Properties

Label 1080.2.m.c.539.43
Level $1080$
Weight $2$
Character 1080.539
Analytic conductor $8.624$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1080,2,Mod(539,1080)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1080, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1080.539");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1080 = 2^{3} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1080.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.62384341830\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 539.43
Character \(\chi\) \(=\) 1080.539
Dual form 1080.2.m.c.539.41

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.34874 + 0.425328i) q^{2} +(1.63819 + 1.14731i) q^{4} +(-2.17257 - 0.529077i) q^{5} +1.59486 q^{7} +(1.72151 + 2.24419i) q^{8} +(-2.70520 - 1.63764i) q^{10} -3.61186i q^{11} +2.18660 q^{13} +(2.15105 + 0.678339i) q^{14} +(1.36735 + 3.75904i) q^{16} +2.27828 q^{17} +5.81486 q^{19} +(-2.95208 - 3.35935i) q^{20} +(1.53622 - 4.87145i) q^{22} +1.07910i q^{23} +(4.44016 + 2.29892i) q^{25} +(2.94915 + 0.930020i) q^{26} +(2.61269 + 1.82980i) q^{28} +2.55585 q^{29} +5.93344i q^{31} +(0.245375 + 5.65153i) q^{32} +(3.07281 + 0.969016i) q^{34} +(-3.46495 - 0.843804i) q^{35} -2.49682 q^{37} +(7.84272 + 2.47322i) q^{38} +(-2.55276 - 5.78649i) q^{40} +10.3047i q^{41} -0.983745i q^{43} +(4.14393 - 5.91692i) q^{44} +(-0.458973 + 1.45543i) q^{46} -10.6532i q^{47} -4.45642 q^{49} +(5.01082 + 4.98916i) q^{50} +(3.58206 + 2.50871i) q^{52} -8.26543i q^{53} +(-1.91095 + 7.84703i) q^{55} +(2.74557 + 3.57918i) q^{56} +(3.44717 + 1.08707i) q^{58} +2.81213i q^{59} -8.34242i q^{61} +(-2.52366 + 8.00266i) q^{62} +(-2.07281 + 7.72680i) q^{64} +(-4.75054 - 1.15688i) q^{65} -6.00359i q^{67} +(3.73226 + 2.61390i) q^{68} +(-4.31442 - 2.61181i) q^{70} -2.34652 q^{71} +5.96697i q^{73} +(-3.36756 - 1.06197i) q^{74} +(9.52585 + 6.67146i) q^{76} -5.76041i q^{77} +11.2489i q^{79} +(-0.981850 - 8.89022i) q^{80} +(-4.38289 + 13.8984i) q^{82} -6.40570 q^{83} +(-4.94973 - 1.20539i) q^{85} +(0.418414 - 1.32681i) q^{86} +(8.10570 - 6.21785i) q^{88} -6.53221i q^{89} +3.48732 q^{91} +(-1.23807 + 1.76778i) q^{92} +(4.53112 - 14.3684i) q^{94} +(-12.6332 - 3.07651i) q^{95} -16.1661i q^{97} +(-6.01054 - 1.89544i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{4} - 4 q^{10} + 4 q^{16} - 16 q^{19} - 4 q^{34} + 16 q^{40} + 36 q^{46} + 48 q^{49} + 52 q^{64} + 28 q^{70} - 64 q^{76} + 92 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1080\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(541\) \(1001\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.34874 + 0.425328i 0.953702 + 0.300752i
\(3\) 0 0
\(4\) 1.63819 + 1.14731i 0.819096 + 0.573656i
\(5\) −2.17257 0.529077i −0.971605 0.236610i
\(6\) 0 0
\(7\) 1.59486 0.602801 0.301400 0.953498i \(-0.402546\pi\)
0.301400 + 0.953498i \(0.402546\pi\)
\(8\) 1.72151 + 2.24419i 0.608646 + 0.793442i
\(9\) 0 0
\(10\) −2.70520 1.63764i −0.855461 0.517868i
\(11\) 3.61186i 1.08902i −0.838756 0.544508i \(-0.816716\pi\)
0.838756 0.544508i \(-0.183284\pi\)
\(12\) 0 0
\(13\) 2.18660 0.606452 0.303226 0.952919i \(-0.401936\pi\)
0.303226 + 0.952919i \(0.401936\pi\)
\(14\) 2.15105 + 0.678339i 0.574893 + 0.181294i
\(15\) 0 0
\(16\) 1.36735 + 3.75904i 0.341837 + 0.939759i
\(17\) 2.27828 0.552564 0.276282 0.961077i \(-0.410898\pi\)
0.276282 + 0.961077i \(0.410898\pi\)
\(18\) 0 0
\(19\) 5.81486 1.33402 0.667010 0.745049i \(-0.267574\pi\)
0.667010 + 0.745049i \(0.267574\pi\)
\(20\) −2.95208 3.35935i −0.660105 0.751174i
\(21\) 0 0
\(22\) 1.53622 4.87145i 0.327524 1.03860i
\(23\) 1.07910i 0.225009i 0.993651 + 0.112504i \(0.0358873\pi\)
−0.993651 + 0.112504i \(0.964113\pi\)
\(24\) 0 0
\(25\) 4.44016 + 2.29892i 0.888031 + 0.459783i
\(26\) 2.94915 + 0.930020i 0.578375 + 0.182392i
\(27\) 0 0
\(28\) 2.61269 + 1.82980i 0.493752 + 0.345800i
\(29\) 2.55585 0.474609 0.237305 0.971435i \(-0.423736\pi\)
0.237305 + 0.971435i \(0.423736\pi\)
\(30\) 0 0
\(31\) 5.93344i 1.06568i 0.846217 + 0.532838i \(0.178875\pi\)
−0.846217 + 0.532838i \(0.821125\pi\)
\(32\) 0.245375 + 5.65153i 0.0433766 + 0.999059i
\(33\) 0 0
\(34\) 3.07281 + 0.969016i 0.526982 + 0.166185i
\(35\) −3.46495 0.843804i −0.585684 0.142629i
\(36\) 0 0
\(37\) −2.49682 −0.410475 −0.205237 0.978712i \(-0.565797\pi\)
−0.205237 + 0.978712i \(0.565797\pi\)
\(38\) 7.84272 + 2.47322i 1.27226 + 0.401209i
\(39\) 0 0
\(40\) −2.55276 5.78649i −0.403626 0.914924i
\(41\) 10.3047i 1.60933i 0.593731 + 0.804664i \(0.297654\pi\)
−0.593731 + 0.804664i \(0.702346\pi\)
\(42\) 0 0
\(43\) 0.983745i 0.150020i −0.997183 0.0750098i \(-0.976101\pi\)
0.997183 0.0750098i \(-0.0238988\pi\)
\(44\) 4.14393 5.91692i 0.624720 0.892009i
\(45\) 0 0
\(46\) −0.458973 + 1.45543i −0.0676719 + 0.214592i
\(47\) 10.6532i 1.55394i −0.629541 0.776968i \(-0.716757\pi\)
0.629541 0.776968i \(-0.283243\pi\)
\(48\) 0 0
\(49\) −4.45642 −0.636631
\(50\) 5.01082 + 4.98916i 0.708636 + 0.705574i
\(51\) 0 0
\(52\) 3.58206 + 2.50871i 0.496743 + 0.347895i
\(53\) 8.26543i 1.13534i −0.823255 0.567672i \(-0.807844\pi\)
0.823255 0.567672i \(-0.192156\pi\)
\(54\) 0 0
\(55\) −1.91095 + 7.84703i −0.257672 + 1.05809i
\(56\) 2.74557 + 3.57918i 0.366892 + 0.478288i
\(57\) 0 0
\(58\) 3.44717 + 1.08707i 0.452636 + 0.142740i
\(59\) 2.81213i 0.366108i 0.983103 + 0.183054i \(0.0585983\pi\)
−0.983103 + 0.183054i \(0.941402\pi\)
\(60\) 0 0
\(61\) 8.34242i 1.06814i −0.845441 0.534069i \(-0.820662\pi\)
0.845441 0.534069i \(-0.179338\pi\)
\(62\) −2.52366 + 8.00266i −0.320505 + 1.01634i
\(63\) 0 0
\(64\) −2.07281 + 7.72680i −0.259101 + 0.965850i
\(65\) −4.75054 1.15688i −0.589232 0.143493i
\(66\) 0 0
\(67\) 6.00359i 0.733455i −0.930328 0.366728i \(-0.880478\pi\)
0.930328 0.366728i \(-0.119522\pi\)
\(68\) 3.73226 + 2.61390i 0.452603 + 0.316982i
\(69\) 0 0
\(70\) −4.31442 2.61181i −0.515672 0.312171i
\(71\) −2.34652 −0.278480 −0.139240 0.990259i \(-0.544466\pi\)
−0.139240 + 0.990259i \(0.544466\pi\)
\(72\) 0 0
\(73\) 5.96697i 0.698381i 0.937052 + 0.349191i \(0.113543\pi\)
−0.937052 + 0.349191i \(0.886457\pi\)
\(74\) −3.36756 1.06197i −0.391471 0.123451i
\(75\) 0 0
\(76\) 9.52585 + 6.67146i 1.09269 + 0.765268i
\(77\) 5.76041i 0.656460i
\(78\) 0 0
\(79\) 11.2489i 1.26559i 0.774317 + 0.632797i \(0.218093\pi\)
−0.774317 + 0.632797i \(0.781907\pi\)
\(80\) −0.981850 8.89022i −0.109774 0.993957i
\(81\) 0 0
\(82\) −4.38289 + 13.8984i −0.484009 + 1.53482i
\(83\) −6.40570 −0.703117 −0.351559 0.936166i \(-0.614348\pi\)
−0.351559 + 0.936166i \(0.614348\pi\)
\(84\) 0 0
\(85\) −4.94973 1.20539i −0.536874 0.130742i
\(86\) 0.418414 1.32681i 0.0451187 0.143074i
\(87\) 0 0
\(88\) 8.10570 6.21785i 0.864071 0.662825i
\(89\) 6.53221i 0.692413i −0.938158 0.346206i \(-0.887470\pi\)
0.938158 0.346206i \(-0.112530\pi\)
\(90\) 0 0
\(91\) 3.48732 0.365570
\(92\) −1.23807 + 1.76778i −0.129078 + 0.184304i
\(93\) 0 0
\(94\) 4.53112 14.3684i 0.467349 1.48199i
\(95\) −12.6332 3.07651i −1.29614 0.315643i
\(96\) 0 0
\(97\) 16.1661i 1.64142i −0.571348 0.820708i \(-0.693579\pi\)
0.571348 0.820708i \(-0.306421\pi\)
\(98\) −6.01054 1.89544i −0.607157 0.191468i
\(99\) 0 0
\(100\) 4.63625 + 8.86031i 0.463625 + 0.886031i
\(101\) 9.33401 0.928769 0.464385 0.885634i \(-0.346276\pi\)
0.464385 + 0.885634i \(0.346276\pi\)
\(102\) 0 0
\(103\) 19.4431 1.91579 0.957895 0.287120i \(-0.0926977\pi\)
0.957895 + 0.287120i \(0.0926977\pi\)
\(104\) 3.76425 + 4.90714i 0.369115 + 0.481185i
\(105\) 0 0
\(106\) 3.51552 11.1479i 0.341457 1.08278i
\(107\) −12.4680 −1.20532 −0.602662 0.797997i \(-0.705893\pi\)
−0.602662 + 0.797997i \(0.705893\pi\)
\(108\) 0 0
\(109\) 7.46156i 0.714688i −0.933973 0.357344i \(-0.883682\pi\)
0.933973 0.357344i \(-0.116318\pi\)
\(110\) −5.91493 + 9.77081i −0.563966 + 0.931610i
\(111\) 0 0
\(112\) 2.18073 + 5.99514i 0.206060 + 0.566488i
\(113\) −13.1420 −1.23629 −0.618146 0.786063i \(-0.712116\pi\)
−0.618146 + 0.786063i \(0.712116\pi\)
\(114\) 0 0
\(115\) 0.570929 2.34443i 0.0532394 0.218620i
\(116\) 4.18697 + 2.93236i 0.388751 + 0.272262i
\(117\) 0 0
\(118\) −1.19608 + 3.79283i −0.110108 + 0.349158i
\(119\) 3.63354 0.333086
\(120\) 0 0
\(121\) −2.04551 −0.185955
\(122\) 3.54826 11.2517i 0.321245 1.01869i
\(123\) 0 0
\(124\) −6.80751 + 9.72011i −0.611332 + 0.872892i
\(125\) −8.43026 7.34375i −0.754026 0.656845i
\(126\) 0 0
\(127\) −17.9156 −1.58975 −0.794876 0.606772i \(-0.792464\pi\)
−0.794876 + 0.606772i \(0.792464\pi\)
\(128\) −6.08210 + 9.53982i −0.537587 + 0.843209i
\(129\) 0 0
\(130\) −5.91519 3.58086i −0.518796 0.314062i
\(131\) 13.8512i 1.21019i 0.796155 + 0.605093i \(0.206864\pi\)
−0.796155 + 0.605093i \(0.793136\pi\)
\(132\) 0 0
\(133\) 9.27389 0.804148
\(134\) 2.55349 8.09728i 0.220588 0.699498i
\(135\) 0 0
\(136\) 3.92208 + 5.11290i 0.336316 + 0.438428i
\(137\) −14.7529 −1.26043 −0.630214 0.776422i \(-0.717033\pi\)
−0.630214 + 0.776422i \(0.717033\pi\)
\(138\) 0 0
\(139\) 8.56738 0.726676 0.363338 0.931657i \(-0.381637\pi\)
0.363338 + 0.931657i \(0.381637\pi\)
\(140\) −4.70816 5.35770i −0.397912 0.452808i
\(141\) 0 0
\(142\) −3.16484 0.998038i −0.265587 0.0837535i
\(143\) 7.89767i 0.660436i
\(144\) 0 0
\(145\) −5.55277 1.35224i −0.461132 0.112297i
\(146\) −2.53792 + 8.04789i −0.210040 + 0.666048i
\(147\) 0 0
\(148\) −4.09027 2.86463i −0.336218 0.235471i
\(149\) −17.2194 −1.41067 −0.705335 0.708874i \(-0.749203\pi\)
−0.705335 + 0.708874i \(0.749203\pi\)
\(150\) 0 0
\(151\) 6.38199i 0.519359i 0.965695 + 0.259680i \(0.0836170\pi\)
−0.965695 + 0.259680i \(0.916383\pi\)
\(152\) 10.0103 + 13.0497i 0.811945 + 1.05847i
\(153\) 0 0
\(154\) 2.45006 7.76929i 0.197432 0.626067i
\(155\) 3.13924 12.8908i 0.252150 1.03542i
\(156\) 0 0
\(157\) −24.3034 −1.93962 −0.969811 0.243857i \(-0.921587\pi\)
−0.969811 + 0.243857i \(0.921587\pi\)
\(158\) −4.78445 + 15.1718i −0.380630 + 1.20700i
\(159\) 0 0
\(160\) 2.45700 12.4082i 0.194243 0.980953i
\(161\) 1.72102i 0.135636i
\(162\) 0 0
\(163\) 19.9078i 1.55930i 0.626215 + 0.779650i \(0.284603\pi\)
−0.626215 + 0.779650i \(0.715397\pi\)
\(164\) −11.8227 + 16.8811i −0.923200 + 1.31819i
\(165\) 0 0
\(166\) −8.63962 2.72452i −0.670565 0.211464i
\(167\) 7.62227i 0.589829i −0.955524 0.294915i \(-0.904709\pi\)
0.955524 0.294915i \(-0.0952912\pi\)
\(168\) 0 0
\(169\) −8.21880 −0.632215
\(170\) −6.16321 3.73101i −0.472697 0.286155i
\(171\) 0 0
\(172\) 1.12866 1.61156i 0.0860597 0.122881i
\(173\) 13.7524i 1.04558i −0.852463 0.522788i \(-0.824892\pi\)
0.852463 0.522788i \(-0.175108\pi\)
\(174\) 0 0
\(175\) 7.08143 + 3.66645i 0.535306 + 0.277158i
\(176\) 13.5771 4.93867i 1.02341 0.372266i
\(177\) 0 0
\(178\) 2.77833 8.81024i 0.208245 0.660356i
\(179\) 14.1889i 1.06053i 0.847832 + 0.530265i \(0.177908\pi\)
−0.847832 + 0.530265i \(0.822092\pi\)
\(180\) 0 0
\(181\) 19.4024i 1.44217i −0.692846 0.721086i \(-0.743643\pi\)
0.692846 0.721086i \(-0.256357\pi\)
\(182\) 4.70348 + 1.48325i 0.348645 + 0.109946i
\(183\) 0 0
\(184\) −2.42172 + 1.85769i −0.178532 + 0.136951i
\(185\) 5.42453 + 1.32101i 0.398819 + 0.0971226i
\(186\) 0 0
\(187\) 8.22882i 0.601751i
\(188\) 12.2226 17.4521i 0.891424 1.27282i
\(189\) 0 0
\(190\) −15.7304 9.52266i −1.14120 0.690846i
\(191\) 24.8392 1.79730 0.898651 0.438664i \(-0.144548\pi\)
0.898651 + 0.438664i \(0.144548\pi\)
\(192\) 0 0
\(193\) 6.04021i 0.434784i 0.976084 + 0.217392i \(0.0697549\pi\)
−0.976084 + 0.217392i \(0.930245\pi\)
\(194\) 6.87588 21.8038i 0.493659 1.56542i
\(195\) 0 0
\(196\) −7.30047 5.11290i −0.521462 0.365207i
\(197\) 17.5571i 1.25089i 0.780269 + 0.625444i \(0.215082\pi\)
−0.780269 + 0.625444i \(0.784918\pi\)
\(198\) 0 0
\(199\) 11.9068i 0.844048i 0.906585 + 0.422024i \(0.138680\pi\)
−0.906585 + 0.422024i \(0.861320\pi\)
\(200\) 2.48456 + 13.9222i 0.175685 + 0.984446i
\(201\) 0 0
\(202\) 12.5891 + 3.97002i 0.885769 + 0.279329i
\(203\) 4.07622 0.286095
\(204\) 0 0
\(205\) 5.45199 22.3878i 0.380784 1.56363i
\(206\) 26.2237 + 8.26971i 1.82709 + 0.576178i
\(207\) 0 0
\(208\) 2.98984 + 8.21949i 0.207308 + 0.569919i
\(209\) 21.0024i 1.45277i
\(210\) 0 0
\(211\) −6.86570 −0.472654 −0.236327 0.971674i \(-0.575944\pi\)
−0.236327 + 0.971674i \(0.575944\pi\)
\(212\) 9.48303 13.5404i 0.651297 0.929956i
\(213\) 0 0
\(214\) −16.8160 5.30297i −1.14952 0.362504i
\(215\) −0.520477 + 2.13726i −0.0354962 + 0.145760i
\(216\) 0 0
\(217\) 9.46301i 0.642391i
\(218\) 3.17361 10.0637i 0.214944 0.681599i
\(219\) 0 0
\(220\) −12.1335 + 10.6625i −0.818040 + 0.718864i
\(221\) 4.98168 0.335104
\(222\) 0 0
\(223\) 4.99364 0.334399 0.167200 0.985923i \(-0.446528\pi\)
0.167200 + 0.985923i \(0.446528\pi\)
\(224\) 0.391339 + 9.01341i 0.0261475 + 0.602234i
\(225\) 0 0
\(226\) −17.7251 5.58964i −1.17905 0.371817i
\(227\) 12.3395 0.819000 0.409500 0.912310i \(-0.365703\pi\)
0.409500 + 0.912310i \(0.365703\pi\)
\(228\) 0 0
\(229\) 25.0215i 1.65347i −0.562593 0.826734i \(-0.690196\pi\)
0.562593 0.826734i \(-0.309804\pi\)
\(230\) 1.76719 2.91920i 0.116525 0.192486i
\(231\) 0 0
\(232\) 4.39992 + 5.73582i 0.288869 + 0.376575i
\(233\) 6.88604 0.451120 0.225560 0.974229i \(-0.427579\pi\)
0.225560 + 0.974229i \(0.427579\pi\)
\(234\) 0 0
\(235\) −5.63638 + 23.1450i −0.367677 + 1.50981i
\(236\) −3.22639 + 4.60681i −0.210020 + 0.299878i
\(237\) 0 0
\(238\) 4.90070 + 1.54545i 0.317665 + 0.100176i
\(239\) −8.26310 −0.534495 −0.267248 0.963628i \(-0.586114\pi\)
−0.267248 + 0.963628i \(0.586114\pi\)
\(240\) 0 0
\(241\) −18.2659 −1.17661 −0.588304 0.808640i \(-0.700204\pi\)
−0.588304 + 0.808640i \(0.700204\pi\)
\(242\) −2.75885 0.870011i −0.177346 0.0559264i
\(243\) 0 0
\(244\) 9.57136 13.6665i 0.612744 0.874908i
\(245\) 9.68190 + 2.35779i 0.618554 + 0.150634i
\(246\) 0 0
\(247\) 12.7147 0.809019
\(248\) −13.3158 + 10.2145i −0.845553 + 0.648620i
\(249\) 0 0
\(250\) −8.24672 13.4904i −0.521568 0.853209i
\(251\) 11.7200i 0.739758i 0.929080 + 0.369879i \(0.120601\pi\)
−0.929080 + 0.369879i \(0.879399\pi\)
\(252\) 0 0
\(253\) 3.89757 0.245038
\(254\) −24.1635 7.62000i −1.51615 0.478122i
\(255\) 0 0
\(256\) −12.2607 + 10.2798i −0.766294 + 0.642490i
\(257\) 14.0351 0.875484 0.437742 0.899101i \(-0.355778\pi\)
0.437742 + 0.899101i \(0.355778\pi\)
\(258\) 0 0
\(259\) −3.98208 −0.247435
\(260\) −6.45500 7.34554i −0.400322 0.455551i
\(261\) 0 0
\(262\) −5.89131 + 18.6817i −0.363966 + 1.15416i
\(263\) 2.15821i 0.133081i −0.997784 0.0665404i \(-0.978804\pi\)
0.997784 0.0665404i \(-0.0211961\pi\)
\(264\) 0 0
\(265\) −4.37305 + 17.9573i −0.268634 + 1.10311i
\(266\) 12.5081 + 3.94444i 0.766918 + 0.241849i
\(267\) 0 0
\(268\) 6.88799 9.83504i 0.420751 0.600771i
\(269\) −16.4601 −1.00359 −0.501794 0.864987i \(-0.667326\pi\)
−0.501794 + 0.864987i \(0.667326\pi\)
\(270\) 0 0
\(271\) 17.3557i 1.05429i 0.849777 + 0.527143i \(0.176737\pi\)
−0.849777 + 0.527143i \(0.823263\pi\)
\(272\) 3.11521 + 8.56414i 0.188887 + 0.519277i
\(273\) 0 0
\(274\) −19.8978 6.27483i −1.20207 0.379076i
\(275\) 8.30336 16.0372i 0.500711 0.967080i
\(276\) 0 0
\(277\) −4.12691 −0.247962 −0.123981 0.992285i \(-0.539566\pi\)
−0.123981 + 0.992285i \(0.539566\pi\)
\(278\) 11.5552 + 3.64394i 0.693032 + 0.218549i
\(279\) 0 0
\(280\) −4.07129 9.22864i −0.243306 0.551517i
\(281\) 4.04370i 0.241227i 0.992700 + 0.120613i \(0.0384862\pi\)
−0.992700 + 0.120613i \(0.961514\pi\)
\(282\) 0 0
\(283\) 16.6792i 0.991473i −0.868473 0.495736i \(-0.834898\pi\)
0.868473 0.495736i \(-0.165102\pi\)
\(284\) −3.84404 2.69219i −0.228102 0.159752i
\(285\) 0 0
\(286\) 3.35910 10.6519i 0.198628 0.629860i
\(287\) 16.4346i 0.970104i
\(288\) 0 0
\(289\) −11.8094 −0.694673
\(290\) −6.91409 4.18557i −0.406009 0.245785i
\(291\) 0 0
\(292\) −6.84598 + 9.77505i −0.400631 + 0.572042i
\(293\) 30.6478i 1.79046i 0.445601 + 0.895232i \(0.352990\pi\)
−0.445601 + 0.895232i \(0.647010\pi\)
\(294\) 0 0
\(295\) 1.48783 6.10956i 0.0866249 0.355712i
\(296\) −4.29830 5.60335i −0.249834 0.325688i
\(297\) 0 0
\(298\) −23.2245 7.32390i −1.34536 0.424262i
\(299\) 2.35957i 0.136457i
\(300\) 0 0
\(301\) 1.56894i 0.0904320i
\(302\) −2.71444 + 8.60764i −0.156198 + 0.495314i
\(303\) 0 0
\(304\) 7.95094 + 21.8583i 0.456018 + 1.25366i
\(305\) −4.41378 + 18.1245i −0.252732 + 1.03781i
\(306\) 0 0
\(307\) 32.3125i 1.84417i −0.386988 0.922085i \(-0.626485\pi\)
0.386988 0.922085i \(-0.373515\pi\)
\(308\) 6.60899 9.43666i 0.376582 0.537704i
\(309\) 0 0
\(310\) 9.71685 16.0512i 0.551880 0.911645i
\(311\) 5.05675 0.286742 0.143371 0.989669i \(-0.454206\pi\)
0.143371 + 0.989669i \(0.454206\pi\)
\(312\) 0 0
\(313\) 10.5648i 0.597158i 0.954385 + 0.298579i \(0.0965127\pi\)
−0.954385 + 0.298579i \(0.903487\pi\)
\(314\) −32.7789 10.3369i −1.84982 0.583346i
\(315\) 0 0
\(316\) −12.9059 + 18.4278i −0.726016 + 1.03664i
\(317\) 4.83085i 0.271328i −0.990755 0.135664i \(-0.956683\pi\)
0.990755 0.135664i \(-0.0433167\pi\)
\(318\) 0 0
\(319\) 9.23136i 0.516857i
\(320\) 8.59140 15.6904i 0.480274 0.877119i
\(321\) 0 0
\(322\) −0.731999 + 2.32121i −0.0407927 + 0.129356i
\(323\) 13.2479 0.737132
\(324\) 0 0
\(325\) 9.70882 + 5.02680i 0.538549 + 0.278837i
\(326\) −8.46735 + 26.8504i −0.468963 + 1.48711i
\(327\) 0 0
\(328\) −23.1258 + 17.7397i −1.27691 + 0.979510i
\(329\) 16.9904i 0.936713i
\(330\) 0 0
\(331\) 4.14240 0.227687 0.113843 0.993499i \(-0.463684\pi\)
0.113843 + 0.993499i \(0.463684\pi\)
\(332\) −10.4938 7.34934i −0.575921 0.403347i
\(333\) 0 0
\(334\) 3.24196 10.2805i 0.177392 0.562521i
\(335\) −3.17636 + 13.0432i −0.173543 + 0.712629i
\(336\) 0 0
\(337\) 23.5875i 1.28489i −0.766332 0.642445i \(-0.777920\pi\)
0.766332 0.642445i \(-0.222080\pi\)
\(338\) −11.0850 3.49568i −0.602945 0.190140i
\(339\) 0 0
\(340\) −6.72566 7.65354i −0.364750 0.415072i
\(341\) 21.4307 1.16054
\(342\) 0 0
\(343\) −18.2714 −0.986563
\(344\) 2.20771 1.69353i 0.119032 0.0913088i
\(345\) 0 0
\(346\) 5.84928 18.5484i 0.314459 0.997168i
\(347\) −10.0100 −0.537365 −0.268683 0.963229i \(-0.586588\pi\)
−0.268683 + 0.963229i \(0.586588\pi\)
\(348\) 0 0
\(349\) 0.434946i 0.0232821i −0.999932 0.0116411i \(-0.996294\pi\)
0.999932 0.0116411i \(-0.00370555\pi\)
\(350\) 7.99156 + 7.95702i 0.427167 + 0.425320i
\(351\) 0 0
\(352\) 20.4125 0.886260i 1.08799 0.0472378i
\(353\) 23.0388 1.22623 0.613115 0.789994i \(-0.289916\pi\)
0.613115 + 0.789994i \(0.289916\pi\)
\(354\) 0 0
\(355\) 5.09798 + 1.24149i 0.270573 + 0.0658913i
\(356\) 7.49448 10.7010i 0.397207 0.567153i
\(357\) 0 0
\(358\) −6.03495 + 19.1372i −0.318957 + 1.01143i
\(359\) −12.9336 −0.682611 −0.341306 0.939952i \(-0.610869\pi\)
−0.341306 + 0.939952i \(0.610869\pi\)
\(360\) 0 0
\(361\) 14.8126 0.779608
\(362\) 8.25239 26.1688i 0.433736 1.37540i
\(363\) 0 0
\(364\) 5.71289 + 4.00104i 0.299437 + 0.209711i
\(365\) 3.15699 12.9637i 0.165244 0.678551i
\(366\) 0 0
\(367\) −21.3144 −1.11260 −0.556301 0.830981i \(-0.687780\pi\)
−0.556301 + 0.830981i \(0.687780\pi\)
\(368\) −4.05639 + 1.47551i −0.211454 + 0.0769165i
\(369\) 0 0
\(370\) 6.75441 + 4.08890i 0.351145 + 0.212572i
\(371\) 13.1822i 0.684386i
\(372\) 0 0
\(373\) −28.2669 −1.46360 −0.731802 0.681517i \(-0.761321\pi\)
−0.731802 + 0.681517i \(0.761321\pi\)
\(374\) 3.49995 11.0985i 0.180978 0.573891i
\(375\) 0 0
\(376\) 23.9079 18.3397i 1.23296 0.945796i
\(377\) 5.58861 0.287828
\(378\) 0 0
\(379\) −22.8586 −1.17417 −0.587084 0.809526i \(-0.699724\pi\)
−0.587084 + 0.809526i \(0.699724\pi\)
\(380\) −17.1659 19.5341i −0.880593 1.00208i
\(381\) 0 0
\(382\) 33.5016 + 10.5648i 1.71409 + 0.540543i
\(383\) 26.5168i 1.35494i 0.735549 + 0.677472i \(0.236924\pi\)
−0.735549 + 0.677472i \(0.763076\pi\)
\(384\) 0 0
\(385\) −3.04770 + 12.5149i −0.155325 + 0.637819i
\(386\) −2.56907 + 8.14666i −0.130762 + 0.414654i
\(387\) 0 0
\(388\) 18.5475 26.4831i 0.941608 1.34448i
\(389\) 16.2240 0.822589 0.411295 0.911502i \(-0.365077\pi\)
0.411295 + 0.911502i \(0.365077\pi\)
\(390\) 0 0
\(391\) 2.45850i 0.124332i
\(392\) −7.67177 10.0011i −0.387483 0.505130i
\(393\) 0 0
\(394\) −7.46750 + 23.6799i −0.376207 + 1.19298i
\(395\) 5.95151 24.4390i 0.299453 1.22966i
\(396\) 0 0
\(397\) 18.3726 0.922093 0.461046 0.887376i \(-0.347474\pi\)
0.461046 + 0.887376i \(0.347474\pi\)
\(398\) −5.06427 + 16.0591i −0.253849 + 0.804970i
\(399\) 0 0
\(400\) −2.57047 + 19.8341i −0.128523 + 0.991706i
\(401\) 13.0115i 0.649761i 0.945755 + 0.324881i \(0.105324\pi\)
−0.945755 + 0.324881i \(0.894676\pi\)
\(402\) 0 0
\(403\) 12.9740i 0.646282i
\(404\) 15.2909 + 10.7090i 0.760751 + 0.532794i
\(405\) 0 0
\(406\) 5.49776 + 1.73373i 0.272849 + 0.0860436i
\(407\) 9.01816i 0.447014i
\(408\) 0 0
\(409\) 27.8630 1.37774 0.688869 0.724885i \(-0.258107\pi\)
0.688869 + 0.724885i \(0.258107\pi\)
\(410\) 16.8755 27.8764i 0.833419 1.37672i
\(411\) 0 0
\(412\) 31.8516 + 22.3074i 1.56922 + 1.09900i
\(413\) 4.48496i 0.220690i
\(414\) 0 0
\(415\) 13.9169 + 3.38911i 0.683152 + 0.166365i
\(416\) 0.536536 + 12.3576i 0.0263058 + 0.605882i
\(417\) 0 0
\(418\) 8.93292 28.3268i 0.436923 1.38551i
\(419\) 21.9663i 1.07312i 0.843861 + 0.536562i \(0.180277\pi\)
−0.843861 + 0.536562i \(0.819723\pi\)
\(420\) 0 0
\(421\) 10.0594i 0.490263i 0.969490 + 0.245132i \(0.0788312\pi\)
−0.969490 + 0.245132i \(0.921169\pi\)
\(422\) −9.26004 2.92017i −0.450772 0.142152i
\(423\) 0 0
\(424\) 18.5492 14.2290i 0.900830 0.691022i
\(425\) 10.1159 + 5.23758i 0.490694 + 0.254060i
\(426\) 0 0
\(427\) 13.3050i 0.643874i
\(428\) −20.4249 14.3047i −0.987277 0.691442i
\(429\) 0 0
\(430\) −1.61102 + 2.66123i −0.0776904 + 0.128336i
\(431\) −9.80514 −0.472297 −0.236148 0.971717i \(-0.575885\pi\)
−0.236148 + 0.971717i \(0.575885\pi\)
\(432\) 0 0
\(433\) 14.7117i 0.706997i −0.935435 0.353499i \(-0.884992\pi\)
0.935435 0.353499i \(-0.115008\pi\)
\(434\) −4.02488 + 12.7631i −0.193200 + 0.612650i
\(435\) 0 0
\(436\) 8.56074 12.2235i 0.409985 0.585398i
\(437\) 6.27484i 0.300166i
\(438\) 0 0
\(439\) 20.5609i 0.981319i 0.871352 + 0.490659i \(0.163244\pi\)
−0.871352 + 0.490659i \(0.836756\pi\)
\(440\) −20.9000 + 9.22019i −0.996366 + 0.439555i
\(441\) 0 0
\(442\) 6.71898 + 2.11885i 0.319589 + 0.100783i
\(443\) −0.505156 −0.0240007 −0.0120003 0.999928i \(-0.503820\pi\)
−0.0120003 + 0.999928i \(0.503820\pi\)
\(444\) 0 0
\(445\) −3.45604 + 14.1917i −0.163832 + 0.672751i
\(446\) 6.73512 + 2.12393i 0.318917 + 0.100571i
\(447\) 0 0
\(448\) −3.30584 + 12.3232i −0.156186 + 0.582215i
\(449\) 11.5637i 0.545726i −0.962053 0.272863i \(-0.912029\pi\)
0.962053 0.272863i \(-0.0879706\pi\)
\(450\) 0 0
\(451\) 37.2192 1.75258
\(452\) −21.5291 15.0779i −1.01264 0.709206i
\(453\) 0 0
\(454\) 16.6427 + 5.24832i 0.781082 + 0.246316i
\(455\) −7.57645 1.84506i −0.355190 0.0864976i
\(456\) 0 0
\(457\) 13.7815i 0.644670i −0.946626 0.322335i \(-0.895532\pi\)
0.946626 0.322335i \(-0.104468\pi\)
\(458\) 10.6423 33.7475i 0.497284 1.57692i
\(459\) 0 0
\(460\) 3.62509 3.18560i 0.169021 0.148529i
\(461\) 11.6050 0.540501 0.270250 0.962790i \(-0.412894\pi\)
0.270250 + 0.962790i \(0.412894\pi\)
\(462\) 0 0
\(463\) 23.6187 1.09765 0.548827 0.835936i \(-0.315074\pi\)
0.548827 + 0.835936i \(0.315074\pi\)
\(464\) 3.49474 + 9.60753i 0.162239 + 0.446018i
\(465\) 0 0
\(466\) 9.28747 + 2.92882i 0.430234 + 0.135675i
\(467\) 25.1522 1.16390 0.581952 0.813223i \(-0.302289\pi\)
0.581952 + 0.813223i \(0.302289\pi\)
\(468\) 0 0
\(469\) 9.57489i 0.442128i
\(470\) −17.4462 + 28.8192i −0.804733 + 1.32933i
\(471\) 0 0
\(472\) −6.31096 + 4.84111i −0.290485 + 0.222830i
\(473\) −3.55314 −0.163374
\(474\) 0 0
\(475\) 25.8189 + 13.3679i 1.18465 + 0.613360i
\(476\) 5.95244 + 4.16881i 0.272830 + 0.191077i
\(477\) 0 0
\(478\) −11.1448 3.51453i −0.509750 0.160751i
\(479\) 18.6766 0.853354 0.426677 0.904404i \(-0.359684\pi\)
0.426677 + 0.904404i \(0.359684\pi\)
\(480\) 0 0
\(481\) −5.45954 −0.248933
\(482\) −24.6359 7.76898i −1.12213 0.353867i
\(483\) 0 0
\(484\) −3.35093 2.34683i −0.152315 0.106674i
\(485\) −8.55309 + 35.1220i −0.388376 + 1.59481i
\(486\) 0 0
\(487\) −21.6007 −0.978823 −0.489411 0.872053i \(-0.662788\pi\)
−0.489411 + 0.872053i \(0.662788\pi\)
\(488\) 18.7220 14.3616i 0.847505 0.650117i
\(489\) 0 0
\(490\) 12.0555 + 7.29802i 0.544613 + 0.329691i
\(491\) 30.9795i 1.39809i −0.715079 0.699043i \(-0.753609\pi\)
0.715079 0.699043i \(-0.246391\pi\)
\(492\) 0 0
\(493\) 5.82294 0.262252
\(494\) 17.1489 + 5.40793i 0.771564 + 0.243314i
\(495\) 0 0
\(496\) −22.3040 + 8.11309i −1.00148 + 0.364288i
\(497\) −3.74237 −0.167868
\(498\) 0 0
\(499\) −12.1240 −0.542745 −0.271372 0.962474i \(-0.587477\pi\)
−0.271372 + 0.962474i \(0.587477\pi\)
\(500\) −5.38482 21.7026i −0.240816 0.970571i
\(501\) 0 0
\(502\) −4.98483 + 15.8072i −0.222484 + 0.705509i
\(503\) 7.93957i 0.354008i −0.984210 0.177004i \(-0.943359\pi\)
0.984210 0.177004i \(-0.0566405\pi\)
\(504\) 0 0
\(505\) −20.2788 4.93841i −0.902396 0.219756i
\(506\) 5.25681 + 1.65775i 0.233694 + 0.0736958i
\(507\) 0 0
\(508\) −29.3492 20.5548i −1.30216 0.911971i
\(509\) −14.5479 −0.644826 −0.322413 0.946599i \(-0.604494\pi\)
−0.322413 + 0.946599i \(0.604494\pi\)
\(510\) 0 0
\(511\) 9.51650i 0.420985i
\(512\) −20.9088 + 8.64999i −0.924047 + 0.382279i
\(513\) 0 0
\(514\) 18.9296 + 5.96951i 0.834951 + 0.263304i
\(515\) −42.2417 10.2869i −1.86139 0.453296i
\(516\) 0 0
\(517\) −38.4780 −1.69226
\(518\) −5.37079 1.69369i −0.235979 0.0744165i
\(519\) 0 0
\(520\) −5.58185 12.6527i −0.244780 0.554858i
\(521\) 40.9736i 1.79508i 0.440929 + 0.897542i \(0.354649\pi\)
−0.440929 + 0.897542i \(0.645351\pi\)
\(522\) 0 0
\(523\) 0.689354i 0.0301434i −0.999886 0.0150717i \(-0.995202\pi\)
0.999886 0.0150717i \(-0.00479765\pi\)
\(524\) −15.8917 + 22.6910i −0.694231 + 0.991259i
\(525\) 0 0
\(526\) 0.917946 2.91086i 0.0400244 0.126920i
\(527\) 13.5180i 0.588855i
\(528\) 0 0
\(529\) 21.8355 0.949371
\(530\) −13.5358 + 22.3597i −0.587958 + 0.971242i
\(531\) 0 0
\(532\) 15.1924 + 10.6400i 0.658675 + 0.461304i
\(533\) 22.5323i 0.975980i
\(534\) 0 0
\(535\) 27.0876 + 6.59651i 1.17110 + 0.285192i
\(536\) 13.4732 10.3352i 0.581954 0.446415i
\(537\) 0 0
\(538\) −22.2003 7.00092i −0.957124 0.301831i
\(539\) 16.0959i 0.693301i
\(540\) 0 0
\(541\) 2.61438i 0.112401i 0.998420 + 0.0562004i \(0.0178986\pi\)
−0.998420 + 0.0562004i \(0.982101\pi\)
\(542\) −7.38187 + 23.4083i −0.317079 + 1.00547i
\(543\) 0 0
\(544\) 0.559033 + 12.8758i 0.0239684 + 0.552044i
\(545\) −3.94774 + 16.2108i −0.169102 + 0.694394i
\(546\) 0 0
\(547\) 6.89720i 0.294903i 0.989069 + 0.147452i \(0.0471070\pi\)
−0.989069 + 0.147452i \(0.952893\pi\)
\(548\) −24.1681 16.9262i −1.03241 0.723052i
\(549\) 0 0
\(550\) 18.0201 18.0983i 0.768381 0.771716i
\(551\) 14.8619 0.633138
\(552\) 0 0
\(553\) 17.9404i 0.762902i
\(554\) −5.56613 1.75529i −0.236482 0.0745752i
\(555\) 0 0
\(556\) 14.0350 + 9.82946i 0.595217 + 0.416862i
\(557\) 29.1931i 1.23695i −0.785803 0.618477i \(-0.787750\pi\)
0.785803 0.618477i \(-0.212250\pi\)
\(558\) 0 0
\(559\) 2.15105i 0.0909798i
\(560\) −1.56591 14.1787i −0.0661719 0.599158i
\(561\) 0 0
\(562\) −1.71990 + 5.45389i −0.0725495 + 0.230059i
\(563\) −31.4932 −1.32728 −0.663639 0.748053i \(-0.730989\pi\)
−0.663639 + 0.748053i \(0.730989\pi\)
\(564\) 0 0
\(565\) 28.5519 + 6.95311i 1.20119 + 0.292519i
\(566\) 7.09411 22.4958i 0.298188 0.945570i
\(567\) 0 0
\(568\) −4.03955 5.26603i −0.169496 0.220958i
\(569\) 42.4551i 1.77981i −0.456145 0.889905i \(-0.650770\pi\)
0.456145 0.889905i \(-0.349230\pi\)
\(570\) 0 0
\(571\) −5.84033 −0.244410 −0.122205 0.992505i \(-0.538997\pi\)
−0.122205 + 0.992505i \(0.538997\pi\)
\(572\) 9.06109 12.9379i 0.378863 0.540961i
\(573\) 0 0
\(574\) −6.99009 + 22.1660i −0.291761 + 0.925190i
\(575\) −2.48077 + 4.79139i −0.103455 + 0.199815i
\(576\) 0 0
\(577\) 45.1309i 1.87882i −0.342791 0.939412i \(-0.611372\pi\)
0.342791 0.939412i \(-0.388628\pi\)
\(578\) −15.9278 5.02288i −0.662511 0.208924i
\(579\) 0 0
\(580\) −7.54507 8.58599i −0.313292 0.356514i
\(581\) −10.2162 −0.423840
\(582\) 0 0
\(583\) −29.8535 −1.23641
\(584\) −13.3910 + 10.2722i −0.554125 + 0.425067i
\(585\) 0 0
\(586\) −13.0354 + 41.3359i −0.538486 + 1.70757i
\(587\) 6.69464 0.276317 0.138159 0.990410i \(-0.455882\pi\)
0.138159 + 0.990410i \(0.455882\pi\)
\(588\) 0 0
\(589\) 34.5021i 1.42163i
\(590\) 4.60526 7.60738i 0.189596 0.313191i
\(591\) 0 0
\(592\) −3.41403 9.38564i −0.140316 0.385748i
\(593\) 1.59700 0.0655810 0.0327905 0.999462i \(-0.489561\pi\)
0.0327905 + 0.999462i \(0.489561\pi\)
\(594\) 0 0
\(595\) −7.89414 1.92242i −0.323628 0.0788116i
\(596\) −28.2087 19.7561i −1.15547 0.809239i
\(597\) 0 0
\(598\) −1.00359 + 3.18244i −0.0410398 + 0.130140i
\(599\) 25.0749 1.02453 0.512266 0.858827i \(-0.328806\pi\)
0.512266 + 0.858827i \(0.328806\pi\)
\(600\) 0 0
\(601\) 2.98059 0.121581 0.0607904 0.998151i \(-0.480638\pi\)
0.0607904 + 0.998151i \(0.480638\pi\)
\(602\) 0.667312 2.11609i 0.0271976 0.0862452i
\(603\) 0 0
\(604\) −7.32214 + 10.4549i −0.297934 + 0.425405i
\(605\) 4.44401 + 1.08223i 0.180675 + 0.0439989i
\(606\) 0 0
\(607\) 30.2075 1.22608 0.613042 0.790050i \(-0.289946\pi\)
0.613042 + 0.790050i \(0.289946\pi\)
\(608\) 1.42682 + 32.8628i 0.0578652 + 1.33276i
\(609\) 0 0
\(610\) −13.6619 + 22.5679i −0.553154 + 0.913750i
\(611\) 23.2943i 0.942388i
\(612\) 0 0
\(613\) 41.9630 1.69487 0.847434 0.530900i \(-0.178146\pi\)
0.847434 + 0.530900i \(0.178146\pi\)
\(614\) 13.7434 43.5811i 0.554638 1.75879i
\(615\) 0 0
\(616\) 12.9275 9.91660i 0.520863 0.399551i
\(617\) 36.0698 1.45211 0.726057 0.687635i \(-0.241351\pi\)
0.726057 + 0.687635i \(0.241351\pi\)
\(618\) 0 0
\(619\) 18.8294 0.756817 0.378408 0.925639i \(-0.376471\pi\)
0.378408 + 0.925639i \(0.376471\pi\)
\(620\) 19.9325 17.5160i 0.800508 0.703458i
\(621\) 0 0
\(622\) 6.82024 + 2.15078i 0.273467 + 0.0862383i
\(623\) 10.4180i 0.417387i
\(624\) 0 0
\(625\) 14.4300 + 20.4151i 0.577198 + 0.816604i
\(626\) −4.49351 + 14.2492i −0.179597 + 0.569511i
\(627\) 0 0
\(628\) −39.8136 27.8836i −1.58874 1.11268i
\(629\) −5.68846 −0.226814
\(630\) 0 0
\(631\) 48.3505i 1.92480i −0.271629 0.962402i \(-0.587562\pi\)
0.271629 0.962402i \(-0.412438\pi\)
\(632\) −25.2446 + 19.3650i −1.00418 + 0.770299i
\(633\) 0 0
\(634\) 2.05469 6.51555i 0.0816023 0.258766i
\(635\) 38.9230 + 9.47873i 1.54461 + 0.376152i
\(636\) 0 0
\(637\) −9.74438 −0.386086
\(638\) 3.92635 12.4507i 0.155446 0.492928i
\(639\) 0 0
\(640\) 18.2611 17.5081i 0.721833 0.692067i
\(641\) 15.2377i 0.601853i 0.953647 + 0.300927i \(0.0972959\pi\)
−0.953647 + 0.300927i \(0.902704\pi\)
\(642\) 0 0
\(643\) 22.2897i 0.879019i 0.898238 + 0.439509i \(0.144848\pi\)
−0.898238 + 0.439509i \(0.855152\pi\)
\(644\) −1.97455 + 2.81937i −0.0778082 + 0.111099i
\(645\) 0 0
\(646\) 17.8679 + 5.63469i 0.703004 + 0.221694i
\(647\) 11.8135i 0.464437i 0.972664 + 0.232218i \(0.0745984\pi\)
−0.972664 + 0.232218i \(0.925402\pi\)
\(648\) 0 0
\(649\) 10.1570 0.398697
\(650\) 10.9566 + 10.9093i 0.429754 + 0.427897i
\(651\) 0 0
\(652\) −22.8405 + 32.6128i −0.894502 + 1.27722i
\(653\) 5.33196i 0.208656i −0.994543 0.104328i \(-0.966731\pi\)
0.994543 0.104328i \(-0.0332691\pi\)
\(654\) 0 0
\(655\) 7.32836 30.0928i 0.286343 1.17582i
\(656\) −38.7358 + 14.0902i −1.51238 + 0.550128i
\(657\) 0 0
\(658\) 7.22651 22.9157i 0.281719 0.893346i
\(659\) 30.7464i 1.19771i 0.800858 + 0.598854i \(0.204377\pi\)
−0.800858 + 0.598854i \(0.795623\pi\)
\(660\) 0 0
\(661\) 40.7254i 1.58404i 0.610498 + 0.792018i \(0.290969\pi\)
−0.610498 + 0.792018i \(0.709031\pi\)
\(662\) 5.58701 + 1.76188i 0.217145 + 0.0684773i
\(663\) 0 0
\(664\) −11.0275 14.3756i −0.427949 0.557883i
\(665\) −20.1482 4.90660i −0.781314 0.190270i
\(666\) 0 0
\(667\) 2.75803i 0.106791i
\(668\) 8.74512 12.4867i 0.338359 0.483127i
\(669\) 0 0
\(670\) −9.83174 + 16.2409i −0.379833 + 0.627442i
\(671\) −30.1316 −1.16322
\(672\) 0 0
\(673\) 3.14342i 0.121170i −0.998163 0.0605850i \(-0.980703\pi\)
0.998163 0.0605850i \(-0.0192966\pi\)
\(674\) 10.0324 31.8133i 0.386434 1.22540i
\(675\) 0 0
\(676\) −13.4640 9.42953i −0.517845 0.362674i
\(677\) 35.1895i 1.35244i 0.736699 + 0.676221i \(0.236384\pi\)
−0.736699 + 0.676221i \(0.763616\pi\)
\(678\) 0 0
\(679\) 25.7826i 0.989447i
\(680\) −5.81590 13.1832i −0.223030 0.505554i
\(681\) 0 0
\(682\) 28.9045 + 9.11508i 1.10681 + 0.349035i
\(683\) 29.6866 1.13593 0.567964 0.823054i \(-0.307731\pi\)
0.567964 + 0.823054i \(0.307731\pi\)
\(684\) 0 0
\(685\) 32.0518 + 7.80543i 1.22464 + 0.298230i
\(686\) −24.6433 7.77133i −0.940887 0.296711i
\(687\) 0 0
\(688\) 3.69793 1.34512i 0.140982 0.0512823i
\(689\) 18.0731i 0.688532i
\(690\) 0 0
\(691\) −33.5824 −1.27753 −0.638767 0.769400i \(-0.720555\pi\)
−0.638767 + 0.769400i \(0.720555\pi\)
\(692\) 15.7783 22.5291i 0.599801 0.856427i
\(693\) 0 0
\(694\) −13.5009 4.25753i −0.512486 0.161614i
\(695\) −18.6133 4.53280i −0.706041 0.171939i
\(696\) 0 0
\(697\) 23.4771i 0.889257i
\(698\) 0.184994 0.586628i 0.00700214 0.0222042i
\(699\) 0 0
\(700\) 7.39418 + 14.1310i 0.279474 + 0.534100i
\(701\) 6.08892 0.229975 0.114988 0.993367i \(-0.463317\pi\)
0.114988 + 0.993367i \(0.463317\pi\)
\(702\) 0 0
\(703\) −14.5187 −0.547582
\(704\) 27.9081 + 7.48668i 1.05183 + 0.282165i
\(705\) 0 0
\(706\) 31.0733 + 9.79902i 1.16946 + 0.368791i
\(707\) 14.8865 0.559863
\(708\) 0 0
\(709\) 23.7395i 0.891556i 0.895144 + 0.445778i \(0.147073\pi\)
−0.895144 + 0.445778i \(0.852927\pi\)
\(710\) 6.34780 + 3.84275i 0.238229 + 0.144216i
\(711\) 0 0
\(712\) 14.6595 11.2453i 0.549389 0.421434i
\(713\) −6.40280 −0.239787
\(714\) 0 0
\(715\) −4.17847 + 17.1583i −0.156266 + 0.641683i
\(716\) −16.2791 + 23.2442i −0.608380 + 0.868677i
\(717\) 0 0
\(718\) −17.4441 5.50103i −0.651008 0.205297i
\(719\) 50.5874 1.88659 0.943295 0.331956i \(-0.107708\pi\)
0.943295 + 0.331956i \(0.107708\pi\)
\(720\) 0 0
\(721\) 31.0091 1.15484
\(722\) 19.9783 + 6.30019i 0.743514 + 0.234469i
\(723\) 0 0
\(724\) 22.2606 31.7849i 0.827310 1.18128i
\(725\) 11.3484 + 5.87568i 0.421468 + 0.218217i
\(726\) 0 0
\(727\) −26.3853 −0.978577 −0.489289 0.872122i \(-0.662744\pi\)
−0.489289 + 0.872122i \(0.662744\pi\)
\(728\) 6.00345 + 7.82621i 0.222503 + 0.290059i
\(729\) 0 0
\(730\) 9.77177 16.1419i 0.361669 0.597438i
\(731\) 2.24125i 0.0828955i
\(732\) 0 0
\(733\) −37.4800 −1.38435 −0.692177 0.721727i \(-0.743348\pi\)
−0.692177 + 0.721727i \(0.743348\pi\)
\(734\) −28.7475 9.06560i −1.06109 0.334617i
\(735\) 0 0
\(736\) −6.09859 + 0.264785i −0.224797 + 0.00976012i
\(737\) −21.6841 −0.798744
\(738\) 0 0
\(739\) 18.7497 0.689718 0.344859 0.938655i \(-0.387927\pi\)
0.344859 + 0.938655i \(0.387927\pi\)
\(740\) 7.37081 + 8.38770i 0.270956 + 0.308338i
\(741\) 0 0
\(742\) 5.60676 17.7794i 0.205831 0.652701i
\(743\) 27.8320i 1.02106i 0.859861 + 0.510529i \(0.170550\pi\)
−0.859861 + 0.510529i \(0.829450\pi\)
\(744\) 0 0
\(745\) 37.4105 + 9.11040i 1.37061 + 0.333779i
\(746\) −38.1247 12.0227i −1.39584 0.440182i
\(747\) 0 0
\(748\) 9.44103 13.4804i 0.345198 0.492892i
\(749\) −19.8847 −0.726570
\(750\) 0 0
\(751\) 8.78033i 0.320399i −0.987085 0.160199i \(-0.948786\pi\)
0.987085 0.160199i \(-0.0512137\pi\)
\(752\) 40.0459 14.5667i 1.46032 0.531193i
\(753\) 0 0
\(754\) 7.53757 + 2.37699i 0.274502 + 0.0865649i
\(755\) 3.37657 13.8654i 0.122886 0.504612i
\(756\) 0 0
\(757\) 15.1104 0.549197 0.274598 0.961559i \(-0.411455\pi\)
0.274598 + 0.961559i \(0.411455\pi\)
\(758\) −30.8303 9.72240i −1.11981 0.353133i
\(759\) 0 0
\(760\) −14.8439 33.6476i −0.538446 1.22053i
\(761\) 16.6305i 0.602854i −0.953489 0.301427i \(-0.902537\pi\)
0.953489 0.301427i \(-0.0974629\pi\)
\(762\) 0 0
\(763\) 11.9001i 0.430814i
\(764\) 40.6914 + 28.4983i 1.47216 + 1.03103i
\(765\) 0 0
\(766\) −11.2783 + 35.7642i −0.407502 + 1.29221i
\(767\) 6.14899i 0.222027i
\(768\) 0 0
\(769\) −10.4045 −0.375195 −0.187598 0.982246i \(-0.560070\pi\)
−0.187598 + 0.982246i \(0.560070\pi\)
\(770\) −9.43349 + 15.5831i −0.339959 + 0.561575i
\(771\) 0 0
\(772\) −6.93000 + 9.89502i −0.249416 + 0.356130i
\(773\) 3.04874i 0.109656i −0.998496 0.0548278i \(-0.982539\pi\)
0.998496 0.0548278i \(-0.0174610\pi\)
\(774\) 0 0
\(775\) −13.6405 + 26.3454i −0.489981 + 0.946354i
\(776\) 36.2798 27.8301i 1.30237 0.999041i
\(777\) 0 0
\(778\) 21.8819 + 6.90052i 0.784505 + 0.247395i
\(779\) 59.9205i 2.14687i
\(780\) 0 0
\(781\) 8.47528i 0.303269i
\(782\) −1.04567 + 3.31588i −0.0373931 + 0.118576i
\(783\) 0 0
\(784\) −6.09348 16.7518i −0.217624 0.598280i
\(785\) 52.8009 + 12.8584i 1.88455 + 0.458935i
\(786\) 0 0
\(787\) 29.9306i 1.06691i −0.845828 0.533455i \(-0.820893\pi\)
0.845828 0.533455i \(-0.179107\pi\)
\(788\) −20.1434 + 28.7618i −0.717580 + 1.02460i
\(789\) 0 0
\(790\) 18.4216 30.4304i 0.655411 1.08267i
\(791\) −20.9596 −0.745238
\(792\) 0 0
\(793\) 18.2415i 0.647775i
\(794\) 24.7798 + 7.81436i 0.879402 + 0.277321i
\(795\) 0 0
\(796\) −13.6608 + 19.5056i −0.484193 + 0.691356i
\(797\) 34.7092i 1.22946i −0.788736 0.614731i \(-0.789264\pi\)
0.788736 0.614731i \(-0.210736\pi\)
\(798\) 0 0
\(799\) 24.2711i 0.858649i
\(800\) −11.9029 + 25.6578i −0.420831 + 0.907139i
\(801\) 0 0
\(802\) −5.53413 + 17.5491i −0.195417 + 0.619679i
\(803\) 21.5519 0.760548
\(804\) 0 0
\(805\) 0.910553 3.73905i 0.0320928 0.131784i
\(806\) −5.51821 + 17.4986i −0.194371 + 0.616361i
\(807\) 0 0
\(808\) 16.0686 + 20.9473i 0.565291 + 0.736924i
\(809\) 37.9701i 1.33496i −0.744629 0.667478i \(-0.767374\pi\)
0.744629 0.667478i \(-0.232626\pi\)
\(810\) 0 0
\(811\) −5.59781 −0.196566 −0.0982828 0.995159i \(-0.531335\pi\)
−0.0982828 + 0.995159i \(0.531335\pi\)
\(812\) 6.67764 + 4.67670i 0.234339 + 0.164120i
\(813\) 0 0
\(814\) −3.83567 + 12.1631i −0.134440 + 0.426318i
\(815\) 10.5328 43.2512i 0.368947 1.51502i
\(816\) 0 0
\(817\) 5.72033i 0.200129i
\(818\) 37.5800 + 11.8509i 1.31395 + 0.414358i
\(819\) 0 0
\(820\) 34.6172 30.4204i 1.20888 1.06232i
\(821\) −14.5614 −0.508195 −0.254097 0.967179i \(-0.581778\pi\)
−0.254097 + 0.967179i \(0.581778\pi\)
\(822\) 0 0
\(823\) 4.09828 0.142857 0.0714285 0.997446i \(-0.477244\pi\)
0.0714285 + 0.997446i \(0.477244\pi\)
\(824\) 33.4716 + 43.6342i 1.16604 + 1.52007i
\(825\) 0 0
\(826\) −1.90758 + 6.04903i −0.0663731 + 0.210473i
\(827\) −35.6559 −1.23988 −0.619938 0.784651i \(-0.712842\pi\)
−0.619938 + 0.784651i \(0.712842\pi\)
\(828\) 0 0
\(829\) 25.9129i 0.899991i 0.893031 + 0.449995i \(0.148574\pi\)
−0.893031 + 0.449995i \(0.851426\pi\)
\(830\) 17.3287 + 10.4903i 0.601489 + 0.364122i
\(831\) 0 0
\(832\) −4.53239 + 16.8954i −0.157132 + 0.585742i
\(833\) −10.1530 −0.351780
\(834\) 0 0
\(835\) −4.03277 + 16.5599i −0.139560 + 0.573081i
\(836\) 24.0963 34.4060i 0.833389 1.18996i
\(837\) 0 0
\(838\) −9.34287 + 29.6268i −0.322744 + 1.02344i
\(839\) 9.17285 0.316682 0.158341 0.987385i \(-0.449386\pi\)
0.158341 + 0.987385i \(0.449386\pi\)
\(840\) 0 0
\(841\) −22.4676 −0.774746
\(842\) −4.27853 + 13.5674i −0.147448 + 0.467565i
\(843\) 0 0
\(844\) −11.2473 7.87710i −0.387150 0.271141i
\(845\) 17.8560 + 4.34838i 0.614263 + 0.149589i
\(846\) 0 0
\(847\) −3.26230 −0.112094
\(848\) 31.0700 11.3017i 1.06695 0.388103i
\(849\) 0 0
\(850\) 11.4160 + 11.3667i 0.391567 + 0.389875i
\(851\) 2.69433i 0.0923605i
\(852\) 0 0
\(853\) −16.1963 −0.554550 −0.277275 0.960791i \(-0.589431\pi\)
−0.277275 + 0.960791i \(0.589431\pi\)
\(854\) 5.65899 17.9450i 0.193647 0.614064i
\(855\) 0 0
\(856\) −21.4637 27.9805i −0.733615 0.956355i
\(857\) −38.3773 −1.31094 −0.655471 0.755220i \(-0.727530\pi\)
−0.655471 + 0.755220i \(0.727530\pi\)
\(858\) 0 0
\(859\) 9.75306 0.332770 0.166385 0.986061i \(-0.446791\pi\)
0.166385 + 0.986061i \(0.446791\pi\)
\(860\) −3.30474 + 2.90409i −0.112691 + 0.0990287i
\(861\) 0 0
\(862\) −13.2246 4.17040i −0.450431 0.142044i
\(863\) 17.7874i 0.605489i −0.953072 0.302745i \(-0.902097\pi\)
0.953072 0.302745i \(-0.0979029\pi\)
\(864\) 0 0
\(865\) −7.27608 + 29.8781i −0.247394 + 1.01589i
\(866\) 6.25728 19.8422i 0.212631 0.674265i
\(867\) 0 0
\(868\) −10.8570 + 15.5022i −0.368511 + 0.526180i
\(869\) 40.6292 1.37825
\(870\) 0 0
\(871\) 13.1274i 0.444806i
\(872\) 16.7452 12.8451i 0.567063 0.434992i
\(873\) 0 0
\(874\) −2.66886 + 8.46312i −0.0902757 + 0.286269i
\(875\) −13.4451 11.7123i −0.454527 0.395947i
\(876\) 0 0
\(877\) 5.30899 0.179272 0.0896360 0.995975i \(-0.471430\pi\)
0.0896360 + 0.995975i \(0.471430\pi\)
\(878\) −8.74512 + 27.7313i −0.295134 + 0.935886i
\(879\) 0 0
\(880\) −32.1102 + 3.54630i −1.08243 + 0.119546i
\(881\) 46.1938i 1.55631i −0.628073 0.778154i \(-0.716156\pi\)
0.628073 0.778154i \(-0.283844\pi\)
\(882\) 0 0
\(883\) 35.4510i 1.19302i −0.802605 0.596510i \(-0.796553\pi\)
0.802605 0.596510i \(-0.203447\pi\)
\(884\) 8.16095 + 5.71554i 0.274482 + 0.192234i
\(885\) 0 0
\(886\) −0.681323 0.214857i −0.0228895 0.00721825i
\(887\) 1.33801i 0.0449261i −0.999748 0.0224631i \(-0.992849\pi\)
0.999748 0.0224631i \(-0.00715082\pi\)
\(888\) 0 0
\(889\) −28.5729 −0.958304
\(890\) −10.6974 + 17.6710i −0.358578 + 0.592332i
\(891\) 0 0
\(892\) 8.18055 + 5.72927i 0.273905 + 0.191830i
\(893\) 61.9471i 2.07298i
\(894\) 0 0
\(895\) 7.50704 30.8265i 0.250933 1.03042i
\(896\) −9.70010 + 15.2147i −0.324058 + 0.508287i
\(897\) 0 0
\(898\) 4.91838 15.5965i 0.164128 0.520460i
\(899\) 15.1650i 0.505780i
\(900\) 0 0
\(901\) 18.8310i 0.627351i
\(902\) 50.1990 + 15.8304i 1.67144 + 0.527093i
\(903\) 0 0
\(904\) −22.6240 29.4931i −0.752464 0.980926i
\(905\) −10.2654 + 42.1532i −0.341233 + 1.40122i
\(906\) 0 0
\(907\) 2.19143i 0.0727653i −0.999338 0.0363827i \(-0.988416\pi\)
0.999338 0.0363827i \(-0.0115835\pi\)
\(908\) 20.2144 + 14.1572i 0.670840 + 0.469824i
\(909\) 0 0
\(910\) −9.43390 5.71098i −0.312731 0.189317i
\(911\) −48.6279 −1.61111 −0.805557 0.592519i \(-0.798134\pi\)
−0.805557 + 0.592519i \(0.798134\pi\)
\(912\) 0 0
\(913\) 23.1365i 0.765706i
\(914\) 5.86164 18.5876i 0.193886 0.614823i
\(915\) 0 0
\(916\) 28.7075 40.9900i 0.948522 1.35435i
\(917\) 22.0908i 0.729502i
\(918\) 0 0
\(919\) 14.9150i 0.492002i −0.969270 0.246001i \(-0.920883\pi\)
0.969270 0.246001i \(-0.0791166\pi\)
\(920\) 6.24423 2.75469i 0.205866 0.0908195i
\(921\) 0 0
\(922\) 15.6522 + 4.93595i 0.515477 + 0.162557i
\(923\) −5.13088 −0.168885
\(924\) 0 0
\(925\) −11.0863 5.73998i −0.364514 0.188730i
\(926\) 31.8555 + 10.0457i 1.04684 + 0.330122i
\(927\) 0 0
\(928\) 0.627142 + 14.4445i 0.0205869 + 0.474162i
\(929\) 11.8899i 0.390094i −0.980794 0.195047i \(-0.937514\pi\)
0.980794 0.195047i \(-0.0624860\pi\)
\(930\) 0 0
\(931\) −25.9134 −0.849278
\(932\) 11.2807 + 7.90044i 0.369510 + 0.258787i
\(933\) 0 0
\(934\) 33.9237 + 10.6979i 1.11002 + 0.350046i
\(935\) −4.35368 + 17.8777i −0.142381 + 0.584664i
\(936\) 0 0
\(937\) 36.1612i 1.18133i −0.806916 0.590667i \(-0.798865\pi\)
0.806916 0.590667i \(-0.201135\pi\)
\(938\) 4.07247 12.9140i 0.132971 0.421658i
\(939\) 0 0
\(940\) −35.7880 + 31.4492i −1.16727 + 1.02576i
\(941\) −37.1768 −1.21193 −0.605965 0.795491i \(-0.707213\pi\)
−0.605965 + 0.795491i \(0.707213\pi\)
\(942\) 0 0
\(943\) −11.1199 −0.362113
\(944\) −10.5709 + 3.84516i −0.344053 + 0.125149i
\(945\) 0 0
\(946\) −4.79226 1.51125i −0.155810 0.0491350i
\(947\) 31.9333 1.03769 0.518846 0.854868i \(-0.326362\pi\)
0.518846 + 0.854868i \(0.326362\pi\)
\(948\) 0 0
\(949\) 13.0474i 0.423535i
\(950\) 29.1372 + 29.0112i 0.945335 + 0.941249i
\(951\) 0 0
\(952\) 6.25518 + 8.15437i 0.202732 + 0.264285i
\(953\) 5.34819 0.173245 0.0866224 0.996241i \(-0.472393\pi\)
0.0866224 + 0.996241i \(0.472393\pi\)
\(954\) 0 0
\(955\) −53.9650 13.1419i −1.74627 0.425260i
\(956\) −13.5365 9.48035i −0.437803 0.306617i
\(957\) 0 0
\(958\) 25.1898 + 7.94366i 0.813845 + 0.256648i
\(959\) −23.5289 −0.759787
\(960\) 0 0
\(961\) −4.20569 −0.135667
\(962\) −7.36349 2.32209i −0.237408 0.0748673i
\(963\) 0 0
\(964\) −29.9230 20.9566i −0.963755 0.674968i
\(965\) 3.19573 13.1228i 0.102874 0.422438i
\(966\) 0 0
\(967\) −30.4607 −0.979550 −0.489775 0.871849i \(-0.662921\pi\)
−0.489775 + 0.871849i \(0.662921\pi\)
\(968\) −3.52136 4.59051i −0.113181 0.147545i
\(969\) 0 0
\(970\) −26.4742 + 43.7325i −0.850037 + 1.40417i
\(971\) 4.26310i 0.136809i −0.997658 0.0684046i \(-0.978209\pi\)
0.997658 0.0684046i \(-0.0217909\pi\)
\(972\) 0 0
\(973\) 13.6638 0.438041
\(974\) −29.1338 9.18739i −0.933506 0.294383i
\(975\) 0 0
\(976\) 31.3595 11.4070i 1.00379 0.365129i
\(977\) −14.4535 −0.462410 −0.231205 0.972905i \(-0.574267\pi\)
−0.231205 + 0.972905i \(0.574267\pi\)
\(978\) 0 0
\(979\) −23.5934 −0.754048
\(980\) 13.1557 + 14.9707i 0.420243 + 0.478220i
\(981\) 0 0
\(982\) 13.1765 41.7833i 0.420478 1.33336i
\(983\) 17.2658i 0.550694i −0.961345 0.275347i \(-0.911207\pi\)
0.961345 0.275347i \(-0.0887928\pi\)
\(984\) 0 0
\(985\) 9.28903 38.1440i 0.295973 1.21537i
\(986\) 7.85363 + 2.47666i 0.250110 + 0.0788729i
\(987\) 0 0
\(988\) 20.8292 + 14.5878i 0.662665 + 0.464099i
\(989\) 1.06156 0.0337558
\(990\) 0 0
\(991\) 48.1671i 1.53008i −0.643984 0.765039i \(-0.722720\pi\)
0.643984 0.765039i \(-0.277280\pi\)
\(992\) −33.5330 + 1.45592i −1.06467 + 0.0462255i
\(993\) 0 0
\(994\) −5.04748 1.59173i −0.160096 0.0504867i
\(995\) 6.29959 25.8683i 0.199710 0.820081i
\(996\) 0 0
\(997\) 26.3097 0.833235 0.416617 0.909082i \(-0.363215\pi\)
0.416617 + 0.909082i \(0.363215\pi\)
\(998\) −16.3521 5.15667i −0.517617 0.163232i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1080.2.m.c.539.43 yes 48
3.2 odd 2 inner 1080.2.m.c.539.6 yes 48
4.3 odd 2 4320.2.m.c.2159.1 48
5.4 even 2 inner 1080.2.m.c.539.5 48
8.3 odd 2 inner 1080.2.m.c.539.42 yes 48
8.5 even 2 4320.2.m.c.2159.48 48
12.11 even 2 4320.2.m.c.2159.47 48
15.14 odd 2 inner 1080.2.m.c.539.44 yes 48
20.19 odd 2 4320.2.m.c.2159.4 48
24.5 odd 2 4320.2.m.c.2159.2 48
24.11 even 2 inner 1080.2.m.c.539.7 yes 48
40.19 odd 2 inner 1080.2.m.c.539.8 yes 48
40.29 even 2 4320.2.m.c.2159.45 48
60.59 even 2 4320.2.m.c.2159.46 48
120.29 odd 2 4320.2.m.c.2159.3 48
120.59 even 2 inner 1080.2.m.c.539.41 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1080.2.m.c.539.5 48 5.4 even 2 inner
1080.2.m.c.539.6 yes 48 3.2 odd 2 inner
1080.2.m.c.539.7 yes 48 24.11 even 2 inner
1080.2.m.c.539.8 yes 48 40.19 odd 2 inner
1080.2.m.c.539.41 yes 48 120.59 even 2 inner
1080.2.m.c.539.42 yes 48 8.3 odd 2 inner
1080.2.m.c.539.43 yes 48 1.1 even 1 trivial
1080.2.m.c.539.44 yes 48 15.14 odd 2 inner
4320.2.m.c.2159.1 48 4.3 odd 2
4320.2.m.c.2159.2 48 24.5 odd 2
4320.2.m.c.2159.3 48 120.29 odd 2
4320.2.m.c.2159.4 48 20.19 odd 2
4320.2.m.c.2159.45 48 40.29 even 2
4320.2.m.c.2159.46 48 60.59 even 2
4320.2.m.c.2159.47 48 12.11 even 2
4320.2.m.c.2159.48 48 8.5 even 2