\) 0 0
\(31\) 0.417311i 0.0749512i −0.999298 0.0374756i \(-0.988068\pi\)
0.999298 0.0374756i \(-0.0119317\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.528517 0.857296i 0.0893356 0.144909i
\(36\) 0 0
\(37\) −9.60013 −1.57825 −0.789126 0.614232i \(-0.789466\pi\)
−0.789126 + 0.614232i \(0.789466\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 9.71138i 1.51666i 0.651869 + 0.758332i \(0.273985\pi\)
−0.651869 + 0.758332i \(0.726015\pi\)
\(42\) 0 0
\(43\) 3.06432i 0.467305i −0.972320 0.233652i \(-0.924932\pi\)
0.972320 0.233652i \(-0.0750678\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.65854i 0.387788i 0.981023 + 0.193894i \(0.0621117\pi\)
−0.981023 + 0.193894i \(0.937888\pi\)
\(48\) 0 0
\(49\) −6.79714 −0.971020
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.81551i 1.21090i 0.795882 + 0.605452i \(0.207008\pi\)
−0.795882 + 0.605452i \(0.792992\pi\)
\(54\) 0 0
\(55\) 9.73034 + 5.99869i 1.31204 + 0.808863i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.73857i 0.616910i 0.951239 + 0.308455i \(0.0998119\pi\)
−0.951239 + 0.308455i \(0.900188\pi\)
\(60\) 0 0
\(61\) 7.64787i 0.979209i 0.871945 + 0.489605i \(0.162859\pi\)
−0.871945 + 0.489605i \(0.837141\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.35392 + 2.19617i −0.167934 + 0.272402i
\(66\) 0 0
\(67\) 6.49513i 0.793506i −0.917925 0.396753i \(-0.870137\pi\)
0.917925 0.396753i \(-0.129863\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.4430 1.35803 0.679016 0.734124i \(-0.262407\pi\)
0.679016 + 0.734124i \(0.262407\pi\)
\(72\) 0 0
\(73\) 13.8904i 1.62574i −0.582443 0.812871i \(-0.697903\pi\)
0.582443 0.812871i \(-0.302097\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.30244i 0.262387i
\(78\) 0 0
\(79\) 13.7469i 1.54664i −0.634015 0.773321i \(-0.718594\pi\)
0.634015 0.773321i \(-0.281406\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.22116 −0.573096 −0.286548 0.958066i \(-0.592508\pi\)
−0.286548 + 0.958066i \(0.592508\pi\)
\(84\) 0 0
\(85\) −7.19405 + 11.6693i −0.780305 + 1.26572i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.39700i 0.148082i −0.997255 0.0740408i \(-0.976411\pi\)
0.997255 0.0740408i \(-0.0235895\pi\)
\(90\) 0 0
\(91\) −0.519668 −0.0544761
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.54234 4.12388i 0.260839 0.423101i
\(96\) 0 0
\(97\) 4.41107i 0.447876i −0.974603 0.223938i \(-0.928109\pi\)
0.974603 0.223938i \(-0.0718913\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −12.5630 −1.25006 −0.625031 0.780600i \(-0.714914\pi\)
−0.625031 + 0.780600i \(0.714914\pi\)
\(102\) 0 0
\(103\) −5.95376 −0.586641 −0.293320 0.956014i \(-0.594760\pi\)
−0.293320 + 0.956014i \(0.594760\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.98524 −0.868636 −0.434318 0.900760i \(-0.643011\pi\)
−0.434318 + 0.900760i \(0.643011\pi\)
\(108\) 0 0
\(109\) 11.7484i 1.12529i −0.826697 0.562647i \(-0.809783\pi\)
0.826697 0.562647i \(-0.190217\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.926078 −0.0871181 −0.0435590 0.999051i \(-0.513870\pi\)
−0.0435590 + 0.999051i \(0.513870\pi\)
\(114\) 0 0
\(115\) 0.401677 + 0.247631i 0.0374566 + 0.0230917i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.76125 −0.253123
\(120\) 0 0
\(121\) −15.1328 −1.37571
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.1385 + 0.966769i 0.996254 + 0.0864704i
\(126\) 0 0
\(127\) −16.6083 −1.47375 −0.736873 0.676031i \(-0.763698\pi\)
−0.736873 + 0.676031i \(0.763698\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 13.5426i 1.18323i −0.806222 0.591613i \(-0.798491\pi\)
0.806222 0.591613i \(-0.201509\pi\)
\(132\) 0 0
\(133\) 0.975811 0.0846136
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −8.89160 −0.759661 −0.379830 0.925056i \(-0.624018\pi\)
−0.379830 + 0.925056i \(0.624018\pi\)
\(138\) 0 0
\(139\) −14.2713 −1.21047 −0.605236 0.796046i \(-0.706921\pi\)
−0.605236 + 0.796046i \(0.706921\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 5.89826i 0.493237i
\(144\) 0 0
\(145\) 7.13898 11.5800i 0.592860 0.961666i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −8.96593 −0.734518 −0.367259 0.930119i \(-0.619704\pi\)
−0.367259 + 0.930119i \(0.619704\pi\)
\(150\) 0 0
\(151\) 15.5560i 1.26593i 0.774180 + 0.632966i \(0.218163\pi\)
−0.774180 + 0.632966i \(0.781837\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.794319 + 0.489692i 0.0638013 + 0.0393330i
\(156\) 0 0
\(157\) 13.2345 1.05623 0.528115 0.849173i \(-0.322899\pi\)
0.528115 + 0.849173i \(0.322899\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.0950467i 0.00749073i
\(162\) 0 0
\(163\) 15.3659i 1.20355i −0.798666 0.601774i \(-0.794461\pi\)
0.798666 0.601774i \(-0.205539\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 17.9401i 1.38824i −0.719857 0.694122i \(-0.755793\pi\)
0.719857 0.694122i \(-0.244207\pi\)
\(168\) 0 0
\(169\) −11.6687 −0.897596
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 17.2609i 1.31232i −0.754622 0.656160i \(-0.772180\pi\)
0.754622 0.656160i \(-0.227820\pi\)
\(174\) 0 0
\(175\) 1.01161 + 2.01198i 0.0764706 + 0.152092i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0.229984i 0.0171898i 0.999963 + 0.00859490i \(0.00273588\pi\)
−0.999963 + 0.00859490i \(0.997264\pi\)
\(180\) 0 0
\(181\) 2.26929i 0.168675i −0.996437 0.0843377i \(-0.973123\pi\)
0.996437 0.0843377i \(-0.0268774\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 11.2652 18.2731i 0.828237 1.34347i
\(186\) 0 0
\(187\) 31.3403i 2.29183i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 17.1688 1.24229 0.621145 0.783696i \(-0.286668\pi\)
0.621145 + 0.783696i \(0.286668\pi\)
\(192\) 0 0
\(193\) 0.900092i 0.0647901i 0.999475 + 0.0323950i \(0.0103135\pi\)
−0.999475 + 0.0323950i \(0.989687\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.61680i 0.115193i 0.998340 + 0.0575963i \(0.0183436\pi\)
−0.998340 + 0.0575963i \(0.981656\pi\)
\(198\) 0 0
\(199\) 13.9958i 0.992137i 0.868283 + 0.496069i \(0.165224\pi\)
−0.868283 + 0.496069i \(0.834776\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.74011 0.192318
\(204\) 0 0
\(205\) −18.4849 11.3958i −1.29104 0.795917i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 11.0755i 0.766108i
\(210\) 0 0
\(211\) −24.9023 −1.71435 −0.857174 0.515028i \(-0.827782\pi\)
−0.857174 + 0.515028i \(0.827782\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.83270 + 3.59582i 0.397787 + 0.245233i
\(216\) 0 0
\(217\) 0.187956i 0.0127593i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 7.07361 0.475823
\(222\) 0 0
\(223\) −19.2003 −1.28574 −0.642872 0.765974i \(-0.722257\pi\)
−0.642872 + 0.765974i \(0.722257\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 28.6073 1.89874 0.949368 0.314167i \(-0.101725\pi\)
0.949368 + 0.314167i \(0.101725\pi\)
\(228\) 0 0
\(229\) 3.59647i 0.237662i 0.992915 + 0.118831i \(0.0379146\pi\)
−0.992915 + 0.118831i \(0.962085\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 9.78036 0.640733 0.320366 0.947294i \(-0.396194\pi\)
0.320366 + 0.947294i \(0.396194\pi\)
\(234\) 0 0
\(235\) −5.06033 3.11965i −0.330099 0.203504i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −17.5597 −1.13584 −0.567921 0.823083i \(-0.692252\pi\)
−0.567921 + 0.823083i \(0.692252\pi\)
\(240\) 0 0
\(241\) 11.7884 0.759356 0.379678 0.925119i \(-0.376035\pi\)
0.379678 + 0.925119i \(0.376035\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 7.97609 12.9378i 0.509573 0.826569i
\(246\) 0 0
\(247\) −2.49978 −0.159057
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 12.8261i 0.809578i −0.914410 0.404789i \(-0.867345\pi\)
0.914410 0.404789i \(-0.132655\pi\)
\(252\) 0 0
\(253\) −1.07878 −0.0678226
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.70361 0.480538 0.240269 0.970706i \(-0.422764\pi\)
0.240269 + 0.970706i \(0.422764\pi\)
\(258\) 0 0
\(259\) 4.32387 0.268672
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.422058i 0.0260252i 0.999915 + 0.0130126i \(0.00414215\pi\)
−0.999915 + 0.0130126i \(0.995858\pi\)
\(264\) 0 0
\(265\) −16.7797 10.3445i −1.03077 0.635460i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.49688 −0.0912663 −0.0456332 0.998958i \(-0.514531\pi\)
−0.0456332 + 0.998958i \(0.514531\pi\)
\(270\) 0 0
\(271\) 13.1516i 0.798904i −0.916754 0.399452i \(-0.869200\pi\)
0.916754 0.399452i \(-0.130800\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −22.8361 + 11.4818i −1.37707 + 0.692380i
\(276\) 0 0
\(277\) 28.3454 1.70311 0.851556 0.524263i \(-0.175659\pi\)
0.851556 + 0.524263i \(0.175659\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 28.0322i 1.67226i 0.548529 + 0.836132i \(0.315188\pi\)
−0.548529 + 0.836132i \(0.684812\pi\)
\(282\) 0 0
\(283\) 4.04108i 0.240217i 0.992761 + 0.120109i \(0.0383243\pi\)
−0.992761 + 0.120109i \(0.961676\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.37398i 0.258188i
\(288\) 0 0
\(289\) 20.5855 1.21091
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 9.69326i 0.566287i 0.959078 + 0.283143i \(0.0913772\pi\)
−0.959078 + 0.283143i \(0.908623\pi\)
\(294\) 0 0
\(295\) −9.01951 5.56046i −0.525136 0.323743i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.243485i 0.0140811i
\(300\) 0 0
\(301\) 1.38016i 0.0795512i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −14.5571 8.97437i −0.833539 0.513871i
\(306\) 0 0
\(307\) 30.4121i 1.73571i −0.496815 0.867856i \(-0.665497\pi\)
0.496815 0.867856i \(-0.334503\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1.93254 −0.109584 −0.0547921 0.998498i \(-0.517450\pi\)
−0.0547921 + 0.998498i \(0.517450\pi\)
\(312\) 0 0
\(313\) 22.8246i 1.29012i −0.764130 0.645062i \(-0.776832\pi\)
0.764130 0.645062i \(-0.223168\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.60376i 0.202407i −0.994866 0.101204i \(-0.967731\pi\)
0.994866 0.101204i \(-0.0322694\pi\)
\(318\) 0 0
\(319\) 31.1004i 1.74129i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −13.2825 −0.739060
\(324\) 0 0
\(325\) −2.59149 5.15418i −0.143750 0.285903i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.19740i 0.0660147i
\(330\) 0 0
\(331\) 0.186551 0.0102538 0.00512689 0.999987i \(-0.498368\pi\)
0.00512689 + 0.999987i \(0.498368\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 12.3630 + 7.62169i 0.675462 + 0.416417i
\(336\) 0 0
\(337\) 15.2379i 0.830063i 0.909807 + 0.415032i \(0.136230\pi\)
−0.909807 + 0.415032i \(0.863770\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2.13330 −0.115525
\(342\) 0 0
\(343\) 6.21419 0.335535
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −26.1263 −1.40253 −0.701266 0.712900i \(-0.747382\pi\)
−0.701266 + 0.712900i \(0.747382\pi\)
\(348\) 0 0
\(349\) 36.0891i 1.93180i 0.258910 + 0.965901i \(0.416637\pi\)
−0.258910 + 0.965901i \(0.583363\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −9.70998 −0.516810 −0.258405 0.966037i \(-0.583197\pi\)
−0.258405 + 0.966037i \(0.583197\pi\)
\(354\) 0 0
\(355\) −13.4277 + 21.7808i −0.712670 + 1.15601i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −33.8455 −1.78630 −0.893149 0.449761i \(-0.851509\pi\)
−0.893149 + 0.449761i \(0.851509\pi\)
\(360\) 0 0
\(361\) −14.3060 −0.752949
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 26.4392 + 16.2996i 1.38389 + 0.853160i
\(366\) 0 0
\(367\) 2.14159 0.111790 0.0558949 0.998437i \(-0.482199\pi\)
0.0558949 + 0.998437i \(0.482199\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.97048i 0.206137i
\(372\) 0 0
\(373\) −14.6799 −0.760097 −0.380049 0.924967i \(-0.624093\pi\)
−0.380049 + 0.924967i \(0.624093\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −7.01946 −0.361521
\(378\) 0 0
\(379\) 4.44355 0.228250 0.114125 0.993466i \(-0.463594\pi\)
0.114125 + 0.993466i \(0.463594\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 15.1342i 0.773324i 0.922222 + 0.386662i \(0.126372\pi\)
−0.922222 + 0.386662i \(0.873628\pi\)
\(384\) 0 0
\(385\) −4.38252 2.70179i −0.223354 0.137696i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −27.0036 −1.36914 −0.684570 0.728948i \(-0.740010\pi\)
−0.684570 + 0.728948i \(0.740010\pi\)
\(390\) 0 0
\(391\) 1.29375i 0.0654280i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 26.1661 + 16.1312i 1.31656 + 0.811649i
\(396\) 0 0
\(397\) −3.18855 −0.160029 −0.0800143 0.996794i \(-0.525497\pi\)
−0.0800143 + 0.996794i \(0.525497\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 25.1792i 1.25739i −0.777652 0.628695i \(-0.783589\pi\)
0.777652 0.628695i \(-0.216411\pi\)
\(402\) 0 0
\(403\) 0.481494i 0.0239849i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 49.0761i 2.43261i
\(408\) 0 0
\(409\) −27.5416 −1.36185 −0.680923 0.732355i \(-0.738421\pi\)
−0.680923 + 0.732355i \(0.738421\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.13424i 0.105019i
\(414\) 0 0
\(415\) 6.12675 9.93808i 0.300750 0.487841i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 27.5259i 1.34473i 0.740221 + 0.672364i \(0.234721\pi\)
−0.740221 + 0.672364i \(0.765279\pi\)
\(420\) 0 0
\(421\) 29.6555i 1.44532i −0.691203 0.722660i \(-0.742919\pi\)
0.691203 0.722660i \(-0.257081\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −13.7698 27.3867i −0.667935 1.32845i
\(426\) 0 0
\(427\) 3.44458i 0.166695i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −15.1134 −0.727986 −0.363993 0.931402i \(-0.618587\pi\)
−0.363993 + 0.931402i \(0.618587\pi\)
\(432\) 0 0
\(433\) 10.1697i 0.488726i −0.969684 0.244363i \(-0.921421\pi\)
0.969684 0.244363i \(-0.0785788\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.457206i 0.0218711i
\(438\) 0 0
\(439\) 17.3055i 0.825947i −0.910743 0.412974i \(-0.864490\pi\)
0.910743 0.412974i \(-0.135510\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 28.5925 1.35847 0.679235 0.733921i \(-0.262312\pi\)
0.679235 + 0.733921i \(0.262312\pi\)
\(444\) 0 0
\(445\) 2.65908 + 1.63930i 0.126053 + 0.0777104i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 3.59276i 0.169553i 0.996400 + 0.0847763i \(0.0270176\pi\)
−0.996400 + 0.0847763i \(0.972982\pi\)
\(450\) 0 0
\(451\) 49.6448 2.33768
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.609803 0.989149i 0.0285880 0.0463720i
\(456\) 0 0
\(457\) 11.2098i 0.524372i 0.965017 + 0.262186i \(0.0844434\pi\)
−0.965017 + 0.262186i \(0.915557\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 29.8529 1.39039 0.695194 0.718823i \(-0.255319\pi\)
0.695194 + 0.718823i \(0.255319\pi\)
\(462\) 0 0
\(463\) 34.4700 1.60196 0.800978 0.598694i \(-0.204313\pi\)
0.800978 + 0.598694i \(0.204313\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 15.7950 0.730907 0.365453 0.930830i \(-0.380914\pi\)
0.365453 + 0.930830i \(0.380914\pi\)
\(468\) 0 0
\(469\) 2.92539i 0.135082i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −15.6649 −0.720272
\(474\) 0 0
\(475\) 4.86619 + 9.67831i 0.223276 + 0.444071i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −32.1810 −1.47039 −0.735194 0.677857i \(-0.762909\pi\)
−0.735194 + 0.677857i \(0.762909\pi\)
\(480\) 0 0
\(481\) −11.0766 −0.505051
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8.39613 + 5.17615i 0.381249 + 0.235037i
\(486\) 0 0
\(487\) −35.6312 −1.61460 −0.807302 0.590139i \(-0.799073\pi\)
−0.807302 + 0.590139i \(0.799073\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 20.1909i 0.911201i 0.890184 + 0.455600i \(0.150575\pi\)
−0.890184 + 0.455600i \(0.849425\pi\)
\(492\) 0 0
\(493\) −37.2978 −1.67981
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −5.15388 −0.231183
\(498\) 0 0
\(499\) −15.9850 −0.715588 −0.357794 0.933801i \(-0.616471\pi\)
−0.357794 + 0.933801i \(0.616471\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 2.13750i 0.0953062i 0.998864 + 0.0476531i \(0.0151742\pi\)
−0.998864 + 0.0476531i \(0.984826\pi\)
\(504\) 0 0
\(505\) 14.7420 23.9127i 0.656010 1.06410i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 9.67611 0.428886 0.214443 0.976736i \(-0.431206\pi\)
0.214443 + 0.976736i \(0.431206\pi\)
\(510\) 0 0
\(511\) 6.25617i 0.276757i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 6.98642 11.3325i 0.307858 0.499371i
\(516\) 0 0
\(517\) 13.5905 0.597710
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 3.11652i 0.136537i −0.997667 0.0682687i \(-0.978252\pi\)
0.997667 0.0682687i \(-0.0217475\pi\)
\(522\) 0 0
\(523\) 23.5599i 1.03020i 0.857129 + 0.515102i \(0.172246\pi\)
−0.857129 + 0.515102i \(0.827754\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.55841i 0.111446i
\(528\) 0 0
\(529\) 22.9555 0.998064
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 11.2050i 0.485343i
\(534\) 0 0
\(535\) 10.5437 17.1027i 0.455844 0.739415i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 34.7471i 1.49667i
\(540\) 0 0
\(541\) 21.4076i 0.920384i 0.887819 + 0.460192i \(0.152219\pi\)
−0.887819 + 0.460192i \(0.847781\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 22.3622 + 13.7861i 0.957892 + 0.590533i
\(546\) 0 0
\(547\) 7.81382i 0.334095i 0.985949 + 0.167047i \(0.0534233\pi\)
−0.985949 + 0.167047i \(0.946577\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 13.1808 0.561523
\(552\) 0 0
\(553\) 6.19154i 0.263291i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 26.4914i 1.12248i −0.827655 0.561238i \(-0.810325\pi\)
0.827655 0.561238i \(-0.189675\pi\)
\(558\) 0 0
\(559\) 3.53562i 0.149541i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 40.0138 1.68638 0.843191 0.537614i \(-0.180674\pi\)
0.843191 + 0.537614i \(0.180674\pi\)
\(564\) 0 0
\(565\) 1.08670 1.76272i 0.0457179 0.0741581i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 17.5658i 0.736397i −0.929747 0.368198i \(-0.879975\pi\)
0.929747 0.368198i \(-0.120025\pi\)
\(570\) 0 0
\(571\) −31.8630 −1.33342 −0.666712 0.745315i \(-0.732299\pi\)
−0.666712 + 0.745315i \(0.732299\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.942694 + 0.473980i −0.0393130 + 0.0197663i
\(576\) 0 0
\(577\) 13.2498i 0.551596i 0.961216 + 0.275798i \(0.0889421\pi\)
−0.961216 + 0.275798i \(0.911058\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 2.35159 0.0975605
\(582\) 0 0
\(583\) 45.0651 1.86641
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −21.1959 −0.874848 −0.437424 0.899255i \(-0.644109\pi\)
−0.437424 + 0.899255i \(0.644109\pi\)
\(588\) 0 0
\(589\) 0.904128i 0.0372540i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 24.0661 0.988275 0.494137 0.869384i \(-0.335484\pi\)
0.494137 + 0.869384i \(0.335484\pi\)
\(594\) 0 0
\(595\) 3.24018 5.25583i 0.132834 0.215468i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −37.1635 −1.51846 −0.759231 0.650822i \(-0.774425\pi\)
−0.759231 + 0.650822i \(0.774425\pi\)
\(600\) 0 0
\(601\) 23.4082 0.954841 0.477421 0.878675i \(-0.341572\pi\)
0.477421 + 0.878675i \(0.341572\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 17.7575 28.8041i 0.721945 1.17105i
\(606\) 0 0
\(607\) −11.7302 −0.476114 −0.238057 0.971251i \(-0.576510\pi\)
−0.238057 + 0.971251i \(0.576510\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.06743i 0.124095i
\(612\) 0 0
\(613\) −10.9631 −0.442797 −0.221399 0.975183i \(-0.571062\pi\)
−0.221399 + 0.975183i \(0.571062\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 13.0317 0.524635 0.262318 0.964982i \(-0.415513\pi\)
0.262318 + 0.964982i \(0.415513\pi\)
\(618\) 0 0
\(619\) 36.3769 1.46211 0.731056 0.682317i \(-0.239028\pi\)
0.731056 + 0.682317i \(0.239028\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0.629204i 0.0252085i
\(624\) 0 0
\(625\) −14.9106 + 20.0668i −0.596423 + 0.802671i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −58.8555 −2.34672
\(630\) 0 0
\(631\) 42.0264i 1.67304i −0.547933 0.836522i \(-0.684585\pi\)
0.547933 0.836522i \(-0.315415\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 19.4889 31.6126i 0.773394 1.25451i
\(636\) 0 0
\(637\) −7.84255 −0.310733
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 39.2028i 1.54842i −0.632931 0.774208i \(-0.718148\pi\)
0.632931 0.774208i \(-0.281852\pi\)
\(642\) 0 0
\(643\) 40.0866i 1.58086i 0.612552 + 0.790431i \(0.290143\pi\)
−0.612552 + 0.790431i \(0.709857\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 10.2214i 0.401844i −0.979607 0.200922i \(-0.935606\pi\)
0.979607 0.200922i \(-0.0643938\pi\)
\(648\) 0 0
\(649\) 24.2237 0.950863
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 33.7435i 1.32049i −0.751052 0.660243i \(-0.770453\pi\)
0.751052 0.660243i \(-0.229547\pi\)
\(654\) 0 0
\(655\) 25.7774 + 15.8916i 1.00721 + 0.620935i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 7.62965i 0.297209i 0.988897 + 0.148604i \(0.0474781\pi\)
−0.988897 + 0.148604i \(0.952522\pi\)
\(660\) 0 0
\(661\) 27.2772i 1.06096i 0.847698 + 0.530480i \(0.177988\pi\)
−0.847698 + 0.530480i \(0.822012\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.14506 + 1.85738i −0.0444036 + 0.0720262i
\(666\) 0 0
\(667\) 1.28385i 0.0497109i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 39.0961 1.50929
\(672\) 0 0
\(673\) 3.17561i 0.122411i 0.998125 + 0.0612055i \(0.0194945\pi\)
−0.998125 + 0.0612055i \(0.980506\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 32.1530i 1.23574i 0.786280 + 0.617870i \(0.212004\pi\)
−0.786280 + 0.617870i \(0.787996\pi\)
\(678\) 0 0
\(679\) 1.98673i 0.0762437i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −25.5185 −0.976437 −0.488219 0.872721i \(-0.662353\pi\)
−0.488219 + 0.872721i \(0.662353\pi\)
\(684\) 0 0
\(685\) 10.4338 16.9245i 0.398656 0.646651i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 10.1714i 0.387498i
\(690\) 0 0
\(691\) −32.6320 −1.24138 −0.620691 0.784056i \(-0.713148\pi\)
−0.620691 + 0.784056i \(0.713148\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 16.7466 27.1643i 0.635234 1.03040i
\(696\) 0 0
\(697\) 59.5376i 2.25515i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 35.0817 1.32502 0.662509 0.749054i \(-0.269492\pi\)
0.662509 + 0.749054i \(0.269492\pi\)
\(702\) 0 0
\(703\) 20.7992 0.784458
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 5.65832 0.212803
\(708\) 0 0
\(709\) 17.6779i 0.663907i −0.943296 0.331954i \(-0.892292\pi\)
0.943296 0.331954i \(-0.107708\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.0880646 −0.00329805
\(714\) 0 0
\(715\) 11.2269 + 6.92129i 0.419862 + 0.258842i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −21.9011 −0.816773 −0.408386 0.912809i \(-0.633908\pi\)
−0.408386 + 0.912809i \(0.633908\pi\)
\(720\) 0 0
\(721\) 2.68155 0.0998662
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 13.6644 + 27.1770i 0.507484 + 1.00933i
\(726\) 0 0
\(727\) −34.2800 −1.27138 −0.635688 0.771946i \(-0.719283\pi\)
−0.635688 + 0.771946i \(0.719283\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 18.7864i 0.694842i
\(732\) 0 0
\(733\) 16.8179 0.621182 0.310591 0.950544i \(-0.399473\pi\)
0.310591 + 0.950544i \(0.399473\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −33.2032 −1.22306
\(738\) 0 0
\(739\) 25.4981 0.937964 0.468982 0.883208i \(-0.344621\pi\)
0.468982 + 0.883208i \(0.344621\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2.19747i 0.0806172i 0.999187 + 0.0403086i \(0.0128341\pi\)
−0.999187 + 0.0403086i \(0.987166\pi\)
\(744\) 0 0
\(745\) 10.5210 17.0660i 0.385461 0.625249i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4.04692 0.147871
\(750\) 0 0
\(751\) 34.8488i 1.27165i 0.771832 + 0.635826i \(0.219340\pi\)
−0.771832 + 0.635826i \(0.780660\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −29.6097 18.2542i −1.07761 0.664338i
\(756\) 0 0
\(757\) 21.5026 0.781527 0.390763 0.920491i \(-0.372211\pi\)
0.390763 + 0.920491i \(0.372211\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6.95386i 0.252077i 0.992025 + 0.126039i \(0.0402263\pi\)
−0.992025 + 0.126039i \(0.959774\pi\)
\(762\) 0 0
\(763\) 5.29145i 0.191563i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 5.46737i 0.197415i
\(768\) 0 0
\(769\) −15.1190 −0.545205 −0.272602 0.962127i \(-0.587884\pi\)
−0.272602 + 0.962127i \(0.587884\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 13.0796i 0.470439i 0.971942 + 0.235220i \(0.0755810\pi\)
−0.971942 + 0.235220i \(0.924419\pi\)
\(774\) 0 0
\(775\) −1.86418 + 0.937299i −0.0669634 + 0.0336688i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 21.0403i 0.753846i
\(780\) 0 0
\(781\) 58.4968i 2.09318i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −15.5300 + 25.1909i −0.554290 + 0.899102i
\(786\) 0 0
\(787\) 25.0403i 0.892591i 0.894886 + 0.446296i \(0.147257\pi\)
−0.894886 + 0.446296i \(0.852743\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0.417102 0.0148305
\(792\) 0 0
\(793\) 8.82412i 0.313354i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 29.0728i 1.02981i −0.857247 0.514905i \(-0.827827\pi\)
0.857247 0.514905i \(-0.172173\pi\)
\(798\) 0 0
\(799\) 16.2987i 0.576607i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −71.0078 −2.50581
\(804\) 0 0
\(805\) −0.180914 0.111532i −0.00637639 0.00393100i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 17.8537i 0.627702i 0.949472 + 0.313851i \(0.101619\pi\)
−0.949472 + 0.313851i \(0.898381\pi\)
\(810\) 0 0
\(811\) 47.8173 1.67909 0.839546 0.543289i \(-0.182821\pi\)
0.839546 + 0.543289i \(0.182821\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 29.2478 + 18.0310i 1.02450 + 0.631600i
\(816\) 0 0
\(817\) 6.63903i 0.232270i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0.00469899 0.000163996 8.19979e−5 1.00000i \(-0.499974\pi\)
8.19979e−5 1.00000i \(0.499974\pi\)
\(822\) 0 0
\(823\) −15.1981 −0.529773 −0.264887 0.964280i \(-0.585335\pi\)
−0.264887 + 0.964280i \(0.585335\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −3.42753 −0.119187 −0.0595934 0.998223i \(-0.518980\pi\)
−0.0595934 + 0.998223i \(0.518980\pi\)
\(828\) 0 0
\(829\) 16.1960i 0.562511i −0.959633 0.281256i \(-0.909249\pi\)
0.959633 0.281256i \(-0.0907509\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −41.6713 −1.44382
\(834\) 0 0
\(835\) 34.1475 + 21.0517i 1.18172 + 0.728525i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 12.9846 0.448279 0.224139 0.974557i \(-0.428043\pi\)
0.224139 + 0.974557i \(0.428043\pi\)
\(840\) 0 0
\(841\) 8.01224 0.276284
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 13.6926 22.2106i 0.471041 0.764067i
\(846\) 0 0
\(847\) 6.81575 0.234192
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.02590i 0.0694471i
\(852\) 0 0
\(853\) 15.9478 0.546044 0.273022 0.962008i \(-0.411977\pi\)
0.273022 + 0.962008i \(0.411977\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 36.3078 1.24025 0.620126 0.784502i \(-0.287081\pi\)
0.620126 + 0.784502i \(0.287081\pi\)
\(858\) 0 0
\(859\) −16.7215 −0.570530 −0.285265 0.958449i \(-0.592082\pi\)
−0.285265 + 0.958449i \(0.592082\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 32.0732i 1.09178i −0.837856 0.545892i \(-0.816191\pi\)
0.837856 0.545892i \(-0.183809\pi\)
\(864\) 0 0
\(865\) 32.8548 + 20.2547i 1.11710 + 0.688681i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −70.2742 −2.38389
\(870\) 0 0
\(871\) 7.49409i 0.253928i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −5.01673 0.435430i −0.169596 0.0147202i
\(876\) 0 0
\(877\) 24.1662 0.816035 0.408018 0.912974i \(-0.366220\pi\)
0.408018 + 0.912974i \(0.366220\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 16.3886i 0.552146i 0.961137 + 0.276073i \(0.0890332\pi\)
−0.961137 + 0.276073i \(0.910967\pi\)
\(882\) 0 0
\(883\) 17.3417i 0.583595i −0.956480 0.291798i \(-0.905747\pi\)
0.956480 0.291798i \(-0.0942534\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 47.8185i 1.60559i −0.596256 0.802794i \(-0.703346\pi\)
0.596256 0.802794i \(-0.296654\pi\)
\(888\) 0 0
\(889\) 7.48031 0.250882
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 5.75988i 0.192747i
\(894\) 0 0
\(895\) −0.437757 0.269874i −0.0146326 0.00902089i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.53882i 0.0846745i
\(900\) 0 0
\(901\) 54.0453i 1.80051i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 4.31943 + 2.66290i 0.143583 + 0.0885177i
\(906\) 0 0
\(907\) 8.22699i 0.273173i 0.990628 + 0.136586i \(0.0436131\pi\)
−0.990628 + 0.136586i \(0.956387\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −22.9871 −0.761597 −0.380798 0.924658i \(-0.624351\pi\)
−0.380798 + 0.924658i \(0.624351\pi\)
\(912\) 0 0
\(913\) 26.6907i 0.883332i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 6.09957i 0.201425i
\(918\) 0 0
\(919\) 34.6477i 1.14292i −0.820629 0.571461i \(-0.806377\pi\)
0.820629 0.571461i \(-0.193623\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 13.2029 0.434579
\(924\) 0 0
\(925\) 21.5623 + 42.8851i 0.708965 + 1.41005i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 37.7103i 1.23723i 0.785692 + 0.618617i \(0.212307\pi\)
−0.785692 + 0.618617i \(0.787693\pi\)
\(930\) 0 0
\(931\) 14.7264 0.482639
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 59.6539 + 36.7762i 1.95089 + 1.20271i
\(936\) 0 0
\(937\) 27.9404i 0.912773i 0.889782 + 0.456386i \(0.150857\pi\)
−0.889782 + 0.456386i \(0.849143\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 30.4349 0.992148 0.496074 0.868280i \(-0.334774\pi\)
0.496074 + 0.868280i \(0.334774\pi\)
\(942\) 0 0
\(943\) 2.04938 0.0667370
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 35.3004 1.14711 0.573554 0.819167i \(-0.305564\pi\)
0.573554 + 0.819167i \(0.305564\pi\)
\(948\) 0 0
\(949\) 16.0267i 0.520249i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 12.1033 0.392064 0.196032 0.980598i \(-0.437194\pi\)
0.196032 + 0.980598i \(0.437194\pi\)
\(954\) 0 0
\(955\) −20.1467 + 32.6795i −0.651930 + 1.05748i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 4.00475 0.129320
\(960\) 0 0
\(961\) 30.8259 0.994382
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1.71326 1.05621i −0.0551517 0.0340006i
\(966\) 0 0
\(967\) 30.6826 0.986687 0.493344 0.869834i \(-0.335774\pi\)
0.493344 + 0.869834i \(0.335774\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 4.77033i 0.153087i −0.997066 0.0765436i \(-0.975612\pi\)
0.997066 0.0765436i \(-0.0243884\pi\)
\(972\) 0 0
\(973\) 6.42773 0.206064
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −28.1550 −0.900760 −0.450380 0.892837i \(-0.648711\pi\)
−0.450380 + 0.892837i \(0.648711\pi\)
\(978\) 0 0
\(979\) −7.14149 −0.228243
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 24.2134i 0.772288i −0.922439 0.386144i \(-0.873807\pi\)
0.922439 0.386144i \(-0.126193\pi\)
\(984\) 0 0
\(985\) −3.07746 1.89723i −0.0980561 0.0604509i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −0.646660 −0.0205626
\(990\) 0 0
\(991\) 18.6181i 0.591424i −0.955277 0.295712i \(-0.904443\pi\)
0.955277 0.295712i \(-0.0955569\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −26.6400 16.4233i −0.844544 0.520655i
\(996\) 0 0
\(997\) −13.7405 −0.435167 −0.217584 0.976042i \(-0.569817\pi\)
−0.217584 + 0.976042i \(0.569817\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4320.2.m.c.2159.15 48
3.2 odd 2 inner 4320.2.m.c.2159.33 48
4.3 odd 2 1080.2.m.c.539.19 yes 48
5.4 even 2 inner 4320.2.m.c.2159.14 48
8.3 odd 2 inner 4320.2.m.c.2159.34 48
8.5 even 2 1080.2.m.c.539.18 yes 48
12.11 even 2 1080.2.m.c.539.30 yes 48
15.14 odd 2 inner 4320.2.m.c.2159.36 48
20.19 odd 2 1080.2.m.c.539.29 yes 48
24.5 odd 2 1080.2.m.c.539.31 yes 48
24.11 even 2 inner 4320.2.m.c.2159.16 48
40.19 odd 2 inner 4320.2.m.c.2159.35 48
40.29 even 2 1080.2.m.c.539.32 yes 48
60.59 even 2 1080.2.m.c.539.20 yes 48
120.29 odd 2 1080.2.m.c.539.17 48
120.59 even 2 inner 4320.2.m.c.2159.13 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1080.2.m.c.539.17 48 120.29 odd 2
1080.2.m.c.539.18 yes 48 8.5 even 2
1080.2.m.c.539.19 yes 48 4.3 odd 2
1080.2.m.c.539.20 yes 48 60.59 even 2
1080.2.m.c.539.29 yes 48 20.19 odd 2
1080.2.m.c.539.30 yes 48 12.11 even 2
1080.2.m.c.539.31 yes 48 24.5 odd 2
1080.2.m.c.539.32 yes 48 40.29 even 2
4320.2.m.c.2159.13 48 120.59 even 2 inner
4320.2.m.c.2159.14 48 5.4 even 2 inner
4320.2.m.c.2159.15 48 1.1 even 1 trivial
4320.2.m.c.2159.16 48 24.11 even 2 inner
4320.2.m.c.2159.33 48 3.2 odd 2 inner
4320.2.m.c.2159.34 48 8.3 odd 2 inner
4320.2.m.c.2159.35 48 40.19 odd 2 inner
4320.2.m.c.2159.36 48 15.14 odd 2 inner